
142

LC/MARC ON MOLDS; AN EXPERIMENT IN COMPUTER-BASED,
INTERACTNE BIBLIOGRAPHIC STORAGE, SEARCH,
RETRIEVAL, AND PROCESSING

Pauline ATHERTON, Associate Professor, School of Library Science, and
Karen B. MILLER, Research Associate, Syracuse University,
Syracuse, New York

A project at Syracuse University utilizing MOLDS, a generalized com­
puter-based interactive retrieval program, with a portion of the Library
of Congress MARC Pilot Project tapes as a data base. The system, writ­
ten in FORTRAN, was used in both a batch and an on-line mode. It
formed part of a computer laboratory for library science students during
1968-1969. This report describes the system and its components and points
out its advantages and disadvantages.

INTRODUCTION
The somewhat intimidating title of this report becomes less so when trans­
lated from jargon into more familiar phrases. The LC/MARC ON MOLDS
experimental project conducted at Syracuse University School of Library
Science utilizes a computer: 1) to store bibliographic reference (library
catalog) data, 2) to search the data for items that meet a searcher's
criteria, 3) to retrieve items the searcher wishes retrieved, and 4) to
process or manipulate items as required. A dialog or interaction between
man and his data, via the machine, is established when a searcher makes
a request in a query language and the computer responds immediately to
the request.

The LC/MARC ON MOLDS system consists of two major components.
The first is the data base, which is a slightly modified subset of the Li­
brary of Congress MARC Pilot Project records (1).

The second component is the computer programming system written
in FORTRAN known as MOLDS (acronym for Management On-Line

LC MARC on MOLDS/ATHERTON and MILLER 143

Data System). MOLDS provides the computer routines required to store
and maintain the data base, and the query language (also known gen­
erally as MOLDS) that a searcher uses to interact with his data stored
in the computer.

The LC/ MARC ON MOLDS system was originally implemented in
April 1968 on the IBM 360/50 at the Syracuse University Computing
Center. This system is part of an experiment to determine how on-line
interactive retrieval systems could be used to greatest advantage in the
information gathering process. The MOLDS system, developed in 1966
by the Syracuse University Research Corporation (2) for management
purposes, was readily available for use in the research reported in this
paper. MOLDS has been used with several data bases, including the
MARC records.

The system has not been made available to a large user population.
Preliminary work with the system and a few demonstrations to students
have already provided considerable insight into the desirable and undesir­
able features in both the MARC data base and the MOLDS query lan­
guage, an insight that has already resulted in both data-base and query­
language modification.

Work with the system on the computer at Syracuse University has raised
many crucial questions extending beyond the original research plan about
system and data base design-questions for which there are as yet no
answers. Even at its early stage of experimentation the work should be
of interest to librarians because of its use of the MARC Pilot Project
records and its use of an available retrieval program with features suitable
for reference retrieval.

To the authors' knowledge, this is the first computer-based project in
which the Library of Congress MARC records were used in an interactive
retrieval environment.

The query language (MOLDS) was not specifically designed for refer­
ence retrieval, but its design features make its use for this purpose quite
feasible. It differs from the usual interactive system designed for biblio­
graphic reference retrieval and therefore deserves attention for compara­
tive purposes. MOLDS gives a user the ability to process as well as
retrieve data, something very few search and retrieval systems are de­
signed to do.

The contribution of LC/MARC ON MOLDS to the world of informa­
tion retrieval, promising though it appears, cannot be assessed until all
experiments are run. This report on its features, both good and bad, is
offered in order to make those concerned with the design and application
of interactive systems aware of its unique aspects and potential. Hope­
fully, this work will contribute another ingredient to the synthesis of
ideas and methods that will bring the state of the art ever closer to the
optimum and ideal.

144 Journal of Library Automation Vol. 3/2 June, 1970

Table I. Some Features of Interactive Retrieval Systems (circa 1968)

#Docs. in Data Base
System Name Data Base Structure Access Points

1. AUDACIOUS 2330 Tree structure UDC descriptions
(AlP) threaded list Euratom key words

2. BOLD 6000 Threaded list ASTIA Subject category
(SDC) index terms

accession numbers

3. COLEX 2000 Inverted index descriptor} subject
MICRO tree structure author qualified country
(SDC) index subject by ~ent,

subject
area,
date

4. GRINS > 1000 Serial document index terms
(Lehigh U) inverted index

5. MULTILIST Varies Threaded list any chosen key term to fit aapli-
Tree structure cation (e! author, subject, ate,
directory title wor , subject headings)

6. MARC/ 2000
MOLDS

Cell-matrix any discrete data block

7. NASA/RECON 270,000 ?
subject l { author
corporate qualified date

source by
report#
contract#

8. TIP >
(MIT) 25,000 List structure author(s)

location (where work done)
citation identification (i.v-p.)
article title (entire, keyword)
citation index
bibliographic coupling

9. SUNY BIOMED > 20,000 Inverted index auilior } { COMM. title qualified date,
NE1WORK subject by lang.

•Each command is a subroutine. Commands are tailored to application.

Access to
Authority
Files
On-Line

UDC
Schedules

Subject
category
list, index
term file

No

Index term

No

Optional

No

No

No

LC MARC on MOLDS/ATHERTON and MILLER 145

Related
Terms or #Commands

Cross Refs In Query
Given Language

Yes 11

Yes 14
(11 light pen)

No (conversation)

Yes (conversation)

No 0

Optional 35

Yes 16
function keys

No 9
Also various

MAC commands

No 10 (?)

