ºri -} z GJ 22 J i TITITUTIIIllſlºſº || º "...es ºf Aº A. LiiskARYºº Y OF THE invitsmºutlºw V -- 14 ° 2 SSS'''"Tº Jº | - 22 *-w ºr *--~}s: S- J | - / ! N. 3. ~ * 4. 2- I::-- -.-- A-::wºw3| - - :t - ſ -- -– \ C * \º § § º * § § º § § -º *. : § 2. Kº S ºn º' º º ~ --- * * *, º' ...º.º. Sºº Gº, ſº ºr U.C.ſ.º.º.º.º. Tº Cºlºſ ſº Jº NAN/º.J.Cºl. E. - - t - - - - +-------- ſ | C O L – E. G. E. - S. O F s: #| -;- - # THE GIFT () F" ºn tº): Coro. Engineering library TA Lt. -/-, -, * f * * ~ * -", ºr .*, * * . # $ ---' HANDBOOK WELDED STEEL PLATE CONSTRUCTION DESIGN DATA GENERAL INFORMATION ººzºo TANIKS W- BUFFALo TANK corporation DUNELLEN PLANT: DUNELLEN, N. J. BUFFALO PLANT: BUFFAL0, N.Y. F I R S T E D IT I O N B U F F A L O T A N K C O R P O R A T I O N SECTION SECTION SECTION SECTION SECTION SECTION IV. VI. SEction vii. SECTION VIII. SECTION SECTION SECTION IX. X. XI. SECTION XII. Sectional Index STEEL PLATE CONSTRUCTION . . Analysis and Specifications, Corrosion and Paint Protection STORAGE TANKS . Fuel Oils, Gasoline, etc. WATER STORAGE TANKS Standpipes, Gravity and Sprinkler Tanks, Hydro-Prmeumatic Tanks, Hot Water Tanks PRESSURE VESSELS Code Construction, Bursting Pressures TANK HEADS . Flat, F. & D., Elliptical, Design, Capacities, Types and Dimensions—Allowable Working Pressure SMOKESTACKS . Breechings, Flues, Bins BREWERY TANKS AND EQUIPMENT . Coating for Beer Tanks WELDING . Various Types, Symbols—Definitions, Positions of Welds, Choosing Electrodes, Stresses in Joints, Weights of Electrodes 4 & © tº º AIR, WATER, GAS, STEAM, HEAT . BOLTS AND STAYBOLTS . . PIPE AND TUBES . ENGINEERING TABLES . . ALPHABETICAL INDEX . Page 9 Page 19 Page 39 Page 55 Page 77 Page 105 Page 123 Page 129 Page 153 Page 171 Page 182 Page 196 Page 283 (3) TANKS UNDER CONSTRUCTION (4) DU.NELLEN PLANT B U F F A L O T A N K C O R P O R A T | O N HE Buffalo Tank Corporation was founded in Buffalo, New York. Pioneering in electric welding, this company filled an anticipated need for all- welded, steel plate products and within a few years established a second plant in the New York metro- politan area. These two rapidly expanding plants were influential factors in creating the now general demand for all-welded pressure and storage tanks. Today, each of the two advantageously located plants has the latest modern facilities which spell the difference between providing merely good all-welded products and welded products best fitted to the needs of the user. Each plant being a complete unit in itself has a well- trained competent organization able to handle a diversity of engineering and construction problems, as well as to estimate or design Buffalo-built products. Sales offices are located in principal cities to assist with personal service. The Buffalo, New York and the Dunellen, New Jersey plants are located close to the sources of material supply and skilled labor. Shipments can be made by rail, truck, or water and the Dunellen, New Jersey plant is ideally situated for exporting. Experience, personnel, facilities, location—all are Buffalo's guarantée of service and satisfaction. (5) B U F F A L O T A N K C O R P O R AT I O N NEW YORK P BUFFA LO L00ATION AND PRODUCTS The two plants of the Buffalo Tank Corporation are only a few hundred miles apart. Yet, within the area of a 1000 mile radius drawn from a point midway between Buffalo, New York and Dunellen, New Jersey there is approximately— 69% of the entire population of the United States and 67% of the entire wealth of the United States. Buffalo Tank Corporation shops located to advantage near the steel mills and main sources of material supply are ideally situated for the majority of the users of steel or alloy plate construction. INDUSTRIES USING BUFFALO EQUIPMENT Buffalo equipment is used and recommended for the Chemical Process industries in general and for such specific industries as: BREWING AND DISTILLING PETROLEUM REFINING BY-PRODUCT, CokE AND GAs PAINT, WARNISH AND LACQUER DRUG AND CHEMICAL MANUFACTURING PAPER AND PULP FERTILIZER MANUFACTURING PLASTICS AND INSULATIONS FOOD PRODUCTS RAYON AND SILK MANUFACTURING GLUE AND GELATINE RUBBER ICE AND REFRIGERATION SUGAR OILS, FATS AND SOAP TEXTILE, BLEACHING AND FINISHING (6) B U F F A L O T A N K C O R P O R AT I O N IN THE PROCESS INDUSTRIES Buffalo's part in the development of the process industries is a major one. These varied industries embracing the refining and processing of raw and unfinished products comprise Some of America's greatest manufacturing plants. Consequently, in all sections of the country, Buffalo tanks and special equipment are engaged in performing vital duties. A few typical examples from the records of steel or alloy plate construction fabricated in our shops are listed below: ACIDS. Of all the various important acids in use today, Sulphuric Acid alone furnishes the starting point of, or is used in almost every important industry. Building acid tanks is quite another thing from ordinary plate fabrication, yet the many Buffalo acid storage tanks now in service indicate our experience and ability in this line. One of our interesting jobs covers the building and erection of large sulphuric acid storage tanks and equipment for a large utility company. FOOD. When we think of food products, the staple necessity, Bread is usually the first thought. Crudely made in ancient times, bread is now manufactured in modern, sani- tary bakeries requiring various alloy plate equipment to combat corrosion and for sanitary precautions. Buffalo-built vacuum cooling units and other products for the hand- ling of dough and pastry are well-known in this field. CHEMICALS. No other industry is more dependent upon steel or alloy plate work than the chemical field. The manufacture and storage of liquid or dry chemicals demands the newest developments in corrosion-resist- ing metals and the last word in engineering design. Buffalo keeping pace with the times has continually manufactured equipment for this industry and recently completed a large installation of chemical vessels for one of the world's largest chemical firms. MOLASSES. In the process industries, Molasses is not always the sweet, delectable, table delicacy drained off from crystallized Sugar. In its cruder forms after being made from sugar cane or beet juice, molasses is distilled to make industrial alcohol and is also used as a feed for cattle and for other purposes, but in all the various steps of refining, it is dependent upon special or heavy steel tanks. Buffalo serves this field ac- ceptably. PETROLEUM. The refining of Crude Petroleum with its hundreds of by-products constitutes a gigantic process industry. Kerosene and gasoline are known wherever civilization is in evidence yet a century ago were almost unknown to mankind. The rich, crude petroleum, drawn from the earth, besides furnishing light, heat and power, produces cosmetics, dyes, drugs and a host of articles in daily use. The refining or processing re- quires steel tanks, agitators, fractionators, stills, and other equipment, often operating under extreme conditions of pressure and temperature and demanding exceptional care in manufacture. Buffalo tanks and other welded products handle an important part in this tremendous refining industry. BEVERAGES. Beverages obtained by fer- mentation or brewing usually come under the head of luxuries, although with many people beverages and liquors are in daily use. Buffalo steel beer tanks are installed in many breweries throughout the United States and Mexico and recent orders resulted in tank work for eight breweries being fabricated taneously in our shops. GLUE. From time immemorial Glue has been used for adhesive purposes and the principles of extraction by the boiling of certain animal substances such as hoofs, horns, bones, etc., have changed little, but the rough-hewn, wood tanks, used in glue manufacture have been supplanted by welded steel tanks. One of the large glue manu- facturers delegated us to furnish a complete installation to replace the primitive, short- lived equipment formerly in use. simul- SOAP. When using Soap for cleansing pur- poses, one never thinks much about the process of its manufacture, yet the process is varied and complex. Fatty acids properly combined with potash, soda or other alkalis form this essential article. Many vegetable, fish or fruit oils and saps as well as colorings and scents are used in soaps today and the modern manufacture of soap has become an elaborate industry requiring many types of tanks for boiling, mixing and blending pur- poses. Buffalo supplies this industry in many ways and has furnished numerous installa- tions in the largest soap factories. (7) SECTION I º TANIKS AL- STEEL PLATE CONSTRUCTION ANALYSIS AND SPECIFICATIONS CORROSION AND PAINT PROTECTION (9) S T E E L P L A T E S Steel Plate Construction STEEL PLATES WHAT ARE THEY? In the steel industry, plates are defined as follows: Over 6" in width and 94" (10.2 lbs. per sq. ft.) in thickness. Over 48" in width and 3%" (7.65 lbs. per sq. ft.) in thickness. Plates are further defined as Sheared Plates or Universal Plates, the name implying the type of mill on which the material is rolled. The fabrication of steel plate products makes possible hundreds of different type tanks or containers for various purposes. From the humblest 275-gallon basement oil tank to a 100,000-barrel, or larger capacity, oil storage tank, there is a wide range and from a 500-gallon water storage tank to a 5,000,000-gallon water standpipe, or reservoir, there is likewise a large range. However, the range is not only in size, but is in infinite variety as well. Every one of the many process industries is dependent in some way or other on fabricated steel plate products for manufacturing and storing liquid or dry materials. Water is carried for countless miles through large, plate steel pipes; ships and freight cars of steel transport materials over sea and land; steel plate bins hold cement, stone, lime, grain and every kind of material; smokestacks of steel plate construction pierce the skyline of every industrial city and a list of steel plate products could be extended almost indefinitely. ... Buffalo Tank Corporation is primarily engaged in the fabrication of steel plate work and with two large modern plants is able to supply almost every steel plate requirement. Steel, itself, is a chemical compound of iron and carbon, or iron, carbon and other metals. The physical properties of steel are greatly influenced by the amount of carbon, alloying ele- ments and impurities present. NOTE.-For manufacturers' standard practice covering rolling of steel plates, see page 272. EFFECTS OF CARBON AND OTHER ELEMENTS The general influence of carbon on steel is greater tenacity. It also renders the steel harder and stiffer. The tensile strength is increased from 600 to 800 pounds per square inch for each additional point of carbon, while the ductility is decreased about 0.5 per cent for each addi- tional point of carbon. The higher the carbon the lower the corrosion resistance. Manganese increases the tensile strength of steel by about 100 pounds per square inch for each additional point, while the ductility is probably somewhat decreased, but not to a marked degree. Phosphorus increases the strength of steel, but owing to its tendency to render the metal cold short or brittle, it should be considered as an impurity and kept low as possible. Sulphur has a tendency to render the steel hot short and is usually avoided in steel that is to be forged or worked hot. Sulphur is detrimental to steel that is to be quenched in any way. The sulphur for good results should not exceed 0.06 per cent. Silicon is generally supposed to render steel cold short or brittle but there is little evidence to support that silicon in a small quantity will do this. As an alloying element silicon tends to increase the tensile strength but to decrease the elongation and reduction of area. Nickel in steel has a strengthening effect or tends to increase the value statically with the nickel present from 1.00 per cent to 5.00 per cent and in proportion to the amount present. In low carbon steel the unit increase is about 5000 pounds for each 1 per cent of nickel present. High carbon steels show more gain than low carbon steels. Nickel tends to increase the strength of steel without decreasing the ductility. Chromium in steel tends to make it intensely hard and give it a high elastic limit in the hardened or suddenly cooled state. Up to 30.00 per cent, the higher the chromium, the greater the corrosion resistance. Vanadium is seldom used in steel without some other alloying element present in con- siderable quantity and in the so-called vanadium steels the resistance to fatiguing stress is high. It would be impossible in this publication to cover completely the many kinds of steel or to describe their various uses. In fabricating steel plate work outside of code, or high speci- fication construction, most of the steel plates used are of low carbon type and the steel is often designated as mild steel. This steel, as rolled under American Society for Testing Materials or other comparable specifications, usually has a minimum tensile strength of 55,000 pounds per square inch. (10) B U F F A L O T A N K C O R P O R A T I O N A.S.T.M. Steel Plate Specifications American Society for Testing Materials specifications are used generally as standards for engineering materials, because they are competent, unbiased, widely applicable and authoritative. The standards are the result of adequate scientific research, sound engineering judgment and a broad point of view over the entire field of engineering materials. Complete description of the many standards are described in detail, with tests, analyses, etc., in the Book of A.S.T.M. Standards, issued triennially and readers are referred to these standards for complete information. In the A.S.T.M. serial designations, the initial letter refers to the general classification, all ferrous metals having the classification A. The initial letter and first number are permanent but the number following the dash indicates the year of adoption or last revision. We are listing a number of the more commonly known steels used in plate fabrication and covered by A.S.T.M., with a brief description of each steel. A 7-39 STEEL FOR BRIDGES AND BUILDINGS A carbon steel of structural quality for use in the construction of bridges and buildings and for general purposes. Tensile strength 60,000 to 72,000 pounds per square inch. A 10–39 MILD STEEL PLATES Suitable for general plate construction. Tensile strength 55,000 to 65,000 pounds per square inch. A 131–39 STRUCTURAL STEEL FOR SHIPS These specifications cover structural steel shapes, plates and bars, intended primarily for use in ship construction. Tensile strength 60,000 to 72,000 pounds per square inch. A 8-39 STRUCTURAL. NICKEL STEEL These specifications cover high strength structural nickel steel plates, shapes and bars, intended primarily for special use, such as main stress carrying material of structural members. Tensile strength 90,000 to 115,000 pounds per square inch. A 78–39 STEEL PLATES OF STRUCTURAL OUALITY FOR FORGE WELDING These specifications cover steel plates of structural quality, suitable for forge welding, where fluxes and reinforcement are not used. A 30-39 BOILER AND FIREBOX STEEL FOR LOCOMOTIVES These specifications cover steel plates up to 2" inclusive, in thickness, of flange and fire- box qualities for locomotives. Tensile strength as follows: Flange quality—55,000 to 65,000 pounds per square inch. Firebox quality, Grade A, 52,000 to 62,000 pounds. Firebox quality, Grade B, 48,000 to 58,000 pounds. A 70-39 CARBON-STEEL PLATES FOR STATIONARY BOILERS AND OTHER PRESSURE VESSELS These specifications cover carbon-steel plates up to 4" inclusive, in thickness, of flange and firebox qualities, for boilers for stationary service and other pressure vessels. Tensile strength 55,000 to 65,000 pounds per square inch. A 89-39 LOW TENSILE STRENGTH CARBON-STEEL PLATES OF FLANGE AND FIREBOX OUALITIES These specifications cover two grades of carbon-steel plate of flange and firebox qualities, for boilers for stationary service and other pressure vessels. Minimum tensile strength as follows: Flange quality, Grade A, 45,000 pounds Grade B, 50,000 pounds Firebox quality, Grade A, 45,000 pounds Grade B, 50,000 pounds (11) S T E E L P L A T E S A.S.T.M. STEEL PLATE SPECIFICATIONS (Continued) A 201-39 CARBON-SILICON STEEL PLATES OF ORDINARY TENSILE RANGES FOR FUSION WELDED BOILERS AND OTHER PRESSURE WESSELS These specifications cover carbon-silicon steel plates, in two ordinary tensile strength ranges, intended particularly for fusion welding, for use in locomotive boiler shells, boilers for stationary service, and other pressure vessels. The maximum thickness of flange quality plates to be specified under these specifications shall be 2" and for ordinary firebox quality plates, 6". A definite silicon content is specified in order to limit the carbon to the lowest practicable amount consistent with the specified tensile strength and the thickness of material. Tensile strength as follows: *. Grade A, 55,000 to 65,000 pounds per square inch. Grade B, 60,000 to 70,000 pounds per square inch. A 212–39 HIGH TENSILE STRENGTH CARBON-SILICON STEEL PLATES FOR BOILERS AND OTHER PRESSURE VESSELS These specifications cover carbon-silicon steel plates, in two high tensile strength ranges, for use in locomotive boiler shells, boilers for stationary service and other pressure vessels. The maximum thickness of flange quality plates to be specified under these specifications shall be 2", and for ordinary firebox quality plates, 4%". A definite silicon content is specified in order to limit the carbon to the lowest practical amount consistent with the specified tensile strength and the thickness of the material. Tensile strength as follows: Grade A, 65,000 to 77,000 pounds per square inch. Grade B, 70,000 to 82,000 pounds per square inch. A 203-39 LOW CARBON NICKEL-STEEL PLATES FOR BOILERS AND OTHER PRESSURE VESSELS These specifications cover low carbon nickel-steel plates in three tensile strength ranges, up to 2" inclusive, in thickness, of flange and ordinary firebox qualities and for use in locomo- tive boiler shells, boilers for stationary service, and other pressure vessels. Tensile strength as follows: Grade A, 65,000 to 77,000 pounds per square inch. Grade B, 70,000 to 82,000 pounds per square inch. Grade C, 75,000 to 87,000 pounds per square inch. A 204-39 MOLYBDENUM-STEEL PLATES FOR BOILERS AND OTHER PRESSURE VESSELS These specifications cover molybdenum-steel plates, in three high tensile strength ranges for use in locomotive boiler shells, boilers for stationary service, and other pressure vessels. Tensile strength as follows: Grade A, 65,000 to 77,000 pounds per square inch. Grade B, 70,000 to 82,000 pounds per square inch. Grade C, 75,000 to 87,000 pounds per square inch. A 167-39 CORROSION-RESISTING CHROMIUM-NICKEL STEEL SHEET, STRIP AND PLATE These specifications cover soft, corrosion-resisting, chromium-nickel steel sheets and strips, also plates 3%" and over in thickness. Tensile strength 75,000 pounds per square inch. COMMON STEEL TERMS Tensile Strength (Ultimate or Maximum Stress). Maximum load material can sustain in tension without fracture. Elastic Limit is the maximum stress a material can bear without permanent set or distor- tion. Within certain limits, steel is an elastic body and on being elongated by a tensile stress, returns to its original dimensions when the force ceases to be applied. Elongation is the increase in length which a metal bar undergoes when subjected to a tensile stress sufficient to cause fracture. (12) B U F F A L O T A N K C O R P O R AT I O N COMMON STEEL TERMS (Continued) Reduction of Area is the amount of contraction of area which takes place at the point of fracture when a metal bar is broken by a direct pulling force. Both the elongation and reduction of area furnish valuable indications of the ductility of steel; the greater they are for the same class of material, the softer and more ductile the material may be considered. Yield Point in ordinary commercial practice is the same as the elastic limit. ALLOY METALS A large number of alloy or special metals are now rolled in plate form and are suitable for welded plate fabrication. A list of these metals would include Stainless Steel, Monel, Nickel, Copper, Copper Alloy, Aluminum, etc. For information and prices on tanks or vessels built from special metals, consult our nearest plant. STAINLESS STEELS “Buffalo.” Stainless Steel plate products are welded and fabricated with the unusual care these special metals deserve. Long experience in this line and skilled workmen, using the right equipment for each particular job, insures your getting the kind of job you desire. A full knowledge of the physical and chemical characteristics of the various types of stainless steel enables our specialized welders to turn out sound, ductile welds, of good appearance and without warping or buckling of plates. NOTE.-For additional information on stainless steel plates, see page 278. CORROSION CoRROSION EFFECTS AND PROTECTION OF STEEL TANKS, SMOKESTACKs, PIPE, ETC. Corrosion of steel or other ordinary metal fabricated products begins soon after the products are placed in service, unless proper precautions are taken. ABOVEGROUND TANKS, PIPE, ETC. The most commonly-known protector of metal surfaces is paint or enamel, but no paint can be wholly effective unless the surfaces to be protected have been thoroughly cleaned and are free from dirt, mill-scale or other deleterious substances. After the surface is properly prepared, the paint should be applied immediately and subsequent coats added at needed intervals. If any doubts arise regarding type and quality of paint to be used for various services, Buffalo engineers will cheerfully advise or suggest the proper protective covering. Uncoated, low-carbon, steel-plate products naturally corrode when subjected to extended exposure, but resistance can be increased with reduced sulphur and phosphorus content in the steel and corrosion further retarded when from .15 to .30 per cent of copper is added to steel. Copper does not segregate in the ingot but spreads equally throughout the entire heat in the open hearth. Steel containing 3.75 per cent of nickel is strongly corrosion-resistant and both chromium steel and high nickel steel have existed in almost perfect condition after fifteen years exposure to sea air. No one grade of steel or iron has proved best under all conditions and it would be incorrect to strike an average for all types of exposure. It is very important, therefore, in choosing a metal to withstand corrosion, to take into consideration the nature of the corroding influences and if there is any uncertainty as to selection, it would be advisable to consult us. UNDERGROUND TANKS In many cases buried steel tanks are covered with earth and where the ground is damp, corrosion is always at work, but even in dry soil, consisting of sand, gravel, clay, loam, cinders, or mixtures of these, there is a constant corrosive influence and unless the tanks are properly protected, pitting of metal will soon occur. Cinder fill causes extremely rapid corrosion and never should be used. In cases where the soil contains highly corrosive substances, the tank can be coated with a shell of reinforced concrete. Various municipal or insurance regulations specify proper protective coatings, also methods of burial for underground tanks and when Buffalo tanks are furnished for under- ground use, they are always given a heavy coat of protective paint before shipment. (13) STEEL PLATES – CORRO S I O N PROTECTION SMOKESTACKS The life of a smokestack is influenced by design, kind of material used and style of coating, or paint. Assuming the stack to be well designed, the use of ordinary steel, copper-bearing steel, iron or other metals, naturally has much to do with the service life of the stack. There are a number of special paint coverings for smokestacks, some of them being highly heat- resisting. All these factors are carefully considered in Buffalo smokestacks. CAUSES OF CORROSION Rusting of metal surfaces in varied degrees of progress is the first evidence of the presence of corrosion. Iron will not corrode in air unless moisture is present and it will not corrode in water unless air is present. The agents present in the air which accelerate rusting, especially in air near cities where much fuel is consumed, are numerous; but sulphur dioxide and soot are probably the most destructive, because together in the presence of moisture, they conspire to produce sulphuric acid. ELECTROLYSHS The most generally-accepted theory of the cause of corrosion is known as the “Electrolytic Theory.” ‘Auto-electrolysis’ is the term used to define the peculiar tendency of iron to be transformed from a metal possessing a hard, lustrous surface, high tensile strength and other useful properties, to a crumbling oxide that falls to the ground. When iron is brought into contact with moisture, currents of electricity flow over the surface of the iron between points that are relatively pure and points that contain impurities. These currents stimulate the natural tendency of the iron to go into solu- tion, and the solution proceeds with vigor at the positive points. The air which the water contains oxidizes the iron which has gone into solution, and precipitates the familiar brown iron rust. Thus water, which acts as an acid, and air, which acts as an oxidizer, have combined together to accomplish the downfall of the metal. Escaping electric currents from high-potential light and power circuits seem to be another cause of serious corrosion of steel structures. This is shown in an examination of the condition of steel used in supporting such lines, which, even beneath an apparently good paint coat, may show corrosion in an astonishing degree. PAINT AND THE PREVENTION OF CORROSION If a protective coating can be applied that will keep out water in every form, and if means could be devised to make the metal resistant to the flow of surface electric currents, there would be no corrosion. There are three sources from which water may come: first, from rain- fall; second, from condensation of moisture from the atmosphere; third, from direct contact with water in manufacturing processes. Water may also be present in the oil in the paint coating or absorbed by it in sufficient quantity to stimulate corrosion. Researches conducted by the American Society for Testing Materials, the Paint Manu- facturers’ Association and other organizations interested in the subject have shown that certain pigments in contact with iron and steel have the property of stimulating corrosion, while others exhibit a tendency to prevent it. When iron is painted with a stimulator of corrosion, such as graphite, if for any reason water finds its way into the oil film, corrosion is bound to take place to a very advanced degree. Should a paint be used on metal surfaces that is chemically active in its pigment content in such a way as to convey oxygen to the metal beneath, it will surely stimulate corrosion instead of preventing it. CHARACTERISTICS OF THE PRODUCTS FOR THE ARREST OF CORROSION In general a paint for the protection of iron and steel should be composed of suitable pigments combined with the proper vehicle, the resultant product being— Chemically permanent; Chemically inert toward iron; Resistant to physical damage; Impervious to air and moisture; Sufficiently elastic to expand and contract without damage; Rust-inhibitive. (14) B U F F A L O T A N K C O R P O R AT I O N PAINT AND THE PREVENTION OF CORROSION (Continued) Tests conducted over a period of years, in which steel panels were painted with a wide range of paint coatings, have proved conclusively, that FIRST-Basic pigments such as litharge, red lead, blue lead (basic sulphate), white lead, zinc oxide, inhibit the corrosion of iron. SECOND—Chrome compounds—basic lead chromate, normal lead chromate, zinc chromate—prevent the corrosion of iron. THIRD–So-called neutral or inert pigments, such as iron oxide, which do not excite corrosion, produce with linseed oil very durable films. Such pigments include black, brown and red oxides of iron, china clay, silica, talc and barium sulphate. FOURTH-Substances that form a galvanic couple with steel in the presence of moisture cause rapid corrosion. Pigments which act in this fashion (graphite, carbon black, lampblack) are used only as constituents of finishing coats on steel surfaces, when first insulated from the metal by a coat of basic or chromate pigment paint. These carbon pigments with linseed oil form very durable and water-resisting coatings. PAINT ON STEEL TANKS AND TANK SUPPORTS The proper protection of such surfaces is a serious problem in many industries. The con- tents of the tanks frequently have a disastrous effect upon the wearing and protective qualities of the finishes applied to them. Especially is this true where the tanks contain acids or other mixtures which, coming frequently in direct contact with the surface, destroy the paint coat and cause rusting to proceed with great rapidity. The color of the paint used on the exterior of tanks containing highly volatile liquids is a very important consideration. Dark-colored paints absorb heat rays and this absorption property causes considerable loss by evaporation of the contents of the tank. Gloss finishes absorb less heat than flat paints, inasmuch as they reflect much of the light that comes in contact with them. The following table shows the rise in temperature of benzine contained in small tanks painted in various colors (gloss finish), when subject to rays of a carbon arc light for 15 minutes: Rise in degrees F. Tin Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.8 Aluminum Paint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.5 White Paint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.5 Light Cream Paint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23.0 Light Pink “ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23.7 Light Blue “ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24.3 Light Gray “ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.3 Light Green “ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.6 Red Iron Oxide Paint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.7 Dark Prussian Blue Paint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36.7 Dark Chrome-Green Paint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39.9 Black Paint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54.0 From the above it will be observed that plain tin, on account of its smooth, bright surface, gave the best results. Tin, however, rusts rapidly unless protected by paint, so that it is not a practical finish. Aluminum paint gave very good results, but it is not usually considered to have as enduring a finish as a lead and zinc linseed-oil paint. Where possible to do so, therefore, tanks containing highly volatile liquids should be painted either with a White Gloss Paint or a gloss finish of one of the lighter tints. PREPARATION OF THE METAL SURFACE FOR PAINTING Successful results in painting metal surfaces depend to a large extent upon the condition of the surface when the paint is applied. Failure to recognize the importance of proper prep- aration for painting is responsible for much later dissatisfaction. - Paint should never be applied on a surface in a more or less advanced state of rust, without first removing as much of the rust as possible and presenting a sound, solid surface to receive the paint. Rust not removed, and in an aggravated form, will inevitably continue underneath the paint coat, and if not checked, the metal will in the end be destroyed. It has been proved conclusively that time and expense invested in proper preparation of the surface for painting brings large dividends in the longer life and better protection given by the paint coat. (15) C O R. R O S I O N P R O TE C T 1 O N PREPARING GALVANIZED IRON FOR PAINTING Much galvanized iron is used today in tank work and particularly in buildings designed to be fire-proof. Siding and roofs of buildings, cornice work, gutters, drain pipes, and other accessories to building construction are permitted to remain unpainted, under the impression that since the iron has a coat of zinc applied by the galvanizing process, it is immune to rust and corrosion. It is true that galvanized iron will withstand the action of the elements, gases, vapors, etc. for a short time; but when it begins to deteriorate, the decay and destruction is rapid and in many cases it has gone too far to permit a paint coat to be of any value. These surfaces show'd be painted promptly when new. NEW GALVANIZED IRON In the process of galvanizing iron, an oily surface remains, to which paint will not adhere. This oil must be removed by washing with a solution made by dissolving 8 ounces of Copper