Computer
Instruction

In
Language

Use

Optional

Optional

Optional

No

No

No

Optional

No

No

ComJ:ier
Ai
Query

Formulation
(Conversa-

tion)

Limited

Yes

Yes

Yes

No

No

Yes

No

Yes

Root Communi-
Word cation
Search Link

Yes CRT

Yes CRT with
light pen

Yes Teletype

Yes Teletype

No CRT

No CRT

Yes Teletype

No IBM 2740
console

146 Journal of Library Automation Vol. 3/ 2 June, 1970

BACKGROUND
A number of interactive retrieval systems have been designed and im­

plemented within the last few years. The features and potential of
LC/ MARC ON MOLDS are best viewed in relation to what has been
done in the field up to now. To gain some perspective, the major fea­
tures of data base structures and query languages of other interactive
systems are summarized in Table 1. This table presents those features
of most interest to librarians who may wish to compare searching on a
computer with searching in the card catalog or other bibliographic refer­
ence tools. References 3-12 document sources for the data in this table.

MOLDS DATA BASE STRUCTURE
The general structure of the data base with which MOLDS operates is,

in comparison with the threaded lists and inverted indexes found in many
retrieval systems, extremely simple and unsophisticated. The data base
can be composed of from one to ten distinct files of 1000 records each.
A record is equal to the bibliographic description on a card in a library
catalog. Each record may be up to 300 computer words (1200 characters)
long and may be subdivided into 80 blocks. Originally, there was a 200-
word (BOO-character) limitation on record size, but this has now been
expanded. The total file size (limit of 10,000 records) is adequate for
testing purposes, but expansion beyond the present limitations is planned
in order to make the system more practical for actual use.

The structure of a file is essentially a simple matrix. Each row con­
tains all the elements of a single complete record; each column contains
all like discrete items of all the records in the file. The columns are called
blocks in the MOLDS system, block and field being used synonymously
in this report. For example, a library catalog card for one publication
would be a record in a file composed of library catalog records. The
main entries in the file constitute a block and the dates of publication
constitute another block. Figure 1 illustrates the data base structure, as
of 1968. In this illustration the maximum number of files is 10 (1000
records each) and the maximum number of blocks 80.

Each file and each block in a file is given a name and/ or number. A
user can reference or call up any file or data block within a file by using
its name or number in a MOLDS query language command. There are
as many access points to a file as there are blocks in that file. This is in
contrast to a conventional card catalog, for example, where the only
access points are filing entries: main entry, title, subject(s), added entries,
series, and analytics.

No specific provision is made within the MOLDS system for the stor­
age of authority files, cross reference lists, or other intermediate keys to
the records. Such files are not absolutely necessary for effective operation
of the system since every block can be accessed and can serve as its own
authority file. For more efficient system operation, however, it is intended

LC MARC on MOLDS/ATHERTON and MILLER 147

to explore the possibility of creating authority fi1es as part of the data
base, beginning with portions of the Seventh Edition of the Library of
Congress List of Subject Headings.

Block Al Block A2 •••••••• Block ABO

-PIn l
....___ ---v- ../

File A

}
record AJ.
record A2
re;,ord A3

record AJ.OOO

Data Base

Block Bl BlockB2 -------- Block B8C

~ -

~
File B

record Bl
record B2 ..

record BlOOO

(As of 1968,--MaldmulllllUlllber .of files is 10 files,each or 1000 records, v1th maximum number of blocks 80)

Figure 1. Section of General MOLDS Data Base Structure.

Provision is made for temporary user storage areas in which the user
places the results of his retrieval and processing operations. Data in the
user area is retained only during the session in which it is created.
Although it cannot be saved for use at a later date, all or part of it can
be printed out on the on-line printer for the user's later reference.

While the general structure of the data base is formalized within the
MOLDS system, the content and specific organization of a particular data
base is determined by its originator. This feature, plus the simplicity of
MOLDS' own structure, introduces a great deal of flexibility into the
data base and the use that can be made of it. The originator of the
data base may designate as a block any discrete data item he wishes.
If the user population is dissatisfied with results using one content and
arrangement of blocks, the base can be reformatted and restructured in
a fairly simple maintenance run. No problems of linking records or modi­
fying authority lists arise, as neither is part of the system. The first ver­
sion of the LC/MARC data base has in f.act been modified by addition of
three blocks and division of one block in half to form two blocks, giving
access to smaller units of data.

148 Journal of Library Automation Vol. 3/2 June, 1970

The LC/MARC Data Base in MOLDS Format

Library of Congress MARC Pilot Project tapes containing some 40,000
records of English language books cataloged in 1966-67 became available
for this project in the Fall of 1967. Because of the MOLDS data base
limitations, a subset of these catalog records was selected for use with
MOLDS. The original plan was to have each file in the data base con­
sist of as complete a set as possible of all MARC Pilot Project records
from a single Library of Congress classification schedule. The candidate
for the first file was class R (Medicine) which contained just under 1000
records. Later MOLDS files were formed for two other LC classes: T
(Technology) and Z (Bibliography and Library Science). In mid-1969
two stratified sample files of the MARC data base were created, one in
the humanities, another in the social sciences. In all, Syracuse has a
MARC/MOLDS data base of 10,000 records.

The record format of the MARC tape was first analyzed to determine
which fields should be included in the data base, and which might be
omitted. The criterion for selection was probable usefulness to searchers
of the data base, a conception that should undoubtedly be modified as
searches are monitored. Appropriate changes would not be difficult.

Toward the end of January 1969, a programming project was begun
which entailed the design and implementation of a computer program
to perform format conversion of the Library of Congress MARC I biblio­
graphic file to satisfy MOLDS data base requirements. The project rep­
resented a three man-month effort and was completed by June 1969.

The data-base converter program represents an attempt to provide a
user-oriented facility for creating a MOLDS data base from MARC in­
formation. Essentially, the user of the program describes each MOLDS
file to be produced by specifying:

1) the number of (fixed) fields per MOLDS record;
2) the name and size (in characters) of each field in the MOLDS

record;
3) the name of the MARC I field from which the data are to be taken;
4) selection criteria according to which MARC I records are to be

chosen for conversion;
5) for any MARC I field, a data conversion procedure to be applied

prior to transferring the information to the appropriate MOLDS field;
6) whether or not diacritical codes should be stripped from the MARC I

field prior to transferring the information to the MOLDS field;
7) whether or not character translation from lower-case to upper-case

codes should be performed on the data prior to transfer from the
MARC I to the MOLDS field.

Although the program has not yet been refined to the extent originally
intended, nevertheless it contains all the features indicated above and has

LC MARC on MOLDS/ATHERTON and MILLER 149

been used to create ten MOLDS files since its completion. The program
is written in PL/I and more fully documented in a report available from
the National Auxiliary Publication Service of ASIS.

MOLDS requires fixed-field input for its data base, but many of the
fields or data blocks on the MARC tape are variable in length. There­
fore, the field lengths of 200 records in the class R (Medicine) subset
were examined to determine the maximum size which would produce a
MOLDS record within the original 200 computer-word (BOO-character)
limitation and still retain all the desired data. This limitation was easily
expanded to 300 words, allowing addition of new fields and expansion
of existing fields as new MARC/MOLDS files were generated. A record
whose original variable length was 500 characters or less expanded to
about 800 characters when converted to fixed-field form. In the first data
base only records of 500 characters or less were considered for inclusion,
which gave a total of 620 records in the first MARC/MOLDS file. By
mid-1969 this data base was greatly enlarged using the program de­
scribed above.

The names of the present MARC/MOLDS files are: SS01, SS02, SS03,
SS04, SSOZ, and SSOH. The first files generated were called MARC and
MARZ.

The MARC/MOLDS format now in use is given in Table 2. The addi­
tions made to the original format are noted. MARC/MOLDS block names
can be used instead of block numbers; for ease of searching both name
and number are given in the table. The MOLDS block number corre­
sponds to MARC Pilot Project field tags whenever possible. After this
second revision had been completed, MARC II (13) format with new
field tags appeared. Interestingly, there were remarkably few differences.

Creating an information retrieval system from other data bases can pre­
sent some major headaches. During the first test session with the MARC/
MOLDS data base, it was discouraging to find that successful retrieval
operations could not be performed on such vital items as subject or main
entry (blocks MAIN and SUBA, respectively) . The problem lay in the
fact that the lower-case character codes employed on the MARC tape
had not been converted to the all-upper-case-codes required by MOLDS.
Once discovered, the problem was easily remedied. Other problems were
not so easy to solve.

The MARC data base had been received in a "raw form", i.e., there
were typographical errors in the original tapes and irregular spacing; and
incorrect punctuation, spelling and abbreviations. There was no way to
detect these errors, and the retrieval program would only work on direct
matches of query and document information elements. The MOLDS
language (to be discussed subsequently) required a good deal of stand­
ardization and regularity of the records to take full and effective advan­
tage of its retrieval capabilities.

150 Journal of Library Automation Vol. 3/2 June, 1970

Table 2. MARC/ MOLDS Data Base Format

Description Field Names Chars. MARC I Data Element
MARC Fixed Fields: Molds Blk In Fixed Information

Block No. Block Field Values or
Name Position Explanation

or Tag No.
LC card no. LDN~ 80 11 9-19
Type of main entry TYPE 81 1 21 A-G
Form of work F0RM 82 1 22 MIS
Bibliographies indicator BIB 83 1 23 Xb
Illustrations " ILLU 84 1 24 "
Maps MAP 85 1 25
Conferences C0NF 86 1 26
Juvenile JUV 87 1 27
Languages LANG 88 4/ 4 29-36 Both languages
Language 1 LANl 1 4 29-32
Language 2 LAN2 2 4 33-36

Publication dates DATE 89 4/ 4 38-45 Both dates

Height in em. HITE 90 2 59-60
Uniform tracing indicator UNIF 91 1 66 Xlb
Series tracing indicator SERT 92 1 69 "
Place of publication code PLCD 18 4 46-49
Publisher code PUCD 19 4 50-53
LC call no. LCN~ 98 20 90

Dewey class no. DEW! 99 20 92

Dewey class no. (edited) DEW2 39 8 92 ooDDD.DD

LC class no. (edited) LCCL 97 8 90
e.g. 00351.2352

Main Entry MAIN 10 68 10
Title Statement TITL 20 80 20
Subtitle Statement STIT 21 80 20
Edition Statement EDIT 25 12 25
Place } . PLCE 30 28 30
Publisher 1mpnnt statement PUBL 31 28 30
Collation C0LL 40 48 40
Series note SERS 50 44 50/51
Note N0TA 60 44 60
Note N0TB 61 44 60
Subject tracing SUBA 68 48 70
Subject tracing SUBB 69 48 70
Subject tracing SUBC 70 48 70

LC MARC on MOLDS/ATHERTON and MILLER 151

Personal Author Tracing PAUA 71 40 71
Personal Author Tracing PAUB 72 40 71
Corporate Author Tracing C0RP 73 1 72
LC card suffix LCFF 94 3 94

Total MARC/MOLDS Characters 848

THE MOLDS SYSTEM

Functionally, the MOLDS system consists of utility routines to store a
data base, a well-defined query language, a language interpreter, and a
set of logical procedures which allow the user to operate on a data base.