Acetate or Copper Sulphate in one gallon of warm water. This solution removes all grease or other substance that may interfere with proper adhesion of the paint coat. Copper Acetate or Copper Sulphate is recommended in preference to nitric or muriatic acid, for the reason that it will not start rust, as is frequently the case when these acids are used. After this º has been allowed to dry on the surface, paint may be applied without fear of scaling or peeling. THE FIGHT ACAINST CORROSION SPECIAL EQUIPMENT FOR THE CHEMICAL AND PROCESS INDUSTRIES Buffalo Tank Corporation with the unusual production facilities of its plants and its wide fabricating experience, is particularly equipped to build steel or special metal vessels and equipment required for the process industries. The manufacture and storing of chemicals, acids, brines, caustics, food products, etc., has in recent years developed an entirely new field of plate metal products, designed for long, useful service and when properly selected for each individual purpose, able to withstand corrosion to an unusual degree. Selection of materials is chemically and economically important. No two alloys have identi- cal properties, although there may be cases where different materials are equally successful in resisting corrosion. Buffalo fabricates all of the better-known alloy metals and while they can not guarantee any special metal for specific purposes, in many cases can recommend the correct material to be used and will assist wherever possible. MATER ALS Stainless steel and stainless-clad steel are among the most popular alloy metals used in manufacture of vessels for many chemicals, acids, salts, fruit juices, milk, brines, soap, etc. Stainless steel combines exceptional corrosion resistance with high tensile strength. Nickel, nickel-clad steel, inconel and monel-metal comprise another important group of special metals especially resistant to corrosives such as chlorides, alkalis, and organic compounds and are used considerably in refineries and paper mills, also in the manufacture of soaps, cosmetics and many other articles. Aluminum plate products are useful in many lines and in addition to the high corrosive resistance against atmospheric conditions and the gaseous compounds of sulphur, aluminum is ideal for use in dairy equipment, food products, animal oils, soap, textile and rayon manu- facturing, etc. Aluminum has a very low specific gravity, weighing only about one-third that of steel and other metals in common use. Stainless Steel Pipe Section (16) B U F F A L. O. T AN K C D R P 0 RAT I O N ANTI-CORROSION TANK COATINGs COATED OR LINED TANKS There are numerous kinds of coatings or special linings available for protection of plain steel tanks and many of these linings are ideal for certain purposes and sometimes add years to the normal life of a tank. Buffalo Tank Corporation has facilities to install many of these special linings and can arrange to supply other special coatings to customer's specifications or requirements. GALVANIZED TANKS For hot-water storage, etc. Using a high grade Zinc spelter, galvanized tanks are an eco- nomical protection for many purposes. RUBBER-LINED VESSELS Useful for pickling tanks, for storage of corrosive acids, such as hydrofluoric, muriatic, acetic and dilute sulphuric, for salt brine, caustic soda, sodium hypochlorite, for handling iron-free water for rayon and other industries. LEAD-LINED TANKS We furnish sheet lead lining or homogeneous lead lining in Buffalo tanks for plain storage purposes or built to withstand pressure and temperature changes, vibration, vacuum, etc. Lead-lined tanks are in successful use in refineries and useful for resistance against chlorine gas, sulphuric acid, mixed acids, etc. PLASTIC LININGS Composition linings of various types are available for pickling tanks, acids, salts, etc., and can be furnished in Buffalo tanks on request. Cement linings are sometimes used and can be furnished, if wanted. ENAMEL COATINGS The various types of bitumastic or other special enamels can be furnished on Buffalo tanks or other products and applied hot or cold, as desired. Shipping a Truckload of Liquefied Petroleum Gas Tanks Protected with Special Enamel Coat- ing for Underground Use. Nickel Clad Steel Tanks SECTION II º TANIKS AC- STORACE TANKS FUEL OILS, CASOLINE, ETC. (19) Tºaſa S T 0 R A G E T A N K s TANIKS r- Oil Storage Tanks Horizontal oil storage tanks are used to a great degree in all parts of the country, particu- larly throughout the East, where fuel oil heat is becoming increasingly popular. Buffalo Tank Corporation is one of the largest manufacturers of these popular tanks and builds them to National Board of Fire Underwriters specifications, with Underwriters label attached, also to all State or municipal regulations. For general information, we indicate ordinary layout of openings on oil storage tanks, although there are no fixed rules for size and location of openings and they can be placed in accordance with customer's requirements. Wherever possible, customers should specify exact size and location of openings required. 4 + 4 + 4–== - | ' ' : ! \ . `-- - 3 FLANGEs 2 FLANGE MANHous - - + 4 + —— S MANHole 3" F-Anees 2 FAnse Suggested openings for horizontal underground tanks - –3F-asses |- . !" ºl. 2 FLANGE |- !" FLANGE - > –4 VT - * Suggested openings for Suggested openings for horizontal aboveground tanks vertical aboveground tanks -- Horizontal Storage Tanks in Stock (20) B U F F A L O T A N K C O R P O R AT I O N FUEL Oll. TANK CAPACITY CHART CAPACITY IN GALLONS FOR 1" LEVEL IN 550 TO 3000 GALLON TANKS Gallons 550 1000 1000 1500 1500 2000 2500 3000 Diameters 48” 48" 64” 48” 64” 64” 64” 64” 1 3 5 3 8 4 6 8 9 2 7 14 9 22 14 18 23 28 3 14 26 17 39 25 34 42 51 4 21 39 26 60 39 52 65 78 5 30 55 36 84 54 72 90 108 6 39 72 47 110 71 94 118 142 7 49 90 59 137 89 119 148 179 8 60 109 72 167 108 144 180 217 9 71 130 85 197 128 171 214 257 10 82 151 100 230 150 200 250 300 11 94 173 114 263 172 229 287 344 12 107 196 130 298 195 260 325 390 13 120 219 145 334 218 291 364 437 14 133 243 162 370 243 324 405 486 15 146 267 178 407 268 357 447 537 16 160 292 196 445 294 392 490 588 17 174 316 213 484 320 426 533 640 18 188 343 231 523 347 462 578 694 19 202 369 249 562 374 498 623 748 20 216 395 267 602 401 535 669 803 X. 21 231 422 286 643 429 572 715 859 22 246 448 305 683 457 610 763 915 22 23 260 475 324 724 486 648 810 972 cº 24 275 501 343 764 515 686 858 1030 H- 25 289 527 362 804 544 725 906 1088 26 304 554 382 845 573 764 955 1146 22 27 3.18 580 402 885 603 804 1005 1206 28 333 607 421 926 633 843 1054 1266 29 347 633 441 966 663 883 1104 1326 =l 30 362 659 461 1005 693 923 1153 1386 i- 31 376 686 481 1044 723 962 1203 1446 © 32 390 710 501 1083 752 1002 1253 1505 33 403 735 521 1121 782 1042 1303 1564 il- 34 417 759 540 1158 812 1081 1353 1624 O 35 430 783 560 1194 842 1121 1402 1684 36 443 806 580 1230 872 1161 1452 1744 (/) 37 455 829 600 1265 902 1200 1501 1804 lil 38 467 851 620 1298 927 1240 1551 1854 == 39 479 872 639 1331 961 1279 1600 1922 O 40 490 893 659 1361 990 1318 1648 1980 22 41 500 912 678 1391 1019 1356 1696 2038 42 510 930 697 1418 104.7 1394 1743 2095 43 520 947 716 1444 1075 1432 1791 2151 44 528 963 734 1468 I 103 1469 1837 2207 45 535 976 753 1489 1131 1506 1883 2262 46 542 988 771 1506 1158 1542 1928 2316 47 546 997 789 1520 1185 1578 1973 2370 48 550 1002 806 1528 1211 1612 2016 2422 49 828 tº s 2 1236 1647 2059 2473 50 840 * 1262 1680 2101 2524 51 856 1286 1713 2142 2573 52 872 1310 1744 2181 2620 53 887 1333 1775 2219 2666 54 902 1355 1804 2256 2710 55 916 1376 1833 2292 2753 56 930 1396 1860 2326 2793 57 942 1415 1885 2358 2831 58 955 1434 1910 2388 2868 59 966 1451 1932 2416 2902 60 976 1466 1952 2441 2932 61 985 1479 1970 2464 2959 62 993 1491 1986 2483 2982 63 999 1500 1998 2498 3001 64 1002 1505 2004 2506 3010 INSTRUCTIONS: Find capacity and diameter of your tank. Example—If you have a 1000 gallon Fuel Oil Storage Tank, 48" D., look in top column for 1000. Find 48, under the 1000 in second column. By comparing the height of the oil which you have obtained on gauge stick with the column under the 48" D., you have the amount of oil in your tank. If oil shows on stick at 237 there are 448 gallons in tank, etc. Calibration Charts for other size Buffalo Storage Tanks can be furnished on request. (21) S. T. O. R. A. G. E. T A. N. K. S. HORIZONTAL UNDERGROUND STORACE TANKS UNDERwriters LABoratoRIEs SPECIFICATIONs For HoRizoNTAL TANKs Horizontal tanks of black steel shall not exceed the maximum capacities, diameters, or lengths for the corresponding gauges of metal outlined in the following table, except as noted below. U. S. S. Approx. Maximum Maximum Maximum Gauge Thickness Capacity Diameter Length of Metal Inches U. S. Gal. Inches Shell Feet 7 % 4,000 84 22 3 34 12,000 126 32 0. % 20,000 132 42 000 % 30,000 132 50 To take care of miscalculations and mistakes in fabrication, for tanks made of No. 7 or heavier gauge metal, a tolerance of 10 per cent in capacity and a tolerance of 5 per cent in either the diameter or the length will be permitted. This does not mean that tanks made of No. 7 or heavier gauge stocks should be intentionally designed to have capacities, diameters, or lengths in excess of the nominal maximums designated above for such stocks. SPECIAL Tanks made of 5%" or %" metal and constructed as required by the Standard may employ diameters up to and including 144". If it is found practical to handle or ship tanks of diameters exceeding 132" and not over 144" Underwriters Labels may be attached, same as for tanks of smaller diameters, provided, as always, that all general requirements for standard construction have been met. Tanks up to 30,000 gallons capacity for storing Class III liquids (flashpoint above 70°F. and º F., closed cup tester) may be made of 34" material, if adequate internal bracing ls provided. SHELL SEAMS Shell and head seams may be riveted or welded. HEADS Flat flanged, braced heads; dished heads, or flanged and dished heads, are permissible, when the proper joints are used, in accordance with requirements. TESTS Before painting, tanks shall be tested and proven tight against leakage under a test pres- sure of not less than 5 nor more than 10 pounds per square inch. (22) B U F F A L O T A N K C O R P O R A T I O N HORIZONTAL ABOVECROUND STORACE TANKS UNDERWRITERS LABORATORIES SPECIFICATIONS FOR HoRIZONTAL TANKs CAPACITY The capacity shall not be less than 2,500 gallons nor greater than 35,000 gallons. DIMENSIONS These tanks may be of any diameter from 4 ft. up to 11 ft. inclusive and any length, that can be shipped on a single railroad car. In no case must the diameter be greater than the length, or the length more than six times the diameter. MATERIAL Standard open-hearth steel tank plate is to be used in the construction of these tanks. The minimum thickness of metal required for shell and heads of tanks from 48 to 72 inches in diameter is 3%" and from 73 to 132 inches in diameter is 94". SHELL SEAMS Shell and head seams may be riveted or welded. HEADS Heads may be in one or two pieces. TESTS Each tank must be tested and proven tight under a pressure of approximately one and one-half times the pressure exerted on the bottom when tank is filled with water. VERTICAL ABOVECROUND STORACE TANKS UNDERWRITERS LABORATORIES SPECIFICATIONS FOR VERTICAL TANKs CAPACITY The tanks shall have a capacity of more than 2,500 gallons and less than 25,000 gallons. DIMENSIONS These tanks are cylindrical in shape, the height never being more than four times the diameter. A maximum diameter of 11 feet and a maximum height of 35 feet are permissible. MATERIAL Standard sheets of open hearth steel tank plate must be used in the construction of these tanks. BOTTOM The bottom of these tanks shall be in one or two pieces and not less than %" thick. They may be riveted or welded to the shell. SHELL The shell must be not less than %" thick for tanks up to 25 feet in height. For tanks from 25 to 30 feet high, the first ring must be not less than %" thick and not less than 5 feet wide. The rings above the first must not be less than %" thick. Tanks between 30 and 35 feet high must have first two rings not less than 4" thick. Each of these 94" rings must be not less than 5 feet wide; the remaining rings must be not less than %" thick. The seams of the shell may be riveted or welded. - TOP The tops of these must either be dished or cone-shaped and No. 10 U.S. gauge or heavier steel. TESTS All tanks must be tested and proven tight against leakage under a test pressure of not less than one and one-half times the pressure exerted on the bottom when the tank is full of water, or the tank may be filled with water and 5 pounds air pressure applied to test the top. NoTE:-The foregoing Underwriters Laboratories specifications for Oil Storage Tanks are not given in entirety For complete details consult latest specifications. º (23) S T O R. A. G. E. T. A. N. K. S. -º - BUFFALO STORAGE TANKS MATERIAL Buffalo Storage Tanks are built from high quality plate steel. Standard Steel specification ASTM A-10. CONSTRUCTION Buffalo Storage Tanks are made up in wide rings, only one plate to a ring, the straight- seams located at the top. No bolts or rivets are used—a hole eliminated is a leak prevented. Welded tanks are stronger and tighter—Buffalo Tanks are all welded to Underwriters specifications. TEST Buffalo Storage Tanks are rigidly inspected and thoroughly tested in full accordance with Underwriters specifications. PAINTING Buffalo underground tanks are provided with protective black asphaltum paint. Above- ground tanks are given a primer of red oxide paint. MANHOLES AND OPENINGS Buffalo Storage Tanks 5,000 gallons and over are regularly equipped with one standard 16" diameter bolted cover steel manhole. Openings are threaded pipe connections unless otherwise specified. ACCESSORIES Single or double bulkheads can be furnished with any horizontal tank. Heater coils designed and installed in tanks whenever material being stored is such that heat is required. supports We carry supports in stock for tanks of all sizes. These supports are designed not only to carry the weight of the tank and contents but also to resist overturning and failure due to wind of gale proportions. Note from the illustration how the saddle cradles the tank well up around the sides of the shell. B U F F A L O T A N K C O R P O RAT I O N BUFFALO STANDARD HORIZONTAL STORACE TANKS Tank Capacity Dimensions Thickness Weight sº Tank NO. Gallons - nickness in pounds | Sº NO. Diameter | Length See Note 30 25,000 10'-6" 38/– 9" J4" 17,040 A 30 31 25,000 10’–6" 38’— 9” %" 19,010 A 31 40 20,000 10'-6" 31'- 0" J4" 14,100 A 40 41 20,000 10'-6" 31'- 0" %" 15,700 A or U 41 42 20,000 10’–0" 34'— 1" J4" 14,130 A 42 43 20,000 10'-0" 34'— 1" %" 16,330 A or U 43 48 15,000 10'-6" || 23'— 4" 34" 11,160 A 48 49 15,000 10'-6" 23'— 4" 5%." 12,390 A or U 49 50 15,000 10'-0" 25/– 8" J4" 11,080 A 50 51 15,000 10'-0" 25'— 8" %" 12,580 A or U 51 52 15,000 8’–0" | 39’–11" }4" 13,210 A 52 53 15,000 8’–0" | 39’—11" %" 14,620 A or U. 53 60 12,000 10'-0" 20’– 6" }4" 8,940 A. Or U 60 61 12,000 10'-0" 20’— 6" %" 10,700 A or U 61 62 12,000 8/–0" 31/–11" J4" 10,550 A or U 62 63 12,000 8’–0" 31’—11" 5%" 12,090 A or U 63 68 10,000 10’—6" 15’- 8" %" 8,160 A. Or U 68 69 10,000 10'-6" 15'— 8" %" 9,020 A or U 69 70 10,000 10'-0" 17' 2" }4" 8,030 A or U 70 71 10,000 10'-0" 17' 2" %" 9,130 A or U 71 72 10,000 8’–0" | 26’— 7" %" 8,680 A. Or U 72 73 10,000 8’–0" 26'. 7" %" 10,510 A or U 73 74 10,000 7' 0" 34'— 9" %" 7,000 - 74 75 10,000 7' 0" 34'— 9" %" 8,950 A or U 75 80 8,350 7' 0" 29' 0" %" 6,050 - 80 81 8,350 7' 0" 29' 0" %" 7,620 A or U 81 82 8,000 8’–0" 21'— 4" J4" 7,280 A. Or U 82 83 8,000 8’–0" 21'- 4" %" 8,330 A or U 83 86 6,700 7' 0" 23'— 3" %" 5,000 - 86 S7 6,700 7' 0" 23’– 3” %" 6,330 A. Or U 87 90 6,000 8’–0" 16’— 1" J4" 5,920 A. Or U 90 91 6,000 8’–0" 16’— 1" %" 6,720 A or U 91 92 5,000 7'-0" 17’— 6" %" 3,980 - 92 93 5,000 7' 0" 17’— 6" }4" 5,130 A or U 93 94 5,000 6’—0" 23'— 9" %" 4,490 A 94 95 5,000 6’–0" 23’— 9” }4" 5,440 A or U 95 96 3,380 7'-0" 11’– 9" %" 2,980 - 96 97 3,380 7' 0" 11’– 9" j4" 3,650 A or U 97 +N OTE:-Tanks marked “A” may be furnished with Underwriters' Aboveground Label attached, provided the heads are dished. Tanks marked “U” may be furnished with Underwriters' Underground Label attached, pro- vided all openings are on top of tank. (25) rººfs S. T. O. R. A. G. E. T A. N. K. S. rºw. BUFFALO STANDARD SMALL HORIZONTAL STORAGE TANKS - Dimensions - Tank No. ‘º º, sº. allons Diameter Length Thickness p s rv10. 10 280 42" 4'-0" %" 540 12 550 48" 6'-0" %" 800 16 1000 48" 10–8" %" 1260 18 1000 64" 6'-0" %" 1160 See 21 1500 64" 9–0." %" 1550 Note 22 2000 64" 12'-0" %" 1950 24 3000 64" 18"–0" %" 2730 26 4000 64" 24'-0" %" 3510 NotE.-Tanks furnished with Underwriters' Underground Label. BUFFALO STANDARD VERTICAL TANKS UNDERwriters' LABEL FURNished ONLY WHEN SPECIFIED Dimensions Rings - Tank Tank | Approx. Weight Bot- || Roof N. No. Capac. Diameter Height 1st || 2nd Top tom N 0. 110 7,740 || 10–6" | 12–0" 5,090 3%" | 3%" | 3%" | 3%" | 3%" | 110 111 11,600 10–6" | 17–10" | 6,660 3%" | 3%" | 3%" | 3%" | 3%" | 111 112 15,330 || 10–6 23'-8" | 8,230 $º º' º' | *. 3%. 12 113 16,500 10–6" 25–6" | 9,650 M" | 3%" | 3%" | 3%" | 3%" | 113 114 20,280 | 10–6" | 31-4" | 11,220 M* | 3%" | 3%" | 5%" | 3%" | 114 ABOVE prices include Standard Manhole 16” diameter and necessary threaded pipe connections up to 15" of flange (five 3" flanges or equivalent). Buffalo stan DARD REFINERY TANKS Nominal Actual - - Approximate - - - - Thickness Thickness + - Diameter Height Capacity Capacity - Weight in bbls. in bbls. of Shell of Heads in pounds 6'-0" 6’— 0" 30 30.2 3.” M" 1600 Sº-0" 7' 3" 65 64.9 %" 14" 2600 9'-0" 5'-10" 65 66.0 %" #4. 27.20 9–0." 9–0." 100 101.9 %" % 3430 (26) B U F F A Lo TAN K C D R P 0 RAT I O N A.P.I.. WELDED FIELD STORAGE TANKS AMERICAN PETRoleum INSTITUTE Sizes AND CAPACITIES 240 BBLs. To 139,340 BBLs. INCLUSIVE. CAPACITIES IN BARRELS - Nominal Height (Feet) Diameter 12 is 24 30 30 tº 48 (Feet) Number of Courses 2 3 4. 5 6 7 8 12 240 360 480 600 730 . . . . . . . . . . . . . 18 540 820 | 1,000 1,360 1,630 | . . . . . . . . . . . . . . 24 970 1,450 | 1,940 2,420 2,910 | . . . . . . . . . . . . . 30 1,510 || 2,270 3,020 3,780 4,540 | . . . . . . . . . . . . . 36 2,180 3,270 4,360 5,440 6,530 7,620 8,700 48 3,870 5,800 7,740 9,680 11,610 13,540 15,480 60 6,048 || 9,070 12,100 15,120 18,140 21,165 24,190 78 - - - - - - - - - - - - 25,550 30,660 35,770 40,880 102 43,700 52,430 61,170 69,910 120 60,480 72,575 84,670 96,765 144 87,000 104,500 121,920 139,340 Tank Sizes—72" Courses CAPACITIES IN BARRELS TABLE CAPACITIES BASED on 42–GALLoN BARRELs Nominal Height (Feet) Diameter 16 | 24 32 40 48 (Feet) Number of Courses 2 3 4 5 6 12 320 480 640 | . . . . . . . . . . . . . 18 730 1,090 1,450 . . . . . . . . . . . . . 24 1,290 1,940 2,580 . . . . . . . . . . . . . 30 2,020 3,020 4,030 | . . . . . . . . . . . . . 36 2,900 4,360 5,800 7,260 8,700 48 5,160 7,740 10,320 12,900 15,480 60 8,060 12,100 16,120 20,160 24,190 78 - - - - - - - - - - - 27,260 34,070 40,880 102 | . . . . . . . . . . . 46,610 58,260 69,910 120 ! . . . . . . . . . . . 64,510 80,640 96,765 144 . . . . . . . . . . . 92,900 116,120 139,340 Tank Sizes—96" Courses For further details, consult American Petroleum Institute Specifications or apply to us. BUFFALO TANK CORPORATION BUILDS AND ERECTS A.P.I. STANDARD TANKS (27) S T O R A G E T A N KS rººfs º - A.P.I.. WELDED PRODUCTION TANKS AMERICAN PETRoleum INSTITUTE Sizes AND SPECIFICATIons 90 BBLs. To 224 BBLs. INCLUSIVE, Size Nominal Actual Minimum Thickness Capacity Capacity Diameter Height in bbls. in bbls, Bottom Shell Deck 8'-0" 10'-0" 90 89.5 14" 3…” 34." 8'-0" 16’—0" 144 143.2 14" 3…” 3." 10'-0" '-0" 112 111.8 "A" J4" 34." 10'-0" 15'-0" 210 209.6 M" 34" 3…" 10'-0" 16'-0" 224 223.6 %." 34" %" SPECIFICATIONS-A.P.I. TANKS BOTTOMS Bottoms shall be 4" minimum and shall be flanged for connection to shell. SHELLS Shells for the 8 foot diameter tanks shall have a minimum thickness of 3%" and for the 10 foot diameter tanks shall have a minimum thickness of 34". DECKS Decks shall have a minimum thickness of 3%" and shall be either coned or dished, with an average slope of 1" in 12" and shall be flanged for connection to the shell. FITTINGS All fittings shall be internally threaded line pipe couplings, or boiler flanges, heavy recessed type and attached by welding inside and outside of tank plate. SEAMS All seam welding must be done with the shielded arc process, using covered welding rods and proper welding technique. Longitudinal seams and bottom cross seams shall be either butt-welded or single full- fillet lap welded. Circumferential seams and deck cross seams may be butt-welded or single full-fillet lap welded. TESTING All tanks shall be given air and soapsuds test under a minimum air pressure of two (2) pounds per square inch and re-welded leak-tight before shipment. NotE-One barrel contains 42 gallons. . - For Buffalo standard vertical station tanks from 7740 gals, to 20,280 gals. capacity see page 26. Shipping 15'-0" Dia. Refinery Tanks by Water (28) B U F F A L O T A N K C O R P O R A T I O N TANKS FOR FUEL OIL Oil storage tanks used with oil-burning equipments for heating dwellings or for commercial and industrial applications usually conform to National Board of Fire Underwriters Standards. The following extracts from existing regulations are of interest. 1. APPLICATION AND SCOPE (a) These standards apply to oil-burning equipments for installation in furnaces and boilers used for heating dwellings and for various commercial and industrial applications. 7. INSTALLATION OF UNDERGROUND TANKS (a) Oil supply tanks should preferably be located outside of buildings and underground with top of tank below the level of all piping to which the tank is connected, to prevent dis- charge of oil through a broken pipe or connection by syphoning. (b) Underground tanks shall be so buried as to have a cover of earth not less than 2 feet thick, or shall be covered with not less than 1 foot of earth on top of which shall be placed a slab of reinforced concrete not less than 4 inches thick. The slab shall be set on a firm, well tamped earth foundation and shall extend at least 1 foot beyond the tank in all directions. Where tanks are buried underneath buildings such a concrete slab shall be provided in every instance. eº ºr e º zºº º - ºvara, Cºº zºzºzazzºzzzzzz º 222222222222- -- gººd - a 'j º s ' ' ' ', z, & º º © sº • * ~ *.*.** * * : .ºzzº, © 523&YZ. - º º • *-ºxº º *zººd * - - - agº e ºrrºzzzzº A Pºzº 8. INSTALLATION OF TANKS INSIDE BUILDINGS (a) Oil supply tanks larger than 60 gallons capacity shall not be located in buildings above the lowest story, cellar or basement. (b) Unenclosed inside storage tanks and auxiliary tanks shall not be located within 7 feet, horizontally, of any fire or flame. (c) Oil supply tanks located inside buildings shall not exceed 275 gallons individual capacity or 550 gallons aggregate capacity (in one building), unless installed in an enclosure or casing constructed as follows: The walls of the enclosure shall be constructed of reinforced concrete at least 6 inches thick or of brick at least 8 inches thick, and shall be bonded to the floor. The space between the tank and the enclosure shall be completely filled with sand or well tamped earth. Where the floor or other construction immediately above the tank is of fire-resistive construction capable of safely sustaining a load of 150 pounds per square foot, the walls of the enclosure shall be carried to a height not less than 1 foot above the tank and the space filled with sand or well tamped earth to the top; otherwise the enclosure shall have a top of reinforced con- Crete at least 5 inches thick or of equivalent construction. Instead of an enclosure as above described the tank may be encased in reinforced concrete not less than 6 inches in thickness, applied directly to the tank so as to completely eliminate any air space. (d) In buildings of ordinary construction the nominal gross capacity of tanks shall not exceed 5000 gallons. (e) In fire-resistive buildings the nominal gross capacity of the tanks shall not exceed 15,000 gallons. (f). In any building, if in a fire-resistive or detached room cut off vertically and hori- Zontally in an approved manner, from other floors of the main building, the nominal gross capacity of tanks shall not exceed 50,000 gallons, with an individual tank capacity not exceed- ing 25,000 gallons. (29) S T O R A G E T A N K S TANKS FOR FUEL OIL, N. B. F. U. REGULATIONS (Continued) 9. INSTALLATION OF OUTSIDE ABOVEGROUND TANKS (a) Outside aboveground tanks shall not be located in closely built-up areas. (b) The distance from outside aboveground tanks to line of adjoining property or nearest building shall not be less than set forth in the table below. Capacity Minimum Capacity Minimum of Tanks, Distance, of Tanks, Distance, Gallons Feet Gallons Feet 750 or less. . . . . . . . . . . . 5 128,000 or less. . . . . . . . . . . . 75 1,100 or less. . . . . . . . . . . . 10 200,000 or less. . . . . . . . . . . . 85 3,000 or less. . . . . . . . . . . . 20 266,000 or less. . . . . . . . . . . . 100 21,000 or less. . . . . . . . . . . . 25 400,000 or less. . . . . . . . . . . . 150 31,000 or less. . . . . . . . . . . . 30 666,000 or less. . . . . . . . . . . . 250 45,000 or less. . . . . . . . . . . .40 1,333,000 or less. . . . . . . . . . . . 300 64,000 or less. . . . . . . . . . . . 50 2,666,000 or less. . . . . . . . . . . . 350 80,000 or less. . . . . . . . . . . . 60 , (c) For tanks of over 400,000 gallons capacity, a minimum distance of 175 feet to adjoin- ing property or nearest building may be permitted, provided that an approved type of fire extinguishing system is installed for the tank and covering other parts of the yard or system. (d). For tanks permitted from 50 feet and up to 175 feet of building or property line, the capacity may be increased 33 per cent if the tank is provided with an approved fire extinguish- ing system. (e) The minimum distance from tanks to adjacent tanks shall conform to the following table: Capacity of Minimum Distance Capacity of Minimum Distance Tank, Gallons to any Other Tank Tank, Gallons to any Other Tank 18,000 or less. . . . . . . . . . 3 feet 75,000 or less . . . . . . . . . . 13 feet, 24,000 or less. . . . . . . . . . 5 feet 100,000 or less . . . . . . . . . . 15 feet 48,000 or less. . . . . . . . . . 10 feet, 100,000 to 2,500,000. . . . .One tank diameter (f) Tanks shall be so located as to avoid possible danger from high water. When tanks are located on a stream without tide, they shall, where possible, be down stream from burn- able property. (g) EMBANKMENTS OR DIKES. In locations where aboveground tanks are liable in case of breakage or overflow to endanger surrounding property, each tank shall be protected by an embankment or dike. Embankments or dikes shall be made of clay-core cinderfill, earth- work, masonry or approved concrete. Such dikes shall have a capacity of not less than that of the tank or tanks surrounded. Earthwork embankments shall be firmly and compactly built of good earth from which stones, vegetable matter, etc., have been removed, and shall have a flat section at the top of not less than three feet and a slope of at least 1% to 1 on both sides. Small tanks with capacities of not over 25,000 gallons each may be grouped and a dike built around the group of tanks. Embankments or dikes shall be continuous with no openings for piping or roadways. Piping should preferably be laid over or under embankments. 10. SETTING OF TANKS (a) Underground tanks shall be set on a firm foundation and surrounded with soft earth or sand well tamped in place. Where necessary to prevent floating they shall be securely anchored or weighted. (b) Inside storage and auxiliary tanks shall be securely supported by substantial incom- bustible supports to prevent settling, sliding or lifting. (c) It is recommended that inside storage tanks be provided with draw-off or drain open- ings. When draw-off or drain openings are provided the tanks shall be installed with the bottom pitched to the draw-off or drain opening with a slope of not less than % inch per foot of length. The draw-off or drain opening shall be provided with suitable pipe connections in a form to provide a sump from which water or sediment can be readily drained at regular intervals. (30) B U F F A L O T A N K C O R P O R A T I O N TANKS FOR FUEL OIL, N. B. F. U. REGULATIONS (Continued) (d) Outside aboveground tanks shall be set on a firm foundation. Those more than one foot above the ground shall have supports of masonry or protected steel, except that wooden cushions may be used. No combustible material shall be stored under or within 10 feet of outside aboveground tanks. 11, CONSTRUCTION OF TANKS (a) Underground tanks and tanks inside buildings shall be constructed of steel or wrought iron of a minimum gauge (U. S. Standard) in accordance with the following table, except that for tanks of 181 to 275 gallons capacity, installed in buildings, and without masonry enclosures the minimum gauge shall be No. 14. Steel or wrought iron thinner than No. 7 gauge used in the construction of underground and enclosed tanks shall be galvanized. Capacity, Minimum Weight Gallons Thickness Lb. per sq. ft. 7 to 285 16 gauge 2.50 286 to 560 14 gauge 3.125 561 to 1,100 12 gauge 4.375 1,101 to 4,000 7 gauge 7.50 4,001 to 12,000 % inch (nominal) 10.00 12,001 to 20,000 % inch (nominal) 12.50 20,001 to 30,000 % inch (nominal) 15.00 If adequate internal bracing is provided, tanks of 12,001 to 30,000 gallons capacity may be built of 94-inch plate. NOTE. For tanks larger than 1,100 gallons capacity a tolerance of 10 per cent in capacity is permitted. (b) Outside aboveground tanks, including tops, shall be constructed of steel or wrought iron of a thickness in accordance with the following requirements. 1. HORIZONTAL OR VERTICAL TANKS NOT OvKR 1,100 GALLONs CAPACITY. y Capacity, Minimum Thickness Capacity, Minimum Thickness Gallons of Material Gallons of Material 1 to 60. . . . 18 gauge U. S. Standard 351 to 560. . . . 14 gauge U. S. Standard 61 to 350. . . . 16 gauge U. S. Standard 561 to 1,100. . . . 12 gauge U. S. Standard 2. HoRIZONTAL TANKS OVER 1,100 GALLONs CAPACITY. Tanks having a diameter of not over 6 feet shall be made of at least 3%-inch steel or wrought 1I'OIl. Tanks having a diameter of over 6 feet and less than 11% feet shall be of at least 34-inch steel or wrought iron. 3. VERTICAL TANKS OVER 1,100 GALLONs CAPACITY. The minimum thickness of shell or bottom shall be 3% inch. The minimum thickness of roof shall be 3% inch. The thickness of shell plates shall be in accordance with the following formula. H x D 8450 x E thickness of plate in inches. height of tank in feet above the bottom of the ring under consideration. diameter of the tank in feet. efficiency of vertical joint in ring under consideration. : | In computing the efficiency of vertical joints the tensile strength of steel shall be taken as jº pounds per square inch, and the shearing strength of rivets, 40,000 pounds per Square 1I].CI] . NoTE. Vertical steel tanks with riveted shells constructed in accordance with American Petroleum Institute standard No. 12-A may be considered as meeting the above requirements. (c) Joints shall be riveted and calked, brazed, welded or made tight by some equally Satisfactory process. Tanks shall be tight and sufficiently strong to bear without injury the (31) S T O R A G E T A N K S TANKS FOR FUEL OIL, N. B. F. U. REGULATIONS (Continued) most severe strains to which they may be subjected in practice. Shells of tanks shall be prop- erly reinforced where connections are made. All connections to storage tanks other than out- side aboveground storage tanks, shall be made through the top of tank above the liquid level, except that tanks of not over 275 gallons capacity may have one bottom connection for gravity feed and one opening for an approved key stem gate valve to facilitate cleaning or for a Scavenging line to be run to the outside and capped oil tight when not in use. TANKS FOR FLAMMABLE LIQUIDS Storage tanks containing flammable liquids are subject to rigid regulations covering design, manufacture and installation. Extracts from the National Board of Fire Underwriters regulations covering the important features are reprinted as follows: These regulations cover recommended practice, compliance with which will not, however, remove all insurance charges for the storage or handling of such liquids. While they do not apply to liquids having flashpoint above 200° F., they may be used as a basis for the storage of such liquids, and especially with reference to such features as con- tainer design, construction, venting and piping. Before an equipment for storing or handling these liquids is installed, or an existing equip- ment is remodeled, the plans and specifications should in all cases be submitted to the inspec- tion department having jurisdiction that the charges, including exposures, may be accurately known and considered. In some cases local conditions may require extra protection, or when they do not permit full compliance with these regulations, modification may be necessary. Full approval should therefore be secured from the inspection department. These regulations cover the general principles to be adopted when installing future equip- ment of this kind. Installations not fully conforming with these regulations, but affording the same measure of safety, may be submitted to the inspection department having jurisdic- tion and if found to possess merit may be accepted. Class A–Individual Underground Storage System Without Inside Discharge. Class B–Inside Discharge Systems. Class C—Portable Tanks in Buildings. Class D–Stationary Tanks in Buildings. - In the following regulations flammable liquids are divided into three classes according to the flashpoint as follows: Class I–Liquids with flashpoint below 25° F. closed Cup Tester. Class II—Liquids with flashpoint above that of Class I and below 70° F. closed Cup Tester. Class III–Liquids with flashpoint above that of Class II and below 200°F. closed Cup Tester. The flashpoint shall be determined with the Elliott, Abel, Abel-Pensky, or the Tag closed cup testers, but the Tag closed cup tester (standardized by the U. S. Bureau of Standards) shall be authoritative in case of dispute. All tests shall be made in accordance, with the methods adopted by the American Society for Testing Materials and approved by the Ameri- can Standards Association. CLASS A Individual Underground Storage Systems Without Inside Discharges These storage systems, which are generally known as “Isolated Storage Systems,” consist of an outside underground tank provided with suitable means for filling and for withdrawing the liquid it is designed to contain. The most common form of this type of storage system is the gasoline service station for automobiles. Systems which provide for storing and handling the liquids outside of and so removed from adjoining property as not to create an exposure thereto are considered the least dan- gerous. 