The MOLDS system is a set of FORTRAN IV subroutines which per­
form the maintenance functions, interpret the commands in the query
language and perform the desired logical procedures.

The subroutines render the system modular and open. It is therefore
relatively easy for a programmer skilled in FORTRAN IV to add, modify
and delete commands and functions as required. This feature of the sys­
tem is quite desirable. User feedback invariably points up weaknesses
in the language or suggests useful features which might be incorporated.
MOLDS was continually modified in response to user requirements, and
each modification was implemented within a short time without requiring
major programming changes throughout the system. The system has
already grown since it was first implemented with the MARC data base,
and commands have been added or modified as required.

Hardware Configuration

MARC/MOLDS was run at Syracuse University Computing Center on
an IBM 360/ 50 computer. Originally, the on-line mode required full
dedication of the computer during execution. The MOLDS system re­
quires some 150,000 bytes of main memory and a disk storage unit to
hold the entire data base, as well as intermediate data generated by the
user. The MOLDS system has been implemented on other computers (2).

Interaction with the system in the on-line version was carried on through
an IBM 2260 Display Station consisting of a keyboard and CRT (cathode
ray tube) display screen. Although two or more consoles have not as yet
been operated simultaneously, the system is intended to be time-shared.

Effort was made to alter the system to operate in a 50,000 (50K) upper
partition, so that it could be accessible at all times rather than on a
scheduled basis. This involved reorganizing the program into an overlay
structure in which the basic or root segments are resident in a fixed
portion of memory throughout execution, while the remainder of the
program is divided into a set of smaller segments which can overlay
each other, being brought into memory only when needed. This task

152] ournal of Library Automation Vol. 3/ 2 June, 1970

required a careful analysis of each subroutine for its dependence upon
others, breaking the program into mutually exclusive segments, while
ensuring that any given set of segments which occupied memory simul­
taneously did not exceed 50K bytes of storage. Many of the larger seg­
ments which had to be further subdivided required considerable repro­
gramming.

The first attempt at executing the new overlay version failed. Due to a
general lack of experience with the 2260 Display Units, it had not been
anticipated that system software would not allow the console to be
accessed from outside of the root segment, and the 2260 software package
had been placed in an overlay area. As a result the original overlay
configuration had to be altered. The console input/ ouput (I/0) package
was moved into the root segment, increasing its size by several hundred
bytes and similarly decreasing the amount of storage available for the
overlay portions. Therefore, it was necessary to develop yet another
configuration to conform to these new storage limitations.

While the necessary changes were being made, the Computing Center
began operating a limited time-sharing system which itself required full
dedication of the 360/50 machine. Projected dates for returning to normal
computer operations within a multi-partition environment were far enough
in the future to suggest the efficacy of creating a new version of MOLDS
which could function off line, with cards and printer instead of the 2260
consoles.

In this batch, or off-line, mode MOLDS jobs could be submitted through
the regular queue and run by Computer Center staff during batch process­
ing time. With the on-line source program as a starting point, all refer­
ences to 2260's were replaced with card reader and printer statements
and the MOLDS language instructions deleted which depended on the
console for their use. Mter all changes had been made and compilation
was completed successfully, the off-line MOLDS was exercised against a
sample data base until it was satisfactorily debugged.

Since it was known that the Computing Center would eventually return
to r artitioned operation, it was next undertaken to overlay the off-line
MOLDS into a 50K partition. This was accomplished with little difficulty
since the problems encountered in working with the on-line version were
largely due to the consoles. The end result of the entire task, therefore,
was an off-line MOLDS which could operate either in core or in overlay
structure at the discretion of the user.

THE MOLDS QUERY LANGUAGE
The MOLDS query language includes some 34 distinct commands which

must be entirely formulated by the user according to precise syntactical
rules. The large number of commands is in part a reflection of the fact
that this system provides the user with the ability to perform more op­
erations of a greater variety on a data base than other interactive infor-

LC MARC on MOLDS/ ATHERTON and MILLER 153

mation retrieval systems. It provides for retrieval of records from the
data base according to data value descriptors, processing of data values
by arithmetic and logical operations, sorting of retrieval records, and dis­
play of retrieval records in full or in part.

Operationally, the MOLDS system regards a file of records as a set of
parallel lists of blocks (Figure 1). With the MARC data base, these
blocks were the 38 fields of catalog data (such as Dewey class number,
title, author, etc.). The commands in the MOLDS query language are
geared to list processing operations. In general, most of the MOLDS com­
mands will result in the formation of lists which are either identical in
format to the original file, or are an independent list of alpha or numeric
constants not subdivided into blocks.

Despite its surface complexity, the query language was designed specifi­
cally for users with absolutely no computer experience. The fixed format
commands are easy to learn and use, even for the novice in computer
based systems. They are mnemonic enough so that a little use soon brings
an easy familiarity with them.

Commands in the MOLDS Query Language

There are six categories of commands in the language: retrieval, pro­
cessing, display, storage, utility, and language augmentation. The com­
mands are listed below with a brief explanation of each.

Retrieval Commands:

FIND:

EXTRACT

FETCH

DEFINE

CHAIN

SELECT

Forms a temporary subfile consisting of records from
the data base for which the value in a specified block
is equal, not equal, greater, greater or equal, less, less
or equal to an input value.
Forms a temporary subfile consisting of records from
an argument subfile for which the value in a specified
block is equal, not equal, greater, greater or equal,
less, less or equal to an input value.
Forms a temporary file which duplicates an existing
file in the data base (added to original MOLDS com­
mands during this project) .
Forms a temporary subfile from two argument subfiles
based on logical relationships AND, OR, NOT.
Forms a temporary subfile consisting of records from
an argument subfile for which the value in a speci­
fied block is equal to any of the values in a specified
block from a second argument subfile.
Forms a temporary subfile consisting of records from
an argument subfile for which the value in a specified
block is equal to any of the values in an argument list.