1. CAPACITY AND LOCATION OF TANKS The limit of individual tank capacity permitted shall be dependent on the location of tanks with respect to adjacent buildings, as follows: (32) B U F F A L O T A N K C O R P O R AT I O N TANKS FOR FLAMMABLE LIQUIDS, N. B. F. U. REGULATIONS (Continued) MAXIMUM CAPACITY OF TANKS FOR UNDERGROUND STORAGE Class I & II Location & Class III Class III If top of tank is lower than Liquids with Liquids with all floors, basements, cellars flashpoint below flashpoint or pits of buildings 100° F. above 100°F. (a) Within a radius of 50 ft. Unlimited Unlimited (b) Within a radius of 40 ft. 50,000 gals. 500,000 gals. (c) Within a radius of 30 ft. 20,000 gals. 200,000 gals. (d) Within a radius of 25 ft. 15,000 gals. 150,000 gals. (e) Within a radius of 20 ft. 5,000 gals. 100,000 gals. (f) Within a radius of 10 ft. 2,000 gals. 75,000 gals. When within 10 feet of any building and the top of the tank is above the lowest floor, basement, cellar or pit of the building, the limit of individual tank capacity shall be restricted to 550 gallons in the case of liquids with flashpoint below 100°F. and 50,000 gallons for liquids with flashpoint above 100° F. 2. SETTING OF TANKS (a) Tanks shall be buried underground, with top of tank not less than 2 feet below the surface of the ground and below the level of any piping to which the tanks may be connected except that in lieu of the 2-foot cover, tank may be buried under 12 inches of earth and a slab of reinforced concrete or equivalent construction in no case less than 4 inches in thickness; slab shall be set on a firm, well tamped earth foundation, and shall extend at least 1 foot beyond the outline of the tank in all directions. Where necessary to prevent floating, tanks shall be securely anchored or weighted. Where tanks are buried under driveways subject to traffic by heavy vehicles, the total coverage above the top of the tank shall be not less than 3 feet; provided, however, that where such driveways are paved with reinforced concrete not less than 6 inches in thickness, the total coverage may be reduced to 2 feet. Where a tank cannot be entirely buried, it shall be covered over with earth to a depth of at least 2 feet with a slope on all sides of not less than 1% to 1. (b) Tanks shall be set on a firm foundation and surrounded with soft earth or sand well tamped in place. (c) When located underneath a building, the tanks shall be so buried and otherwise installed and protected as to comply in all respects with the provisions of paragraph (a) of this section. 3. MATERIAL AND CONSTRUCTION OF TANKS (a) , Tanks shall be constructed of steel or wrought iron of a minimum gauge (U. S. Stan- dard) depending upon the capacity as given in Table 1. TABLE I Capacity Minimum Weight, lbs. (Gallons) Thickness per sq. ft. 1 to 285 16 gauge 2.50 286 to 560 14 gauge 3.125 561 to 1,100 12 gauge 4.375 1,101 to 4,000 7 gauge 7.50 4,001 to 12,000 }4-inch 10.00 12,001 to 20,000 9%-inch 12.50 20,001 to 30,000 %-inch 15.00 Tanks of open hearth steel or wrought iron thinner than No. 7 gauge shall be galvanized. For Class III liquids, if adequate internal bracing is provided, tanks from 12,001 to 30,000 gallons capacity may be built of 4-inch plate. (b) All joints of tanks shall be riveted, welded or brazed and shall be soldered, calked or otherwise made tight by some equally satisfactory process. Tanks shall be tight and suffi- ciently strong to bear without injury the most severe strains to which they may be subjected (33) S T O R A G E T A N K S TANKS FOR FLAMMABLE LIQUIDS, N. B. F. U. REGULATIONS (Continued) in practice. Shells of tanks shall be properly reinforced where connections are made, and all connections made through the top of tank above the liquid level. NoTE. For tanks larger than 1,100 gallons capacity, a tolerance of 10 per cent in capacity is permitted. Tanks for systems under pressure shall be constructed in accordance with Section 8 of the Boiler Code of the A. S. M. E. generally termed the “Unfired Pressure Wessel Code,” and tested in compliance with the provisions of said code. (c) Prior to installation tanks shall be protected against corrosion on the outside in a manner satisfactory to the inspection department having jurisdiction, but in every case at least equivalent to two preliminary coatings of red lead followed by a heavy coating of hot asphalt. NotE. Where soil contains corrosive substances, special protection may be required, as for instance the following: Tanks may be completely enclosed with reinforced concrete, with at least a 6-inch space on sides be- tween tank and concrete filled with sand or well tamped earth and with 12 inches of sand on top of tank. CLASS B Inside Discharge Systems An inside discharge system consists of an underground storage tank connected by piping to a pump or other means for discharging liquid in a building. Representative of this class are systems in connection with dry cleaning, paint, varnish, and lacquer manufacturing. Discharge by means of a pump is the safest method; gravity and pressure discharge intro- duces greater degrees of hazard. Discharge by means of air pressure exerted directly on the storage tank is extremely hazardous and should not be permitted. Pressure discharge systems should be restricted to those of approved type. This class of installation is regarded as more dangerous than systems not introducing flammable liquids inside buildings. Where used its hazards should be recognized and the following rules and precautions should be observed. . NotE. A complete set of plans and, specifications of proposed installations should be submitted to the inspection department having jurisdiction before beginning installation. CLASS C Portable Tanks A portable tank consists of a metal receptacle mounted on wheels and provided with means for filling and withdrawing liquid. These devices handle a considerable quantity of flammable liquids inside buildings. Their use obviates the necessity for handling these liquids in buckets or other open receptacles. If used their hazards should be recognized and the following general specifications for the con- struction of such devices be observed. 20. CAPACITY Capacity of tank shall not exceed 65 gallons. 21. MATERIAL AND CONSTRUCTION (a) Tank shall be made of iron or steel plate not less than %-inch in thickness with joints either riveted and calked, or welded, brazed or made tight by some equivalent method. Where necessary tanks shall be substantially braced. (b) Tanks shall be made with as few openings as practicable and suitably reinforced where necessary. Openings for fittings shall be made in top above liquid level. CLASS D Stationary Tanks in Buildings These tanks are to be used for the storage and handling of Class III liquids. The pro- visions of this class do not apply to domestic storage for oil stoves and ranges, nor to such storage in connection with small kerosene and fuel oil heating and cooking appliances; for such storage requirements see National Board Pamphlets Numbers 39 and 310. - They are not intended as substitutes for Class “A” or Class “B” systems when same can be installed, but are largely used to reduce the hazard of storing and handling this class of liquids in barrels, drums, etc., except in refineries and bulk oil distributing plants. (34) B U F F A L O T A N K C O R P O R AT I O N TANKS FOR FLAMMABLE LIQUIDS, N. B. F. U. REGULATIONS (Continued) 29. INSTALLATION OF TANKS INSIDE BUILDINGS (a) Supply tanks larger than 60 gallons capacity shall not be located in buildings above the lowest story, cellar or basement. (b) Unenclosed inside storage tanks and auxiliary tanks shall not be located within 7 feet, horizontally, of any fire or flame. (c) Supply tanks located inside buildings shall not exceed 275 gallons individual capacity, or 550 gallons aggregate capacity (in one building), unless installed in an enclosure or casing constructed as follows: The walls of the enclosure shall be constructed of reinforced concrete at least 6 inches thick or of brick at least 8 inches thick, and shall be bonded to the floor. The space between the tank and the enclosure shall be completely filled with sand or well tamped earth. Where the floor or other construction immediately above the tank is of fire-resistive construction capable of safely sustaining a load of 150 pounds per square foot, the walls of the enclosure shall be carried to a height not less than 1 foot above the tank and the space filled with sand or well tamped earth to the top; otherwise the enclosure shall have a top of reinforced concrete at least 5 inches thick or of equivalent construction. Instead of an enclosure as above described the tank may be encased in reinforced concrete not less than 6 inches in thickness, applied directly to the tank so as to completely eliminate any air space. (d) In ordinary buildings the nominal gross capacity of tanks shall not exceed 5000 gallons. (e) In fire-resistive buildings the nominal gross capacity of the tanks shall not exceed 15,000 gallons. (f) In any building, if in a fire-resistive or detached room cut off vertically and hori- zontally in an approved manner from other floors of the main building, the nominal gross capacity of tanks shall not exceed 50,000 gallons, with an individual tank capacity not exceed- ing 25,000 gallons. 30. INSTALLATION (a) Tanks shall be installed on a firm foundation, preferably of masonry. (b) Tanks shall be so located that pumps or other discharge device shall not be below the first floor. The floor for a radius of at least three feet from pump shall be of non-combustible material or covered with non-ferrous metal. 31. MATERIAL AND CONSTRUCTION The provisions of Section 3 of Class A shall apply, except that fuel oil tanks of not over 275 gallons capacity may have one bottom connection for gravity feed, and one opening for an approved key stem gate valve to facilitate cleaning, or for a scavenging line to be run to the outside and capped oil tight when not in use. OIL FUEL SPECIFICATIONS O. B. I. Designation - Water -- Gravity and Maximum Flash | Pour Point Speci- Range | Sediment Viscosity Point Max. Min. fication Name A. P. I. P Max. No. er Cent 1 |Distillate Oil—Volatile. || 48°–36° 0.05 | . . . . . . . . . . . . . . . . . . 100°–165° 15° F. 0° F. 2 |Distillate Oil—Medium volatile. . . . . . . . . . . . . 36°–32° 0.05 | . . . . . . . . . . . . . . . . . . 110°–190° 15° F. O'” F. 3 |Distillate Oil—Low vis- cosity . . . . . . . . . . . . . . 32°–28° 0.10 |55 Sec. at 100° F.[110°–200°|15° F. 0° F. (Saybolt Universal) 4 |Fuel Oil—Light . . . . . . . 28°–24° 1.00 |250 Sec. at 100° F.]150°–250° 15° F. (Saybolt Universal) 5 |Fuel Oil—Bunker B. . . . . 24°–18°| 1.00 |100 Sec. at 122° F. Min, 150°] D up lic a te (Saybolt Furol) strainers * 6 Fuel Oil–Bunker C. 18°–12° 2.00 |300 see at 133° F Min. 150*.*.*. (Saybolt Furol) a re a suction pipe. Maximum strainer mesh 16 to 1 inch. (35) S T O R A G E T A N K S Btu CONTENT OF VARIOUS FUELS FURNACE AND FUEL OILS Oil No. 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Average 137,400 Btu per Gallon Oil No. 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Average 139,600 Btu per Gallon Oil No. 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Average 141,800 Btu per Gallon Oil No. 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Average 145,100 Btu per Gallon Oil No. 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Average 148,800 Btu per Gallon Oil No. 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Average 152,400 Btu per Gallon GAS Artificial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550,000 Btu per Thousand Cubic Feet Natural. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1,100,000 Btu per Thousand Cubic Feet COAL Anthracite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Average 25,000,000 Btu per Ton Buckwheat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Average 22,000,000 Btu per Ton Bituminous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Average 27,000,000 Btu per Ton BOILER EFFICIENCY - Efficiency = Output Btu absorbed by T3Oilor Input Btu in Fuel Coal, Domestic Boiler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50% Coal, Commercial Boiler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60% Oil, Domestic—Cast Iron Boiler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60% Oil, Commercial–Cast Iron Boiler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70% Oil, Commercial—Special Designed Boiler Steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80% Oil, Domestic—Special Designed Boiler Steel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75% Oil, Domestic—Special Designed Boiler Cast Iron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70% Gas, Domestic—Converted Coal Burning Boiler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50% Gas, Commercial—Converted Coal Burning Boiler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60% Gas, Domestic—Special Designed Gas Boiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80% Gas, Commercial—Special Designed Gas Boiler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85% FORMULAE FOR ESTIMATINC COAL AND OIL CONSUMPTION For roughly estimating the coal consumption, use 1 lb. of coal per cu. ft. of building volume per season of 240 days. r For roughly estimating the oil consumption, 230 gallons of oil will be used per 100 sq. ft. of steam radiation of the boiler per season. FORMULA FOR ESTIMATING CALLONS OF OLL REQUIRED FOR TONS OF COAL USED G = Gallons of oil required T = Tons of coal used BT = Btu per ton of coal BG = Btu per gallon of oil EC = Boiler efficiency for coal EO = Boiler efficiency for oil G T x BT x EC BG x EO FORMULA FOR ESTIMATING TONS OF COAL REQUIRED FOR CALLONS OF Oll USED G X BG X E() BT x EC T = (36) B U F F A L O T A N K C O R P O R AT I O N COMPARISON OF COAL AND OIL As conditions vary in practically every case, it is impossible to definitely state the number of gallons of oil that are equivalent to one ton of coal in firing boilers. In power plants where coal fires are given more careful attention, it requires 126 to 147 gallons of oil to equal 1 ton of coal. In domestic boilers and small commercial heating plants where coal is usually burned very inefficiently, 115 to 135 gallons of oil are equal to a ton of coal. Too great caution cannot be used in making statements regarding this matter as so many conditions over which the dealer has no control govern this point. When an oil burner is installed a higher and more even temperature will often be main- tained than had previously been secured with a coal fire, and the user does not often appreciate that he is using more heat and may, therefore, require more fuel than he did formerly. It will also be found that an oil burning system will show a greater economy during the warm Spring and Fall days than during the cold months of the Winter. Therefore, a much more favorable comparison may be made during Spring or Fall than during the cold months of the Winter. However, as the Spring and Fall months constitute about half of the heating season, the average for the year should be very favorable. RECTANGULAR OIL STORACE TANKS Oil Storage Tanks rectangular in shape are frequently installed in building basements or in locations where it is desirable to utilize every foot of available space. No definite, all- coverage rules are in use for the design of rectangular oil storage tanks but the following specifications can be recommended: RECTANGULAR TANKS All rectangular tanks shall be built of steel plates of the quality required for cylindrical tanks, and of a thickness of not less than % of an inch. Corners may be made up by bending the plates or by use of angles. All flat surfaces of rectangular tanks are to be braced. Bracing shall be done either by using structural steel members which will act as girders and which will safely carry the load with a factor of safety of five (5), or by using bars from side to side, end to end and top to bottom of the tanks as the case may be. When structural steel reinforcing members are tied together with braces in order to reduce the effective length, the braces shall not be stressed higher than nine thousand (9000) pounds per square inch taken in the minimum net section. If structural steel members are omitted and the sides of the tank are braced by means of rods or bars, these members should not be spaced farther apart than twenty-four (24) inches center to center in all directions. The unit stress permitted in these members shall not be in excess of nine thousand (9000) pounds per square inch on the minimum net section. The connection between these members and the sides of the tank must in all cases be such that it will develop the full net sections of the bars so that the bar will break before the con- nection will let go. All rectangular oil storage tanks shall show no leakage under test when tank is completely filled with oil when subjected to a test of 25 pounds per square inch for a period of ten (10) minutes. Pressure shall be applied for a period of thirty minutes. When oil is used there shall be no fire or flame in the room or rooms in which the test is being conducted. NOTE. For table of capacities of rectangular tanks, see page 212. For loads on flat steel plates, see pages 103, 261. (37) SECTION III Eºra TANIKS Nº. WATER STORACE TANKS STANDPIPES, GRAVITY AND SPRINKLER TANKS HYDRO-PNEUMATIC TANKS, HOT WATER TANKS (39) W A T E R S T O R A G E T A N KS Steel Standpipes The following data will be of assistance in the design of steel standpipes or water storage tanks. Notation: h = distance in feet of any point below the top of tank d = diameter of tank in feet r = radius of tank in feet t = thickness of steel shell in inches at any given point p = hydrostatic pressure in lbs. per sq. in. at any point = 0.434 x h S = stress per vertical inch of tank s = unit stress in lbs. per sq. in. in vertical section of tank S' = stress per horizontal lineal inch of tank s' = unit stress in lbs. per sq. in. in horizontal section of tank S" = stress per lineal inch along a circumferential line, due to wind s" = unit stress in lbs, per sq. in. in circumferential line, due to wind W = weight above joint M = moment in inch pounds FOR STRESS PER LINEAL VERTICAL INCH S = 62.5 x h x d = 2.6 x h x d 2 x 12 THE STRESS PER SO. IN. IS S = 2.6 x h x d * t THE STRESS PER HORIZONTAL LINEAL INCH OF TANK DUE TO THE WEIGHT OF TANK W IS S’ = W 0.026 x W 12 x 7" x d d THE STRESS PER SO. IN. Is s’ = 0.026 x W d x t For ordinary conditions, the wind pressure is taken at 30 pounds per square foot acting on 3% of the diametrical area or 20 pounds per square foot on the entire diametrical area. The bending moment at any distance (h) below the top, due to wind is M - ******** = 120 x d x hº THE STRESS PER SO. IN. IN THE EXTREME FIBER OF SHELL IS , 1.06 x hº t x d THE STRESS PER LINEAL INCH WILL BE S” = 1.06 x h” d S CRAVITY WATER TARNKS Associated Factory Mutual Fire Insurance Companies Specifications (Extracts from) The elevation of the bottom of the gravity tank above the highest sprinklers under the main roofs of buildings should never be less than 25 feet in order to ensure proper distribution of water from the sprinklers. When particularly hazardous processes are carried on in the buildings, or when the property to be protected is of large area, the elevation should be more than 25 feet. When the gravity tank may be drawn upon for hose streams it should be of not less than 30,000 gallons capacity with the bottom not less than 75 feet above the yard level and an (40) B U F F A L O T A N K C O R P O R A T | O N GRAVITY WATER TANKS, A. F. M. F. I. Co. SPECIFICATIONS (Continued) elevation of at least 100 feet is usually desirable. A lower elevation should only be considered for the protection of a small plant and where the buildings are low, preferably not Over One or two stories. If the tank or supporting trestle is to be placed on the walls of a new building, the building should be designed and built to carry the maximum loads. Old buildings should be carefully examined by a competent engineer to determine whether the tank structure can be safely installed. The preferable location is usually over masonry walls of a stair or elevator tower. The base of the tower should be designed to fit the supporting building construction accurately. The steel for plates, except in suspended bottoms, shall conform to current Specification A-10 of the American Society for Testing Materials. For suspended bottoms, steel not milder than A-89 may be used provided that the unit stresses specified in Articles 402 and 404 are reduced in proportion to the reduction in the ultimate strength. Steel for structural shapes shall conform to current specification A-7. Only open hearth steel shall be used. Carbon shall not exceed 0.35 per cent. Genuine wrought iron, Specifica- tion A-42, or copper-bearing steel may be used for roofs. WELDED JOINT EFFICIENCIES For tank plates, the following efficiencies shall apply to various approved types of joints Type of Joint (see page 43) Efficiency Per Cent Single Full-Fillet and Seal Lap, Fig. 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Double Full-Fillet Lap, Fig. 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Single-Welded Square Butt with Backing-up Strip, Fig. 7 . . . . . . . . . . . . . . . . . . 75 Double-Welded Square Butt, Fig. 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9() Single V or U Butt with Backing-up Strip, Fig. 9. . . . . . . . . . . . . . . . . . . . . . . . . 90 Single V or U Butt with Finish Bead, Fig. 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Double V or U Butt, Fig. 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Single Beveled Butt, Fig. 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Double Beveled Butt, Fig. 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 DEAD LOAD The dead load shall be the estimated weight of all permanent construction and fittings. The unit weight of steel shall be considered 490 pounds per cubic foot and of concrete, 144 pounds per cubic foot. LIVE LOAD The live load shall be the weight of all the liquid when overflowing the top of the tank. The unit weight of water shall be considered as 62.5 pounds per cubic foot. Proper provision shall be made for temporary stresses during erection. When roofs have a slope of less than 30° and are located where the lowest mean temperature for one day is below 5° F., they shall be designed to support a uniform weight of snow of 25 pounds per square foot on the hori- Zontal projection. WIND LOAD Wind pressure shall be assumed to be 30 pounds per square foot on a vertical plane surface. In calculating the wind load on a cylindrical, conical, hemispherical and elliptical surface, 6/10 of the above pressure shall be applied to the total area of the vertical projection, and the point of application of the load shall be at the center of gravity of the projected area. MINIMUM THICKNESS The minimum thickness of metal shall be 34 inch except in roofs. THICKNESS FOR CORROSION Interior bracing, if unavoidable, shall always have 946 inch additional thickness added to the calculated sections. The sections shall be open to facilitate cleaning and painting. The plates of tanks to contain salt or alkaline water shall be 3% inch thicker than calculated. THICKNESS OF BOTTOM CYLINDRICAL COURSES The thickness of plates in the lowest cylindrical course of tanks with suspended bottoms (41) W A T E R S T O R A G E T A N KS GRAVITY WATER TANKS, A. F. M. F. I. CO. SPECIFICATIONS (Continued) shall be not less than % inch for 100,000 and 150,000 gallon, % inch for 200,000 gallon tanks, and for larger tanks shall be at least 94% inch greater than that calculated. THICKNESS OF FLAT BOTTOMS The thickness of plates in flat bottoms shall be not less than given in Table. THICKNESS IN INCHES OF BOTTOM PLATES FOR FLAT-BOTTOM TANKS Depth of Water (Feet) | Io 12 14 | 16 | 18 20 22 || 24 26 || 28 30 | 40 tº 4 & 12 9% 9% 9% 9% 9% | 3% 9% | 9% 9% 9% 5% | 3% Distance in Clear . 14 % 9% 9% 9% 9% 9% 9% 9% 9% | 3% | 3% | }{6 between Beams 16 % 3% 3% 3% | * | *% 38 || 36 || 36 || 36 || 36 ſº (Inches) 18 3% 3% | * | *% ºš | }s 38 $ | }} | {{ | }} | .3 20 | ºff ºff ºš | }s | }s | }} | { } }} | {| || 3 || 3 | *% 24 || 3% 3% | }ſ | }} | Ví | }% | }} | }} | .9% 9% 9% 9% Concrete Slah) }4 | }.4 | }.4 | }.4 | }.4 | }4 | }.4 | }.4 | }.4 | }4 | }.4 | }.4 |NSIDE OF – ul TAN K. jºr —l b tº, 55. ſin.Min. Tº- – - ----CONTINUOUS - ‘Alī FILLET WELDS ASPHALT º | ſ FLASHING: º, ...TTE & ‘b ... ... [ZSZŽITE/S/S/s/s/s/EITY-S ... . . 6in. RING WALL Tºp /. * * . . . .” 2S2, $2:ſ Fig. 3. Welded Connection Shell to Flat Bottom WELDED JOINTS The joint between the shell and the flat bottom shall consist of a continuous fillet weld on both sides of the shell plate and with other details as shown in Fig. 3 except that for bot- tom plates supported directly on grillage beams the asphalt flashing and tarred paper are omitted. Bottom sketch plates for tanks over 48 feet in diameter shall be 5% inch thick. Single full-fillet lap-joints (Fig. 4) may be used only on the outside of roof plates, on the inside of bottom plates resting directly on sand or concrete slab foundations, and for connecting details not in contact with water. Single full-fillet and seal lap-joints (Fig. 5) may be used in plates not exceeding Jº inch in thickness but not in flat bottom plates on grillage beams. Double full-fillet lap-joints (Fig. 6) may be used in plates not exceeding 9/6 inch in thickness. Single-welded square butt-joints with backing-up strip (Fig. 7) may be used in plates not exceeding 34 inch thickness, but not in flat bottom plates on grillage beams. e * Double-welded square butt-joints (Fig. 8) may be used in plates not exceeding 34 inch thickness, Single V or U butt-joints with backing-up strip (Fig. 9) may be used in plates exceeding }4 inch thickness. Structural shapes may be used as backing-up strips. (42) B U F F A L O T A N K C O R P O R A T I O N GRAVITY WATER TANKS, A. F. M. F. I. CO. SPECIFICATIONS (Continued) Single V or U butt-joints with finish bead (Fig. 10) may be used in plates exceeding % inch thickness. Double V or U butt-joints (Fig. 11) may be used in any plates. Such joints, however, are not usually economical in plates under 746 inch in thickness. Single beveled butt-joints (Fig. 12) may be used for horizontal joints in shell plates not exceeding 746 inch thickness. Double beveled butt-joints (Fig. 13) may be used for any horizontal joints in shell plates. They are not usually economical for plates under ºff inch thickness. WELDED JOINTS IN TANK PLATES |- sº — tº I REINFORCEMENT 2O % * ce \ %—A #v= | PENETRAT&N.F 7 y Z }}: TACK wello-N-7– BACK! NG UP STRIP OF STEEL F| G. 4. |NSIDE OF TANK SHELL SINGLE FULL-FILLET LAP-JOINT (lin.x % in.) FIG. 9 S|NGLE. V. BUTT JOINT WITH BACKING-UP STRIP 5 t CONTINUOU S F|LLET -— REINFORCEMENT - weld (ouTSIDE) 20%t-J *H hº { | W --> / º A ſº }}: } R THROAT DIMENSION & * - Sl ZE TSCONTINUOUS SEAL:- FIN | SH BEAD F1G. WO WELD (INSIDE) SINGLE V BUTT-JOINT F (G. 5 WITH F |N| SH B, FAD SINGLE FULL-FILLET & SEAL LAP-JOINT THROAT DIMENSION A SIZE Root \, f | * w 7— } > ! ; : {{ fºr I- * |O % t SURFACE tº LI | \--> F|G. _/N || * * | t D O U B L E V B UTT-JO! NT / TTH CONTINUOUS FILLET WELDS F| G.6 DOUBLE FULL- F | LLE.T LA P J O | NT WELD WITH OR 76in. & witHOUT GAP LESS) ** 2 F. REWELD FOR SEAL." AND F |N| SH REINFORCEMENT INGLE-BEVEL: - Ł-2O%t S! NGLE-BEVE LED BUTT-JOINT Tº fi t Lz y T}{E over Zéin 2- } [r ºf BACKING-UP STRIP OF STEEL STACK º OF * SHELL WELD _A | in. x V8 in. ,” WELD WIT F| G. 7 - L H GAP S N G L E-WELDED SQUARE BUT T- F | G. 3 JOINT WITH BACKING-Up STRIP DOUBLE-BEV E LED BUTT-JOINT (43) W A T E R S T O R A G E T A N KS WELDED JOINTS IN TANK PLATES, A. F. M. F. I. CO. SPECIFICATIONS (Continued) REINFORCEMENT Ł'ſ 10%t [H. BE F| G. 8 DO U Bl-E-WELDEO SQUARE BUTT-JOINT BOTTOM PLATING PLAN FOR CRAVITY WATER TANKS PREFERRED ARRANGEMENT - A sº SHELL /s SOM, PLATES — — — ” PREFERRED ARRANGEMENT- B ACCEPTABLE ARRANGEMENT-C CONTRACTION SEAMS-> WELD CONTRACTION SEANAS ſ + BACK STEP PROCESS AFTER SHELL TO BOTTOM & \ w H-H == 2 NALL OTHER BOTTOM SEAMS ARE COMPLETED *Tº START TACK rfs]] AND CON- TI NUOUS |-- W E L D | NG ,’ H E PE SKETCH H.--— ºx- PLATES -Y \ / " wº-ºº: CONTRACTION SEAMS - SKETCH PLATES Fig. 16. Arrangement of bottom sheets to equalize welding shrinkage BOTTOM PLATES ON SOIL OR CONCRETE–CONTRACTION SEAMS In order to reduce the effects of shrinkage stresses in flat bottom tanks, contraction seams shall be left between the bottom plates (Fig. 16) prior to continuously welding the sides to the bottom and before continuous welding between the sketch and rectangular plates in the bottom. Outer sketch plates in the bottom, however, are continuously welded to each other around the circumference of the tank before the shell is welded to the bottom. All other bottom joints except the contraction joints are tack welded at 12-inch centers, at least a plate width ahead of any intersecting joint of the plates on which the continuous bead welding is being done. (44) B U F F A L O T A N K C O R P O R AT I O N GRAVITY WATER TANKS (Continued) SHELL PLATE WELDING—GENERAL The dimensions and shapes of the edges to be joined shall be such as to allow thorough fusion and complete penetration. Each layer of weld metal in multi-layer welding shall be cleaned of slag or other deposits, by chipping, before applying the next layer. On butt joints, where the width of the gap at the face of the weld is greater than }, inch, the weld metal except the final surface layer shall be peened to relieve shrinkage stresses. This will improve the effectiveness of the finished weld. The sequence of welding shell plates shall be such that shrinkage stresses are effectively reduced by accommodating the contraction about the weld as it cools, thus avoiding rigidity. Found ATions For tank foundations see page 207 PRESSURE TANKS FOR SPRINKLER SYSTEMS N. B. F. U. It EQUIREMENTS Buffalo welded sprinkler tanks are built to comply with National Board of Fire Under- writers requirements and in accordance with A. S. M. E. Code specifications. “Capacity of tanks is the total contents, both air and water, not including dished heads. When in use, the tanks are kept two-thirds full of water and an air pressure of at least 75 pounds per square inch maintained. As the last of the water leaves the tank, the residual pressure shown on the gauge shall not be less than zero and shall be sufficient to give not less than 15 pounds pressure at the highest sprinkler under the main roof of building.” “Pressure tanks should preferably be located above the top level of sprinklers, but may be located in the basement or elsewhere, subject to approval of the inspection department having jurisdiction. In designing pressure sprinkler tanks, the computed net thickness shall be increased Jº inch to allow for corrosion and, if the resulting thickness is less than the minimum thickness allowed by Rule U–17 of the A. S. M. E. Code, the A. S. M. E. rule shall control.” Further requirements of the National Board of Fire Underwriters specify: TESTS “Each pressure tank shall be given the tests specified by the A. S. M. E. rules before paint- ing, except that the hydrostatic test pressure shall in no case be less than 150 pounds per square inch. In addition to the A. S. M. E. tests, each pressure tank shall be filled two-thirds full and tested at the normal working pressure with all valves closed, and shall not lose more than one-half pound pressure in 24 hours. A repetition of these tests may be required after the tank has been set in place and connected. In all cases where conditions do not permit shipping the tank assembled, the tests shall be conducted after erection in the presence of a representative of the inspection department having jurisdiction.” SUPPORTS “The supports may be steel or reinforced concrete, located so as to prevent sagging or vibration and to properly distribute the loads due to the weight of the vessel completely full of water. For horizontal tanks, there shall be at least one support for each course of the tank and the ends shall not overhang more than 4 feet. Lugs, brackets or cradles shall be properly fitted and cradles or chucks braced to prevent movement. The supports shall be arranged to permit convenient inspection and maintenance of all parts of the equipment and shall not interfere with the piping or tank seams.” HOUSING “The tank shall be located in a substantial non-combustible housing unless it is within a heated room in the building. The tank room shall be large enough to provide free access to all connections, fittings and manhole, with at least 3 feet clearance around the valves and gauges and at least 18 inches around the rest of the tank. The distance between the floor and any part of the tank shall be at least 3 feet.” (45) W A T E R S T O R A G E T A N KS PRESSURE SPRINKLER TANKS, N. B. F. U. REQUIREMENTS (Continued) OPENINGS “A manhole and all openings needed for connection of the piping and fittings specified shall be provided. The manhole and threaded openings shall conform in design with Sections U-53 to U-59, inclusive, of the current A. S. M. E. Rules for the construction of Unfired Pres- sure Vessels. The manhole shall be placed below the water level.” - 4% in Pressure Gauşe 3% in Brass º, R. Ma in Giobe Wake for rent * I in Air Pipe Angle Valve *~~ º * * * % in Plug. 94 º' WA in Globe Valve º See detail % in tº- Žfrom water T. / Level Gauge ; Center Line of Tank Kept Shut Kept Shut At least ºn OS & Y =#= S. gº” Gate valve || “ºf” - - - - - - - - Discharse fitting C Il º * 6, n for larger Capacities. t - |Cº-ºr her; a '• . - …A t y - A * | V \ SIDE ELEVATION U. Check Valve . ‘ºn n&ſe valve —ºn '4-Elbow Swing Joints or Approved Expansion Joints #2 in A Pºe END ELE VATION Special Fº ; : At east : Ting fi i 1% in - - H] ſt 'F, tº | Note- If the tank is vertical the arrangement 2 ºn Nippº : sº-ºr.." ins Inlet pipin8 is fundamentally as here indiceted v. except that the water-level Sauge is 16 ºn lon * Shell of Tank with center opposite the nor rnal water |...} . . . - */3 the height of tank % in Nipple extending 6 ºn into Tank. DETA|L OF AIR & FILLING CONNECTIONS Pipe Connections to Sprinkler Pressure Tanks TANK DISCHARGE “The discharge pipe shall be 4 inches in size for tanks of 5000 gallons or less total capacity, and 6 inches for larger capacities and shall be connected to the bottom of the tank by means of a fitting which projects 2 inches above the bottom to form a settling basin and prevent Sediment from passing into the sprinkler system.” FILLING PIPE “The water-filling pipe shall be at least 1% inches in diameter.” AIR PIPE “The air supply pipe shall be at least 1 inch in size.” WATER LEVEL GAUGE “A 34 inch water level gauge with a reliable valve at each end shall be provided with the center of the glass tube at the normal water level. The gauge glass shall be not over 12 inches long for horizontal tanks or 18 inches for vertical tanks.” (46) B U F F A Lo T A N K C o R P o R AT I o N BUFFALO NON-CODE HYDRO-PNEUMATIC SIZE OF TANKS Capacity . . Length 1I] Dia. Overall Gallons Vera, 290 36" 6’— 2" 550 36" | 10' 11" 540 || 42" 8'— 0" 780 42" | 11’ – 4" 1,030 || 42" | 14"– 0" 550 || 48" 6’— 6" 780, 48" Q/- ()" 1,035 || 48" | 11'— 8" 1,500 || 48" | 16’—10" 2,000 || 48" | 22"– 0" 1,050 6()" S’– 2" 1,500 60" | 11– 5" 2,000 || 60" | 14- 9" 2,500 60” 18"– ()" 3,000 6()" || 21' 4" 3,500 | 60" | 24'— 7" 4,000 60" | 27’—11" 2,500 | 72" | 12– S" 3,000 72" 15/- ()" 3,500 | 72" | 17’— 8" 4,000 | 72" | 19'— 5" 5,000 72" | 24' 5" 6,000 72" | 29/- $" 7,500 | 72" | 36'-3" 5,000 | 84" | 18"– 6" 7,500 | 84" | 27’— 2" 10,000 | 84" | 35–10" 5,000 96" | 14"– 6" 7,500 96" | 21’– 4" 10,000 | 96" 27’— 8" 15,000 96" || 41’— 2" HANDHOLES STORACE TANKS These hydro-pneumatic tanks are usually made up for working pressures of 75 pounds or 100 pounds per square inch, although they can be made for higher working pressures if desired. For ordinary pressures and for use in localities where Code regulations do not apply, such tanks are usually designed for a factor of safety of 4 but where A. S. M. E. Code Specifications are re- quired, the factor of safety is 5. For approximate figures on weights of tanks, consult us. (Formulae for thickness, etc., shown on page 57.) BUFFALO HYDRO-PNEUMATIC TANKS LAST LONGER Simple, practical all-welded construction and superior quality steel plate give Buffalo Hydro-Pheumatic storage tanks the extra years of service-life that engineers demand. The highly specialized experience of Buffalo craftsmen—who, in a complete plant have all the special facilities and equipment necessary to manufacture safe trouble-free tanks—has been recognized by architects and engineers throughout the country. All Buffalo Hydro-Preumatic tanks are supplied with standard openings. Tanks 60" in diameter or larger are supplied with manholes in addition to the standard openings. Every Buffalo tank is carefully tested and rigidly inspected before shipment. CONSTRUCTION All tanks are constructed from steel plates that are ordered to specified thickness. This insures full-weight material through- out. Tanks are built to the highest degree of safety. Each is tested to 150% of the required working pressure. Heads are con- vex or dished outward. They are full-dished with ample corner radius. Seams are shielded-arc welded. All welding operations and welders are qualified under the A. S. M. E. Code. Special Construction: For tanks of higher pressure, for A. S. M. E. stamped vessels, special designs or specific state requirements, inquire for additional information. MATERIAL Tanks are made from extra strong high quality steel, ordered to A. S. T. M. or A. S. M. E. Code specifications. MANHOLES Standard 11" x 15" Boiler type manhole is included in all tanks 60" in diameter or larger. For manholes on smaller tanks consult us for price. Tanks do not include handholes. These however can be added at slight extra cost. OPENINGS All openings are carefully capped before tanks leave the plant. This insures a clean interior. It is impossible for dust, dirt or water to collect inside during shipment. PAINT All tanks are provided with one outside coat of protective paint. Either heavy black Asphaltum for underground protection or a priming coat of Red Oxide. Special interior coatings, heat-resisting and water resisting enamels or bituminous solutions can be furnished to customer's specifications. Prices on request. (47) W. A. T E R S T O R A G E T A N KS TYPICAL OF ENINGS FOR HYDRO-PNEUMATIC TANKS Diameter of Tank. . . . . . . . . . . . . . . . . . . . 30" 36" 42" 48" 60" 72” 84" Q6" Gauge Glass Openings. . . . . . . . - - - - - - - - 12" Jº" }%" }%" Jº" Jº" Jº" Jº" Standard Openings. . . . . . . . . . . . . . . . . . . 194" 1%." 2” 2” 3” 3' 6" 6" Cent, to Cent, of Single Gauge Glass Openings. . . . . . . . . . . . . . . . . . . . . . . . . . 15%" 17%" 21%" 25%" 31%" — — — NotE.-1}4" dia. air volume control opening included in all tanks. SPECIAL OPENINGS When extra or special openings are wanted, advise number, size and location. MANHOLES When desired, advise location, in shell or heads. WELL CASINGS Buffalo Well Casings are favorably known to most of the well drillers and installers of hydro-pneumatic tank equipment, Buffalo Casings are made from superior Quality steel to A. S. T. M., A-10 Specifications and provided with protective paint for underground use. Pump House. Save space and money with a steel pump house built in any shape to meet specifications and local conditions. Well Casings are supplied in con- venient standard lengths. Being fabri- cated from steel plate, they are less expensive than pipe. Detailed particu- lars and prices will be supplied on request. WELL CASINCES Diameter Thickness Weight per Foot 16" 14" 46 lbs. 20" 34" 58 lbs. 24" J4" 69 lbs. 30" %" 102 lbs. 36" 54." 125 lbs. 48" 38" 200 lbs. 60" 38" 250 lbs. This table covers typical sizes. Thickness, diameter and length vary to cover required Illustration shows a practical well installation specifications. with a Buffalo Hydro-pneumatic Storage Tank, Buffalo Well Casing and a Buffalo Well House. (48) B U F F A L O T A N K C O R P O R AT I O N HOT WATER TANKS Buffalo tanks for hot water storage or for heating water are in wide use. Wherever the nature of the water is known, the tank may be coated or enameled. - Tanks can be furnished with special heating units consisting of copper tube bundles, inserted through special nozzles and arranged for easy removal, or with ordinary steel or iron pipe coils, for use with steam heat. When steam is used, the bottom of the hot water tank should be at least 24" above the water line of the boiler. When the boiler water is used, the bottom of the tank should be enough below the water line to permit suitable circulating pipe connections to be made to the boiler. When used on a hot water heating system, the bottom of the tank should be about at the top of the boiler. When ordering hot water tanks, if complete specifications are not available, the following information should be furnished, whenever possible: 1. Size or capacity of tank. 2. Initial temperature. 3. Final temperature. 4. Boiler steam gauge pressure. PIPE COILS FOR HEATING WATER IN TANKS (USING STEEL PIPE) FORMULA FOR OBTAINING AMOUNT OF HEATING SURFACE REQUIRED Subtract initial temperature from final temperature of liquid to be heated. Result = Rise in temperature. Multiply gallons capacity by 8%. Result = Capacity in pounds. Multiply capacity in pounds by rise in temperature. Result = Number of heat units required. Subtract initial temperature from final temperature, then divide by 2. Result = Average temperature. Subtract average temperature from temperature of steam at gauge pressure used, then multiply by 180 (a constant). Result = The divisor which is to be divided into the number of heat units required. Divide the number of heat units required by the divisor. Result = The number of square feet of heating surface required. Sk >k >}: Example: Find the amount of heating surface required to heat 3000 gallons per hour with: Initial temperature 40° Final temperature 200° Steam gauge pressure 80 pounds 200° – 40° = 160° = Rise in temperature 3000 x 8% = 25,000 = Capacity in pounds 25,000 x 160 = 4,000,000 = Number of heat units required 200 – 40 + 2 = 80 = Average temperature Steam at 80 lbs. gauge pressure = 32.4° 324 – 80 = 244 x 180 = 43,920 = Divisor 4,000,000 + 43,920 = 91.07 square feet of heating surface 91.07 square feet of heating surface is equivalent to: 100 lineal feet 3" dia. standard steel pipe, or 147 lineal feet 2" dia. pipe, or 184 lineal feet 1%" dia. pipe, etc. STEAM PRESSURE Steam pressures less than 10 pounds per square inch should never be used for coils or pipe radiators unless special provision, such as an auxiliary trap or drip in the steam supply pipe, is made to drain out the condensate at the low point of the steam supply branch line to the heater. STEAM HEATERS Steam heaters are often used in conjunction with outdoor large water tank jobs. These heaters ordinarily consist of an iron or steel shell through which water circulates by gravity around steam tubes or coils of brass or copper. Galvanized steel or iron tubes are used but are not advised because of their more rapid depreciation and less effective heat transfer qualities. Heaters designed so that water passes through the tubes or coils surrounded by Steam are practicable, but are usually less economical than with the reverse arrangement. (49) W A T E R S T O R A G E T A N KS HOT WATER TANKS Hot Water Supply—Amount Required for Various Conditions Private Houses First Class Hotels and Office and One Meal and Apartments All-Day Restaurants Loft Buildings Restaurants Period lasts Period lasts Period lasts Period lasts 4 hours 6 hours 2 hours 3 hours E 5 , E K- E $– 2 E $—t i -4-3 +3 --> +-> --> --> -$º --> * # 2. 5 5 § = | ## = | = §§ = ## = E. 5 § = ## = E 5 § - # = to C. § = , ; ; ; 7.3 | "... = < | = , = | + 7.3 | "... § 3 || = , = | . .3 | "... § 3 || = | E | ##3 | "... : 5 ç "c = 3 : 3 | g : § 3 || 5 × 5 || 3 || 3 || $: *:::: 5 - 5 || 3 *::: | { *:::: 5 × 5 || 3 *-ā | # *:::: C & O '3 T 3 || 3 tº cº || 3: º3 || “... Tº sº | 3 dº º || 3 + c || “… Tº º || 3 + c2 | 3 + c || “…T. º || 3:3 & | 3 + cj #: ###| #:#| #:#| 3 ##| #:#| ##| 3 ##| ##| ##| 3 ##| ###| #: (553. > 3-3 || 3: $; $ º ż, sº | > 3-3 || Gº ? § | Gº ? § 2: E.; Gº ?: 3 || || 3: ; > E-3 || 3: $; ; Gº 3 & 100 10 37 59 7 26 42 13 48 77 20 74 118 120 12 44 70 8 30 48 16 59 95 24 89 142 140 14 52 83 9 33 53 19 70 112 28 104 166 160 16 59 95 11 41 65 21 78 125 32 118 189 180 18 67 107 12 44 71 24 89 142 36 133 213 200 20 74 118 13 48 77 27 100 16() 40 148 237 220 22 81 130 15 56 89 29 107 171 44 163 261 240 24 89 142 16 59 95 32 118 189 48 178 285 260 26 96 154 17 63 101 35 130 208 52 192 307 280 28 104 166 19 70 112 37 138 219 56 207 331 300 30 111 178 20 74 118 40 148 237 60 222 355 320 32 118 189 21 78 125 43 1.59 254 64 237 379 340 34 126 201 23 85 136 45 167 267 68 252 403 360 36 133 213 24 89 142 48 178 285 72 266 425 380 38 140 225 25 93 149 51 189 302 76 281 450 400 40 148 237 27 100 160 53 196 314 80 296 474 420 42 155 248 28 104 166 56 207 331 84 3.11 497 440 44 163 261 29 107 171 59 218 349 88 326 521 460 46 170 272 31 115 184 61 226 361 92 340 544 480 48 178 285 32 118 189 64 237 379 96 355 568 500 50 185 296 33 122 195 67 242 387 100 370 592 520 52 192 307 35 130 208 69 255 408 104 385 616 540 54 200 320 36 133 213 72 266 425 108 400 640 560 56 207 331 37 138 219 75 278 445 112 414 663 580 58 215 345 39 144 231 77 285 456 116 429 687 600 60 222 355 40 148 237 80 296 474 120 444 710 620 62 229 367 41 152 243 83 307 491 124 459 736 640 64 237 379 43 1.59 254 85 315 504 128 474 758 660 66 244 391 44 163 261 88 326 521 132 488 781 680 68 252 403 45 167 267 91 338 539 136 503 805 700 70 259 414 47 174 278 93 344 550 140 518 829 720 72 266 425 48 178 285 96 355 568 144 533 853 740 74 274 438 49 181 290 99 366 586 148 548 877 760 76 281 450 51 189 302 101 374 599 152 562 899 780 78 289 462 52 192 307 104 385 616 156 577 923 800 80 296 474 53 196 314 107 396 635 160 592 947 820 82 303 485 55 204 326 109 403 645 164 607 971 840 84 311 497 56 2O7 331 112 414 663 168 622 995 860 86 3.18 509 57 211 338 115 426 681 172 636 1018 880 88 326 52] 59 218 349 117 433 693 176 651 1042 900 90 333 533 60 222 355 120 444 710 180 666 1066 920 92 340 544 61 226 361 123 455 728 184 681 1089 940 94 348 557 63 233 373 125 463 74.1 188 696 11 13 960 96 355 568 64 237 379 128 474 758 192 710 1136 980 98 363 581 65 241 385 131 485 776 196 725 1160 1000 100 370 592 67 248 397 133 492 787 200 740 1184 2000 200 740 1184 134 496 793 266 984 1575 400 1480 2368 3000 300 1110 1776 201 744 1190 399 1476 2362 600 2220 3553 5000 500 1850 2960 335 1240 1984 665 2460 3935 1000 3700 5920 (50) HEAT EMITTED FROM PIPES Heat Emission from Horizontal Bare Iron or Steel Pipes in Air at 70° F Nominal Pipe Size 18 External Surface Heat Emission Btu per Linear Ft. per Total Heat Emission Btu per Sq. Ft. Equivalent Sq. Ft. of Column or Tube Radiation with Equivalent Sq. Ft. of Column or Tube Radiation with Hot Flat Hour per F per Hour Steam at 215 F Water at 170 F Linear Ft. Sq. Ft. Sur- per Sq. Ft. face per Steam Hot Water Steam Hot Water Steam Hot Water Steam | Hot Water Surface | Linear Ft. 215 F 170 F 215 F 170 F 240 Btu 150 Btu 240 Btu 150 Btu 4.547 0.220 0.643 0.594 425 270 1.76 2.82 1.13 1.80 3.637 0.275 0.770 0.716 407 259 1.68 2.6S 1.09 1.74 2.904 0 344 0.929 0.862 391 249 1.61 2.58 1.04 1.67 2,301 0.435 1.16 1.065 387 246 1.60 2.56 1.02 1.63 2.010 () 498 1.30 1.197 379 241 1.57 2.51 1.00 1.60 1,608 0.622 1.58 1.461 368 234 1.53 2.45 0.98 1.57 1.328 0.753 1.89 1.742 363 231 1.50 2.40 0.96 1.54 1.091 0.917 2.26 2,063 358 226 1.46 2.34 0.94 1.50 0.954 1.047 2.53 2.333 350 223 1.45 2.31 0.92 1.48 0.848 1.178 2.81 2.600 346 220 1.43 2.28 0.92 1.47 0.686 1.456 3.41 3.140 340 216 1.40 2.24 0.90 1.44 0.576 1.734 4.05 3.703 338 213 1.40 2.24 0.89 1.42 0.443 2.257 5.19 4.720 334 209 1.39 2.23 0.87 1.39 0.355 2.817 6.38 5.820 329 207 1.37 2.19 0.86 1.38 0.299 3.338 7.53 6.870 327 206 1.36 2.18 0.86 1.37 0.212 4.7.17 10.41 9.50 320 202 1.33 2.13 0.84 1.35 303 192 1.26 2.02 0.80 1.28 Condensa- tion Factor, Lb. per Hr. per Sq. Ft. Steam at 215 F 0.441 0.418 0.403 0.400 0.392 0.383 0.375 0.366 0.362 0.356 0.350 0.349 0.348 0.343 0.340 0.332 0.315 d ; º 3. W. A. T E R S T 0 R A G E T A N KS FLOW OF WATER IN HOUSE SERVICE PIPES (To find the discharge in gallons, multiply by 7.47) Pressure Discharge in Cubic Feet per Minute from the Pipe in Main Condition of Pounds - Discharge S per Nominal Diameters of Iron or Lead Service Pipe in Inches quare Inch % % 34 1 1% 2 3. 4 6 - 30 1.10 | 1.92 || 3.01 || 6.13 | 16.58 || 33.34 || 88.16 173.85 444,63 40 1.27 2.22 || 3.48 || 7-08 || 19.14 || 38.50 || 101.80 200.75 513.42 Through 35 ft. 50 1.42 2.48 3.89 || 7.92 21.40 || 43.04 || 113.82 224.44 574.02 of service pipe; 60 1.56 2.71 || 4.26 8.67 23.44 || 47.15 124.68 245.87 628.81 no back-pres- 75 1.74 || 3.03 || 4.77 9.70 || 26.21 52.71 139.39 274.89 || 702.03 Sure. 100 2.01 || 3.50 5.50 11.20 30.27 | 60.87 | 160.96 || 317.41 811.79 130 2.29 || 3.99 || 6.28 12.77|34.51 || 69.40 | 183.52 || 361.91 925.58 30 0.66 1.16 | 1.84 3.78 || 10.40 21.30 58.19 118.13 317.23 40 0.77 | 1.34 2.12 || 4.36 | 12.01 || 24.59 || 67.19 || 136.41 366.30 Through 100 ft. 50 0.86 1.50 2.37 4.88 13.43 27.50 75.13 152.51 409-54 of service pipe; 60 0.94 | 1.65 2.60 5.34 14.71 30.12 82.30 167.06 || 448.63 no back-pres- 75 1.05 | 1.84 2.91 5.97 | 16.45 33.68 92.01 | 186.78 501.58 Sure. 100 1.22 2.13 || 3.36 || 6.90 | 18.99 || 38.89 || 106.24 215 68 579.18 130 1.39 2.42 3.83 || 7.86 21.66 44.34 121.14 || 245.91 | 660.36 30 0.55 0.96 || 1.52 3.11 8.57 17.55 47.90 97.17 260.56 40 0.66 | 1.15 1.81 3.72 10.24 20.95 57.20 | 116.01 || 311.09 Through 100 ft. 50 0.75 | 1.31 2.06 || 4.24 11.67 || 23.87 65.18 132.20 || 354.49 of service pipe 60 0.83 | 1.45 2.29 || 4.70 || 12.94 26.48 || 72.28 146.61 || 393.13 and 15-ft. ver- 75 0.94 | 1.64 2.59 5.32 14.64 29.96 || 81.79 165.90 444.85 tical rise. 100 1.10 | 1.92 || 3.02 6.21 17.10 || 35.00 95.55 193.82 519.72 130 1.26 2.20 || 3.48 7.14 || 19.66 40.23 109.82 || 2:22.75 597.31 30 0.44 0.77 | 1.22 2.50 | 6.80 | 1.4.11 || 38.63 || 78.54 211.54 40 0.55 0.97 | 1.53 || 3.15 8.68 17.79 || 48.68 98.98 || 266.59 Through 100 ft. 50 0.65 | 1.14 | 1.79 || 3.69 || 10.16 20.82 56.98 || 115.87 || 312.08 of service pipe 60 0.73 | 1.28 2.02 || 4.15 11.45 23.47 64.22 || 130.59 351.73 and 30-ft. ver- 75 0.84 || 1.47 2.32 4.77 13.15 26.95 || 73.76 149.99 || 403.98 tical rise. 100 1.00 | 1.74 2.75 5.65 15.58 31.93 87.38 177.67 478.55 130 1.15 2.02 || 3.19 6.55 | 18.07 || 37.02 || 101.33 206.04 554.96 Heating Pipe Coils installed in bottom of horizontal tank. (52) B U F. F. A. L. O. T AN K C D R P 0 RAT I O N WATER REQUIREMENTS AND FLOW TABLE GIVING GALLONS OF HOT WATER USED PER 24 HOURS ON MAXIMUM DAY FOR PRIVATE HOUSES AND APARTMENTS, INCLUDING LAUNDRY REQUIREMENTS Rooms to Suite or House Number of Bathrooms rººfs r- D 1 2 3 4. 5 60 - - - - - - 70 - - - - - - 80 - - - - - - - - - 90 120 - - - - - - 100 140 - - - - - - - - - 120 160 200 - - - - - - 140 180 220 - - - - - - 160 200 240 250 - - - 180 220 260 275 - - - 200 240 280 300 - - - - - - 260 300 340 - - - 280 325 380 450 300 350 420 500 - - - 375 460 550 400 500 600 - - - 540 650 580 700 620 750 - - - 800 - - - 850 Welding Outer Seams of Large Horizontal Water Tank (53) SECTION IV Bºlo TANIKS I I- PRESSURE VESSELS CODE CONSTRUCTION BURSTINC PRESSURES (55) P R E S S U R E V E S S E L S Welded Pressure Tanks **BUFFALO” STANDARD HORIZONTAL PRESSURE TANKS 100 Pound Working Pressure—200 Pound Test Pressure e Dimensions A. S. M. E. U-69 Gall Capacity º Gallons in roof or Overall Shell $ Hºt Diameter Length Thickness Weight Foot, 500 48" 6'-0" %" 1,370 94 750 48" 8’–6" %" 1,820 94 1,000 48" 11’–0" %" 2,260 94 1,000 60" 77–97 %" 2,500 146 1,500 60” 11’–3” %" 3,380 146 2,000 60” 14"–9" 3g" 4,260 146 2,500 72” 13’–0" %" 5,640 211 3,000 727 16’—0" %" 6,640 211 4,000 727 20'-6" Jé" 8,190 211 5,000 727 25'-0" Jº" 9,740 211 6,000 84" 22'-0" }%" 11,750 287 7,500 84" 27'-0" J%" 14,200 287 10,000 84” 367–0" J%" 18,200 287 7,500 96" 21'-6" %" 15,100 376 10,000 96” 28’—0" %" 19,000 376 15,000 96" 41’–6" %" 27,000 376 Above weights are for Tanks only. Add for Manholes, Nozzles, etc. For other sizes or for code tanks in other pressures, consult us. MATERIAL Buffalo pressure tanks are built from high quality steel of a grade suitable for the Service required. In general A. S. M. E. and similar code tanks use A. S. T. M. A 70 Flange or Fire Box quality. CONSTRUCTION Buffalo A. S. M. E. code tanks are built to U-69 specifications. Wide rings, a single plate to a ring, are used. Construction is all welded of the W Butt type, unless otherwise specified. TEST Buffalo pressure tanks are double tested. The final test being hydrostatic to double the working pressure of the tank. A certificate of inspection and test is furnished with all A. S. M. E. code tanks. STRESS RELIEVING Buffalo A. S. M. E. code tanks are stress relieved when so specified. PAINTING Buffalo pressure tanks, unless otherwise specified, are given one coat of red chromate primer. ACCESSORIES Manholes and nozzles are built to American standard specifications depending on the work- ing pressure of the vessel. Reinforcement, plates are used, when required. , Heat exchange coils provided if specified. They are usually installed inside tank but can be continuously welded to exterior of tank. Extra weight saddles for supporting tank provided when specified. (56) B U F F A L. O. T AN K C D R P 0 RAT I O N NON CODE CONSTRUCTION.—FOR ORDINARY PRESSURES Formulae for pressure exerted internally using acceptable butt or lap type joints (For A. S. M. E. code tanks, see page 61) T.S. x t x E. W.P. x R x. F.S. .P. = ~ * * * * t = — W R. x. F.S. T.S. x E. T.S. x t x E. W.P. x R x F.S. --- F – E. F – F.S R. x. W.P. T.S. x t _ W.P. x R x F.S. R _ T.S. xt x E. E. x t W.P. xF.S. T.S. = Tensile strength in pounds per square inch t = Minimum thickness of shell plate in inches E. Efficiency of longitudinal joint R Internal radius of tank shell in inches F.S. Factor of safety, usually considered as 4 W.P. = Working pressure in pounds per square inch T.S. - NotE.-For tank heads see page 77. - Pressure Tank with Outside Heating Coils Under Construction (57) P R E S S U R E V E S S E L S A. S. M. E. CODE The A. S. M. E. Boiler Construction Code contains rules formulated by the Boiler Code Committee, and approved by the Council of the Society, to cover boilers and unfired pressure vessels. The rules have been formulated in the interests of safety, protection of life and property and to provide a margin for deterioration in service, so as to give a long, safe period of usefulness. The National Board of Boiler and Pressure Vessel Inspectors is composed of chief inspectors of states and municipalities that have adopted the Boiler Code. This Board was organized in 1919 and administers uniformly and enforces the rules of the Boiler Code. A majority of the states have adopted the Boiler Code, so that it is almost universally in use throughout the country. Manufacturers’ data reports are required under the code, as well as detailed inspection during and after construction by licensed inspectors for state or boiler insurance companies. The Buffalo Tank Corporation, with its large staff of qualified welders, constantly welds A. S. M. E. code specification work and is prepared at all times to handle jobs to Paragraph U-69 and Paragraph U-70 specifications, or in some cases to Paragraph U-68 requirements, when radiographing is not needed, or wanted. Buffalo can handle stress relieving of vessels built to A. S. M. E. code requirements. Not all requirements include stress relief. When stress relief of Paragraph U-69 vessels is required, or is specified for any particular reason, the Buffalo Tank Corporation is in position to render this special service on pressure vessels fabricated by them. A. S. M. E. CODE—PAR. U-69 CONSTRUCTION Abridged from Unfired Pressure Vessels regulations (For additional data from Par. U-69 see page 61) ALLOWABLE WORKING PRESSURE, SHELL THICKNESS, ETC. Formulae for internal pressure, using butt-welded joints—Par. U-69 construction—for tanks not over 1% inches thick. + S x t X E W.P. x R. W.P. R. t S X E W.P. x R. E S X t S = Maximum allowable working stress in pounds per sq. in.—Table U-2 (Page 64) E = Efficiency of longitudinal joints—use 80% t = Minimum thickness of shell plates in weakest course R = Internal radius of weakest course in inches NotE.—For tank heads see page 77. A. S. M. E. CODE—PAR. U-70 CONSTRUCTION Abridged from Unfired Pressure Vessels regulations (For additional data from Par. U-70 see page 62) Formula for internal pressure—Par. U-70 construction, for tanks not over 9% inch thick, use the same formula as for Par. U-69 except that the following stresses shall be used. Double-welded butt joints for all joints. . . . . . . . . . . . . . . . . . . . . . . . 8000 Single-welded butt joints for girth or head joints. . . . . . . . . . . . . . .6500 Double full-fillet lap welds for girth joints only . . . . . . . . . . . . . . . . . 7000 Plug or intermittent welds for girth or head joints. . . . . . . . . . . . . . 5600 For single-welded butt joints and for double full-fillet welds for longitudinal joints, the maximum unit joint working stress (S x E) shall be as follows: For material of thickness of less than 94 in., 5600 lb. per sq. in.; for material of thickness of 4 to 3% in., 7000 lb. per Sq. in. Lap joints shall not be used in the construction of vessels for the storage of gases of any kind at pressures in excess of 100 lb. per sq. in., nor for the storage of any liquid at a tempera- ture exceeding its boiling point at atmospheric pressure. (58) A. S. M. E. CODE REQUIREMENTS FOR WELDED PRESSURE VESSELS Brief Analysis of Code Requirements 3 Class Maximum -: Maximum - - - - - int of Description and Use Working tº * Shell Longitudinal i. Eße, Stress Relieving Tests Steel Plate Requirements Vessel Pressure *Perature. Thickness Joints OintS Permissible All vessels shall be sub- jected to a hydrostatic | Various types of steel and pressure of one and one- || alloy plates are permissible Ug half times the allowable under Code regulations. C- working pressure and while For complete list see Code. Par U-68 For any purpose Not limited Not limited | Not limited | Pºlº Wººd Double Welded 90% Required without under this pressure shall be Plates shall have a mini- *r • Butt Joints. Butt Joints. zo exception. given a hammer or impact mum Tensile Strength of ºri test. Following this test || 55,000 pounds per Square > the pressure shall be raised inch and a tensile range of F- to twice the working pres- 10,000 pounds per square sure and maintained dur- inch. O ing inspection. For any purpose with the = following exceptions: > Not for lethal gases or Required only where 2 liquids. The thickness exceeds - r 1%" or x Not for liquids operating Pºd W. both the . at a temperature in ex- y ºut. onºs. ickness is greater Par, U-69 CeSS of 300° F. unless | 400 lbs. 700° F. 1%" Pºlº Wººd jºi 80% § %. !. Same as for Par. U-68 Same as for Par. U-68 O vessel is over 1%" thick. may be Single than 20" or — Butt Joints. Where the diameter is O Not for maximum pres- less than 120t—50, sures over 400 lbs. where t is the thick- : J ness in inches. Not for any temperatures *U in excess of 700°F. O For storage of gases or : J liquids, with the following P. exceptions: = Not for lethal gases or - º- liquids. Double Welded Single Welded Butt Joints Butt Joints O Not for temperatures ma- preferred. preferred. Variable. 2. Par. U-70 terially exceeding the 200 lbs. 250° F. %” Lap Joints Lap Joints tº: º Not required Same as for Par. U-6S Same as for Par. U-68 boiler temperatures at permitted under permitted under tables. atmospheric pressure. 100 lbs. working 100 lbs. working. -- pressure. pressure. Not for maximum pres- sure over 200 lbs. Not for temperatures in excess of 250° F. NotE.-The above information is extracted from the Rules for Construction of Unfired Pressure Vessels, Section VIII, A. S. M. E. Boiler Construction Code, 1940 edition. For additional details, or complete informa- tion, see latest edition A. S. M. E. Boiler Construction Code. P R E S S U R E V E S S E L S A. S. M. E. CODE RULES FOR CONSTRUCTION Extracts from “Rules for Construction of Unfired Pressure Vessels—Section VH11” (For complete rules, see latest edition A. S. M. E. Boiler Construction Code) U-19 The maximum allowable working pressure is that determined by employing the factors of safety, stresses, and dimensions designated in these rules. No unfired pressure vessel shall be operated at a pressure higher than the maximum allowable working pressure except when the safety device is blowing, at which time the maximum allowable working pressure shall not be exceeded by more than 10 per cent. Whenever the term “maximum allowable working pressure” is used it refers to gauge pres– sure or pressure above the atmosphere in pounds per square inch. U-20 (a) FOR INTERNAL PRESSURE The maximum allowable working pressure on the shell of a pressure vessel shall be deter- mined by the strength of the weakest course computed from the thickness of the plate, the efficiency of the longitudinal joint, the inside diameter of the course, and the maximum allow- able unit working stress. sº = maximum allowable working pressure, lb. per sq. in. where S = maximum allowable unit working stress, lb. per sq. in., taken from Tables U-2 and U-3 t = minimum thickness of shell plates in weakest course, in. E = efficiency of longitudinal joint or of ligaments between openings: for fusion-welded joints = efficiency specified in Pars. U-68, U-69, and U-70 for seamless shells = 100 per cent for ligaments between openings, the efficiency shall be calculated by the rules given in Pars. P-192 and P-193 of the Power Boiler Code R = inside radius of the weakest course of the shell, in., provided the thickness of the shell does not exceed 10 per cent of the radius. If the thickness is over 10 per cent of the radius, the outer radius shall be used. (b) FOR EXTERNAL PRESSURE The maximum allowable working pressure for cylindrical vessels subjected to external or collapsing pressure shall be determined either by the rules in Pars. U-120 to U-138, or Par. U-51. RULES FOR THE FUSION PROCESS OF WELDINC U-67 Pressure vessels may be fabricated by means of fusion welding provided the construction is in accordance with the requirements for material and design of the rules for fusion welding as required in this code. FUSION WELDING DEFINITIONS (a) Fusion Welding. A process of welding metals in the molten, or molten and vaporous state without the application of mechanical pressure or blows. (b) Fillet Weld. A fusion weld of approximately triangular cross section, the throat of which lies in a plane disposed approximately 45 degrees with respect to the surface of the parts joined. - (c) Throat. The minimum thickness of a weld along a straight line passing through the bottom of the cross-sectional space provided to contain a fusion weld. (d) Double-Welded Butt Joint. A joint formed by the fusion of two abutting edges with a filler metal added from both sides of the joint and with reinforcement on both sides. (e) Single-Welded Butt Joint. A joint formed by the fusion of two abutting edges with all the filler metal added from one side of the joint with a reinforcement on the side from which the filler metal is added. NoTE.