154 Journal of Library Automation Vol. 3/2 June, 1970

These six retrieval commands allow the user to extract selected data
from the data base. Selection is based on 1) a simple algebraic relation­
ship (e.g., equal, not equal, greater than, etc.) between block values and
a value specified by the user in the command (value may be alphanumeric
or numeric), or 2) a simple logical relationship (e.g., and, or, not) be­
tween block values in two lists.

All retrievals from MOLDS files are based on exact-match correspond­
ences between input descriptors and data values as they occur in records.
Each file is treated as distinct regardless of the fact that for the MARC/
MOLDS data base the second file may simply be a continuation of the
first, etc.

Any block in a file may be used as an argument in a retrieval process.
Thus, the usual range of access points (author, title, subject, classification
number) is considerably extended to include such unorthodox access points
as juvenile literature, language, illustrations, and bibliographies. For ex­
ample, one can retrieve all documents on a given subject or subjects which
are juvenile books with bibliographies and illustrations published by a
given publisher in 1966. The user can define his search limits with a degree
of specificity not found in most interactive systems. However, the price
he must pay is exactness in specifying the values used as retrieval criteria.

The system will not retrieve on root words or key letter combinations,
although such capability could be added. The block values must, there­
fore, be consistent and the user must have a precise knowledge of what
they may be. This knowledge can be gained by examining the values and
having them printed out as needed. (MOLDS does have the capability of
selecting unique values from a list, ordering them, and printing them out
at any time during system operation.

Processing Commands:

COUNT Counts the number of records in an argument subfile
or items in an argument list.

ORDER
(REVERSE)

MAXIMUM
(MINIMUM)

TOTAL

AVERAGE

Arranges the records of an argument subfile in as­
cending (descending) order according to the values
in a specified block or similarly sorts the values in
an argument list. May be applied to alphabetic,
numeric, and chronological data.
Selects the record containing the maximum (mini­
mum) value in a specified block from an argument
subfile, or the maximum (minimum) value in an
argument list. May be applied to numeric or chrono­
logical data.
Calculates the sum of the values in a specified block
of an argument subfile or of a list of numbers.
Calculates the average of the values in a specified
block of an argument subfile or of a list of numbers.

LC MARC on MOLDS/ATHERTON and MILLER 155

MEDIAN

VARIANCE

SQUAREROOT

DIFFERENCE

ADD
(SUBTRACT
MULTIPLY
DIVIDE)

Calculates the median of the values in a specified
block of an argument subfile or of a list of numbers.
Calculates the variance (standard deviation squared)
of the values in a specified block of an argument
subfile or of a list of numbers.
Calculates the square root of each value in a block
of an argument subfile or of a list of numbers.
Calculates successive differences in the values of a
specified block in an argument subfile or of a list of
numbers.
Adds (subtracts, multiplies, divides) the values from
a specified block from an argument file (or list) to the
corresponding values from a specified block from a
second argument file (or list) .

FIRSTELEMENT Selects the first record from an argument subfile or

REDUCE

COMPRESS

list.
Deletes the first record from an argument subfile or
list.
Forms a temporary list composed of all the unique
values in a specified block of an argument subfile or
in an argument list.

The eighteen Processing commands allow the user to manipulate the
data in the lists he has retrieved. He may count the number of elements
in a list, arrange them in ascending or descending order, form the sum,
average, variance, median and square root of a list of numbers; add, sub­
tract, multiply, and divide one list by another, and select all unique ele­
ments from a list.

The ability to process data as well as retrieve it may be unique to
MOLDS as compared to other interactive systems, and gives the language
a useful added power.

Display Commands
DISPLAY

SHOW

PRINT

Outputs on the CRT (cathode ray tube) each com­
plete record in an argument subfile (Added to original
MOLDS commands during this project).
Outputs in columnar fashion on the CRT selected
blocks from up to three argument subfiles or lists
(Deleted in batch or off -line mode) .
Outputs in columnar fashion on the printer selected
blocks from up to three argument subfiles or lists
(Added to original MOLDS commands during this
project) .

The three Display commands allow the user to display entire documents,
or display selected books of information or records in columnar format. In

156 Journal of Library Automation Vol. 3/2 June, 1970

the on-line version of MOLDS this may be done on the CRT, or a print­
out made of selected blocks or lists of documents on the high speed printer.
There is much flexibility and versatility in output format which is com­
pletely determined by the user. The command, SHOW, is not used in the
batch mode of MOLDS.

Storage Commands:

SET Stores a single numeric value.
STORE Stores an alphabetic, chronological, or numeric list of

arbitrary length.
The two Storage commands allow the user to insert independent lists of

constants into the storage area. Such lists do not become part of the data
base, but are used in conjunction with retrieval and processing commands.

Utility Commands:

CLEAR

DELETE

DUMP

RECALL

LIST

Deletes from storage a temporary subfile or list
created during the session.
Deletes from storage all temporary subfiles or lists
created during the session.
Displays on the CRT in tabular fashion the names,
file origins, and number of items in each subfile and
list created by the user during the session (deleted
in batch or off-line mode).
Displays on the CRT the command which resulted
in the creation of a specified temporary subfile or list
(added to original MOLDS commands during this
project).
Produces printed copy of all commands issued dur­
ing the session. May be used with STOP at end of
search (added to original MOLDS commands during
this project).

The five Utility commands allow the user to perform housekeeping op­
erations, such as the clearing of storage areas, reinitialization of the system,
and termination of execution. The command DUMP is not used in the batch
mode of MOLDS.