—A joint with filler metal added from only one side is considered equivalent to a double-welded, butt joint when and if means are provided for accomplishing complete penetration and reinforcement on both sides of the joint. (60) B U F F A L O T A N K C O R P O R AT I O N A. S. M. E. CODE PARAGRAPH U-69 RULES FOR CONSTRUCTION U-69 (a) All vessels covered by this code when constructed in accordance with the rules of this paragraph may be used for any purpose except for containing lethall gases or liquids and/or liquids operating at a temperature in excess of 300°F, provided the plate thickness of shells and of heads fabricated of more than one piece does not exceed 1% in., unless the flange of such heads is reduced to not more than 1% in. at the joint, and the maximum pressure does not exceed 400 lb. per sq. in., nor at a temperature in excess of 700°F. The limitation of plate thickness does not apply to heads formed of a single plate. This pressure limitation does not apply to vessels operated under hydraulic pressure at atmospheric temperature. (b) The joint efficiency E to be used in applying the rules in Par. U-20 shall be taken as 80 per cent. (c) Welding shall comply with the Standard Qualification for Welding Procedure and Welding Operator as given in Pars. UA-30 to UA-53, inclusive, or it shall comply with the Rules for Qualification of Welding Process and Testing of Welding Operators as given in Pars. UA-54 to UA-70, inclusive. (d) Each manufacturer or contractor shall be responsible for the quality of the welding done by his organization and shall conduct tests not only of the welding process to determine its suitability to insure welds which will meet the required tests, but also of the welding oper- ators to determine their ability to properly apply the procedure. If the rules given in Pars. UA-54 to UA-70, inclusive, are used, the tests of a welding operator shall be effective for a period of six months only, at the end of which time a repetition of the tests shall be made by the manufacturer. Exception to this is allowable when the welding operator is regularly employed on production work embracing the same process and type of welding, in which case the tests may be effective for a period of one year. The tests conducted by one manufacturer shall not qualify a welding operator to do work for any other manufacturer. Each welding operator shall be assigned by the manufacturer an identifying number, letter, or symbol, which shall be stamped on all vessels adjacent to and at intervals of not more than 3 feet along the welds which he makes either by hand or by machine, or a permanent record may be kept by the manufacturer of the welding operators employed on each joint, which shall be available to the inspector, and in such case the stamping may be omitted. The manufacturer shall maintain a permanent record of the welding operators employed by him, showing the date and result of the tests and the identification mark assigned to each. These records shall be certified to by the manufacturer and accessible to the inspector. An authorized inspector shall have the right at any time to call for and witness tests of the welding process or of the ability of any welding operator. - When the rules given in Pars. UA-30 to UA-53 are used, a recommended form for recording the results of both procedure and operator qualification tests is given as form no. 3 in the Appendix. When the rules given in Pars. UA-54 to UA-70 are used, recommended forms for recording the results of both procedure and operator qualifications are given. (e) If the rules given in Pars. UA-54 to UA-70, inclusive, are used, the test welds, test Specimens, and test results shall comply with the following: (1) TEST WELDS For the qualification of a welding process, the number, type, and size of test welds shall be in accordance with Par. UA-58. For the testing of a welding operator, the number, type, and size of test welds shall be in accordance with Par. UA-66. (2) TEST SPECIMIENS For the qualification of a welding process, the number, type, and preparation of test speci- mens shall be in accordance with Par. UA-60. * By “lethal substances” are meant poisonous gases or liquids of such a nature that a very small amount of the gas or vapor of the liquid mixed or unmixed with air when breathed is dangerous to life. For purposes of this code, this class includes substances of this nature which are stored under pressure or may generate a pressure if stored in a closed vessel. Some such substances are hydrocyanic acid, carbonyl chloride, cyanogen, mustard gas, and xylyl bromide. For the purposes of this code ammonia, chlorine, natural or manufactured gas, propane, or butane are not considered as lethal substances, but it is the intention of the Committee that their storage should not be permitted in pressure vessels built in accordance with Par. U-69. (61) P R E S S U R E V E S S E L S A. S. M. E. CODE—PARAGRAPH U-69 (Continued) For the testing of a welding operator the number, type, and preparation of test specimens shall be in accordance with Par. UA-68. (3) TEST RESULTS The minimum requirements for test results in the qualification of a welding process are as follows: TENSILE STRENGTH For the reduced-section tension-test specimens the tensile strength shall be not less than 95 per cent of the minimum of the specified tensile range of the plate used for double-welded butt joints, or 85 per cent for single-welded butt joints. (The tension test of the joint specimen as specified herein is intended as a test of the welded joint and not of the plate. If the specimen breaks in the plate and the weld shows no sign of weakness, the test may be accepted as meeting the requirements even though the stress at which failure occurs is less than the minimum of the specified range.) FREE-BEND DUCTILITY The ductility as determined by the free-bend-test method shall be not less than 20 per cent. SOUNDNESS The root-break, side-break, and nick-break tests of the weld shall show in the fractured surface complete penetration through the entire thickness of the weld, absence of oxide or slag inclusions, and a degree of porosity not to exceed six gas pockets per square inch of the total area of the weld surface exposed in the fracture, the maximum dimension of any such pocket not to be in excess of 9% in., or provided the total area of the gas pockets per square inch does not exceed the area of six gas pockets each 346 in. in diameter. X-ray tests of the test plates as provided for in Par. U-68(i) may be substituted for the nick-break test. The minimum requirements for test results in the testing of a welding operator are the same as above specified for soundness. A. S. M. E. CODE U-70 PARAGRAPH U-70 RULES FOR CONSTRUCTION (a) All vessels covered by this code, when constructed in accordance with the rules of this paragraph, may be used for the storage of gases or liquids, except lethall gases or liquids, at temperatures not materially exceeding their boiling temperature at atmospheric pressure, and at pressures not to exceed 200 lb. per sq. in., and/or not to exceed a temperature of 250°F. The plate thickness of shells and of heads fabricated of more than one piece shall be limited to 5% in. The limitation of plate thickness does not apply to heads formed of a single plate. The maximum allowable working pressure of the vessel shall be calculated on the basis of a maximum unit joint working stress (SE) in lb. per sq. in. as follows: Double-welded butt joints for all joints. . . . . . . . . . . . . . . . . . . . . . . . 8000 Single-welded butt joints for girth or head joints. . . . . . . . . . . . . . . . 6500 Double full-fillet lap welds for girth joints only . . . . . . . . . . . . . . . . . 7000 Plug or intermittent welds for girth or head joints. . . . . . . . . . . . . . 5600 (b) For single-welded butt joints and for double full-fillet welds for longitudinal joints, the maximum unit joint working stress (SE) shall be as follows: For material of thickness of less than 34 in., 5600 lb. per sq. in...; for material of thickness of 34 to 3% in., 7000 lb. per Sq. in. (c) Lap joints as provided for in Par. U-73(a) shall not be used in the construction of vessels for the storage of gases of any kind at pressures in excess of 100 lb. per sq. in., nor for the storage of any liquid at a temperature exceeding its boiling point at atmospheric pressure. 1. By “lethal substances” are meant poisonous gases or liquids of such a nature that a very small amount of the gas or vapor of the liquid mixed or unmixed with air when breathed is dangerous to life. For purposes of this code, this class includes substances of this nature which are stored under pressure or may generate a pressure if stored in a closed vessel. Some such substances are hydrocyanic acid, carbonyl chloride, cyanogen, mustard gas, and xylyl bromide. For the purposes of this code ammonia, chlorine, natural or manufactured gas, propane, or butane are not considered as lethal substances, but it is the intention of the Committee that their storage should not be permitted in pressure vessels built in accordance with Par. U-70. (62) B U F F A Lo T AN K c or Po R AT I o N A. S. M. E. CODE—PARAGRAPH U-70 (Continued) (d) Welding shall comply with the Standard Qualification for Welding Procedure and Welding Operator as given in Pars. UA-30 to UA-53, inclusive, or it shall comply with the Rules for Qualification of Welding Process and Testing of Welding Operators as given in Pars. UA-54 to UA-70, inclusive. (e) Each manufacturer or contractor shall be responsible for the quality of the welding done by his organization and shall conduct tests not only of the welding process to determine its suitability to insure welds which will meet the required tests, but also of the welding oper- ators to determine their ability to properly apply the procedure. If the rules given in Pars. UA-54 to UA-70, inclusive, are used, the tests of a welding operator shall be effective for a period of six months only, at the end of which time a repetition of the tests shall be made by the manufacturer. Exception to this is allowable when the welding operator is regularly employed on production work embracing the same process and type of welding, in which case the tests may be effective for a period of one year. The tests conducted by one manufacturer shall not qualify a welding operator to do work for any other manufacturer. Each welding operator shall be assigned by the manufacturer an identifying number, letter, or symbol, which shall be stamped on all vessels adjacent to and at intervals of not more than 3 feet along the welds which he makes either by hand or by machine, or a permanent record may be kept by the manufacturer of the welding operators employed on each joint, which shall be available to the inspector, and in such case the stamping may be omitted. The manufacturer shall maintain a permanent record of the welding operators employed by him, showing the date and result of the tests and the identification mark assigned to each. These records shall be certified to by the manufacturer and accessible to the inspector. An authorized inspector shall have the right at any time to call for and witness tests of the welding process or of the ability of any welding operator. When the rules given in Pars. UA-30 to UA-53 are used, a recommended form for recording the results of both procedure and operator qualification tests is given as form no. 3 in the Appendix. When the rules given in Pars. UA-54 to UA-70 are used, recommended forms for recording the results of both procedure and operator qualifications are given. (f) If the rules given in Pars. UA-54 to UA-70, inclusive, are used, the test welds, test specimens, and test results shall comply with the following: (1) TEST WELDS For the qualification of a welding process, the number, type, and size of test welds shall be in accordance with Par. UA-58. For the testing of a welding operator, the number, type, and size of test welds shall be in accordance with Par. UA-66. (2) TEST SPECIMIENS For the qualification of a welding process, the number, type, and preparation of test specimens shall be in accordance with Par. UA-60. For the testing of a welding operator, the number, type, and preparation of test specimens shall be in accordance with Par. UA-68. (3) TEST RESULTS The minimum requirements for test results in the qualification of a welding process are as follows: TENSILE STRENGTH For the reduced-section tension-test specimen the tensile strength shall be not less than 85 per cent of the minimum of the specified tensile range of the plate used. In no case shall the tensile strength be less than 42,000 lb. per sq. in. (The tension test of the joint specimen as specified herein is intended as a test of the welded joint and not of the plate. If the specimen breaks in the plate and the weld shows no sign of weakness, the test may be accepted as meeting the requirements even though the stress at which failure occurs is less than the mini- mum of the specified range.) (63) P R E S S U R E V E S S E L S A. S. M. E. CODE—PARAGRAPH U-70 (Continued) FREE-BEND DUCTILITY The ductility as determined by the free-bend-test method shall be not less than 10 per cent. SOUNDNESS The root-break, side-break, and nick-break tests of the weld shall show in the fractured surface complete penetration through the entire thickness of the weld, absence of oxide or slag inclusions, and a degree of porosity not to exceed six gas pockets per square inch of the total area of the weld surface exposed in the fracture, the maximum dimension of any such pocket not to be in excess of 3% in., or provided the total area of the gas pockets per square inch does not exceed the area of six gas pockets each 94% in. in diameter. Radiographic tests of the test plates as provided for in Par. U-68(i) may be substituted for the nick-break test. The minimum requirements for test results in the testing of a welding operator are the same as above specified for soundness. TABLE U-2 MAXIMUM ALLOWABLE WORKING STRESSES FOR FERROUS MATERIALS IN LB. PER SQ.. IN. Spec., For metal temperatures not exceeding deg. F. Sººn Grade |Minimum —20 Tensile to 650 700 || 750 800 || 850 | 900 | 950 | 1,000 |1,0501,100||1,1501,200 Plate Steels Carbon Steel S- 1. 55,000 (1)|11,000|10,400|| 9,500 8,000 6,300|| 4,400| 2,600 S– 2 A 45,000 (1) 9,000 8,800 8,400 6,900 5,700. 4,400| 2,600 . . . . S- 2. B 50,000 (1)|10,000 9,600|| 9,000| 7,500| 6,000| 4,400| 2,600 . . . . S-42. A |55,000 11,000|10,400|| 9,500 8,500 7,200 5,600 3,800| 2,000 S-42. B 60,000 12,000||11,400|10,400|| 9,100 7,400| 5,600 3,800| 2,000 S-55 . . . . . . . . A. 65,000 13,000|12,300||11,100|| 9,400; 7,600| 5,600 3,800| 2,000 S-55 . . . . . . . . |B 70,000 14,000||13,300||11,900|10,000 7,800| 5,600 3,800| 2,000 Low-AlloySteels S–28 . . . . . . . . A 75,000 15,000|14,100||12,400|10,100) 7,800, 5,600 3,800) 2,000 S-28 . . . . . . . . B 85,000 15,000|14,100||12,400|10,100 7,800 5,600 3,800| 2,000 S-43 . . . . . . . . A 65,000 13,000||12,300||11,100|| 9,400; 7,600| 5,600 3,800| 2,000 S-43 . . . B 70,000 14,000||13,300||11,900|10,000 7,800 5,600 3,800 2,000 S-43, C 75,000 15,000|14,100 12,400|10,100| 7,800, 5,600 3,800| 2,000 S-44. A 65,000 13,000||13,000||13,000||12,500||11,500|10,000 8,000 5,000 S-44. B 70,000 14,000|14,000|14,000||13,500||12,000|10,200 8,000| 5,000 S-44 C 75,000 15,000||15,000|15,000|14,400||12,700 10,400 8,000 5,000 Medium and - - High Alloy Steels . (A 176-39*. 1 70,000 14,000|14,000|14,000||12,800. 9,500. 6,750. 4,000] 2,400 > \ A 176-39*. 2 70,000 14,000|14,000|14,000||12,800. 9,500| 6,750| 4,000| 2,400 . . . . . . . . . . . . . . . . . . . H A167-39*. 304,308||75,000 (2)|15,000||15,000|14,000||13,000||12,000||11,000|10,500|10,000|8,500|5,600|4,200|3,200 ºf Y A167-39*.316,317||75,000 (2)|15,000||15,00014,000|14,000||13,900||13,400||12,600||11,2009,000|7,000|5,000|3,600 < A167-39*. 321 75,000 15,000||15,000|14,000||13,000 12,000||11,000|10,500|10,000|8,500|5,600|4,2003,200 A 167-39*. 347 75,000 15,000||15,000|14,000||13,000||12,000||11,000|10,500|10,000|8,500|5,600|4,2003,200 NOTES: (1) Flange quality not permitted above 850° F. . . . & º e ſº . (2) No allowance has been made for corrosive action in the allowable stresses given. Carbide precipita- tion in service is also to be expected at temperatures above 750° F. SPECIAL CONSTRUCTION The A. S. M. E. Boiler Code Committee does not limit in any way the builders' right to choose any method of design, or form of construction that conforms to the code rules. The committee meets at regular intervals for the purpose of considering inquiries relative to the Boiler Code. The ordinary procedure and handling of each case is as follows: All in- quiries must be in written form and complete in detail before they are accepted for considera– tion. The inquiry is referred to the proper subcommittee to report its recommendation at the next or subsequent meeting of the main committee. The matter is then acted upon by the main committee at its meeting and also by letter ballot. If of general interest the reply is made by published interpretation, otherwise by letter communication. If an interpretation is ap- proved by the main committee, it is submitted to the Council of the Society for its approval, after which it is issued to the inquirer and simultaneously published in “Mechanical Engineering.” (64) B U F F A L O T A N K C O R P O R A T I O N PETROLEUM REFINING EQUIPMENT Buffalo Tank Corporation products are well-known in refinery fields and the following items are representative of the various units regularly furnished for many of the large refining companies. ABSORPTION TOWERs FILTERs, WATER, SAND, ETC. REBOILERS ACCUMULATORS FRACTIONATING TOWERS REFLUX TOWERS AGITATORS FLASH TOWERS SCRUBBERs CATALYST COLUMNS GASOLINE ABSORBERS SEPARATORS CAUSTIC STRIPPERs GREASE MIXING KETTLES STABILIZER COLUMNS CoNDENSERs, REFLUX HEAT ExCHANGERs STILLs COMPOUNDING TANKS JACKETED TANKS AND PIPING SUCTION HEATERS COODERs MIST ExTRACTORS TUBULAR HEATERs Ev APORATORS NATURAL GASOLINE STABILIZERS TANKS TANKS TANKS For complete list of Buffalo Products, see page 281 A. P. I.-A. S. M. E. CODE In the manufacture of unfired pressure vessels for petroleum liquids and gases, a code for design and construction has been developed and sponsored by the American Petroleum Institute and the American Society of Mechanical Engineers. This code meets the special requirements of the petroleum industry and covers vessels made of carbon steel, for temperatures not over 1000°F., with a few exceptions, Buffalo fabricates many pressure tanks, digesters, towers, etc. to A. P. I.-A. S. M. E. requirements and many interesting examples of Buffalo products built to these rigid specifica- tions are in daily use in large refineries throughout the country. A. P. I.-A. S. M. E. CODE Extracts from Code for Unfired Pressure Vessels for Petroleum Liquids and Gases (For complete rules, see latest edition A. P. l.-A. S. M. E. Code) W-100 SCOPE This section of the code covers the design and construction of fusion-welded unfired pres- sure vessels for petroleum liquids and/or gases and for metal temperatures not over 1000°F. with the following exceptions: (1) Cylindrical and spherical vessels, having a combination of diameter and working pressure such that (p – 15) x (D -4) is less than 60, are not included (p = internal pressure for which the vessel is designed in lb. per sq. in gauge, D = internal diameter in inches). (2) Vessels of any shape, having a combination of pressure and volume such that (p – 15) x (V – 1.5) is less than 22.5, are not included (V = volume of vessel in cu. ft.). (3) Vessels constructed entirely of pipe and fittings conforming to American Standards are not included, except when metal temperatures exceed the upper limits of the American Standards. W-101 LIMITATIONS This code does not govern design and construction of auxiliary equipment not part of the pressure vessel such as tubes and tube sheets in heat exchangers and piping beyond nozzle flange or female pipe connection, except for certain provisions relating specifically to cover plates for openings, bolting for piping and cover-plate attachment, and pressure-relieving Safety equipment. (65) P R E S S U R E V E S S E L S A. P. I.-A. S. M. E. CODE (Continued) W-200 GENERAL Materials entering into these vessels shall comply at least with standards hereinafter specified and listed in Section S. The carbon content of any steel used for welding shall not exceed 0.35 per cent by check analysis, except that the maximum carbon content shall be ().30 per cent when welding is done by the flash electric-resistance method. Cast, forged, or rolled parts of small size, or which are ordinarily carried in stock and for which mill test reports or certificates are not customarily furnished may be used provided it has been demonstrated that they are suitable for the purpose intended. W-201 CARBON-STEEL PLATE (a) All plate used in shells, heads, nozzles, and reinforcements shall conform to one of the following specifications: A. S. T. M. A 7 Specifications for Structural Steel for Bridges (Plates only). A. S. T. M. A 10 Specifications for Mild Steel Plates. A. S. T. M. A 30 Specifications for Boiler and Firebox Steel for Locomotives. A. S. T. M. A 70 Specifications for Carbon-Steel Plates for Boilers and Other Pressure Vessels for Stationary Service. A. S. T. M. A. 78 Specifications for Steel Plates of Structural Quality for Forge Welding (Grades A and B). A. S. T. M. A 89 Specifications for Steel Plates of Flange and Firebox Qualities for Forge Welding (Grades A and B). A. S. T. M. A 113 Specifications for Structural Steel for Locomotives and Cars (Plates for cold pressing only). S. T. M. A 129 Specifications for Open-Hearth Iron Plates of Flange Quality. . T. M. A 149 Specifications for High-Tensile-Strength Carbon-Steel Plates for Pressure Vessels (2 In. and Under in Thickness). S. T. M. A 150 Specifications for High-Tensile-Strength Carbon-Steel Plates for Fusion-Welded Pressure Vessels. (Over 2 to 4 In. Inclusive, in Thickness). A. S. T. M. A 201 Specifications for Carbon-Silicon Steel Plates of Ordinary Tensile Ranges for Fusion-Welded Boilers and Other Pressure Vessels, Firebox and Flange Grades. (b) The use of specifications A 7, A 10, A 78, and A 113 is limited to plates not over 9% in. in thickness and/or to temperatures not above 450° F. For these steels, the maximum tensile strength employed in design shall be 55,000 lb. per sq. in., when the minimum of the specified range of tensile strength exceeds this value. (c) If desired, steel of tensile strength differing from that in the specifications may be stipulated, provided the range between the maximum and minimum does not exceed 10,000 lb. per sq. in. and the specifications are met in all other respects. (d) When the vessel is to be stress relieved after welding, the test coupons before being tested shall be stress relieved in the same manner as the vessel will be stress relieved and the plate stamped with the minimum of the specified range of tensile strength with the additional stamping, SR, to show that the strength of the plate in the stress-relieved state is above the minimum. This requirement does not apply to plates less than 1% in. in thickness for vessels in which the longitudinal joint efficiency as used in the calculations is 75 per cent or less. In view of the increasing use of carbon molybdenum steels and their inclusion among the permissible materials in Section VIII on Unfired Pressure Vessels of the A. S. M. E. Boiler Construction Code, it has been agreed to permit the use of materials meeting the following A. S. T. M. specifications in the A. P. I.-A. S. M. E. Code: A. S. T. M. A 204 Molybdenum Steel Plates for Boilers and Other Pressure Vessels. A. S. T. M. A 182 Forged or Rolled Alloy-Steel Pipe Flanges and Forged Fittings and Valves and Parts for Service at Temperatures from 750° to 1100°F. A. S. T. M. A 206 Seamless Carbon-Molybdenum Alloy-Steel Pipe for Service at Temper- atures from 750° to 1000° F. A. S. T. M. A 209 Seamless Carbon-Molybdenum Alloy-Steel Boiler and Superheater s S Tubes. A. S. T. M. A 193 Alloy-Steel Bolting Materials for High Temperature Service from 750° to 1100°F. Metal Temperatures. A. S. T. M. A 194 Carbon and Alloy-Steel Nuts for Bolts for High Pressure and High Temperature Service to 1100°F. (66) B U F F A L O T A N K C O R P O R A T L O N A. P. I.-A. S. M. E. CODE (Continued) DESIGN W-300 GENERAL The vessels covered by this code shall be designed for the most severe combination of operating conditions which may be experienced in normal operation. W-301 SPECIAL SHAPES (a) Vessels other than cylindrical or spherical in shape shall be designed according to best approved practice using stresses not greater than those specified in this code. hen no rules are given and it is impossible to calculate with a satisfactory assurance of accuracy the strength of a pressure vessel or any part thereof, the completed vessel shall be given a hydrostatic test as required in W-526. W-302 WORKING TEMPERATURES (a) For vessels which are to have contents at temperatures above 650° F., the working temperature used in design shall be the actual metal temperatures as determined by ther- mocouples attached to the shells of existing vessels under identical conditions of installation and operation, rather than the temperature of fluid entering or inside of those vessels, except as permitted in W-303. If no previous experience under identical conditions is available, the probable metal-wall temperature shall be estimated, making suitable allowance for the uncertainty involved. (b) When different metal temperatures can be determined as existing in definite zones during operation, the varying temperatures so determined may be used as the design basis in the zones affected. - W-304 ALLOWABLE WORKING PRESSURE The maximum allowable working pressure for the design of the vessel shall be the desired operating pressure plus a suitable margin to cover the fluctuations encountered in normal operation. W-309 THICKNESS OF SHELLS (a) The thickness of shells shall not be less than that computed by the following formulas and in addition, provision shall be made through increased thickness for the loadings, other than internal pressure, enumerated in W-305. For Cylindrical Vessels: (1) t = }} + c Or p = ** = 0 Slº, II] Alternate form of Equation 1 in terms of inside diameter: oD º 2sF(t — c) 2 t F P1’ l - (2) gºi, t “ OI p D1 + t — c Alternate form of Equation 1 in terms of outside diameter: (3) = , ſº + c OI’ p = 2*E(t_-_c) 2sh) + p D2 – t + c For Spherical Vessels: (4) t = º + c OT p = * = 0 +Slº .L’IIl Alternate form of Equation 4 in terms of inside diameter: D 4s E(t — c) t == P1’i C OT - (5) isiºn " P = p +H. Alternate form of Equation 4 in terms of outside diameter: F. pſ)2 C OT - 4s E(t * C) (6) 1s; in " p D2 – t + C where t thickness in inches maximum allowable working pressure in lb. per Sq. in. (See W-304) inside diameter in inches, before corrosion allowance is added p D1 (67) P R E S S U R E V E S S E L S A. P. I.-A. S. M. E. CODE (Continued) D2 = outside diameter in inches Dm = mean diameter in inches, before corrosion allowance is added s = maximum allowable working stress corresponding to the operating tempera- ture, in lb. per sq. in. c = allowance for corrosion in inches, and E = efficiency of longitudinal joint D1 + 100 (b) In no case shall the thickness be less than , unless the shell is adequately re- inforced by structural members. W-310 HEAD DESIGN (a) Heads may be made from a single sheet, or built up of several pieces welded together. Heads other than conical or hemispherical in shape, 2 in. in thickness or less, which are butt- welded to the shell, shall be provided with a cylindrical flange or skirt, which shall extend beyond the point of tangency of the head and the element of the flange or shell a distance of not less than the thickness of the head plate; for heads more than 2 in. in thickness, the skirt need not exceed 2 in. (c) Heads shall conform to one of the following shapes: (1) Ellipsoidal, with a ratio of inside major axis to inside minor axis not exceeding 2.6. (2) Conical. (3) Dished, consisting of a spherical segment, whose mean radius shall not exceed the mean diameter of the shell, connected to the cylindrical flange by a “knuckle” whose mean radius shall not be less than 6 per cent of the mean diameter of the shell, nor less than 3 times the thickness of the head plate. (4) Hemispherical. (5) Flat. W-311 HEAD THICKNESS (a) For ellipsoidal, conical, dished, and hemispherical heads having the pressure on the concave side, the thickness of the heads at the thinnest point shall not be less than the thick- ness computed by the appropriate formula from the group given. Also, in the case of ellipsoidal, dished, and hemispherical heads, the thickness shall not be less than the thickness required for seamless hemispherical heads divided by the efficiency of the joint between the head and the shell. In addition, provision shall be made for the loadings, other than internal pressure, enumerated in W-305. W–318.1 RADIOGRAPHING AND STRESS-RELIEVING (a) Vessels constructed of steel conforming to A. S. T. M. A 150 shall be radiographed and stress relieved. (b) Vessels constructed of steel conforming to A. S. T. M. A 149 shall be radiographed and stress relieved when (1) The plate thickness in inches at any welded joint exceeds 1 in. and for thinner plates, d + 50 0 when this thickness exceeds , in which d = diameter in inches with a lower limit of 20. In using this formula, diameters less than 20 in. are assumed to be 20, and (2) The steel is not of firebox quality or has a carbon content from check analysis taken from two tension-test specimens greater than 0.31 per cent. (c) Vessels constructed of other permissible steels shall be stress relieved when the shell or head plate thickness in inches at any welded joint exceeds 1% in. and, for thinner plates, when this thickness exceeds d * in which d = diameter in inches with a lower limit of 20. In using this formula, diameters less than 20 in. are assumed to be 20. W–318.2 CONSTRUCTION FACTORS The appropriate factors covering the grade of steel, and radiographing and stress relieving if performed, as given below, shall each be used as multipliers to the joint efficiency in W-320 to obtain the final joint efficiency factor: (68) B U F F A L O T A N K C O R P O R AT I O N A. P. I.-A. S. M. E. CODE (Continued) (1) GRADE OF STEEL (a) The following factors have been assigned to fusion-welded joints in vessels made of the various grades of steel which are permitted in this code, because of variations in quality: Steel Specification Factor Group A A. S. T. M. A 30 firebox grade only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.00 A. S. T. M. A 70 firebox grade only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.00 A. S. T. M. A 89 firebox grade only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.00 A. S. T. M. A 149 firebox grade only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.00 A. S. T. M. A 150 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.00 A. S. T. M. A 201 firebox grade only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.00 Group B A. S. T. M. A 30 flange grade only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.97 A. S. T. M. A 70 flange grade only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.97 A. S. T. M. A 89 flange grade only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.97 A. S. T. M. A 129 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.97 A. S. T. M. A 149 flange grade only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.97 A. S. T. M. A 201 flange grade only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.97 Group C A. S. T. M. A 7 A. S. T. M. A 10 ( not to be used for plates thicker than % in., or for A. S. T. M. A 78 ( metal temperatures above 450° F. . . . . . . . . . . . . . . . 0.92 A. S. T. M. A 113 A. S. T. M. A 95 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.92 (b) Construction factors shall be applied on the minimum of the specified range of tensile strength, except as noted under Fig. 1. For the first four steels in Group C, the maximum tensile strength employed in design shall be 55,000 lb. per sq. in., when the minimum of the specified range of tensile exceeds this value. - W-320 JOINT EFFICIENCY_MAXIMUM (a) The maximum efficiencies for the various types of joints in vessels constructed in accordance with this section of the code shall be as shown in the following tabulation multiplied by the factors shown above. Efficiency of Type of Joint Limitations Joint, Per Cent Double-welded butt joint. . . . . . . . None. 80 Single-welded butt joint, with backing-up strip. . . . . . . . . . . . . . Longitudinal joints not over 1% in. thick. 80 No thickness limitation on circumferen- º tial joints. Single-welded butt joint, without backing-up strip. . . . . . . . . . . . . . Joints not over 9% in. thick. 70 Double full-fillet lap joint . . . . . . . Circumferential joints only, not over % in. thick. 65 Single full-fillet lap joints with plug welds (see also W-332). . . . . . . . Circumferential joints only, not over % in. thick. 