Language Augmentation Command:

PROGRAM Allows the user to create new commands consisting
of a sequence of basic commands and to store them
for future sessions.

The language augmentation command PROGRAM, is one of the most
important features of the language. It allows the user to create new com­
mands tailormade to his own needs. This is shown in the first MOLDS
search query which follows.

LC MARC on MOLDS/ATHERTON and MILLER 157

SEARCH REQUEST FORMULATION IN MARC/MOLDS

MOLDS Search Query-Example 1 (Batch Mode)

PROGRAM TALLY A/
COUNT B A/
PRINT B//
END

FIND ZNY SSOZ/PLCD/E/NYNY/
TALLY ZNY/
PRINT ZNY/PLCE/ PLCD/PUCD/ I
FIND P67 SSOZ/ DATE/E/1967 I
TALLY P67/
DEFINE NY67 ZNY/AND/P67/
TALLY NY67/
AVERAGE AVHT NY67 /HITE/
PRINT AVHT/
STOP

The above example shows an off-line or batch-mode search. This se­
quence of commands would be keypunched and submitted as a job deck
in the regular queue and run by the computer center staff, the searcher
receiving the results as a printout from the high speed printer. SSOZ
is the name of one of the MARC/MOLDS files. This particular inter­
action shows the use of the operator PROGRAM to augment the lan­
guage in the subsequent search by adding TALLY to the list of com­
mands.

The following example shows a search query which is a sequence of
some typical MOLDS commands along with an explanation of the effect
of each. Each command has three parts. The first part (FIND, DEFINE,
etc.) is the imperative which tells what operation is to be performed. The
second part (BIBL, ENGL, BOTH, etc.) is the label of the place in
storage where the result of the operation is to be stored. This label is
made up by the user when he gives a command. The third part of the
command is the operand. In some cases the operand gives the criteria
for retrieval (as in FIND, DEFINE) . It always gives the name or label
of the list to be operated on, and in some cases specifies a particular
block of that list.

The request shown in this example was handled by MOLDS to retrieve,
display, and process all English language books on printing, or type­
setting, or type founding which have bibliographies. The sequence illus­
tt·ates the flexibility of MOLDS, the many types of processing which can
be done, the relatively easy way to use command format. This particular
sequence was performed in the on-line version with chance for user­
system interaction after each command.

158 Journal of Library Automation Vol. 3/2 June, 1970

MOLDS Search Query-Example 2 (On-Line mode)

MOLDS Commands:

FIND BIBL MARC/BIB/E/X/

Explanation:

Find all records in the file
named MARC for which the
block named BIB contains a
value equal to (E) X (X in
the block indicates presence
of bibliographies). The list of
selected records is to be stored
in a location called BIBL.

FIND ENGL MARC/LANG/E/ENG/ Find all documents in the file
named MARC for which the
block named LANG contains
a value equal to (E) ENG,
i.e. English language books.
The list of selected records is
to be !itored in a location
called ENGL.

DEFINE BOTH BIBL/ AND/ENGL/

STORE SUBS 3/ ALPHA/13/

ELEMENT 1 =

PRINTING/

ELEMENT 2 =

TYPE-SETTING/
ELEMENT 3 =

Define a new list called BOTH
which consists of the docu­
ments common to both BIBL
and ENGL, i.e., all English
language books with biblio-
graphies.
Inform the system that the
user wishes to store, via the
console, a list of values which
will be called SUBS. The
list will contain 3 elements
which will be alphanumeric
(ALPHA) as opposed to
strictly numeric. The longest
element will not exceed 13
characters.
(System responds with these
words.)
User inserts first value by
typing it on the console.
(System responds with these
words.)
User inserts second value.
(System responds with these
words.)

LC MARC on MOLDS/ATHERTON and MILLER 159

TYPE-FOUNDING/

SELECT ALL BOTH/SUBJ/SUBSI

COUNT NO. ALL/

SHOW NO.//

PRINT ALL/MAIN/TITL/LCNO
I I ALL/PUBL/PLCE/ I

MAXIMUM BIG ALL/HITE/

AVERAGE AVE ALL/HITE/

User inserts third value. User
has now created an indepen­
dent list of three distinct
values- PRINTING, TYPE­
SETTING, TYPE-FOUND­
ING and stored them in a lo­
cation called SUBS.
Select all records from the list
called BOTH for which the
values in the block named
SUBJ are equal to any of the
values in the list called SUBS,
i.e. those records for which
the subject heading is PRINT­
lNG, TYPE-SETTING, or
TYPE-FOUNDING. The se­
lected records are stored in a
location called ALL.
Count the number of records
in the list called ALL. The
count is stored in a location
called NO.
Display the contents of NO.
on the CRT.
Produce a 5-column printed
listing consisting of the values
in the blocks ·named MAIN
(main entry), TITL (title),
LCNO (library of Congress
classification number), PUBL
(publisher), PLCE (place of
publication) from each record
of the list called ALL.
From the list called ALL, se­
lect the record containing the
maximum value in the block
named HITE (height) . The
record is stored in a location
called BIG.
Calculate the average of the
values in the block named
HITE (height) of the list
called ALL. The value is
stored in a location called
AVE.

160 Journal of Library Automation Vol. 3/2 June, 1970

The following example records another interaction and the results in
the off-line or batch mode. Notice the error message which did not inter­
rupt the search. This result also includes a report on the length of Cen­
tral Processing Unit (CPU) time each operation takes in hours, minutes,
seconds and tenths of seconds. Any line preceded by C indicates that
the line was printed by the computer; any line minus the C indicates
that the information was typed in by the user.

MOLDS Retrieval-Example 3 (Batch Mode)

C PLEASE ENTER YOUR PROGRAM
C LINE 1

OOOOOOOOPAULINE ATHERTONOOOOOOOOO
c INVALID COMMAND NAME
c SET IN AT 185 DAY OF 1969 16-01-17.1
c LINE 1

PROGRAM TALLY A/
c LINE 1

COUNT B A/
c LINE 2

PRINT B//
c LINE 3

END
c SET IN 185 DAY OF 1969 16-01-17.5
c LINE 2

FIND D2 SSOZ/DEW2/NE/O?
c SET IN AT 185 DAY OF 1969 16-02-38.7
c LINE 3

FIND D1 SSOZ/DEWl/NE/ I
c SET IN AT 185 DAY OF 1969 16-03-56.7
c LINE 4

TALLY D2/
c 950.00
c SET IN AT 185 DAY OF 1969 16-03-57.3
c LINE 5

TALLY D1/
c 905.00
c LINE 6

STOP

COMMENTS ON MARC/MOLDS
Thus far this report has been confined to a more or less factual descrip­

tion of the components of the MARC/MOLDS system. No doubt the
reader has asked himself many questions about the system, and made
his own critical comparisons between this system and others. What fol­
lows are preliminary and necessarily subjective comments based on a

LC MARC on MOLDS/ATHERTON and MILLER 161

few demonstrations given to students in the School of Library Science
and on the authors' own observations and reflections.

System Design

Response Time
Response time (i.e. the time between transmission of a command in the

on-line version and its execution) has been on the order of 90 seconds
for a search of 620 records, to 20 seconds for an arithmetic operation
involving the same number of records. When one thinks of these times
in comparison with the time required to perform the same operations
manually, they seem rapid. However, 90 seconds appears to be an
unreasonably long period of time in a computer-based interactive retrieval
environment. Viewers of demonstrations often asked why it took the
computer "so long" to perform a search. A user's tolerance for delay
appears to vary a great deal with the type of retrieval system he is
using. This has been observed on other occasions, but no determination
has yet been made of tolerable limits in different environments, a determina­
tion that would be important in designing computer-based systems. ·

Man-System Interaction
A design goal of most other existing interactive retrieval systems seems

to be to give the computer certain anthropomorphic qualities and make
it into a teacher or a responsive friend. Such systems offer computer­
aided query formulation and/or a friendly conversation with the com­
puter. The MOLDS on-line system does not include either of these fea­
tures. The user must first master a MARC/MOLDS manual which is an
explanation of the system and the data base. He then goes on line and
gives his command. MOLDS responds by performing that command or
by putting out a brief error message if the command format was improper.

Apparently the objective of conversation with the computer as found
in most systems is to make it easier for the user to achieve desired results
or to make him feel more at ease with the system. The person who plays
with an interactive system once or twice probably finds conversations
with a computer amusing, novel, and helpful in his first attempts. How­
ever, for a serious and steady user, carrying on the same conversation
with the computer during each and every session can be tedious, repeti­
tive, time consuming and sometimes circular. The optimum mix of com­
puter-aided and independent user-formulated query is yet to be studied
and found. Perhaps MOLDS, because it is a poor conversationalist, could
aid in this search. At any rate, the automatic assumption of conversa­
tional features as a design goal for computer-based retrieval systems may
not be based on sound knowledge of what suits the serious user.

MOLDS Repertory of Commands
The processing commands in the MOLDS query language are a wei-

162 Journal of Library Automation Vol. 3/2 June, 1970

come and valuable addition to the usual repertory of search and display
commands common to most interactive systems. Although the MARC data
base does not lend itself to a great deal of processing, we have found
some commands useful, particularly COUNT, ORDER, MAXIMUM,
MINIMUM, and COMPRESS.

Processing Times
When individual commands of a single search take seconds of CPU

time, it is certain that a retrieval system will be expensive if it is em­
ployed by a great many users as a general purpose system. Some of the
MOLDS commands operating on the MARC data base took whole min­
utes of CPU time! The authors have learned a great deal about inter­
active retrieval systems by using MOLDS experimentally, but because
of the excessive cost of certain runs, may not be able to continue research
with it. Modifications will have to be made to make it more efficient (i.e.
cheaper to run) before it could be recommended for general use in the
Syracuse University Library School or anywhere else.

If the MOLDS system can be designed to yield good results for certain
types of searches with a realistic file size, it will be a boon to the library
or educational institution seeking to automate some part of its searching
procedures.

Data Base

Noah Prywes (14) has commented, "The effectiveness in retrieving
documents is highly dependent on the amount of labor and processing
invested in the storage of documents." The minimum amount of process­
ing done on the MARC tapes has, in fact, limited the effectiveness of
retrieval. The extreme simplicity of the general MOLDS data base struc­
ture is worthy of study. The efficiency and cost of retrieval using this
structure needs to be compared very carefully with more sophisticated
threaded lists. One extremely important factor to consider will undoubted·
ly be the effect of increasing the size of the file.

As pointed out before, the MOLDS system requires an exact match of
punctuation and spelling between retrieval criteria and stored data items,
a match difficult to achieve. To be sure, this is partially a limitation in
the MOLDS system that may be relaxed by incorporating a capability
to search for root words and key letter combinations. However, the many
inconsistencies in abbreviations, punctuation, and spelling that appear in
bibliographic records when information on title pages is transcribed,
as on the MARC tapes, can enormously complicate effective retrieval.
MARC or non-MARC bibliographic records will always contain some
"author" variations that such a system as MOLDS may have to accom­
modate. This is a very knotty problem.