65 Single full-fillet lap joints without plugs. . . . . . . . . . . . . . . . . . . . . . . Only for attaching heads convex to pres- sure and plates not over 9% in. thick. 55 hData given are for steels meeting specifications in Group A of W-318(1) before stress relieving and radio- gTâDIlling. . . (b) Table 1 shows the most probable combinations of construction factors and the final joint-efficiency factors. (Not herein shown.) . . (c) When lap-welded carbon-steel pipe is used as a shell or nozzle, the maximum final joint efficiency shall be 80 per cent. (69) P R E S S U R E V E S S E L S. A. P. I.-A. S. M. E. CODE (Continued) (d) When electric-fusion-welded or electric-resistance-welded pipe is used as a shell or nozzle, the maximum final joint efficiency shall be 85 per cent. (e) For vessels constructed of seamless forged or rolled rings joined at the ends to other rings or to heads, the longitudinal joint efficiency in the formula in W-309 may be assumed 100 per cent in computing the thickness of the shell. No credit shall be given for stress reliev- ing and/or radiographing. BOAT TANKS BOAT TANKS Buffalo tanks for service on floating vessels are in general use on the seas and in fresh water navigation. Tanks are built for hot or cold water, for oil or gasoline storage, for hauling fish oil, vegetable oils, etc. Air receivers or starting tanks for Diesel engines and high pressure tanks for various purposes are regularly built of special analysis steels, either completely shop fabricated or field welded in vessels to fit restricted areas. Where necessary, tanks are contoured to fit sides or bottom of ships. In all cases Buffalo boat tanks are built by certified welders, qualified to perform under the rigid requirements of the American Bureau of Shipping and the U. S. Bureau of Marine Inspection. - DREDGE EQUIPMENT The dredging of harbors and river channels requires many welded steel plate products regularly furnished by us. As examples of this class of work we build: Pontoon CYLINDERs Floats AND CATAMARANs SHORE PIPE Pontoon PIPE PIPE, ELBows, ETC. Dredge pipe is usually fabricated from special steels containing higher percentages of carbon and manganese and of an analysis calculated to wear longer under severe erosive conditions. - - - - - - º - - - º - * ---º - º - - - -º-, -º-mºnºn º Tº " " " - - ºº - - - --- - - Modern Ships Use Buffalo Tanks (70) AMERICAN BUREAU OF SHIPPING RULES FOR WELDED PRESSURE VESSELS Brief Analysis of Regulations Steel Shell Plates s Class Maximum - Maximum - - - - * * car; ratiºn • * - - - - Maximumn Sł, as Longitudinal Girth S+ ra so-r; *A* * *. ---. . . . . V of l Description and Use W ºrking Temperature tº: ¥ oints Joints Stress Relieving Tests Hº! Minimum | Minimum’ €SSę Pressure | 10 kiléSS stºn Yield Point | Elongation - - All vessels shall be sub- Boilers operating at - - * - jected to a hydrostatic pressures of 30 pounds oro i * pressure of one and one- per square inch or more. - half times the allowable 60,000 lbs • * - working pressure and while | * ,000 lbs. * 1.500,000 Pressure tanks contain- Double Welded Double Welded Stress relieving required. All der thi ºw & * to 50% of the 1 */vvy, * * * * * * * * * * * * * * * * . this pressure shall be - Group l l ; * * ** { Not limited | Not limited | Not limited ouble welde ouble welde ings mus under - sº * * * * g : w p ing lethal gases or {} Butt Joints Butt Joints nozzles and fittings must first given a hammer or impact 70,000 lbs. tensile - - T. S. liquids. be welded in place. test. Following this test the P*.* strength (in 8 inches) Pressure tank tai pressure shall be raised to inch Pressure tanks contº: twice the working pressure ing liquids held at 300 and maintained during in- F. or more. spection. Pressure tanks operat- ing at pressures of 30 pounds per square inch IDouble Welded Double Welded Butt Joints Single Welded Stress relieving is required when the diameter is 100" or less and the ratio of the diameter of shell to the wall thickness - - lbs. 700°F. 1 94." º º Same as for Group I Same as for Gr I Group II or more --- 400 lbs { % Butt Joints Butt Joints is less than 100"; also when iroup oup No tanks containing º for the diameter is over 100" and lethal-gases or liquids. p º º the ratio of the diameter to of 9%" or less the cube of the wall thick- ness is less than 100. Double Welded Butt Joints Pressure tanks operat- Single Welled Single Welded ing at pressures less than Butt Joints Butt Joints 30 pounds per square * fºg ºf.” * permissible for * - * w ºn * Group III | inch 200 lbs. 250° F. % plate thickness Or Not required Same as for Group I Same as for Group I –– of 94" or less Double Welded y * * Lap Joints No tanks containing permitted lethal gases or liquids. Double Welded Lap Joints permissible for plate thickness of 3%" or less NotE.—The above information is taken from the American Bureau of Shipping Rules for Classification and Construction of Steel Vessels, 1941 issue. For additional details, or complete information, see A. B. of S. Rules P R E S S U R E V E S S E L S. THEORETICAL BURSTING PRESSURE, LBS. PER SQ. in. CYLINDRICAL SHELLS Joint Efficiency—100 Per Cent Tensile Strength of Steel—55,000 Pounds per Square Inch Inside Thickness (Inches) Diameter (Inches) | }.4 # % # % # % # % #; % 24 1146 | 1289 || 1432 | 1576 || 1719 | 1862 | 2005 || 2148 2292 || 2435 || 2578 26 1058 1190 | 1322 || 1454 | 1587 1719 | 1851 | 1983 || 2115 2248 || 2380 28 982 | 1105 || 1228 || 1350 || 1473 1596 || 1719 1842 1964 2087 || 2:210 30 917 | 1031 || 1146 || 1260 | 1375 || 1490 | 1604 || 1719 | 1833 | 1948 || 2063 32 859 967 || 1074 1182 | 1289 || 1396 || 1504 || 1611 || 1719 | 1826 | 1934 34 809 910 | 1011 || 1112 || 1213 || 1314 | 1.415 || 1517 | 1618 || 1719 | 1820 36 764 859 955 1050 | 1146 | 1241 1337 || 1432 1528 1623 1719 38 724 814 905 995 || 1086 1176 | 1266 || 1357 1447 || 1538 | 1628 40 688 773 859 945 || 1031 || 1117 | 1203 || 1289 || 1375 || 1461 | 1547 42 655 737 818 900 982 | 1064 || 1146 | 1228 1310 || 1391 || 1473 44 625 703 781 859 937 || 1016 || 1094 || 1172 | 1250 1328 || 1406 46 598 673 747 822 897 971 || 1046 || 1121 | 1196 || 1270 1345 48 573 645 716 788 859 931 || 1003 || 1074 1146 | 1217 | 1289 50 550 619 688 756 825 894 963 || 1031 1100 || 1169 || 1238 52 529 595 661 727 793 859 925 992 || 1058 || 1124 || 1190 54 509 573 637 700 764 828 891 955 || 1019 || 1082 | 1.146 56 491 552 614 675 737 798 859 921 982 | 1044 || 1105 58 474 533 593 652 711 770 830 889 948 || 1008 || 1067 60 458 516 573 630 688 745 802 859 917 974 || 1031 62 444 499 554 610 665 721 776 832 887 943 998 64 430 483 537 591 645 698 752 806 859 913 967 66 417 469 521 573 625 677 729 781 833 885 938 68 404 455 506 556 607 657 708 7.58 809 859 910 70 393 442 491 540 589 638 687 737 786 835 884 72 382 430 477 525 573 621 668 716 764 812 859 74 372 418 465 511 557 604 650 697 743 790 836 76 362 407 452 498 543 588 633 678 724 769 814 78 353 397 441 485 529 573 617 661 705 749 793 80 344 387 430 473 516 559 602 645 688 730 773 82 335 377 419 461 503 545 587 629 671 713 755 84 327 368 409 450 491 532 573 614 655 696 737 90 306 344 382 420 458 497 535 573 611 649 687 96 286 322 358 394 430 465 501 537 573 609 645 102 270 303 337 371 404 438 472 506 539 573 607 108 255 286 3.18 350 382 414 446 477 509 541 573 114 241 271 302 332 362 392 422 452 482 513 543 120 229 258 286 315 344 372 401 430 458 487 516 126 218 246 273 300 327 355 382 409 437 464 491 132 208 234 260 286 313 339 365 391 417 443 469 138 199 224 249 274 299 324 349 374 399 423 448 144 191 215 239 263 286 310 334 358 382 406 430 Calculate the factor (E x T.S.)/(F.S. x 55,000). Then the Allowable Pressure, Pa., and the Bursting Pres- sure, Pb, are related as follows: Desired Pa. Multiply Pb by the above factor. Desired Pb. Divide Pa by the above factor and use the table. (72) B U F F A L O T A N K C O R P O R A T I O N THEORETICAL BURSTING PRESSURE, LBS. PER SQ.. IN. CYLINDRICAL SHELLS Joint Efficiency—100 Per Cent Tensile Strength of Steel—55,000 Pounds per Square Inch Inside Thickness (Inches) Diameter (Inches) | # % # % # % # % # % #} 24 2721 | 2865 3008 || 3151 || 3294 || 3438 || 3581 || 3724 || 3867 | 4010 || 4154 26 2512 || 2644 || 2776 || 2909 || 3()41 || 3173 || 3305 || 3437 || 35.70 || 3702 || 3834 28 2333 || 2455 || 2578 2701 || 2824 2946 3069 || 3192 || 3315 || 3438 || 3560 30 2177 2292 || 2406 || 2521 2635 | 2750 2865 2979 3094 || 3208 || 3323 32 2041 || 2148 || 2:256 || 2363 2471 2578 || 2686 2793 || 2900 || 3008 || 3115 34 1921 | 2022 || 2123 2224 || 2325 | 2426 2528 2629 2730 || 2831 || 2932 36 1814 || 1910 | 2005 || 2101 || 2.196 2292 || 2387 2483 || 2578 2674 2769 38 1719 1809 || 1900 || 1990 || 2081 21.71 2262 || 2352 2442 2533 26.23 40 1633 || 1719 1805 || 1891 | 1977 | 2063 2148 || 2:234 || 2320 2406 || 2492 42 1555 | 1637 || 1719 | 1801 | 1882 | 1964 2046 || 2128 2210 || 2292 || 2374 44 1484 || 1562 | 1641 || 1719 || 1797 | 1875 | 1953 || 2031 || 2109 || 21.87 2266 46 1420 || 1495 | 1569 | 1644 || 1719 || 1793 | 1868 || 1943 || 2018 2092 || 2167 48 1361 || 1432 || 1504 || 1576 | 1647 1719 || 1790 | 1862 | 1934 || 2005 || 2077 50 1306 || 1375 1444 || 1513 | 1581 | 1650 1719 || 1788 1856 1925 | 1994 52 1256 || 1322 1388 || 1454 1520 | 1587 | 1653 || 1719 || 1785 1851 | 1917 54 1209 || 1273 || 1337 || 1400 | 1.464 || 1528 1591 || 1655 1719 1782 | 1846 56 1166 | 1228 1289 || 1350 | 1.412 || 1473 || 1535 | 1596 || 1657 | 1719 1780 58 1126 || 1185 | 1245 || 1304 || 1363 || 1422 || 1482 | 1541 | 1600 | 1659 1719 60 1089 || 1146 || 1203 || 1260 | 1318 || 1375 || 1432 1490 | 1547 | 1604 || 1661 62 1053 || 1109 || 1164 | 1220 | 1275 || 1331 || 1386 || 1442 || 1497 || 1552 | 1608 64 1021 || 1074 || 1128 1182 | 1235 | 1289 || 1343 || 1396 || 1450 | 1504 || 1558 66 990 || 1042 | 1094 || 1146 1198 || 1250 | 1302 || 1354 1406 || 1458 || 1510 68 960 | 1011 || 1062 | 1112 || 1163 | 1213 | 1264 || 1314 || 1365 || 1415 || 1466 70 933 982 1031 || 1080 | 1129 || 1179 || 1228 1277 | 1326 || 1375 1424 72 907 955 1003 || 1050 | 1098 || 1146 || 1194 | 1241 | 1289 || 1337 || 1385 74 883 929 976 || 1022 || 1068 || 1115 1161 | 1208 || 1254 || 1301 || 1347 76 859 905 950 995 || 1040 || 1086 || 1131 || 1176 | 1221 | 1266 || 1312 78 837 88.1 925 970 | 1014 || 1058 || 1102 || 1146 || 1190 | 1234 || 1278 80 816 859 902 945 988 || 1031 1074 || 1117 | 1160 | 1203 || 1246 82 796 838 880 922 964 || 1006 || 1048 || 1090 | 1132 || 1174 | 1216 84 778 S18 859 900 941 982 1023 1064 1105 || 1146 1187 90 726 764 802 840 878 917 955 993 || 1031 || 1069 || 1108 96 680 716 752 788 S24 859 895 931 967 1003 || 1038 102 64() 674 708 74.1 775 809 843 876 910 944 977 108 605 637 668 700 732 764 796 828 859 891 923 114 573 603 633 663 694 724 754 784 814 844 874 120 544 573 602 630 659 687 716 745 773 802 831 126 518 546 573 600 627 655 682 709 737 764 791 132 495 521 547 573 599 625 651 677 703 729 755 138 473 498 523 548 573 598 623 648 673 697 722 144 454 477 501 525 549 573 597 621 645 668 692 Calculate the factor (E x T.S.) /(F.S. x 55,000). Then, the Allowable Pressure, Pa, and the Bursting Pres- sure Pb, are related as follows: Desired Pa. Multiply Pl, by the above factor. Desired Pb. Divide Pa by the above factor and use the table. (73) P R E S S U R E V E S S E L S THEORETICAL BURSTINC PRESSURE, LBs. PER SQ.. IN. CYLIND RICAL SHELLS Joint Efficiency—100 Per Cent Tensile Strength of Steel—55,000 Pounds per Square Inch Inside Thickness (Inches) Diameter (Inches) 96 # 1. 1; 1% 1 *; 1% 1; 1% 1á; 1% 24 4207 || 4440 || 4583 || 4727 || 487() 5013 || 51.56 || 5299 || 5443 || 5586 || 5729 26 3966 | 4099 || 4231 || 4363 4495 || 4627 || 4760 4892 || 5024 || 51.56 || 5288 28 3683 || 3806 || 3929 | 4051 || 4174 || 4297 || 4420 4542 4665 || 4788 || 4911 30 3438 || 3552 | 3667 || 3781 || 3896 || 401() || 4125 || 4240 || 4354 || 4469 || 4583 32 3223 || 3330 || 3438 3545 || 3652 || 376() || 3867 || 3975 | 4082 || 4189 || 4297 34 303.3 || 3134 || 3235 | 3336 || 3438 || 3539 || 364() 3741 3842 || 3943 | 4044 36 2865 2960 || 3056 || 3151 || 3247 || 3342 | 3438 || 3533 || 3628 || 3724 || 38.19 38 2714 2804 || 2895 || 2985 || 3()76 || 3166 || 3257 || 3347 || 3437 || 3528 || 3618 40 2578 || 2664 || 2750 2836 2922 || 3008 || 3094 || 3180 || 3266 || 3352 || 3438 42 2455 2537 2619 2701 2783 2865 2946 || 3028 || 3110 || 3192 || 3274 44 2344 || 2422 || 2500 || 2578 2656 2734 || 281.2 2891 || 2969 || 3047 || 3125 46 2242 || 2317 || 2391 || 2466 || 2541 2615 2690 2765 2840 || 2914 || 2989 48 2148 2220 2292 || 2363 2435 || 2507 || 2578 || 2650 | 2721 || 2793 || 2865 50 2063 || 2131 2200 2269 || 2338 2406 || 24.75 || 2544 2613 || 2681 2750 52 1983 || 2049 || 2115 218.1 2248 || 2314 || 2380 || 2446 || 2512 || 2578 2644 54 1910 | 1973 || 2037 || 2101 || 2164 22.28 2292 || 2355 2419 || 2483 || 2546 56 1842 | 1903 || 1964 2026 2087 2148 2210 2271 || 2333 || 2394 2455 58 1778 || 1837 | 1897 || 1956 | 2015 2074 2134 2193 2252 || 2311 || 2371 60 1719 1776 | 1833 | 1891 | 1948 || 2005 || 2063 2120 2177 2234 2292 62 1663 || 1719 || 1774 | 1830 | 1885 | 1941 | 1996 || 2051 2107 || 2162 2218 64 1611 | 1665 1719 || 1772 | 1826 | 1880 | 1934 || 1987 | 2041 | 2095 || 2148 66 1563 | 1615 1667 1719 || 1771 1823 1875 1927 | 1979 2031 2083 68 1517 | 1567 | 1618 1668 1719 || 1769 1820 | 1870 | 1921 | 1972 2022 7() 1473 1522 | 1571 1621 167() 1719 1768 1817 | 1866 1915 1964 72 1432 || 1480 1528 1576 | 1623 1671 1719 1766 | 1814 | 1862 | 1910 74 1394 | 1.440 | 1.486 || 1533 1579 | 1626 1672 1719 || 1765 | 1812 | 1858 76 1357 | 1.402 || 1447 1493 || 1538 || 1583 | 1628 1674 || 1719 || 1764 1809 78 1322 1366 || 1410 || 1454 || 1498 || 1542 | 1587 | 1631 1675 1719 || 1763 S() 1289 || 1332 || 1375 1418 || 1461 | 1504 || 1547 || 1590 | 1633 | 1676 1719 82 1258 || 1300 || 1341 || 1383 || 1425 | 1.467 1509 || 1551 1593 | 1635 | 1677 84 1228 1269 1310 || 1350 1391 || 1432 || 1473 || 1514 | 1555 | 1596 | 1637 9() 1146 1184 1222 | 1260 | 1299 || 1337 || 1375 1413 || 1451 || 1490 1528 96 1074 || 1110 || 1146 1182 | 1217 | 1253 | 1289 || 1325 1361 | 1396 | 1.432 102 1011 || 1045 1078 || 1112 || 1146 | 118() | 1213 | 1247 | 1281 | 1314 1348 108 955 987 || 1019 || 1050 | 1082 1114 | 1146 1178 || 1209 | 1241 | 1273 114 905 935 965 995 || 1025 | 1055 || 1086 1116 || 1146 1176 | 1206 120 S59 SSS 917 945 974 || 1003 || 1031 || 1060 | 1089 || 1117 | 1.146 126 818 S46 S73 900 9.28 955 982 1009 || 1037 || 1064 || 1091 132 7S1 807 8.33 859 885 911 938 964 990 || 1016 || 1042 138 747 772 797 S22 S47 872 S97 922 947 971 996 144 716 740 764 788 812 S36 S59 883 907 931 955 Calculate the factor (E x T.S.)/(F.S. x 55,000). Then the Allowable Pressure, Pa, and the Bursting Pres- sure, Pb, are related as follows: Desired Pa. Multiply Pl) by the above factor. Desired Pb. Divide Pa by the above factor and use the table. Bursting pressures above heavy line do not comply with A. S. M. E. Code which requires Outside Diameter (not Inside Diameter) in this region. (74) B U F F A L O T A N K C O R P O R A T I O N THEORETICAL BURSTINC PRESSURE, LBS. PER SQ.. IN. CYLINDRICAL SHELLS Joint Efficiency—100 Per Cent Tensile Strength of Steel—55,000 Pounds per Square Inch Inside Thickness (Inches) Diameter (Inches) | 1.3% 1 J/6 15% 134 1% 2 2% 21% 234 3 3% 4 24 6302 | 6875 | 7448 || 8021 | 8594 || 9,167 | 10313 |1145S 12604 |13750 16042 |1718S 26 5817 | 6346 | 6875 || 7404 || 79.33 | S462 | 9519 |10577 |11635 |12692 ||14808 |16923 28 5402 || 5893 || 6384 | 6875 | 7366 || 7857 | 8839 98.21 |10804 |11786 |13750 |1571.4 3() 5042 5500 5958 || 6417 | 6875 | 73.33 || 8250 | 9167 |10083 |11000 |12833 |14667 32 4727 || 5156 || 5586 || 6016 || 6445 | 6875 || 7734 || 8594 | 94.53 |10313 |12031 || 13750 34 4449 || 4853 5257 | 5662 6066 || 647 1 || 7279 | SOSS | SS97 || 97.06 || 1324 |12941 36 420.1 4583 || 4965 || 5347 5729 6111 | 6875 7639 | 8403 || 9167 ||10694 |12222 38 3980 || 4342 || 4704 || 5066 || 5428"| 5789 || 6513 | 7237 7961 | S684 || 10132 |11579 40 3781 || 4125 || 4469 || 4813 || 5156 || 5500 | 6188 | 6875 7563 | S250 | 9625 || 1000 42 3601 || 3929 || 4256 || 4583 || 4911 || 5238 5893 || 6548 || 7202 || 7857 || 9,167 || 10476 44 3438 || 3750 | 4063 || 4375 4688 || 5000 || 5625 | 6250 | 6875 | 7500 | 87.50 | 10000 46 3288 || 3587 || 3886 || 41.85 4484 || 4783 || 538() || 5978 || 6576 || 7174 || 8370 | 9565 48 3151 | 3438 || 3724 | 4010 || 4297 || 4583 || 51.56 5729 || 6302 | 6875 | 8021 | 9167 5() 3025 || 3300 || 3575 3850 || 4125 || 4400 || 4950 5500 | 6050 | 6600 || 7700 | 8800 52 2909 || 3173 || 3438 || 3702 || 3966 || 4231 || 476() || 528S 5817 | 6346 || 7404 | 84.62 54 2801 || 3056 || 3310 || 3565 || 3819 | 4074 || 4583 5093 || 5602 || 6111 || 7130 8148 56 2701 || 2946 || 3192 || 3438 || 3683 3929 || 4420 || 4911 || 5402 || 5893 | 6875 7857 58 2608 || 2845 3082 3319 || 3556 || 3793 || 4267 4741 5216 5690 6638 || 7586 60 2521 2750 2979 || 3208 || 3438 || 3667 || 4125 || 4583 || 5042 5500 || 6417 | 7333 62 244() 2661 2883 || 3105 || 3327 | 3548 || 3992 || 4435 || 4879 || 5323 6210 || 7097 64 2363 || 2578 2793 || 3008 || 3223 3438 || 3867 || 4297 || 4727 | 51.56 6016 | 6875 66 2292 2500 | 2708 || 2917 | 3125 || 3333 || 3750 4167 || 4583 || 5000 || 5833 | 6667 68 2224 2426 2629 || 2831 30:33 || 32.35 | 364() | 4044 4449 || 4853 || 5662 647.1 7() 2161 2357 2554 2750 2946 3143 35.36 || 3929 || 4321 4714 || 5500 6286 72 2101 2292 || 2483 2674 2865 3056 || 3438 || 3819 || 4201 || 4583 TET 6111 74 2044 2230 2416 || 2601 || 2787 2973 || 3345 3716 || 4088 || 4459 || 5203 || 5946 76 1990 2171 2352 2533 2714 || 2895 || 3257 || 3618 || 3980 || 4342 5066 5789 78 1939 2115 2292 2468 2644 2821 || 31||73 || 3526 3878 4231 || 4936 5641 S() 1891 || 2063 2234 || 2406 || 2578 2750 3094 || 3438 || 3781 4125 || 4813 || 550() 82 1845 2012 2180 || 2348 || 2515 2683 || 3018 || 3354 || 3689 | 4024 || 4695 T555 84 1801 | 1964 2128 2292 || 2455 2619 2946 || 3274 || 3601 || 3929 || 4583 5238 90 1681 | 1833 || 1986 2139 2292 || 2444 2750 || 3056 || 3361 || 3667 4278 || 4889 96 1576 1719 1862 | 2005 || 2148 2292 || 2578 2865 || 3151 || 3438 401() 4583 102 1483 | 1618 1752 1887 2022 || 2157 2426 2696 2966 3235 | 3775 4314 108 1400 | 1528 1655 || 1782 | 1910 || 2037 2292 2546 2801 || 3056 || 3565 | 4074 114 1327 1447 | 1568 1689 1809 || 1930 2171 24.12 2654 2895 || 3377 || 3860 120 1260 | 1375 1490 | 1604 || 1719 | 1833 2063 2292 || 2521 2750 3208 || 3667 126 1200 | 1310 || 1419 || 1528 1637 1746 | 1964 2183 2401 || 2619 || 3056 3492 132 1146 | 1250 | 1354 || 1458 1563 | 1667 1875 | 2083 2292 || 2500 2017 | 3333 138 1096 || 1196 1295 || 1395 || 1495 | 1594 || 1793 | 1993 2192 || 2391 || 2790 || 318S 144 1050 | 1146 | 1241 || 1337 || 1432 1528 1719 1910 2101 || 2292 || 2674 || 3()56 Calculate the factor (E x T.S.)/(F.S. x 55,000). Then the Allowable, Pressure, Pa, and the Bursting Pres- sure, Po, are related as follows: Desired Pa. Miultiply Pl, by the above factor. Desired Pb. Divide Pa by the above factor and use the table. Bursting Pressures, above heavy line do not comply with A. S. M. E. Code which requires Outside Diameter (not Inside Diameter) in this region. (75) SECTION V Nº. TANK HEADS FLAT— F. & D. — ELLIPTICAL DESIGN – CAPACITIES TYPES AND DIMENSIONS ALLOWABLE WORKINC PRESSURE (77) T A N K H E A D S Heads Pressure tanks, or boilers operating under high pressure, would hardly be possible without the use of dished heads. For ordinary storage purposes, tanks are often furnished with flat heads, but for pressure vessels, heads are formed to a specified or designed radius, not usually greater than the diameter of the tank itself. Much confusion has resulted in the use of the terms “bumped,” “dished,” “concave” and “convex” as applied to spherical heads of cylindrical vessels. The terms “bumped” and “dished” are used interchangeably by many people and the terms “concave” and “convex” are not sufficiently definite unless some explanatory phrase is added to indicate whether the observer is supposed to be on the outside looking in, or on the inside looking out. In the case of a head which curves outwardly from the shell and which is concave to the pressure, the volume enclosed by the head is added to the volume of the shell, thus making a larger vessel than would be the case if a flat head were used; such heads are often called “plus” heads. Similarly, if a head is convex to the pressure, curving inwardly from the shell, its volume will be subtracted from that which the vessel would have with a flat head and it would be called a “minus” head. Woź ſess ſhan 2 Tana / ſt A - //7 /70 Case /ess 7/?a /7 Mo?" /ess f/7a/7 2 7'ay/7a. // * / ". Af /eas f 27. //7 /70 CO 5e /e3S fhang W. She// Fº: Şeſ. – 4– L//mſ fea' fo fa/7/3 /70% over 20 in.//7 a.ſa/77 //7 accoro/- 7. a/7ce w///, /22/- (Z-73a. Welded Head Attachments (Recommended by A.S.M.E. Code) APPROXIMATE CIRCLE PLATE SIZES REQUIRED FOR HEADS For ESTIMATING PURPOSES ONLY Flanged Only Heads with K.R. not in excess of 3 x t - S.F. not in excess of 3%", and less than 1" thick: Estimated Circle size = O.D. plus 3 x t plus 2 x S.F. Flanged & Dished Heads (Standard Type) with K.R. not in excess of 3 x t, S.F. not in excess of 3%", and less than 1" thick: Estimated Circle size = O.D. plus O.D." Elliptical Heads (Ratio 2:1) D Estimated Circle size = I.D. plus IP plus 2 x S.F. plus 1.5 x t A.S.M.E. F. & D. Heads: with S.F. not in excess of 4", and less than 1" thick: (Not Elliptical) O.D Estimated Circle size = O.D. plus 3 4 plus 2 x t plus 2 x S.F. // plus 3% K.R. plus 2 x S.F. All dimensions in inches t. is Thickness in inches O.D. is Outside Diameter “ { { K.R. is Knuckle Radius “ & C S.F. is Straight Flange ( ( & & (78) B U F F A L O T A N K C O R P O R AT I O N DISHED HEADS From Section VIII—Unfired Pressure Vessels—A.S.M.E. Code DESIGN OF HEADS U-36 (a) A head may be made from a single sheet, or built up of several pieces joined together. The thickness of a blank unstayed dished head with the pressure on the concave side, when it is a segment of a sphere, shall be calculated by the following formula: t = 8.33 P L 2 TS E where t = thickness of plate, in., maximum allowable working pressure, lb. per sq. in., TS = tensile strength, lb. per sq. in., originally stamped on the plate used in forming the head. For ferrous materials of temperatures over 650° F., 5 times the value given in Table U-2 shall be used. For nonferrous materials 5 times the values given in Table U-3 shall be used. = radius to which the head is dished, measured on the concave side of the head, in., = efficiency of weakest joint used in forming the head (exclusive of the joint to the shell): for seamless heads E = 1.00 # (b) The radius to which a head is dished shall be not greater than the outside diameter of the flanged portion of the head. Where two radii are used, the longer shall be taken as the value of L in the formula. (c) When a head dished to a segment of a sphere has a flanged-in manhole or access open- ing that exceeds 6 in. in any dimension, the thickness shall be increased by not less than 15 per cent of the required thickness for a blank head computed by the above formula, but in no case less than % in. additional thickness over a blank head. Where such a dished head has a flanged opening supported by an attached flue, an increase in thickness over that for a blank head is not required. If more than one manhole is inserted in a head, the thickness of which is calculated by this rule, the minimum distance between the openings shall be not less than one-fourth of the outside diameter of the head. In a multipiece welded head if the center of such a flanged-in type manhole (over 6 in. in any dimension) is not closer to a welded joint than a distance equal to the maximum dimen- sion of the manhole, the added thickness required shall be based on the required thickness for a seamless (one-piece) blank head. If the distance of the manhole from a welded joint is less than this, or if it crosses the weld, the added thickness shall be based on the required thickness for a welded blank head. (d) All other openings, which require reinforcement, placed in a head dished to a segment of a sphere, including all types of manholes except those of the integral flanged-in type, shall be reinforced in accordance with Par. U-59(g), in the application of which the head shall be treated as a shell of the same diameter, thickness, working pressure, and material. When so reinforced, the thickness of such a head may be the same as for a blank unstayed dished head. In determining the amount of reinforcement required under Par. U-59(g) the required thickness of a shell as specified therein shall be used. (e) Where the radius L to which the head is dished is less than 80 per cent of the diameter of the shell, the thickness of a head with a flanged-in manhole opening shall be at least that found by making L equal to 80 per cent of the diameter of the shell and with the added thick- ness for the manhole. This thickness shall be the minimum thickness of a head with a flanged-in manhole opening for any form of head. (f) No head, except a full-hemispherical head, shall be of a lesser thickness than that required for a seamless shell of the same diameter. Dished heads with a reversed flange having pressure on the concave side of the dish may be used only when the requirements of Par. U-51 are met. (g) A blank dished head of a semi-ellipsoidal form in which half the minor axis or the depth of the head is at least equal to one-quarter of the inside diameter of the head shall be made at least as thick as the required thickness of a seamless shell of the same diameter. If a flanged-in manhole which meets the code requirements is placed in an ellipsoidal head, the thickness of the head shall be the same as for a head dished to a segment of a sphere with a dish radius equal to 0.8 the diameter of the shell and with the added thickness for the manhole. (79) T A N K H E A D S DESIGN OF HEADS (Continued) (h) All other openings which require reinforcement placed in an ellipsoidal head, includ- ing all types of manholes except those of the integral flanged-in type, shall be reinforced in accordance with the rules in Par. U-59(g), in the application of which the head shall be treated as a shell of the same diameter, thickness, working pressure, and material, and when so reinforced the thickness of such a head may be the same as for a blank ellipsoidal head. In determining the amount of reinforcement required under Par. U-59(g), the required thickness of a shell as specified therein shall be used. (i) Unstayed dished heads with the pressure on the convex side shall have a maximum allowable working pressure equal to 60 per cent of that for heads of the same dimensions with the pressure on the concave side. (j) Unreinforced openings in heads shall be governed by the following rules: (1) The edge of any unreinforced opening, excluding rivet holes, shall come no closer to the line bounding the spherical or ellipsoidal portion of the head around a manhole than the distance equal to the thickness of the head, and in no case except for water-gauge connections shall it come within the part formed by the corner radius of a dished head. (2) The maximum allowable diameter of any unreinforced opening in a head, except in a full-hemispherical head, shall not exceed that permitted by the rules in Par. U-59(a) for a shell of the same diameter, thickness, working pressure, and material, nor shall it exceed 8 in. in any case. For unreinforced openings in full-hemispherical heads, the same rule shall, apply, except that the value of K used in Par. U-59(a) and the chart in Fig. U-5 shall be one- half the value given by the formula therein. (3) The minimum distance between the centers of any two unreinforced openings, rivet holes excepted, shall be determined by the following formula: _ A + B 2(1 — K) where L = distance between the centers of the two openings measured on the surface of the head, in., A and B = diameters of the two openings, in., e K = same as defined in Par. U-59(a) for the equivalent shell described in (2). (k) When the flange of an unstayed dished head is machined to make a close and accurate fit into or onto the shell, the thickness shall not be reduced to less than 90 per cent of that required for a blank head. (l) The thickness of a blank unstayed full-hemispherical head with the pressure on the concave side shall be calculated by the following formula: t = 2 P I, 2 TS E minimum thickness of head, in., º maximum allowable working pressure, lb. per Sq. in., º º tensile strength, lb. per sq. in, originally stamped on the plate used in forming the head. For ferrous materials of temperatures over 650 F., 5 times the value given in Table U-2 shall be used. For nonferrous materials 5 times the value given in Table U-3 shall be used. - * radius to which the head is formed, measured on the concave side of the head, in, efficiency of weakest joint used in forming the head, including the joint to the shell; for riveted joints = calculated riveted efficiency. for fusion-welded joints = efficiency specified in Pars. U-68, U-69, and U-70. for seamless shells with integral heads = 100 per cent. where t = # The above formula shall not be used when the thickness of the head exceeds 20 per cent of the inside radius. Joints in full-hemispherical heads, including the joint to the shell, shall be governed by and meet all the requirements for longitudinal joints in cylindrical shells, except that in a butt-welded joint attaching a head to a shell the middle lines of the plate thicknesses need not be in alignment. (80) B U F F A L O T A N K C O R P O R A T I O N DESIGN OF HEADS (Continued) (m) If a flanged-in manhole which meets the code requirements is placed in a full-hemis- pherical head, the thickness of the head shall be the same as for a head dished to a segment of a sphere (See (a)), with a dish radius equal to eight-tenths the diameter of the shell and with the added thickness for the manhole as specified in (c). (n) All other openings which require reinforcement placed in a full-hemispherical head, including all types of manholes except those of the integral flanged-in type, shall be reinforced in accordance with the rules in Par. U-59(g), in the application of which the head shall be treated as a shell of the same diameter, thickness, working pressure, and material. When so reinforced, the thickness of such a head may be the same as for a blank full-hemispherical head. In determining the amount of reinforcement required under Par. U-59(g), one-half the required thickness of a cylindrical shell as specified therein shall be used. U-37 (a) When dished heads are of a less thickness than called for by Par. U-36, they shall be stayed as flat surfaces, no allowance being made in such staying for the holding power due to the spherical form unless all of the following conditions are met: (1) That they be at least two-thirds as thick as called for by the rules for unstayed dished heads. (2) That they be at least 7% in. in thickness. (3) That through stays be used attached to the dished head by outside and inside nuts. (4) That the maximum allowable working pressure shall not exceed that calculated by the rules for an unstayed dished head plus the pressure corresponding to the strength of the stays or braces secured by the formula for braced or stayed surfaces given in Par. U-40 using 70 for the value of C. (b) If a dished head is formed with a flattened spot or surface, the diameter of the flat spot shall not exceed that allowable for flat heads as given by the formula in Par. U-39 using C = 0.40. FUNCTIONS OF A. S. M. E. HEADS Not including straight flanges All dimensions in inches + = LenëTH on 4 os PL A Y- Cap. Cap. O. D. D. R. K. R. H L U. S. || O. D. D. R. K. R. H L U. S. Gals. Gals. 30 30 1% 5Hºs 33 9 90 84 || 5% 16% 99% 258 30 27 | 1% 5} | 33% 10 || 96 || 90 5% 17# 106% 310 36 36 2% 6# 39% 16 96 84 || 5% 18; 107 325 36 30 2% 7% | 40% 18 102 96 || 6% 18; 112% 371 42 42 2% 7% 46% 25 102 90 | 6% 19% | 1.13% 388 42 36 2% 8% 46% 28 108 || 102 || 6% 19% | 1.19% 441 48 48 2% 8%; 52% 37 108 96 || 6% 20% | 120% 461 48 || 42 2% 9%; 53% 40 || 114 || 108 || 6% 20% | 126% 519 54 54 || 3% 9; 59% 52 114 || 102 || 6% 21% 126% 542 54 48 || 3% 10% 60 57 120 | 114 || 7% 21% 132% 603 60 || 54 3% 11% | 66% 78 || 120 | 108 || 7% 22% | 1.33% 629 66 6() 4 12# | 73% 101 126 | 120 || 7% 22+'s 139% 702 72 66 || 4% 13; 79% 132 126 114 || 7% 23% 140 730 78 72 || 4% | 1.4% 66% 166 132 | 126 || 8 23# 146 806 84 78 5% 15% | 93 211 132 | 120 | 8 24% | 1.46% 838 (81) T A N K H E A D S CAPACITY OF ONE FULL TANK HEAD IN U. S. CALLONS (Not including straight flanges.) Figures given are for estimating purposes only and based on formulae shown at bottom of table. Radius of dish = diameter of head. Knuckle radius = 3 x plate thickness. I.D. Standard F and D Type Elliptical Type 1'-6" 1.36 3.22 2'-0" 3.22 7.64 2'-6" 6.30 14.91 3'-0" 10.88 25.77 3'-6" 17.28 40.93 4'-()" 25.79 61,09 4'-6" 36.73 86.98 5'-()" 50.38 119.31 5'-6" 67.05 158.81 6'-()" 87.05 206.17 6'-6" 110.68 262.13 7'-0" 138.23 327.39 7'-6" 170.02 402.68 S’-()” 206.35 488.70 8'-6" 247.49 586.19 ()'-()” 293.79 695.83 9'-6" 345.52 818.00 10'-0" 403.00 954.50 10'-6" 466.52 1109.96 11'-0" 536.39 1270.44 11'-6" 612.91 1451.68 12'-()" 696.38 1649.38 12'-6" 787.11 1864.26 13'-()" 885.39 2097.04 13'-6" 991.53 2348.43 14'-0" 1105.83 2619.15 14'-6" 1228.60 2909.91 15'-0" 1360.13 3221.44 15'-6" 1500.72 3554.44 16'-0" 1650.69 3909.63 16'-6" 1810.33 4287.73 17'-0" 1979.94 4689.46 17'-6" 2159.83 5115.52 18'-0" 235().30 5566.64 18'-6" 2551.64 6043.54 19'-0" 2764.18 6546.92 19'-6" 2988.19 7077.50 20'-0" 3224.00 7636.00 Capacity = Capacity = .403D3 .9545D3 (D = I.D. in Feet) (D = I.D. in Feet) Capacities of tanks or cylinders, exclusive of heads, are covered by tables shown elsewhere. See page 196. (82) º B U F F A L. O. T AN K C D R P 0 RAT I O N TANIKS rºw. FLAT. HEADS From Section VIII. Unfired Pressure Wessels–A.S.M.E. Code DESIGN OF HEADS U-39 (a) The minimum required thickness of unstayed flat heads, cover plates, blind flanges, etc., shall be calculated by the following formula: CP t = d. S where t = minimum required thickness of plate, in., = diameter, or shortest span, P = maximum allowable working pressure, lb. per sq. in., S = maximum allowable unit working stress, lb. per sq. in., C = 0.30 for flanged plates attached to vessels as shown in Fig. U-3(c) by means of circumferential lap joints, fusion welded, or brazed and meeting all the require- ments therefor, and where the corner radius on the inside is not less than 3 times the thickness of the flange immediately adjacent thereto, and for flanged plates, with the same inside corner radius screwed over the ends of vessels, in which the design of the threaded joint against failure by shear, tension, or compression resulting from the end force due to pressure is based on a factor of safety of at least 5, and the threaded parts are at least as strong as the threads for standard piping of the same diameter. Seal welding may be used, if desired. C = 0.25 for heads forged integral with or butt welded to vessels as shown in Fig. U-3(d), where the corner radius on the inside is not less than 3 times the thickness of the flange immediately adjacent thereto, and where the welding meets all the require- ments for circumferential joints given in Pars. U-67 to U-79, including those for stress relieving and radiographic examination, C = 0.50 for plates fusion welded to the inside of vessels and otherwise meeting the requirements for the respective types of fusion-welded vessels, including stress relieving when required for the vessel but omitting radiographic examination, and where the plate is welded for its entire thickness as shown in Fig. U-3(f) with a fillet weld having a throat not less than 1.25 times the thickness of shell or flat head, whichever is smaller. Art its 2.º mºnt-12t or/25ts whicheve N ºssmahertºs - d -- (f) Fig. U-3 Some Acceptable Types of Flat Heads and Covers Note: The above illustrations are diagrammatic only. Other designs that meet the requirements of Par. U-39 will be acceptable. T A N K H E A D S Straight {{*#*—-—- º FLANGED ONLY HEADS - - -Cage ‘’” S.F. K-------94 ºmeter-------- ; :- DIMENSIONS Standard Diameters are used for the purpose of this tabulation. However, all intermediate diameters between 12” and 144” are available from our regular equipment. All Dimensions are in linches O. D. 12-T-14-Tié-Tié-T20-T22-1-24-T35- G Recommended Knuckle Radii and Maximum Straight Flanges age K.R. S.F. K.R. S.F. K.R. S.F. K.R. S.F. || K.R. S.F. K.R. S.F. K.R. S.F. K.R. S.F. % % 1% 3% 1% | 3% 1% 3% 1% 3% 1% | 3% 1% 3% 1% 3% 1% % 946 || 1 % 946 || 1 % 946 || 1 % 946 || 1 % 946 || 1 % 946 1% 946 2 %6 || 2 34 % 2% | 34 2% 34 2% 34 2% | 34 2% | 34 2% 34 2% | 34 2% % 1946. 3 1946. 3 1%| 3 1%|3 1946. 3 1%. 3 1%|3% | 1%|3% % 1% 3 1% 3 1% 3 1% 3 1% 3 1 % 3 1% |3% | 1% |3% % 1% 3 1% | 3 || 1346 || 3 || 1% | 3 || 1% | 3 || 1% 3% 1% |4% 1% |4% % 1% 3 1% 3 1% 3 1% 3 1% 3% 1% 3% 1% 4% 1% |4% % 1% | 3 || 1 % 3% 1% 3% 1% 3% 1% |3% 1% 3% | 1% 4% 1% |4% % 2}4 || 3 2% 3% 2}4 |3}% 2% 3% 2% 3% 2% 3% 2% 4 2% 4 % |...............l................ 2% |3% 2% 3% 2% 3% 2% 3% 2% 4 2% 4 1 ||.......!........l................l........l........ 3 3% 3 3% 3 3% | 3 4 3 4. 1% |............. [....... [.......l...............l................ 3% 3% 3% 3% 3% 4 3% 4 1% | ......…l....... [.......l...............l........'........ 3% 3% 3% 3% |3% 4 3% 4 1% | ..............] …l.......l...............l................l........'…l................ 4% 4 4% 4 1% lºº....….l… … […]… […]…l…l…l… 4% 5 4% |5 o, D- |-23–T-30 T-32 34-36-I-33 ~40-1-42 = G Recommended Knuckle Radii and Maximum Straight Flanges " |K.R.I.s.f. [K.R.I.s.f. [K.R.T.s.f, Ik R. Is F.I.K.R.T.S.F.I.K.R.T.S.E.I.K.R.T.S.E.I.K.R.Is F. % % 1% | 3% 1% | 3% 1% | 36|| 1 % 9% | 1 % 3% 1% 3% 1% 3% 1% % 946 1% | 946 1% 946 || 1 % 946 || 1 % 946 || 1 % 946 || 1 % | 946 || 134 || 946 || 1 % % % 2% | 34 |2% | 34 |2% 34 2% 34 2% | 34 2% 34 2% 34 2% % 1%. 3% | 1%|3}4 || 1546||3}4 || 1%. 3% | 1946||3}4 || 1946||3}4 || 1%|3}4 || 1%|3}4 % 1% |3%|1% |3% 1% |3% 1% 3% 1% 3% 1% |3% 1% 3% | 1% 3% % 1% 4% 1% |4% | 1946 |4% 1% 4% 1% 5% 1% 5% | 1% 5% 1% 5% % 1% |4% 1% |4% | 1 % |4%| 1% |4% 1% |5% | 1% 5% | 1% 5% | 1% |5% % 1% |4% | 1% |4}% 1% |4% 1% 4% 1% 5% 1% 5% 1% 5% | 1 % 5% % 2% |4}4 || 2% |4}4 || 2% |4}4 2% |4}4 || 2% |5% 2% 5% 2}4 |5% 2% 5% % 2% 4 2% |4 2% 4 2% 4 2% 5 2% 5 2% 5 2% 5 1 3 4 3 4 3 4 3 4. 3 5 3 5 3 5 3 5 1% |3% | 4 || 3% | 4 || 3% || 4 || 3% | 4 || 3% | 5 || 3% | 5 || 3% | 5 || 3% 5 1% 3% 3% 3% |3% |3% |3% 3% 3% |3% 4% |3% |4% |3% 4% |3% |4% 1% 4% 3% 4% 3% |4% |3% |4% 3% 4% 4% 4% 4% 4% |4% |4% |4% 1% 4% 3% 4% 3% 4% 3% 4% |3% |4% |4% |4% 4% |4% 4% 4% 4% Minimum S. F. Dimension, 1%" in all cases. S. F. may be any dimension between maximum and minimum. All Dimensions subject to usual shop tolerances. Heads can be furnished with larger or smaller K. R. dimensions and heavier gage. Consult us regarding your requirements. Maximum S. F. Dimensions given would be increased or decreased according to the amount by which the K. R. dimensions are decreased or increased. (84) B U F F A L O T A N K C O R P O R A T I O N Straight Flange FLANGED ONLY HEADS º T). - -Gage """ is tº e DINMENSIONS 14 — — — — — — — —Outside Diameter_ _ _ _ _ _ _ _ gº t O.D. | Standard Diameters are used for the purpose of this tabulation. However, all intermediate diameters between 12” and 144’’ are available from our regular equipment. All Dimensions are in Inches O. D. 48 54 60 | 66 | 72 78 | 84 90 Recommended Knuckle Radii and Maximum Straight Flanges | |S F. K.R. |S F. K.R. |S F. K R. S. F. K R |S F. K R S F. K.R. S.F. Gage K R S F K R - — % % 1% - % % 2% | }ſº 2% 9% 2% 9% 2% 946 |2% | }{6 |2% 94% 2% | }ſº 2% % % 2% | 34 |3}4 || 34 |3% | 34 |3}4 || 34 |3}4 || 34 3% | 34 3% 34 |3}4 % 1%. 3% | 1%. 3% | 1%. 3% | 1946, 3% | 1%. 3% 1%. 3% 1%. 3% 1%. 3% % 1% |4}4 || 1 % |4}4 || 1 % |4% | 1 }, 4% | 1% 4% 1% 4% 1% 4% | 1% 4% % 1% 5% 1% 5% 1% 5% | 1% 5% 1% 5% 1% 5% | 1% 5% | 1% 5% % 1% 5% 1% |5% 1% 5% 1% 5% | 1% 5% 1% 5% 1% |5% 1% 5% % 1% 5% 1% 5% 1% 5% | 1 % 5% | 1 % 5% 1% 5% | 1% 5% 1% 5% % 2% 5% 2% 5% 2% 5% | 2% |5% 2% 5% 2% 5% 2% 5% | 2}4 |5% % 2% 5% 2% 5% 2% 5% 2% 5% 2% 5% 2% 5% 2% 5% 2% 5% 3 || 6 || 3 || 6 || 3 || 6 || 3 || 6 || 3 || 6 || 3 || 6 || 3 || 6 || 3 || 6 1% 3% | 6 || 3% | 6 || 3% | 6 || 3% | 6 || 3% | 6 || 3% | 6 || 3% | 6 || 3% | 6 1% 3% 5% | 3% 6% 3% 6% | 3% 6% | 3% 6% |3% 6% |3% 6% | 3% 6% 1% 4% 5% |4% 6% |4% |6% |4% |6% 4% 6% |4% 6% |4% |6% |4% |6% 1% 4% 5% |4% |6% |4% 6% 4% 6% |4% |6% |4% 6% |4% 6% |4% |6% ). 02-1 103 I-114 I-120-I-126-T-132 Recommended Knuckle Radii and Maximum Straight Flanges | K.R. S.F. K.R. S.F. K.R. S.F. K.R. S.F. K.R. S.F. K.R. S.F. K.R. S.F. K.R. S.F. O D. 9 6 13 8 % % |3}4 || 34 |3}4 || 34 3% 34 |3}4 || 34 |3}4 || 34 3% % 1%. 3% 1%. 3% 1%. 3% | 1%. 3% | 1%. 3% | 1%. 3% % 1% 4%|1% |4%|1% |4%|1% |4%|1% |4%|1% |4%|1% |4% % 1% 5% | 1% 5% 1946 |5% 1946 |5% | 1946 |5% 1% 5% | 1% 5% 1% 5% % 1% 5% 1% 5% | 1% 5% | 1% 5% | 1% 5% 1% 5% | 1 % 5% 1% 5% % 1% |5%|1% 5%|1% 5% 1% 5%|1% |5%|1% 5%|1% |5% |1% 5% % 2% 5% 2% 5% 2% 5% 2% 5% 2% 5% 2% 5% 2% 5% 2% 5% % 2% 5% 3% 3% 3% 3% 3% 5% 3% 5% 3% 5% 3% 5% 2% 5 - 6 3 5 1% 3% | 6 3% 6 3% | 6 3% | 6 3% 6 3% | 6 3% | 6 3% 4 1% 3% 6% 3% 6% 3% 6% 3% |6% 3% 6% 3% 6% 3% |6% |3% 334 1% 4% 6% |4% 6% |4% 6% |4% 6% 4% 6% |4% 6% |4% 6% |4% 3% 1% 4% 6% 4% 6% |4% 6% |4% 6% |4% 6% |4% |6% 4% 6% |4% 3% Minimum S. F. Dimension, 1%" in all cases. S. F. may be any dimension between maximum and minimum. All dimensions subject to usual shop tolerances. Heads can be furnished with larger or smaller K. R. dimensions. Consult us regarding your requirements. Maximum S. F. Dimensions given would be increased or decreased according to the amount by which the K. R. dimensions are decreased or increased. (85) T A N K H E A D S Straight Fiange FLANGED AND DISHED HEADS STANDARD TYPE D INMENSIONS Standard Diameters are used for the purpose of this tabulation. However, all intermediate diameters between 12" and 144” are available from our regular equipment. All Dimensions are in Inches O. D. 12 TT 14TT16 TT13 T20 T-22 TT 24-T26 Inside Knuckle Radii (K. R.), Inside Dish Radii (D. R.), and Approx. Max. Straight Flanges (S. F.) G age KRDR ||SF |KRIDRSF |KRLDR SF |KRLDR SF |KRDRISF |KRLDR SF |KRLDR SF |KRLDR SF % 3%|12||1%. 3%|14|1%. 3%. 16 |1}} %|18 |1%. 3%. 20.1%. 3%|22|1%. 3%|24|1%. 3%|26|1% 94 | }%|12 |2%| }%| 1.42%| }%|16|2%| V6|18 |2%. Vºl 202% W3|22 2%. Vºl 24 3 %|263 % 9%|12|3 %. 143 %| 16 |3 || 5%|18 |3 || 9%| 2013 || 5%|22 3 %|243%. 5%, 26 |3% % 34|| 11 |3 %|133 %| 15 [3 %|17|3 %|19|3%| 34|21 |3%. 34123 || 4 || 34" 24| 4 % | jº 11 3% j%|13.3% j%|15|3% j%|17|3% j%|19|| 4 || 7%|21 || 4 || 7%|23| 5 || 7%24| 5 J% |1 | 11 |3%|1 |133%|1 | 15 [3%|1 |17|3%;1 |19|| 4 || ||21 || 4 |1 |23| 5 || || 24 5 % |1}4 11 |3%|1%|12 || 4 |1}4|14 || 4 |1}4|16 || 4 |1}4|18 || 4 |1}4|20 || 4 |1}4|22 || 5 |1}4|24 || 5 % 1%. 12| 4 |1%|14 || 4 |1}%| 16 || 4 |1%|18 || 4 |1%. 20 || 4 |1%|22 || 5 |1%| 24 5 % 1%|17| 4 |1%|19|| 4 |1%|21 || 5 |134123 5 1 2 | 17 || 4 |2 | 19 || 4 |2 21 || 5 |2 || 23 5 O. D. 28 30-I-32 34-I-36 ~35–I-40 42 G Inside Knuckle Radii (K. R.), Inside Dish Radii (D. R.), and Approx. Max. Straight Flanges (S. F.) age KRLDR SF |KRLDR SF |KRIDRISF |KRLDR SF |KR DR SF |KRLDR SF |KRIDRISF KRLDRISF % | 3%. 28 |1%. 3%|30|1%. 3%| 36||1%. 3%| 36||1%. 3%| 36||1%. 3%|42|1%. 3%|42|1%. 3%|42|1% }% | }| 28 |3 %|303 %| 36||3 }%| 36||3 }%| 36||3 }%. 42 3 }%|42|3 }%|42 3 % 9%. 28 |3% 9%|30|3% 9%|30 |3%| 9%| 36||3%. 5%| 36||3%. 5%, 423%. 5%, 42.3%. 5%|42|3% % | 34| 26 || 4 || 34|30|| 4 || 34 30 || 4 || 34| 36|| 4 || 34|| 36|4%| 34|424%. 34|42.4%. 34|42.4% % 76 26 || 5 || 7%|30|| 5 || 74 30 || 5 || 7%| 36|| 5 || 7%| 36|| 6 || 7%. 42|| 6 || 7%|42|| 6 || 7%|42|| 6 }% |1 26 || 5 |1 |30|| 5 |1 |30 || 5 |1 || 36|| 5 |1 || 36|| 6 |1 |42 || 6 |1 |42|| 6 || |42|| 6 % |1}4| 26 || 5 |1}4|30|| 5 |1%|30 || 5 |1}4| 36|| 5 |1}4| 36|| 6 |1%| 36|| 6 |1}4|42|| 6 |1}4|42|| 6 % |1% 24 || 5 |1%|30| 5 |1%|30 || 5 |1%| 36|| 5 |1%| 36|| 6 |1%| 36|| 6 |1%. 42|| 6 |1}}|42|| 6 % |134|24 || 5 |134 30 || 5 |1%|30 || 5 |134 30 || 5 |1%| 36|| 6 |134|| 36|| 6 |134|42|| 6 |134|42|| 6 1 2 || 24 || 5 |2 30 || 5 |2 30 || 5 |2 30 || 5 |2 || 36|| 6 || 2 || 36|| 6 |2 42 | 6 |2 |42 || 6 1% 2%|30|| 5 |2%|30 || 5 |2%|30| 5 |2%| 36|| 6 |2%| 36|| 6 |2%| 36|| 6 |2%|42|| 6 1}4 2%|30|| 5 |2%|30 || 5 |2%. 30 || 5 |2%. 30 || 6 |2%| 36|| 6 |2%| 36|| 6 |2%|42|| 6 1% 2%|30 || 5 |2%|30|| 5 |2%|30|| 6 |2%| 36|| 6 |2%| 36|| 6 |2%| 36|| 6 1% 3 30 || 5 |3 30 || 5 |3 30 || 6 |3 || 36|| 6 |3 || 36|| 6 |3 || 36|| 6 Minimum S. F. Dimension, 1%” in all cases. S. F. may be any dimension between maximum and minimum. All Dimensions subject to usual shop tolerances. Heads can be furnished with larger or smaller K. R. dimensions and heavier gage. your requirements. aximum S. F. Dimensions given would be increased or decreased according to the amount by which the K. R. dimensions are decreased or increased. Consult us regarding (86) B U F F A L O T A N K C O R P O R A T I O N Straight Flange FLANGED AND DISHED HEADS STANDARD TYPE * Knuckle Radius -—# s- - K. R. : : ºš ;---> D|MENSIONS iz-99tside plameted! Y----------- > : O.D. $ | | Standard Diameters are used for the purpose of this tabulation. However, all intern ediate diameters between 12" and 144” are available from our regular equipment. All Dimensions are in | n ches O. D. 48 || 54 T60 | 66 | 72 I 78 || 84 || 90 G Inside Knuckle Radii (K. R.), Inside Dish Radii (D. R.), and Approx. Max. Straight Flanges (S. F.) ºn KR DR SF |KR DR'SF |KRDR] SF KRDRSF |KRDR SF [KRDRISF |KRIDR SF |KRIDRISF % | }s 48.1%. , ). | | | | | | | | | | || }4 | }. 48 |3 }% 54 3 }%. 60 |3 }% 663 J% 72.3 % 783 J% 84.3 }% 90 3 5 ſº | 9%, 48 |3% 9% 54.3%. 5%. 60 |3%. 5% 66.3%. 5% 72.3% 3% 78.3% % 84.3% % 90.3% % 34: 48 |4%| 34|544%. 34.604%. 34.66 4%. 34 72.4%| 34 78.4%. 34 84.4%| 34|904% 746 7%. 48 || 6 || 7%. 54 || 6 || 7%. 60 | 6 || 7%. 66 || 6 || 7% 72| 6 || 7% 78 || 6 || 7%. 84 || 6 || 36|90| 6 }% |1 *|5||9||5||9||5||9||5||12|3||s|3||s||5||9|| % |134148 || 6 |1%|54 6 |1%. 60 || 6 |1%. 66|| 6 |1%. 72' 6 |13478 || 6 || 484 || 6 1% 90 6 % |1%. 48 || 6 |1%. 54 || 6 |1% 60 | 6 |1%. 66|| 6 |1%. 72 7 |1% 78|| 7 |1% 84 || 7 |1% 90|7 % |134, 48 || 6 |1%|54 6 |134 60 | 6 |1%. 66 || 6 #% 7 |13478 || 7 |13484 || 7 |13490 7 2 |48 || 7 |2 |48 7 12 * 7 p. 30 66, 8 p. 728 p 1788 84 8 1% |2%| 48 7 2,448 7|2%. 54 || 7 |2%. 60 || 7 |2%|66|| 8 |2% 72| 8 |2%. 78 || 8 |2%|84|8 1% |2%| 48 || 8 |2%, 48 || 8 2%54 8 2%. 60 | 8 |2%. 66 || 8 3%; 8 2%. 78 8 2%. 84 || 8 13% (234|48 || 8 |2%, 48 || 8 |2%. 54 || 8 |2%|60 || 8 |234.66 || 8 |2%. 72| 8 |2%. 78 || 8 |2%|84 || 8 1% |3 * * B is a B 54 || 8 |3 || 60 | 8 |3 as a Bºz & Bºla E 84 || 8 1% |3}4|42|| 8 |3%. 48 8 |3}4 54|| 8 |3}460 | 8 |3}4 66 || 8 |3}472| 8 |3%. 78 || 8 |3%. 84 8 134 3%. 42 | 8 |3% 48 8 |3% 54 || 8 |3%. 60 | 8 |3% 66 || 8 |3% 72| 8 3%. 78 8 |3%. 84 || 8 1% 3%. 54 || 8 |3%|60 || 8 |3%|66|| 8 |3% 72| 8 |3%. 78 || 8 |3%|84; 8 2 | | |*|*|| |*|*||Jºlº ſºlº Jºãº Jºs 2% 4%. 60 | 8 |4%. 66 || 8 |4% 72| 8 |4%|78 8 2% } 5. "|60 | 8 |5 66 || 8 |5 72| 8 |5 78 || 8 O. D. 96 102 | 108 114 | 120 126 132 138 G Inside Knuckle Radii (K. R.), Inside Dish Radii (D. R.), and Approx. Max. Straight Flanges (S. F.) age KRLDR SF |KRDR; SF [KRIDR] SF KRDRSF KRDR SF [KRDRISF |KR DRSF |KRDRSF * | *|963% ºftoz8% ºf O33% ºf 14.3% % 34|96 |4%. 34.1024%. 34.108.4%. 34,114.4%| 341204% 34126.4% 34.132.4% 7% 7%|96 || 6 || 7%102 6 || 74.108 6 || 7%. 114| 6 %.12% 6 || 74,126 6 %132 6 || 74,132 4 }% (1 96 || 6 |1 102 6 || ſº 6 1 1 14 6 1 |120' 6 |1 ià 6 1 tº a 1 tº % |1}496 || 6 |134102 6 || 4108 6 1 4114 6 |134120 6 |1}4,126 6 1 4132 6 |1%|132 4 34 |1}} 96 || 7 |1%102 7 |1%.108 7 1% 114 7 |ſ|}, 120 7 |1%.126 7 1%.132. 6 |1%|132 4 % |134|96 || 7 |134102| 7 ||134108| 7 |1341 14, 7 |134120 7 |134126 7 |134132 6 |134|132 4 1 2 | 90 | 8 |2 º: 1% (2,490 || 8 |2%| 96 8 |2}4102| 8 |2%.108 8 |2%. 114 8 |2}4120 8 2%. 126 6 (244.132.3% 194 |2% 90 || 8 |2% 96 8 |2%102| 8 |2% 108 8 |2% 114 8 |2% 120 8 |2% 126 6 12%.132.3% 1% (234. 90 || 8 |234, 96, 8 (234.102| 8 |234 108 8 |234 114 8 (234.120) 8 (234126 6 1234.132.3% 1% (3 90 || 8 |3 gº 8 3 |102 8 |3 108 8 |3 114 8 [3 |120 8 |3 126 6 |3 132.3% 1% |3}4|90|| 8 |3% 96, 8 |3}4102 8 3%. 108 8 3%. 114 8 |3}4120 8 |3}4126 6 13%.132.3% 1%. 3%| 90 || 8 |3% 96 8 |3%102| 8 |3% 108 8 3%.114 8 |3% 120 8 3%.126 6 3%.132.3% 1% (334|90 || 8 |3% 96; 8 |334,102 8 3%. 108, 8.3%. 114 8 |3%. 120 8 |3%. 126 6 3%|132.3% 2 4 90 || 8 |4 º 8 |4 102 8 (4 108 8 4 114 8 4 120 8 4 126 6 (4 1323% 244 |4% 84 || 8 |4% 90 8 |4% 96, 8 4%.102 8 |4%.108 8 |4%114 8 |4%120 6 |4%1263 2% (5 | 84 || 8 |5 90, 8 5 | 96 8 |5 102 8 |5 T108, 8 (5 T114 8 |5 T120, 6 |5 T1263 Minimum S. F. Dimension, 1%" in all cases. S. F. may be any dimension between maximum and minimum. All Dimensions subject to usual shop tolerances. Heads can be furnished with larger or smaller K. R. dimensions and heavier gage. Consult us regarding your requirements. aximum S. F. Dimensions given would be increased or decreased according to the amount by which the K. R. dimensions are decreased or increased. (87) T A N K H E A D S sºn, FLANGED AND DISHED HEADs Flaſge FOR BOI LERS AND UNFIRED PRESSURE VESSELS S. F. i wº ---K- ! utside Diarmeterl. \/ : º * - - * * * * - a- ºn, as : DIMENSIONS A. S. M. E. CODE—(A. P. I.-A. s. M. E.) cope º Standard Diameters are used for the purpose of this tabulation. However, all intermediate diameters between 12” and 132” are available from our regular equipment. All Dimensions are in Inches O.D.THATTHAT THG-TiãTT20-T33-T-34-T-26 G Inside Knuckle Radii (K. R.), Inside Dish Radii (D. R.), and Approx. Max. Straight Flange (S. F.) * |KRTDRISETKRIDRISF KRDRSF |KRDRSF KR DRSF |KRDRSF |KRDR] SF |KRIDR] SF % | 34|12||1}} %|14|1%| 1 isºlaludºowºooººº, 1% % |3%| 12.2% 7%. 14.2%| 1 | 16.2%|1%. 18.2%|1%|20.2%|1%. 20.2%|1% 24 || 3 |1% 24 || 3 % |1%|12| 3 |1%. 14|| 3 || 1 || 16 || 3 |1%|18 || 3 |134120 || 3 |1%|2013 |1% 24 |3%|1% 24 |3% % |1%|12| 3 |1}%. 14 || 3 |1}%. 16 || 3 |1% 18 3 **** 4 |1% 24 4 % |1%| 12.3%|1%. 14.3%|1%. 16 Jºlº, 4 |1%. 20 || 4 |1}} 24 || 5 |1% 24 5 % |1% 10.3%|1%. 12.3%|1%. 16.3%|1% 15.3%|1%. 17 4 |1%. 20 || 4 |1% 24 || 5 |1% 24 5 % |1%| 10.3%|1%. 12 #1; 4|1% 15| 4 |1%. 17| 4 |1%|19|| 4 |1%|24 || 5 |1%|24 5 % 2}4|11 || 4 |2}4 13 || 4 |2%. 15 || 4 |2}4|17| 4 |2%|19|| 4 |2%|21 || 5 |234|23 5 % 2%. 12' 4 2%. 15 || 4 |2% 15| 4 |2%. 18 || 4 |2%. 21 || 5 |2%. 22 5 1 3 |14 || 4 || 3 | 15 4 || 3 |18 || 4 || 3 | 20 | 5 || 3 |22 5 1% 3%. 19 || 5 |3%. 21 || 5 O. D. | T28 | 30 32 34 36 | 38 | 40 42 G Inside Knuckle Radii (K. R.), Inside Dish Radii (D. R.), and Approx. Max. Straight Flange (S. F.) * |KRIDE SF KRDRSF |KRDRSF |KRDRSF |KRDRSF |KRDRISF |KRDR] SF |KRDR SF % 1942, a hºsols 2 30 a bºso 3 2%. 36|| 3 % |1%| 24 3%.1% 303%| 2 |303%2%. 30.3%2%| 36||3%2%| 36||3%2%| 36||3%2%|42|3% % |1%| 24 || 4 |1%|30|| 4 || 2 |30| 4 #; 4. 2%|36.4%2% 364%2%| 36|4%.2%|42 |4% $46 |1%|24|| 5 |1%|30| 5 || 2 |30|| 5 |2%|30|5 2.436|| 6 |2%|36|| 6 |2%|36|| 6 |2%|42|| 6 % |1%|24|| 5 |1%, 30| 5 || 2 |30| 5 |2%|30|| 5 |2%| 36|| 6 |2%| 36|| 6 |2%| 36|| 6 |2%|42 || 6 % |1%| 24 || 5 |1%, 30 || 5 || 2 |30| 5 |2%|30|| 5 |2%. 36|| 6 |2%| 36|| 6 |2%| 36|| 6 |2%|42 || 6 % |2%|24 || 5 |2% 24 || 5 |2%|30|| 5 |2%|30|| 5 |2%| 36|| 6 |2%| 36|| 6 |2%|36 || 6 |2%|42 || 6 % |2%| 24 || 5 |2%|24 || 5 |2%. 30 || 5 |2%|30|| 5 |2%|30| 6 |2%| 36|| 6 |2%| 36|| 6 |2%|42 || 6 1 3 24 || 5 || 3 || 24 || 5 || 3 || 30 || 5 || 3 |30 || 5 || 3 || 30 || 6 || 3 || 36|| 6 || 3 || 36|| 6 || 3 |42 || 6 1% |3%| 23 5 |3%|24 || 5 |3%|30 || 5 |3%|30 || 5 |3%. 30 || 6 |3%| 36|| 6 |3%| 36|| 6 |3%| 36|| 6 1% 3%. 24 || 5 |3%|30|| 5 |3%|30|| 5 |3%. 30 || 6 |3%| 36|| 6 |3%| 36|| 6 |334|| 36|| 6 1% 4% 24 || 5 |4% 24 || 5 |4%|30| 5 |4%. 30 || 6 |4%|30|| 6 |4%| 36|| 6 |4%| 36|| 6 1% 4%. 23 || 5 |4% 24 || 5 |4%|30|| 5 |4%. 30 || 6 |4%. 30 || 6 |4}%| 36|| 6 |4%| 36|| 6 1% 4%|30| 6 |4%|30| 6 |4%|30 || 6 |4%| 36|| 6 1% 5%|30|| 6 |5%|30|| 6 |5%|30 || 6 |5%| 36|| 6 1% 5% 24 6 5%, 30 || 6 |5%|30 || 6 |5%| 36|| 6 2 6 || 30 || 6 2% 6%|30 || 6 Minimum S. F. Dimension, 1%” in all cases. S. F. may be any dimension between maximum and minimum. All dimensions subject to usual shop tolerances (within A.S.M.E. code requirements). Heads can be furnished with larger or special K. R. Dimensions and heavier gauges. your requirements. Consult us regarding (88) B U F F A L O T A N K C O R P O R A T | O N FLANGED AND DISHED HEADS t Stralght FOR Flapse EOI LERS AND UN F I RED PRESSU RE ſºulRadius —Y- VESSELS K.R. & 8. F. A. S. M. E. CODE— (A. P. 1.-A. S. M. E.) CODE t | a cº Jºs k- Outside ºl *---------- | DINMENSIONS ow -> Standard Diameters are used for the purpose of this tabulation. However, all intermediate diameters between 12” and 132” are available from our regular equipment. All Dinnensions are in Inches O. D. 48 || 54 || 60 | 66 | 72 | 78 | 84 || 90 G Inside Knuckle Radii (K. R.), Inside Dish Radii (D. R.), and Approx. Max. Straight Flange (S. F.) age KR] DRSF |KRDRSF |KR DRSF |KRDR SF |KRDRSF |KR DR SF |KRDR SF |KRDRISF * 2:443.3%54.3%. % |2%|484%3%|484%3%. 54.4% 4 |60.4%4%|66|4%43472.4% % |2%| 48 || 6 |3}4|48 || 6 |3%. 54 || 6 4 60 6 |4%|66|| 6 |4%|72| 6 |5%|78 || 6 |5% 84 || 6 }% |2%| 48 || 6 |3}4|48 || 6 |3%. 54 || 6 || 4 |60 || 6 |4%|66|| 6 |4% 72 || 6 |5%. 78 || 6 |5% 84 || 6 % |2%|48 || 6 |3}448 || 6 |3% 54|| 6 || 4 |60|| 6 |4%. 66 || 6 |4%|72| 6 |5%. 78 || 6 |5% 84 || 6 % |2%| 48 || 6 |3%. 48; 6 |3% 54|| 6 || 4 |60 || 6 |4%. 66 || 7 |434 72 || 7 |5%. 78 || 7 |5% 84 || 7 % |2%|48 || 6 |3%|48 6 |3% 54|| 6 4 |60 || 6 |4%|66|| 7 |4% 72| 7 |5%|78 || 7 |5% 84 || 7 1 3 |42|| 7 ||3%|48 || 7 ||3% 54|| 7 || 4 |60|| 7 |4%. 66 || 8 |4%|72| 8 |5%. 78 || 8 |5% 84 || 8 1% |3%. 42|| 7 ||3%|48 || 7 ||3% 54|| 7 || 4 |60|| 7 |4%|66|| 8 |4%|72| 8 |5%. 78 || 8 |5% 84 || 8 1% |3%| 42|| 8 |3%| 48 || 8 |3%. 54 || 8 || 4 |60 8 #%. 66 8 |4%|72| 8 |5%. 78 || 8 |5% 84 || 8 1% |4%|42|| 8 |4%|48 || 8 |4%|54 || 8 |4%|60 || 8 |4%. 66|| 8 |4%|72| 8 |5%. 78 || 8 |5% 84 || 8 1% |4%|42|| 8 |4%|48 || 8 |4% 54 || 8 |4%. 60 | 8 |4%. 66 || 8 |4% 72| 8 |5%|78 || 8 |5% 84 || 8 1% |4%|42|| 8 |4%|48 || 8 |4%|54 || 8 |4%. 60 | 8 |4%|66|| 8 |4%|72| 8 |5%. 78 || 8 |5% 84 || 8 134 |5%| 42| 8 |5%|48 8 |5%|54 || 8 |5%|60 || 8 |5%|66|| 8 |5% 72| 8 |5%|78 || 8 |5% 84 || 8 1% |5%| 42|| 8 |5%. 42 || 8 |5%| 48 || 8 |5%|54|| 8 |5%|60 || 8 |5%|66|| 8 |5% 72 || 8 |5%|78 || 8 2 6 || 36|| 8 ||6 || 42 | 8 |6 ºr 54 || 8 ||6 || 60 | 8 ||6 ||66|| 8 ||6 || 72 | 8 |6’ 78 || 8 2% |6%| 36 abºº ºbsºlskº 8 |6%|60 || 8 |6%|66|| 8 |6%|72 || 8 |6%. 78 || 8 2% |7%| 36|| 8 |7%. 42 8 |7%. 48 7%. 54 || 8 |7%. 60 | 8 |7%. 66 || 8 |7%. 72 8 [Z}% 78 8 O. D. 96 102 108 114 120 126 132 G Inside Knuckle Radii (K. R.), Inside Dish Radii (D. R.), and Approx. Max. Straight Flange (S. F.) age KRLDR SF |KR DRSF KRDR SF |KRDRSF |KRDRSF |KR DRSF KR DR SF | KR | DR | SF 7% |5%| 90 || 6 % |5%| 90|| 6 |6%|96 || 6 |6%102 6 |6%.108 6 7%. 114 6 % |5%| 90|| 6 |6% 96 || 6 |6%102 6 6%.108 6 7%|114 6 34 |534|90 || 7 |6% 96 || 7 |6%102 7 |6%.108 7 |7%|114 7 7%.1207 8 126|| 4 % |5%| 90 || 7 |6% 96 || 7 6%.192 7 |6%|108 7 |Z}4|114 7 7%.1207 8 |126|| 4 1 534|90 || 8 |6% 96 || 8 |6%102 8 (6%|108 8 |7%|114 8 * 8 |126|| 4 1% |5%|90|| 8 |6% 96 || 8 |6%102 8 |6%.108 8 7%|114 8 7%. 120.7%. 8 120 4 1% |5%| 90 | 8 |6% 96 || 8 |6%102 8 |6%.108 8 744114 8 7%.1207% 8 120 4 1% |5%| 90 || 8 |6%|96 || 8 6%102 8 |6%108 8 7.34.108 8 Żółºż% 8 120 4 1% |5%| 90 || 8 |6% 96 || 8 |6%102 8 |6%.108 8 7%. 108 8 7%. 1147%. 8 120 4 15% |5%|90 || 8 |6% 96 || 8 |6% 96 8 (6%|102 8 |7%|108 8 7%|114.7% 8 120 4 134 |5%| 90 || 8 |6% 96 || 8 |6% 96, 8 (6%102 8 734.108 8 7%. 1147%. 8 120 4 1% |5%|84|| 8 |6% 90 || 8 |6% 96 8 |6%|102 8 7,4108 8 7%1147% 8 |120 4 2 6 | 84 || 8 |6% 90|| 8 |6% 96 8 |6%|102 8 7}4108 8 * 8 |120 4 2% |6%|84 || 8 |6%|90 || 8 |6% 96 8 sº 8 7,4108 8 75%. 1147%. 8 120 4 2% |7%. 84 || 8 |7% 90 || 8 |7% 96 8 |7%102 8 |7%.108 8 7%. 114.7%| 8 |120 4 Minimum S. F. Dimension, 1%” in all cases. S. F. may be any dimension between maximum and minimum. All dimensions subject to usual shop tolerances (within A.S.M.E. . code requirements). Heads can be furnished with larger or special K. R. Dimensions and heavier gauges, your requirements. Consult us regarding (89) T A N K H E A D S ELLIPTICAL HEADS A. S. M. E. CODE A. F. I.-A. S. M. E. CODE **ś DIMENSIONS Standard Diameters are used for the purpose of this tabulation. . However, all intermediate diameters from 24” to 120” are available from our regular equipment. Dimensions in linches Gage T Maximum S. F., for D |. D. Minimum Maximum Minimum T Maximum T := ; of I. D 24 % | 1% . 3% 5 6 30 % 2 3% 7 7% 36 % 2% 3% 7 9 42 % 3 3% 10 10% 48 % 3 3% 10 12 54 % 3 4 10 13% 60 % | 3 4. 10 15 66 % 3 4. 10 } 16% 72 % | 3 4 10 18 78 % 3 5 10 19% 84 % 3 5 10 21 90 % 3 5 10 22% 96 % 3 5 8 24 102 % 3 5 8 25% 108 % 3 5 8 27 114 % 2 5 5 28% 120 % 2 2 2 30 All dimensions subject to usual shop tolerances (within A.S.M.E. and A.P.I.-A.S.M.E. Code Requirements). Max. S. F. dimension for intermediate gages is proportional. (90) B U F F A L O T A N K C O R P O R A T I O N FLANGED AND DISHED TANK Straight H EADS & K Flapse SHALLOW TYPE g ºf g A Q' | | s UtS! C. E. arm eter !\! : ! DIMENSIONS º * * *= a- = * * * * * * * = > Standard Diameters, are used for the purpose of this tabulation. However, all intermediate diameters between 12” and 144” are available from our regular equipment. All Dinnersions are in Inches O.D. 66 | 72 | 78 | 84 || 90 | 96 || 102 Inside Knuckle Radius (K. R.), Inside Dish Radius (D. R.), Approx. Max. Straight Flange (S. F.) *|KETDRSFIKE DRISEIKEDFISHIKE DRSFIKE DRSFIKE DRISFIKE DRISE % }%. 120.3%| }% |120.3%| }% |120.3%| 3/3 |120.3% V6 1973%| 3/4 |1973%| 34 1973% % 5% |120.3%. 5% |120.3%. 5% |120.3%. 5% |120.3%. 5% |1973%. 5% |1973%. 5% |1973% % 34 1204%. 34 1204%. 34 1204%. 34 1204%. 34 1974%. 34 1974%| 34 1974% % 7% |1206 | }. 1206 || 76 |1206 || 7% |1206 || 7% |1976 || 7% |1976 || 7% |1976 % |1 1206 || 1 1206 || 1 1206 |1 1206 || 1 1976 |1 1976 |1 1976 O.D. 108 114 120 126 - || 132 138 || 144 Inside Knuckle Radius (K. R.), Inside Dish Radius (D. R.), Approx. Max. Straight Flange (S. F.) KR DR SF | KR |DR ||SF | KR |DR SF | KR DR SF | KR |DR. SF | KR |DR SF | KR DRISF 34 % 1973% º 1973% º #3% 94; 1973% 3%. 5% |300|3%. 5% |300.3%. 5% |300|3% 197 % % % 1973%. 5% % | 34 |1974%. 34 1974%. 34 #4%. 34 300.4%. 34 300.4%. 34 300.4% #6 || 74 3006 || 74 3006 || 74 3006 † 6 1 •. 300 6 || 1 3006 197 300 6 1 6 % ſ \ { 746 || 7-3 |1976 | 726 |1976 w!; { }% |1 |1976 |1 1976 |1 1 197 % 1}4 3006 |1% wº 1% |3006 | Minimum S. F. dimension, 1 %" in all cases. S. F. may be any dimension between maximum and minimum. All dimensions are subject to the usual shop tolerances. Forms are available for furnishing many special Dishing Radii, other than those indicated. Consult us on your requirements (91) T A N K H E A D S VOLUMES AND DIMENSIONS OF TANK HEADS STANDARD AND SHALLOW DISH TYPES The volume of any spherical dished head can be calculated from the following formula: (1) V = C [2(1—cosA)—coSA sin?A|R3 In which: V = Volume of the Dish in Cu. Ft. or Cu. In. depending upon the value of R C = A constant whose value is - = 1.047.198. A = Angle in degrees, shown in Fig. 8 R = Radius of the Dish, Feet or Inches as the case may be. Figure 8 shows a spherical dished head par- tially filled to a depth h. Volumes for heads partially filled can be determined by computing a constant depending on p and q, where p = # and q = 2F' then multiplying this constant by the Value of V in equation (1). The computation of this constant is beyond the scope of this publication, however. A B = ** –K R \ B C = RD–K R \ i./ A C = v(BC)2–(AB)? \ | D = RD–V(BC)2–(AB)? * | O. A. H. = t + D + S. F. \!/ (92) | VOLUN/IES AND ºf.......... A - DINMENSIONS º 22* Ç § OF --Y__ ào.A.H TANK HEADS * ºf |--|-- k-99;sºmete!...?----------> STANDARD DISH TYPE : O. D i/; t Dimensions in Inches -- - - - Variable Dimensions sunºkº only Outside Dish # knºwn Straight Fl overal Heigh Diameter | Radius In BSS Radius, g F. *9° for S. K. #. Depth Volume V - K. R. - O. A. H. -- O. D. D. R. GA. Stand.* M in Max. Min. Max.f H Cu. In. Šiš. rº- % % 1% 3% 10% 12% 8.990 | 15,977 69.17 % % 1% 3% 10% 12% 9.027 | 16,098 || 69.69 % % 1% 4% 10.1% | 1.31% 9.065 | 16,219 || 70.21 66 66 % % 1% 6 11% 15% 9.104 || 16,339 || 70.73 % 1 1% 6 11% 15% 9.143 | 16.458 71.25 % 1% 1% 6 11% 15% 9. 182 | 16,577 || 71 .76 % % 1% 3% 11946 13% 9.793 20,690 | 89.57 % % 1% 3% 11% 13% 9.831 | 20,835 | 90.19 % % 1% 4% 11% | 1.4% 9.869 20,978 || 90.82 72 72 % % 1% 6 11% | 16% 9.907 || 21,122 91.44 % 1 1% 6 11% 16% 9.946 21,264 92.05 % 1% 1% 6 12% | 16% 9.985 21,406 || 92.67 34 % 1% 3% | 12% | 1.4% | 10.597 26,249 || 113.63 % % 1% 3% 12746 | 1.4% 10.634 26,419 114.37 78 78 % % 1% 4% | 12% 15% | 10.672 26,588 115.10 % % 1% 6 121116 17% | 10.710 26,756 | 115.83 % 1 1% 6 12% 1794 | 10.749 || 26,924 116.55 % 1% 1% 6 12% 17% | 10.787 27,091 117.28 % % 1% 3% 13% 15% 11.401 || 32,724 141.66 % % 1% 3% 1336 15% | 11:438 || 32,921 || 142.52 % % 1% 4% 13546 16516 || 11.476 33,117 | 143.37 84 84 $16 % 1% 6 137 (6 171% 11.514 || 33,313 || 144.21 % 1 1% 6 13% 18% 11.552 33,508 || 145.06 % 1 % 1% 6 13% 18% 11.590 33,702 || 145.90 % % 1% 3% 131516 151516 12.204 40,184 173.96 % % 1% 3% | 1.4 16 12.241 40,411 174.94 90 90 % % 1% 4% 14% 17% 12.279 | 40,636 175.91 % % 1% 6 1494 | 18% | 12.317 | 40,861 || 176.89 % 1 1% 6 14% 18% 12.355 41,086 177.86 % 1% 1% 6 14% 181% 12.393 || 41,309 || 178.83 Volumes, are measured between the plane T-T and the concave side of the dish. The cylinder volume of the straight ſlange section is not included. º *Heads can be furnished with larger or special K. R. dimensions. - Consult us regarding your requirements. theads can be furnished with greater O.A.H. by increasing K.R. dimension. (93) T A N K H E A D S VOLUMES AND r # * * * * * * = º ºs ºs A T §§ * > overal DIMENSIONS !. Z. & Height --Y-- / f Fº OF S.F. tº: ! F- ge --Y- TANK HEADS k-outside Pameted 3----------. | ! O.D. ğ > STANDARD DISH TYPE Dinnersions in Inches G Variable Dimensions sunºk": only Qutside | Dish | F. knuckle - Overall Height Diameter | Radius In 6SS Radius, straigſange for Std. K. R. Depth Volume V K. R. * G & O. A. H. O. D. D. R. GA. Stand.* Min. Max. M. in Max.f H Cu. ln. Šiš. }4 }% 1% 3% 14% 16% | 13.008 || 48,700 210.82 % % 1 % 3% 141316 1613 (6 13.045 || 48,958 211.94 96 96 % 34 1% 4% | 1.41% 171% 13.083 || 49,215 213.05 ! 16 % 1% 6 15 19% 13. 120 49,471 214. 16 }% | 1 1% | 6 15% 19% 13.158 || 49,727 | 215.27 916 1% 1% 6 15% 1934 13.197 49,981 216.37 % % 1% 3% 151}{6 17.1% 13.849 || 58,633 253.82 % % 1% 4% 15% 18% 13.886 58,923 || 255.08 102 102 % % 1% 6 15% 20% 13.924 || 59,213 || 256.33 % 1 1% 6 16 20% 13.962 59,501 257.58 % 1% 1% 6 16! (6 20% 14.000 || 59,789 || 258.83 % 1% 1% 6 16% (6 201}{6 14.038 60,076 || 260.07 % % 1% 3% 16716 18716 14.652 69,504 || 300.88 % 34 1)/4 4% 16% 19% 14.690 | 69,830 || 302.29 108 108 % % 1% 6 16% 21% 14.727 | 70,155 303.70 }% 1 1% | 6 16% 21% 14.765 || 70,479 || 305.10 916 || 1 % 1% 6 16% 21% 14.803 || 70,802 || 306.50 % 1% 1% 6 161516 21% 14.841 71,125 || 307.90 % % 1% 3% 1794 19% 15.456 81,643 || 353.43 % 34 1% 4% 17% 20% | 15.493 82,006 || 355.00 114 114 ! ſt % 1% 6 17746 21.1% 15. 531 82,368 356.57 % 1 1% 6 17% 22 15.569 82,730 358.14 % 1% 1% | 6 171% 22% 15.606 || 83,090 359.70 % 1}4. 1% 6 17% 22% 15.645 || 83,450 361.25 Volumes are measured between the plane T-T and the concave side of the dish. The cylinder volume of the straight flange section is not included. *Heads can be furnished with larger or special K.R. dimensions. .. fHeads can be furnished with greater O.A.H. by increasing K.R. dimension. Consult us regarding your requirements. (94) VOLUMES AND ºf º gº--------- N- DIMENSIONS *::::::::: 22* 22 i C Overall !. Z. H &x Height OF 3.6% 9 O.A.H S.F. 3 TANK HEADS --F-4 27 !---- i.-94 asperated 3----------> STANDARD DISH TYPE : O.D. ºf | Dinnersions in Inches Variable Dimensions stanº: only Outside Dish º Knuckle - Overall Heigh Diameter | Radius neSS Radius, stagiſlando toº; º R. Depth Volume V O. D. D. R. GA. Stand.* Min. Max. Min. Max.f H Cu. ln. Šiš. % % 1% 3% 18% 20% | 16.260 95,117 || 411.76 20 120 % % 1% 4% 18% 21% | 16.297 95,521 || 413.51 1 % % 1% 6 18% 22% | 16.334 95,923 || 415.25 % 1 1% 6 18% 22.1% | 16.372 96,323 || 416.98 % % 1% 3% 18% 20% 17.064 109,999 || 476. 19 126 126 % % 1% 4% | 181% 21.1% 17.101 || 110,444 478.11 % % 1% 6 19% 23% 17.138 110,888 || 480.03 % 1 1% 6 19% 23% 17.176 | 111,330 || 481.95 % % 1% 4% 1934 22% 17.904 || 126,845 549.11 % % 1% 6 191% 24% 17.942 | 127,332 551.22 132 132 % 1 1% 6 191% 24% 17.979 | 127,819 553.33 % 1% 1% 6 20% 24% | 18.017 | 128,304 || 555.43 % 1% 1% 6 20% 24.1% | 18.055 | 128,787 || 557.52 % % 1% 6 21% 26% | 19.696 || 152,769 | 661.34 138 132 % 1 1% 6 21% 26% | 19.729 || 153,237 | 663.36 % 1% 1% 6 21.1% 26% | 19.762 | 153,704 | 665.39 % 1% 1% 6 21% 26% | 19.796 || 154,171 | 667.41 % % 1% 6 21% 26 19.549 | 164,944 || 714.04 144 144 % 1 1% 6 21% 26% | 19.586 165,523 716.55 % 1% 1% 6 21.1% 26% | 19.624 || 166,101 || 719.05 % 1% 1% 6 21.1% 26% | 19.662 | 166,678 || 721.55 Volumes are measured between the plane T-T and the concave side of the dish. The cylinder volume of the straight flange section is not included. *Heads can be furnished with larger or special K.R. dimensions. Consult us regarding your requirements. fHeads can be furnished with greater O.A.H. by increasing K.R. dimension. (95) T A N K H E A D S VOLUMES AND §§ Curved oº:: Overall D I M ENS I ON S ..Y. ºf Knuckle Radius W. .s. *— - - Čº OF S.F. HT K.R. Tºº * º - ºr- :S 3--Y-. TANK HEADS ! | utslde Diameter & : F-º----------> SHALLOW DISH TYPE | Dimensions in Inches Variable Dimensions sanjºº": only Outside Dish º Knuckle Straight F| Overall Heigh - *- - - - - - - --- Diameter | Radius neSS Radius, rag F. ange for Std. K. R. Depth Volume V K. R. O. A. H. - O. D. D. R. GA. Stand.