These comments are not to be construed as a criticism of the fine work
the Library of Congress has done in its MARC Pilot Project. The MARC

LC MARC on MOLDS/ATHERTON and MILLER 163

Pilot Project record format, with sometimes indistinct data elements (spe­
cial punctuation marks and symbols), was not specifically designed for
computer-based interactive search systems. Hopefully, the use herein
described to which the MARC data base has been put, and the experi­
ence derived from that use, will be of value as future modifications of
the MARC format are made. Mter all, reference retrieval, using biblio­
graphic information, automated or manual, is natural to libraries and is,
indeed, one of the purposes for which that information is recorded in the
first place. Since one of the true values of a computer-based file lies in
making multiple use of the records, it becomes imperative to test the vari­
ous uses to which these records can be put.

THE FUTURE USE OF MARC/MOLDS AT SYRACUSE UNIVERSITY

The MARC/MOLDS system has undergone continual modification in
data base structure and query language during the first year of work on
it. A computer-based system must be capable of such flexibility, for
changes should be accomplished easily and smoothly. No system is per­
fect, especially in its early days, least of all MOLDS.

It is intended to continue investigation into information-seeking behav­
ior, and to use MARC/ MOLDS occasionally along with other retrieval
systems. Another paper describes use of the MARC file with the IBM/
Document Processing System (15).

SUMMARY

This report has tried to describe, not sell, MARC/MOLDS as fairly as
possible in the belief that some of its features should be considered by
persons designing interactive systems, and by those responsible for refine­
ment of the MARC format. The searching capability is valuable as it
increases the access points to the data. The arithmetic and logical opera­
tions provide an opportunity to perform certain studies of the MARC
data base. The MARC files will eventually have many applications beyond
technical processing functions in libraries. These applications would be
more practically implemented if the MARC format were modified to ac­
commodate them and if librarians would use systems such as MOLDS
during their exploration of alternatives.

MARC/MOLDS as a computer-based system has many wealmesses.
Outnumbering and to some extent overshadowing the concrete statements
about its faults is its great potential. Many questions have been raised
which remain unanswered. Questions dealing with the basic design of
the system and data base are indicative of the development and experi­
mentation which must be done before computer-based interactive retrieval
in libraries is a practical reality.

ACKNOWLEDGMENTS
The work on this project has been supported by Rome Air Develop-

164 Journal of Library Automation Vol. 3/2 June, 1970

ment Center (ContractS. U. No. AF30 (602)-4283). Related work, sup­
ported by a grant from the U. S. Office of Education, provided an educa­
tion in understanding of the MARC tapes.

The authors gratefully acknowledge the comments made by Phyllis A.
Richmond and Frank Martel on the original manuscript. Mrs. Sharon
Stratakos, programmer most responsible for MOLDS, contributed a great
deal to the authors' understanding of this retrieval program and its poten­
tial use with a bibliographic reference file such as MARC.

PROGRAM
Microfiches and photocopies of the following may be obtained from

National Auxiliary Publications Service of ASIS: "Rome Project Program
Description: MOLDS Support Package" (NAPS 00884).

REFERENCES

1. Avram, Henriette: The MARC Pilot Project, Final Report (Washing­
ton, D. C.: Library of Congress, 1968).

2. A User-Oriented On-Line Data System (Syracuse, N. Y.: Syracuse
University Research Corp., 1966). 2 v.

3. Freeman, Robert R.; Atherton, Pauline: AUDACIOUS-An Experi­
ment with an On-Line Interactive Reference Retrieval System Using
the Universal Decimal Classification as the Index Language in the
Field of Nuclear Science (New York: American Institute of Physics,
April 25, 1968) (AIP/UDC-7).

4. Burnaugh, H. P.; et al: The BOLD User's Manual (Revised) (Santa
Monica, Cal.: Jan. 16, 1967) (TM-2306/004/01).

5. Cegala, L.; Waller, E.: COLEX User's Manual (Falls Church, Va.:
System Development. Feb., 1969) (TM-WD-(L)-405/000/00).

6. Smith, J. L.; MICRO: A Strategy for Retrieving Ranking and Qualify­
ing Document References (Santa Monica, Cal.: Jan. 15, 1966) (SP
2289).

7. Green, James Sproat: GRINS: An On-Line Structure for the Negotia­
tion of Inquiries (Bethlehem, Pa.: Lehigh University, Center for the
Information Sciences, September 1967) .

8. Computer Command and Control Company: Description of the Multi­
list System (Philadelphia, Pa.: July 31, 1967.

9. National Aeronautics and Space Administration, Scientific and Tech­
nical Information Division: NASA/RECON User's Manual (Washing­
ton, D. C.: October 1966).

10. Kessler, M. M.: TIP User's Manual (Cambridge, Mass.: Massachu­
setts Institute of Technology, Dec. 1, 1965).

11. Biomedical Communication Network: User's Training Manual (Syra­
cuse, New York: December 1968).

12. Welch, Noreen 0. : A Survey of Five On-Line Retrieval Systems
(Washington, D. C.: Mitre Corp., August 1968) (MTP-322).

LC MARC on MOLDS/ATHERTON and MILLER 165

13. Avram, Henriette D.; Knapp, John F.; Rather, Lucia J.: The MARC
II Format (Washington, D. C.: Library of Congress, 1968).

14. Prywes, Noah S.: On-Line Information Storage and Retrieval (Phila­
delphia, Pa.: University of Pennsylvania, Moore School of Electrical
Engineering, June 1968).

15. Atherton, P.; Wyman, J.: "Searching MARC Project Tapes Using
IBM/Document Processing System," Proceedings of American Society
for Information Science, 6 (1969), 83-88.