* Min. Max. Min. Max. F H Cu. In. Šiš. }4. % 1% 3% 6% 8% 4.934 8,994 || 38.94 % % 1% 3% 6% 8% 5.011 || 9,246 40.03 66 120 % % 1% 4% 7 10 5.089 9,495 || 41.11 % % 1% 6 7% 11% 5.167 9,743 42.18 % 1 1% 6 7% 1134 5.245 || 9,988 || 43.24 34 % 1% 3% 7% 95% 5.817 | 12,497 54.10 % % 1% 3% 7% 934 || 5.890 | 12,781 55.33 72 120 % % 1% 4% 7% 10% 5.964 13,062 56.55 % % 1% 6 8 12% 6.037 || 13,342 57.76 }% 1 1% 6 8% 12% 6.111 || 13,619 58.96 34 % 1% 3% 8% 10% 6.787 | 16,986 | 73.53 % % 1% 3% 8% 10% 6.856 17,301 74.89 78 120 % % 1% 4% 8% 11% | 6.925 17,613 || 76.25 % % 1% 6 81% 13% | 6.994 || 17,923 77.59 }% 1 1% 6 9) is 13% 7.063 18,230 || 78.92 34 }% 1% 3% 9% 11% 7.845 22,649 98.05 % % 1% 3% 934 || 11% 7.910 |22,991 99.53 84 120 % % 1% 4% 97% 12% 7.974 23,331 || 101.00 % % 1% 6 10 14% 8,039 || 23,669 || 102.46 % 1 1% 6 10% 14% 8.104 24,005 || 103.92 }4 % 1% 3% 7% 9% 5.547 | 18,762 81.22 % % 1% 3% 7% 97% 5.632 19,283 83.48 90 197 % % 1% 4% }% 10% 5.717 | 19,801 || 85.72 % % 1% 6 734 1114 || 5.803 || 20,316 || 87.95 % 1 1% 6 77% 113g 5.888 20,827 | 90.16 Volumes are measured between the plane T-T and the concave side of the dish. The cylinder volume of the straight flange section is not included. - - *Heads can be furnished with larger or special K.R. dimensions. Consult us regarding your requirements. iHeads can be furnished with greater O.A.H. by increasing K.R. dimension. (96) B U F F A L O T A N K C O R P O R A T I O N VOLUNTES AND z:x:y: - - - - - - - - - - A - D IMENSIONS *::::::: 2° º OF ..Y__ſſ Knuckle Radius V -à---— O. A. H S.F. T K. R. f §º | | TANK HEADS - A - so --Y- ... outside piameter & * * * * * * tº sº my m = | SHALLOW DISH TYPE º O.D. § > Dinnersions in Inches Variable Dimensions sanjºº": only Outside Dish º Knuckle Straight Fl Overall Height T Diameter | Radius fl0SS Radius, raq F. ange toºl; § R. Depth Volume V o, D. D. R. GA. | sland. Min M. | Min wº H cu. In §§ } { }% 1% 3% 8 1 O 6.265 || 23,937 || 103.62 3 ſº % 1}, 3% 83% 10% 6.348 24,513 | 106.12 96 197 % % 1% 4% 8% ſº | 1.1% 6.430 || 25,086 108.60 ! ſ % 1% 6 8% 11.1% 6.513 || 25,655 111.06 % 1 1}, 6 8% 12% 6.596 || 26,221 | 113.51 } { % 1% 3% 81% | 101% 7.034 || 30,157 | 130.55 16 % 1% 3% 81% | 10.1% 7.113 || 30,788 133.28 102 197 % % 1% 4% 9% | 12% 7.193 || 31,415 || 136.00 % % 1% 6 9% | 121% 7.273 || 32,039 || 138.70 % 1 1% 6 9% 12% 7.354 || 32,659 || 141.38 } { }% 1% 3% 9% | 1.1% 7.853 37,563 | 162.61 316 % 1% 3% 9% | 1.1% 7.930 || 38,248 165.58 108 197 % % 1% 4% 9% 12% 8.007 || 38,930 | 168.53 ! ſº % 1}} 6 10% | 1.4% 8.085 39,608 || 171.46 % 1 1% 6 10% | 1.41% 8.162 40,282 174.38 % }% 1% 3% 10% 12% 8.723 46,307 200.46 % % 1% 3% 10% | 12% 8.798 || 47,045 203.66 1 14 197 % % 1% 4% 10% 1334 8.872 47,780 206.84 ! 16 % 1% 6 10% 15% 8.947 || 48,512 210.01 % 1 1% 6 11 15% 9.022 49,239 213. 16 Volumes are measured between the plane T-T and the concave side of the dish. The cylinder volume of the straight flange section is not included. *Heads can be furnished with larger or special K.R. dimensions. Consult us regarding your requirements. iHeads can be furnished with greater O.A. H. by increasing K.R. dimension. (97) T A N K H E A D S VOLUMES AND DIMENSIONS OF TANK HEADS F-ºº----------: SHALLOW DISH TYPE | Dimensions in Inches Variable Dimensions sanjºº": only &; Dish º Knuckle | Straight Flange Overall Height | iameter | Radius In 8SS Radius, S. F. for Std. K. R. Depth Volume V K. R. O. A. H. O. D. D. R. GA. | Stand.* | Min. Max. | Min. | Max.f H | Cu, In, Šiš. % % 1% 3% 8% 10% 6.419 38,392 | 166.20 % % 1% 3% 8% | 10% 6.509 || 39,380 || 170.48 120 300 8 % 1% 4% 85% 11% 6.599 40,362 174.73 % % 1% 6 811 is 1336 6.689 || 41,340 178.96 % 1 1% 6 8% 13% 6.779 || 42,312 | 183.17 % % 1% 3% 9% 11% 7.129 47,259 204.59 126 300 % % 1% 4% 9% 12% 7.217 || 48,323 209.19 % % 1% 6 9% | 1.31% 7.305 || 49,382 213.78 % 1 1% 6 93% 13% 7.393 || 50,436 218.34 % % 1% 3% 9% 11% 7.781 56,310 243.76 % % 1% 4% 91% 121% 7.867 57,456 248.73 132 300 % % 1% | 6 9% | 1.4% 7.953 58,597 || 253.67 % 1 1% 6 10% | 1.4% 8.040 || 59,733 258.59 % 1% 1% 6 10% | 1.41% 8.126 60,864 263.48 % 1% 1% 6 10% | 1.4% 8.213 61,990 268.35 % % 1% 4% 10% 13% 8.549 67,877 293.84 % | 36 1% 6 10% 15% 8.634 69,101 299.14 138 300 % 1 1% 6 10% 15% 8.719 || 70,320 304.42 % 1% 1% 6 10% 15% | 8.804 || 71,534 309.67 % 1% 1% 6 11 15% 8.889 | 72,743 || 314.90 $46 % 1% 3% 11 13 9. 181 78,396 || 339.38 % 34 1% 4% 11% | 1.4% 9.264 79,710 345.07 144 300 % % 1% 6 11% 151% 9.347 81,017 | 350.72 - % 1 . 1% 6 11% 16 9.430 82,319 || 356.36 % 1% 1% 6 11% | 16% 9.513 | 83 616 || 361.97 % 1% 1% 6 1134 16% 9.597 | 84,909 || 367.57 Volumes are measured between the plane T-T and the concave side of the dish. The cylinder volume of the straight flange section is not included. - *Heads can be furnished with larger or special K.R. dimensions. Consult us regarding your requirements. fHeads can be furnished with greater O.A.H. by increasing K.R. dimension. (98) B U F F A L O T A N K C O R P O R AT I O N ALLOWABLE WORKING PRESSURES ON SPHERICAL DISHED HEADS A. S. M. E. CODES POWER BOI LEF AND UN F I RED PRESSU RE VESSELS 1933 AND 1932, RESP. Plus Heads, Concave to Pressure, Without Manholes. Thick- Radius to Which Head is Dished, Inches 1..., | 12 || 14 | 16 18 20 22 24 || 30 || 36 || 42 || 48 54 60 JA 275.1| 235.8 206.3 183.4 165.0 150.0| 137.6110.0 91.7 78.6 68.8 61.1| 55.1 % 309.5 265.3 232.1| 206.3 185.7 168.8 154.8|123.8|103.2, 88.4 77.4 68.8 61.9 5% 343.8. 294.8 257.9| 229.2| 206.3 187.6 171.9|137.5|114.6 98.3| 86.0 76.4 68.8 194, 378.3 324.2| 283.7 252.2 226.9| 206.3 189.1|151.3126.1|108.1| 94.6 84.1 75.7 % 412.7| 353.7 309.5 275.1| 247.5 225.1| 206.3165.1137.6117.9.103.2 91.7 82.5 1% 447.0) 383.2 335.2| 298.0 268.2 243.8 223.5178.8/149.0127.7|111.8 99.3 89.4 7% 481.4|412.6 361.1| 320.9| 288.8. 262.6 240.7|192.6160.5|137.6/120.4107.0 96.3 1% 515.8 442.1 386.9 343.9 309.5 281.4. 257.9.206.3171.9147.4|128.9|114.6/103.2 }% 550.2] 471.6 412.6 366.8 330.1| 300.1| 275.1220. 1183.4|157.2|137.5|122.3110.0 1% 584.6 501.1| 438.4 389.7 350.7| 318.9| 292.3233.8.194.9167.0|146.1129.9|116.9 9ſs 619.0|530.5 464.2 412.6 371.4| 337.6 309.5.247.61206.3176.9154.7|137.5|123.8 1% 653.4 560.0 490.0 435.5 392.0 356.4 326.6261.3.217.8|186.7|163.3|145.2|130.7 % | 687.8 589.5 515.8 458.5 412.6 375.1| 343.91275. 1229.3196.5|171.9.152.8|137.5 2% | 722.1| 619.0. 541.6 481.4| 433.3| 393.9 361.1288.81240.7.206.3180.5160.5/144.4 1% 756.5 648.4 567.4 504.3, 453.9. 412.6 378.3302.6252.2216.2|189.1|168.1|151.4 2% 790.9 677.9| 593.1| 527.3| 474.5 431.4| 395.4316.3263.6|226.0|197.7|175.8|158.1 34 825.3| 707.4 618.9| 550.2] 495.1 450.1| 412.7330.1275.1235.8.206.3|183.4|165.1 2% | 859.7| 736.8 644.8 573.1| 515.8 468.9 429.8343.8.286.6245.6.214.9|191.0171.9 1% | 894.0 766.4 670.5 596.0 536.4| 487.7 447.0|357.6298.01255.4|223.5.198.7|178.8 2% 928.4 795.8 696.3 618.9 557.0 506.4|464.2371.4309.51265.3232.1206.3185.6 % 962.8 825.3| 722.1| 641.9| 577.7 525.2| 481.4385.1|320.91275.1240.7214.0|192.6 2% 997.3 854.8 747.9| 664.8 598.3 543.9| 498.6398.9332.4284.9|249.3221.6|199.4 15 is 1031.6 884.3| 773.7| 687.7 618.9 562.7. 515.8|412.6343.8294.7|257.91229.2206.3 3% |1066.O. 913.7| 799.5 710.6 639.6 581.5 533.0426.4355.31304.5,266.5236.9|213.2 1 |1100.4 943.2 825.3| 733.6 660.2 600.2 550.2440. 1366.8|314. 5275. 1244.5220.0 1% |1169.1|1002.1. 876.8 779.4| 701.5 637.7. 584.5467.6389.71334.0.292.2259.8233.8 1% |1237.9|1061.2 928.4 825.2 742.7| 675.2 618.9495. 1412.6|353.7309.5/275.1247.6 1316 |1306.61120.0 980.0 871.1| 784.1| 712.7 653.3522.6435.5373.3326.6:290.4261.3 134 1375.5||1179.01931.6 917.Q. 825.3| 750.2. 687.7550.2458.5.393.0343.8.305.6.275.1 15% |1444.21237.91083.2 962.8 866.5 787.7| 722. 1577.7481.4412.6361.0320.9|288.8 13% |1513.0|1296.9|1134.8|1008.7 907.8 825.3| 756.5605.2504.4432.3378.2336.2|302.6 17 is 1581.81355.81186.31054.5, 949.1| 862.8 790.9632.7527.2451.9395.4351.5316.4 1% |1650.51414.8|1237.9|1100.4 990.3 900.3 825.3660.2550.2471.6412.6|366.8330.1 19ís 1719.4|1473.81289.6|1146.31031.6 937.9 859.7687.8573. 1491.3429.9|382. 1343.9 15% |1788.2|1532.7|1341.1||1192.1|1072.9| 975.4 894.1715.3596.1510.91447. O397.4357.6 1114s 1857.01591.7|1392.7|1238.01.114.2|1012.9 928.5742.8619.0,530.6.464.2412.7|371.4 134 1925.7|1650.61444.31283.81155.4|1050.4 962.9770.3641.9550.2481.4427.9385.1 11% 1994.5/1709.61495.91329.7|1196.7|1087.9 997.3797.8664.8569.9498.6443.2398.9 iſ 2063.31768.51547.5.1375.31235.01:25.41031.6835.363/.3533.5515.3453.5412.7 11% 2132.1 *********** 2 zºo.º.º.o.º.º.º.o.º.o.º. *.*.* wº 1|440.2 Factor of Safety, 5. Tensile Strength, 55,000 lbs. per sq. in. (99) T A N K H E A D S ALLOWABLE WORKING PRESSURES ON SPHERICAL DISHED HEADS A. S. M. E. CODES FOWER EO i LER AND UN F I RED PRESSU RE VESSELS 1933 AND 1932, RESP. Plus Heads, Concave to Pressure, Without Man holes. Thick- Radius to Which Head is Dished, inches i., | 66 | 72 78 | 84 90 96 102 || 108 || 114 | 120 | 132 144 156 Já 50.0|TA5.9 || 42.3 || 39.3 || 36.7|T34.4 || 32.4 || 30.6|29.0|27.525.0 22.9| 21.2 % 56.3 || 51.6 || 47.6 44.2 41.3 || 38.7| 36.4 || 34.4| 32.6 30.9| 28.1| 25.8. 23.8 546 62.5 57.3 52.9 49.1 45.9 43.0 | 40.5 | 38.2 36.2 34.4 31.3 28.7| 26.5 1% | 68.8 63.0 58.2| 54.0 50.4 || 47.3 || 44.5 42.0 39.8 37.8 34.4 31.5 29.1 % 75.0 | 68.8 || 63.5 59.0 55.0 || 51.6 || 48.5 45.9 43.4| 41.3| 37.5 34.4 31.7 1% 81.3 74.5 | 68.8 || 63.9 59.6 55.9 52.6 || 49.7| 47.1| 44.7 40.6 37.3| 34.4 % 87.5 80.2 74.1 | 68.8 64.2 60.2 56.6 || 53.5 50.7| 48.1| 43.8 40.1| 37.0 1% 93.8 86.0 | 79.3 | 73.7 | 68.8 64.5 60.7 57.3 54.3| 51.6, 46.9 43.0 39.7 }% 100.0 | 91.7 | 84.6 || 78.6 | 73.4 | 68.7 | 64.7 | 61.1| 57.9 55.0, 50.0 45.9| 42.3 1% 106.3 97.4 89.9 83.5 77.9 | 73.1 | 68.8 || 65.0| 61.5 58.5 53.1| 48.7| 45.0 % 112.5 | 103.1 | 95.2 88.4 82.5 77.4 || 72.8 | 68.8 65.2. 61.9 56.3 51.6| 47.6 1943 || 1 18.7 || 108.9 || 100.5 93.3 87.1 || 81.7 || 76.9 || 72.6| 68.8 65.3 59.4| 54.4 50.3 5% | 125.0 114.6 || 105.8 98.3 91.7 | 86.0 80.9 || 76.4 72.4| 68.8 62.5 57.3| 52.9 2% 131.3 | 120.4 111.1 | 103.2 96.3 90.3 | 85.0 80.2 76.0 72.2 65.6 60.2 55.5 1% | 137.6 126.1 | 116.3 || 108.0 | 100.9 || 94.6 | 89.0 | 84.1| 79.6 75.7| 68.8 63.0 58.2 2% 143.8 131.8 | 121.7|113.0 | 105.5 98.9 || 93.0 | 87.9 83.3| 79.1| 71.9 65.9 60.8 34 150.0 | 137.6 | 126.9 || 117.9 || 110.1 | 103.2 97.1 91.7 86.9 82.5 75.0 68.8 63.5 2% 156.3 143.3 |132.3 | 122.8 114.6 | 107.5 | 101.1 95.5 90.5 86.0 78.2 71.6 66.1 13% | 162.6 | 1.49.0 | 137.6 | 127.7 | 119.2 | 111.8 || 105.2 | 99.3 94.1. 89.4| 81.3 74.5 68.8 2% | 168.8 154.7 142.8 || 132.6 | 123.8 116.1 109.2|103.2 97.7 92.8 84.4 77.4 71.4 % 175.1 | 160.5 | 1.48.1 | 137.5 | 128.4 | 120.4 113.3 |107.0|101.4| 96.3| 87.5 80.2 74.1 2% | 181.3 | 166.2 | 153.4 142.5||132.9 | 124.7 117.3 |110.8|105.0 99.7| 90.7 83.1| 76.7 1% 187.5 171.9 | 158.7 || 147.4 || 137.6 | 128.9 | 121.3 |114.6|108.6/103.2 93.8 86.0 79.4 3% 193.8 || 177.7 | 164.0 | 152.3 142.2 133.3 | 125.4 |118.4|112.2|106.6 96.9 88.8 82.0 1 200.0 | 183.4 169.2 | 157.3 146.7 | 137.6 129.5 |122.3|115.8||110.0/100.0 91.7| 84.6 1% 212.5 194.9 || 179.9 | 167.0 | 155.9 || 146.2 | 137.5 |129.9|123. 1116.9|106.3 97.4| 89.9 1% |225.1 206.3 |190.5 176.8 165.1 | 154.7|145.6 |137.5|130.3|123.8112.5/103.2 95.2 1346 ||237.6 217.8 201.0 | 186.7 174.2 | 163.3 | 153.7 145.2|137.6|130.7|118.8108.9/100.5 114 |250.0 229.2 211.6 | 196.5 | 183.4 171.9 | 161.8 |152.8144.8|137.6|125.0114.6/105.8 15% 262.6 |240.7 222.1 | 206.3 192.6 | 180.5 | 169.9 |160.5/152.0144.4|131.3|120.4|111.1 13% 275.1 252.2 232.8 216.1 | 201.7 | 189.1 | 178.0 |168.1159.3151.3137.6:126.1|116.4 1% 287.6 263.6 243.3 226.0 210.9 |197.7 | 186.0 |175.8|166.5/158.2143.8|131.8|121.7 1% |300. 1 || 275.1 253.9 || 235.8 220.0 | 206.3 | 194.1 183.4|173.8|165.1|150.1|137.6|127.0 1946 || 312.6 286.6 264.5 245.6 229.3 214.9 202.3 |191.01181.0171.9/156.3143.3132.3 15% 325.1 298.0 | 275.1 255.5 238.4 223.5 210.4 |198.7|188.2|178.8|162.6/149.0137.6 11% 337.6 |309.5 285.7 265.3 247.6 || 232.1 218.5 |206.3|195.5185.7168.8|154.7|142.8 134 |350.1 321.0 296.3 |275. 1 || 256.8 240.7 226.6 (214.0.202.7|192.6175.1160.5148.1 11% 362.6 || 332.4 |306.8 284.9 265.9 |249.3 234.6 |221.6|209.9|199.5181.3166.2153.4 1% |375.1 |343.9 |317.4 294.8 275.1 || 257.9 |242.7 |229.3217.2|206.3|187.6/171.9/158.7 11% 387.6 |355.3 328.0 304.6 284.3 || 266.5 250.8 .236.9|224.4213.2|193.8|177.7164.0 2 400.2 || 366.8 || 338.6 || 314.4 293.4 275. 1 || 258.9 |244.5231.71220.1|200. 1183.4|169.3 Factor of Safety, 5. Tensile Strength, 55,000 lbs. per sq. in. (100) B U F F A Lo T AN K c or Po R AT I o N ALLOWABLE WORKING FRESSURES ON SPHERICAL DISHED HEADS A. S. M. E. CODES POWER EO I LER AND UN F I RED PRESSU RE VESSELS 1933 AND 1932, RESP. Minus Heads, Convex to Pressure, Without Man holes. Thick- Radius to Which Head is Dished, Inches ſº | 12 || 14 | 16 18 20 22 24 30 36 42 48 54 60 jº T65.1. 141.5|123.8 T10.0 || 99.0 90.0 || 82.6 | 66.0|55.047.2, 41.3| 36.7|33.1 % 185.7 159.0|139.3 |123.8 || 111.4| 101.3 92.9 || 74.3 61.9 53.0 46.4 41.3 37.1 5% 206.3 176.9. 154.7| 137.5|123.8 || 112.6 || 103.1 82.5 68.8 59.0. 51.6, 45.8 41.3 194, 227.0 194.5 170.2|151.3 |136.1 | 123.8 |113.5 90.8 75.7 64.9, 56.8, 50.5 45.4 % 247.6 212.2 135.7|165.1|148.5 |135.1 |123.8|99.1. 82.6 70.7 61.9 55.0, 49.5 1% 268.2 229.9| 201.1 || 178.8 160.9 || 146.3 134.1 107.3 89.4 76.6 67.1| 59.6 53.6 % 288.8 247.6|216.7|192.5 173.3|157.6 144.4 115.6, 96.3 82.6 72.2. 64.2 57.8 1% 309.4| 265.3 232.1 206.3 185.7 | 168.8 154.7|123.8,103.1| 88.4 77.3 68.8 61.9 }% 330.1| 283.0 247.6 220.1 | 198.1 | 180.1 | 165.1 |132.1110.0 94.3' 82.5 73.4 66.0 17% 350.8 300.7|263.0 |233.8 210.4 191.3 |175.4|140.3,116.9/100.2, 87.7| 77.9| 70.1 % 371.4 318.3|278.5 247.6 |222.8 202.6 185.7 143.5.123.3105.j 92.8 82.5 74.3 1% 392.0 336.0|294.0 |261.3 235.2|213.8 196.0|156.8,130.7|112.0 98.0 87.1| 78.4 % 412.7 353.7|309.5 275.1 247.6 |225.1 206.3 |165. 1137.6|117.9:103.1| 91.7 82.5 2% 433.3 371.4|325.0|288.8 |260.0|236.3 |216.7|173.3144.4|123.8108.3 96.3 86.6 lºſs || 453.9. 389.0|340.4 |302.6 |272.3|247.6 |227.0||131.6151.3129.7|113.5100.9 90.8 2% 474.5 406.7 355.9 |316.4|284.7 |258.8 237.2|189.8,158.2,135.6,118.6105.5 94.9 34 495.2 424.4 371.3 || 330.1 |297.1 270.1 247.6 |198.1165. 1141.5|123.81.10.0 99.1 2% 515.8 442.1|386.9 |343.9 |309.5 281.3 || 257.9 |206.3.172.0.147.4,128.9|114.6|103.1 1% 536.4 459.8|402.3 |357.6 321.8 292.6 268.6 (214.6178.8/153.2|134.1|119.2|107.3 2% 557.0 477.5|417.8 371.3 || 334.2 |303.8 278.5 222.8|185.7159.2|139.3|123.8||111.4 % 577.7 495.2 433.3 ||385.1 |346.6 || 315.1 288.8 231. 1192.5165. 1144.4|128.4|115.6 2% 598.4 512.9 448.7 || 398.9 |359.0 || 326.3 || 299.2 239.3199.4|170.9149.6|133.0|119.6 1% 619.0, 530.6|464.2|412.6 || 371.3 || 337.6 || 309.5 |247.61206.3176.8/154.7|137.5|123.8 3% 639.6 548.2 479.7 426.4|383.8 |348.9 || 319.8 255.8213.2182.7159.9|142.1|127.9 1 660.2 565.9 495.2 440.2 || 396.1 || 360. 1 || 330. 1 264. 1220. 1188.7165. 1|146.7|132.0 1% 701.5 601.3 526.1 |467.6 |420.9 |382.6 |350.7 |280.61233.8.200.4|175.3155.9|140.3 1% 742.7| 636.7 557.0 |495.1 |445.6 |405.1 371.3 (297. 1247.6212.2185.7|165.1|148.6 1346 784.0 672.0 588.0 522.7 |470.5 427.6 392.0 313.6 261.3224.0196.0174.2156.8 194 | 825.3| 707.4 619.0|550.2|495.2|450.1 |412.6 (330.1275.1235.8.206.3|183.4165.1 15 is 866.5 742.7 649.9 |577.7 |519.9 |472.6 |433.3|346.6288.81247.6216.6192.5173.3 1% 907.8 778.1680.9 |605.2|544.7 |495.2|453.9363.1302.6259.4.226.9.201.7181.6 1746 949.1| 813.5 711.8 632.7 |569.4|| 517.7 |474.5 |379.6,316.3271.1.237.21210.9189.8 1% 990.3 848.9 742.7 |660.2|594.2 |540.2|495.2 396.1330. 1283.0247.6220.1198.1 1916 1031.6 884.3 773.7 | 687.8 ||619.0 562.7 || 515.8 412.343.32.4.325.3223.3206.3 1%, 1072.9 919.6 804.7 |715.3|643.7 |585.2|536.5 429.2357.6306.5,268.2238.4214.6 11% |1114.2 955.0, 835.6 |742.8 | 668.5 607.7 || 557.1 |445.7|371.4318.3.278.5247.6222.8 1%, 1155.4.999.4|866.6 |Z0.3|693.3|830.2|577.7 462.2385.1339.1288.9.236.8231.1 11% |1196.7|1025.7| 897.5 |797.8 |718.0 652.7 |598.4 473.7333.8341.9233.2265.3233.3 1% |1238.0|1061.1|928.5 825.3 742.8 |675.3 619.0 435.2473.7353.7309.5.375.1247.6 115 is 1279.21096.5, 959.4|852.8 767.5 697.8 639.6 511.7426.4365.5.319.8284.3255.8 2 1320.5||1131.9| 990.4 880.3 |792.3 | 720.3 wºººoººººoººº. | | Factor of Safety, 5. Tensile Strength, 55,000 lbs. per sq. in. (101) T A N K H E A D S ALLOWABLE WORKING PRESSURES ON SPHERICAL DISHED HEADS A. S. M. E. CODES FOWER BOI LER AND UN F I RED PRESSURE VESSELS 1933 AND 1932, RESP. Minus Heads, Convex to Pressure, Without Man holes. Thick- Radius to Which Head is Dished, Inches º, 66 | 72 78 84 90 96 || 102 108 114 120 132 144 156 a 30.0|27.5|25.4 || 23.6|T22.0 || 20.6 || 19.4| 18.4|17.4 16.5|T5.0|T3.8 12.7 % | 33.8 || 31.0| 28.6| 26.5 24.8 || 23.2| 21.8 20.6| 19.5 18.6 16.9 15.5. 14.3 5ts 37.5 | 34.4 || 31.7| 29.5 27.5 25.8 24.3| 22.9| 21.7. 20.6 18.8 17.2 15.9 1% 41.3| 37.8 34.9 || 32.4 30.2| 28.4 26.7 25.2 23.9, 22.7, 20.6| 18.9 17.5 % 45.0 41.3 || 38.1 || 35.4 || 33.0 || 31.0 29.1 27.5 26.1| 24.8 22.5| 20.6| 19.0 1% 48.8 || 44.7 || 41.3 || 38.3 || 35.8 || 33.5 31.6 29.8 28.2 26.8. 24.4 22.4 20.6 7% 52.5 || 48.1 || 44.5 || 41.3 || 38.5 || 36.1 34.0 32.1| 30.4 28.9 26.3 24.1| 22.2 1% 56.3 || 51.6 47.6 44.2 41.3| 38.7| 36.4 || 34.4 32.6 30.9 28.1| 25.8 23.8 % 60.0 55.0 50.8 || 47.2 44.0 || 41.2| 38.8 || 36.7| 34.8 33.0, 30.0, 27.5 25.4 1% 63.8 58.4 53.9 50.1 46.7 || 43.9 || 41.3 || 39.0) 36.9 35.1 31.9 29.2 27.0 % 67.5 61.9 || 57.1 53.0 || 49.5 || 46.4 || 43.7 || 41.3| 39.1| 37.1| 33.8] 30.9| 28.6 1943 || 71.2| 65.3 || 60.3 56.0 | 52.3 || 49.0 || 46.1 || 43.6 41.3 39.2, 35.6 32.7| 30.2 % 75.0 | 68.8 || 63.5 59.0 55.0 || 51.6 || 48.5 || 45.8 43.4 41.3 37.5 34.4 31.7 2% 78.8 || 72.2 | 66.7 | 61.9 57.8 || 54.2 || 51.0 || 48.1| 45.6 43.3| 39.4| 36.1| 33.3 1% 82.6 75.7 69.8 64.8 60.5 56.8 53.4 50.5 47.8 45.4 41.3| 37.8 34.9 2% 86.3 || 79.1 | 73.0 | 67.8 63.3 || 59.3 || 55.8 52.7. 50.0 47.5, 43.1| 39.5 36.5 % 90.0 82.6 76.1 | 70.7 | 66.1 61.9| 58.3, 55.0, 52.1 49.5, 45.0 41.3 38.1 2% 93.8 86.0 79.4|| 73.7 | 68.8| 64.5 60.7 || 57.3 54.3 51.6, 46.9 43.0 39.7 1% 97.6 | 89.4| 82.6 || 76.6 || 71.5 67.1 63.1 59.6 56.5 53.6 48.8 3. 31.3 2% | 101.3 92.8 || 85.7 || 79.6 || 74.3 69.7 || 65.5 | 61.9 58.6 55.7. 50.6 **** % 105.1 96.3 | 88.9 || 82.5 | 77.0 | 72.2 | 68.0 | 64.2 60.8 57.8 52.5 48.1 44.4 2% 108.8 99.7 | 92.0 | 85.5 79.7| 74.8 || 70.4 | 66.5 63.0 59.8 54.4 49.9 46.0 1546 || 112.5 | 103.1 95.2 88.4 82.6 || 77.3 | 72.8 68.8 65.2. 61.9 56.3| 51.6, 47.6 3% 116.3 || 106.6 98.4 91.4 85.3 80.0 | 75.2 | 71.0| 67.3, 64.0, 58.1 53.3, 49.2 1 120.0 | 110.0 | 101.5 || 94.4 || 88.0 | 82.6 || 77.7 | 73.4| 69.5, 66.0 60.0 55.0, 50.8 1% 127.5 116.9 107.9 ||109.2| 93.5 37.7 82.5||77.9| 73.8 70.2. 63.8 58.5, 54.0 1% 135.1 |123.8 114.3 || 106.1 99.1 92.8 87.4 || 82.5 78.2 74.3, 67.5 61.9 57.1 1% 142.6 || 130.7 | 120.6 | 112.0 | 104.6 98.0 92.2 | 87.1| 82.5 78.4, 71.3, 65.3, 60.3 1}4 150.0 | 137.5 | 127.0 | 117.9 || 110.0 | 103.1 | 97.1 91.7| 86.9 82.5, 75.0 68.8 63.5 1% | 157.6 144.4 133.3 |123.8 115.6 | 108.3 || 101.9 96.3| 91.2, 86.7 78.8 72.2 66.7 1% | 165.1 | 151.3 || 139.7|129.7 | 121.0 | 113.5 106.9 |100.9 95.6, 90.8 82.5 75.7 69.8 17% 172.6 | 158.2 146.0 | 135.6 | 126.5 118.6 111.6 |105.5 99.9 94.9; 86.3 79.1 73.0 1% 180.1 | 165.1 152.3 141.5 | 132.0 | 123.8 116.5 |110.0|104.3 99.0 90.0 82.5 76.2 1946 187.6 171.9 || 158.7 || 147.4 || 137.6 129.0 | 121.4|114.6|108.6 103.2 93.8 86.0 79.4 1% 195.1 || 178.8 | 165.1 | 153.3 || 143.1 | 134.1 | 126.2 |119.2112.9.107.3 97.5 89.4| 82.5 11] ſº | 202.6 185.7 171.4 159.2 148.6 139.3 |131.1 |123.8||117.3111.4101.3 92.8 85.7 134 210.1 | 192.6 || 177.8 165. 1 || 154.1 144.4 || 135.9 |128.4121.6.115.5105.0 96.3 88.9 11% 217.6 | 199.5 184.1 171.0 | 159.6 149.6 140.8 |133.0|126.0,119.7.108.8 99.7 92.1 1% |225.1 | 206.3 |190.5 176.9 | 165.1 | 154.7|145.6 |137.6|130.3123.8112.5103.2 95.2 11% 232.6 || 213.2 | 196.8 182.7 || 170.6 159.9 150.5 º 98.4 2 240. 1 220. 1 || 203.2 | 188.6 || 176. 1 | 165. 1 || 155.4 tºº.º.o.o.o.o. | - Factor of Safety, 5. Tensile Strength, 55,000 lbs. per sq. in. (102) B U F F A L O T A N K C O R P O R AT I O N LOADS ON FLAT STEEL PLATES (Additional data on page 260) The laws governing the resistance of plates, to pressures normal to their surfaces, are but imperfectly understood and formulae respecting them must be used with caution and as probable approximations. (Trautwine.) RECTANGULAR PLATES WITH CENTRAL LOADS. W = load in pounds t = thickness of plate in inches L = long span between supports in inches I = short span “ * { { { { { S = fiber stress of steel in pounds per square inch C = a coefficient (see values below) _ 3 L x 1 . W ºr 2 s , (L* + l2) t” S ;Cx ###x+. W is x C x L x 1 SQUARE PLATES WITH CENTRAL LOADS. L = | Hence 2 S - cº, W =#s x; RECTANGULAR PLATES UNIFORMLY LOADED. SQUARE PLATES UNIFORMLY LOADED. T. = 1 Hence --- 1 » .W. W — * t2 s -- C - L. sº W = 4s x gº Value of Coefficient C. s sº - For Uniform Load For Central Load When the plate is merely supported along its four edges . . . C = 1.125 C = 2.00 When the plate is firmly secured along its four edges . . . . C = 0.75 C = 1.75 CIRCULAR PLATES UNIFORMLY LOADED. W = load in pounds S = fiber stress of steel in pounds per square inch E = its elasticity coefficient – unit stress º unit stretch r = radius of the unsupported portion of plate in inches t = thickness of plate in inches Y = deflection at the center WHEN THE CIRCULAR PLATE IS MERELY SUPPORTED. w -s () t = r |W y – 5 W x : r S 6 E x tº WHEN THE CIRCULAR PLATE IS FIRMLY SECURED. 2 r 3 * S 6 Ex tº For Design of Flat Steel Heads, see page 83. (103) SECTION VI ºwºo TANIKS Nº. SMOKESTACKS BREECHINGS, FLUES, BINS (105) S M O K E S T A C K S Stacks The manufacture and erection of steel stacks is a regular part of the long line of Buffalo Tank Corporation products. We design and build to specifications or furnish stacks from our own design to meet ordinary or special conditions. For most purposes steel stacks are preferred to brick chimneys. Their efficiency for the same dimensions is somewhat higher, because there is no infiltration of air as through brick- work and their smoother surfaces cause less friction. Ordinarily they are built in courses of steel plate not over 72 inches high and so formed that each course telescopes into the bottom of the next succeeding course. Although it has been the practice to make stacks heavier near the bottom than at the top, they should be of the same gauge material throughout, because the top is exposed to the action of condensation products and is more rapidly corroded than the bottom. Steel chimney stacks, when properly constructed, are stronger than brick chimneys of the same size. There are in general use three styles of steel plate chimneys, the first being the ordinary smokestack, which is guyed with outstanding guys; the second has a bell-shaped base and is erected upon heavy foundations with the metal of such thickness as to require no guying; the third is made similar in construction to the second, excepting that it is lined clear to the top with brick. A so-called self-supporting smokestack, lined clear to the top with brick, usually costs less than a brick chimney of the same dimensions. Steel stacks of the self-supporting character should be well secured to the foundation with heavy bolts through special holding-down lugs placed upon the stack. For this character of stack it is also recommended that the flue from the boilers enter the stack under the base, so that there will be no opening cut through the steel shell. The stack should be well painted to prevent rusting, for which purpose a ladder extending from the base to the top is often placed upon it. When steel stacks are braced with outstanding guys to surrounding objects, the guys are generally attached at about two-thirds the height of the stack, spreading laterally, at least an equal distance, and are composed of heavy wire, galvanized wire rope, or rods. Each brace should have a cross-sectional area in square inches approximately equal to one one-thousandth of the number of square feet of projected area of the stack (diameter times the height in feet). Stacks with eyebolts give longer service than with guy bands because there is no outside corrosion, the eyebolts seldom or never pulling out, even when the stack has several holes eaten in it, and the top is practically nothing but rust and scale. Thus the remaining portion of the stack is very poorly guyed and absolutely uncontrollable when it comes to taking it down, unless a scaffold is built to the top. Many companies have long since discontinued the use of guy bands and use instead eyebolts with a reinforcing plate on the inside of the stack. The guy band is the most prolific source of external corrosion on steel stacks, the stacks invariably breaking off right at the band long before the stack really needs to be taken down. This leaves a large, heavy section of stack to fall and do heavy damage, often pulling the band to one side. Many stacks have been built so that the top is always the thinnest, where, if anything, it should be the heaviest, because on a stack built of the same thickness through- out, the bottom portion can often be used for two top sections, the top always wearing out first. On guyed steel stacks we recommend a minimum thickness of 3%" and suggest that an allowance of 9%" in thickness be added for corrosion. Guyed stacks not over 50 feet high usually require but one set of guys and it is common practice to place them at a point about two- thirds the height of stack. On guyed stacks to 75 feet high, two sets of guys are required, the second set being located about the mid point of stack. On stacks 100 feet high, or any stack whereon three sets of guys are used, common practice decrees locating guys so that actual loads in all wires are about the same. GUYED STACKS The stresses in a guyed stack are computed the same as in a continuous beam, but generally speaking, the stresses are not high enough to warrant so much study. Rule of thumb methods may be used, or figures taken from existing tables, and these will generally prove adequate. In general, we recommend that stacks be welded inside and outside, but the inside weld need generally be only a light seal bead. The outside welds should be ample to take wind loads and 45 degree filler welds are commonly recommended. On stacks over 24 inches in diameter, or over 35 feet high, it is advisable for length of Service that the minimum thickness be 94" and for stacks over 48 inches in diameter, or over 75 feet high, it is recommended that the minimum thickness be 5%". (106) B U F F A L O T A N K C O R P O R A T I O N GUYED STACKS (Continued) The following table will give suggested minimum thicknesses and number of sets of guys for guyed stacks. HEIGHT IN FEET Diameter IIl 25 50 75 I ()0 125 Inches Thickness Guys | Thickness | Guys | Thickness | Guys | Thickness || Guys | Thickness Ruys 18 % 1 316 or % 1 24 % 1 % 1 * * & a $ tº e e tº º 36 % 1 }4 2 % or % 3 % 3 42 % 1 % 2 % 3 % 3 48 % 1 3% 2 }% 3 % 3 60 % 2 9% 3 % 3 72 % 3 5% or % 3 Where two thicknesses are shown, we recom- — mend that the upper V6 of the stack be made of the heavier material, because of the gases cooling off in this area, condensing and tending to corrode the stack plate. tº º - Al- * º N B 4--> 4. H N The load in guys is generally computed as follows: A. W = Wind load = 20 pounds per sq. ft. cross sectional area H = }} (A & B) a" Stress = }} W (A & B) Secant a --~ Yº - N SELF-SUPPORTING STACKS The design of self-supporting stacks involves problems which a layman should generally not attempt. However, the more general formulae can be used to determine minimum thick- nesses or in checking design. Self-supporting stacks are made with the upper part cylindrical and the lower part flared or conical. The height of the flared base depends upon the breeching, the location of the fluº opening and upon the required diameter of the base of the stack. The height of the flared section may vary from 9% to 34 the total height of stack. The top of the cone is usually figured at the top of the stack and if the height of the cone section is 34 the height of the stºck, the diameter of the base will be 94 greater than the diameter of the upper part of stack. The ratio of the diameter of the base of the cone section to the diameter of the cylindrical section varies from 4/3 to 5/4. The flare or cone section is used to provide a larger base and to permit better entrance of flue gases. (107) S M O K E S T A C K S SELF-SUPPORTING STACKS (Continued) To prevent collapse of upper part of stack, the top should be reinforced. This reinforce- ment is commonly made by fastening a painter's trolley track on the outside near the top. If the stack is to be lined and horizontal angles are placed around the inside to support the brick lining, these angles also stiffen the stack against collapse due to wind pressure. A clean- out door should be provided near the bottom unless it is possible to clean out the stack through the foundation. Ladders are usually provided on the outside and sometimes on both inside and outside. The foundations for self-supporting stacks should be massive in order that the vibrations due to wind may be made as small as possible. DATA FOR DESIGN The following data will be of assistance in the design of self-supporting stacks: Notation: h = distance in feet of any point below the top of stack d = diameter of the stack in feet t = thickness of steel shell in inches p = pressure of the wind on a projected diameter in pounds per square foot P = total wind pressure on the stack in pounds WS = weight of steel shell above any point in pounds Wl = weight of stack lining above any point in pounds Wf = weight of foundation in pounds b = diameter of foundation in feet h1 = height of foundation in feet d1 = diameter of anchor bolt circle in feet g = spacing of anchor bolts in inches M = bending moment due to wind in inch pounds I' = stress per lineal inch along a circumferential joint f = stress along a circumferential joint in pounds per square inch The total lateral pressure acting above any section below the top of stack will be P = p x d x h The bending moment in foot pounds at any distance h below the top of the stack will be M = }} p x d x h” The stress along a circumferential joint will be f = 1.33 x hº t x d The stress per lineal inch along the circumference will be F = 1.33 x h” -—H C If ft = the allowable unit stress on the net section and e = the efficiency of the joint, then the plate thickness will be 1.33 x h” d x ft x e When the diameter of the anchor bolt circle is equal to the diameter of the stack, the stress in an anchor bolt due to the wind will be T = 1.33 x g x h” d When the diameter of the anchor bolt circle is equal to the diameter of the base of bell or cone (d1) then T = 1.33 x g x h” x d d12 The overturning moment at the top of the foundation is M = % p x d x h” The volume of the footing in cubic feet, using hl as the height of footing and b as the diam- eter of the foundation will be V = 0.7854 x b2 x hl (108) B U F F A L O T A N K C O R P O R A T I O N SELF-SUPPORTING STACKS (Continued) The overturning moment about the base of the foundation in foot pounds will be M = p x d x h (3% h + hl) The diameter of the foundation will be 8M b = — * T Ws. Twº Twſ Use Buffalo Self-supporting Steel Stacks Designed for long service under severe conditions DIAMETER OF CIRCULAR MASONRY FOUNDATIONS FOR SELF-SUPPORTINC STEEL STACKS Height of foundations = % of its diameter p = 25 pounds per sq. ft. Height Diameter of Stack in Feet 1I] Feet 4 5 6 7 8 9 10 11 12 70 14.3 15.1 15.8 16.4 17.0 17.5 18.0 18.4 18.8 80 15.3 16.1 16.9 17.6 18.2 18.7 19.2 19.7 20.1 90 16.2 17.1 17.9 18.6 19.3 19.8 20.4 20.9 21.3 100 17.1 18.0 18.9 19.6 20.3 20.9 21.5 22.0 22.5 110 17.9 18.9 19.8 20.6 21.3 21.9 22.5 23.1 23.6 120 18.7 19.8 20.7 21.5 22.2 22.9 23.5 24.1 24.6 130 19.5 20.6 21.5 22.4 23.1 23.8 24.5 25.1 25.6 140 20.2 21.4 22.4 23.2 24.0 24.7 25.4 26.0 26.6 150 20.9 22.1 23.1 24.1 24.9 25.6 26.3 26.9 27.5 160 * 3 º' 22.8 23.9 24.8 25.7 26.5 27.2 27.8 28.4 170 & & e 24.6 25.6 26.5 27.3 28.0 28.7 29.3 180 * * * 26.4 27.2 28.1 28.8 29.5 30.1 190 - - - 28.0 28.8 29.6 30.3 31.0 200 28.7 29.6 30.4 31.1 31.8 220 30.1 31.0 31.8 32.6 33.3 240 tº s 4 32.4 33.2 34.1 34.8 Height Diameter of Stack in Feet IIl Feet 14 16 18 20 22 24 26 28 30 120 25.6 26.4 27.3 28.0 28.7 29.3 29.8 30.4 30.9 130 26.6 27.5 28.4 29.1 29.8 30.5 31.1 31.7 32.2 140 27.6 28.6 29.4 30.2 30.9 31.6 32.2 32.9 33.4 150 28.6 29.6 30.5 31.3 32.0 32.7 33.4 34.0 34.6 160 29.5 30.5 31.5 32.3 33.1 33.8 34.5 35.1 35.7 170 30.5 31.5 32.4 33.3 34.1 34.8 35.5 36.2 36.8 180 31.3 32.4 33.4 34.3 35.1 35.9 36.6 37.3 37.9 190 32.2 33.3 34.3 35.2 36.0 36.8 37.6 38.3 38.9 200 33.0 34.1 35.2 36.1 37.0 37.8 38.5 39.3 39.9 220 34.6 35.8 36.9 37.9 38.8 39.6 40.4 41.2 41.9 240 36.2 37.4 38.5 39.5 40.5 41.4 42.2 43.0 43.8 260 37.6 38.9 40.1 41.2 42.1 43.1 43.9 47.8 45.6 280 39.1 40.4 41.6 42.7 43.7 44.7 45.6 46.5 47.3 300 40.4 4.1.8 43.1 44.2 45.3 46.3 47.2 48.1 48.9 320 4.1.8 43.2 44.5 45.7 46.7 47.8 48.8 49.7 50.5 SELF-SUPPORTING STEEL STACKs (KENT) g Bottom Flare Anchor | Section 2nd 3rd 4th 5th 6th 7th Straight Bolts | Including Section | Section | Section | Section | Section | Section Conical Diam. Height Horse- Flare Tººl s Power 5 . . --> --> --> --> --> --> --> * --> Weight # | 5 | #| # | #| #| #| #| #| #| #| #| #| #| #| #| 5 || | # B | 3 || 3 || 3 || 3 || 3 || 3 || 3 || 3 || 3 || 3 || 3 || 5 || 3 || 3 || 3 || 3 3 d 2, C | ET || 2 | | ET | f | | ET || 2 | | ET | f | ET | f | ET | f | | ET | f | | C. C. T Ft. Ft. In. Ft. In. Ft. In. Ft. In. Ft. In. Ft. In. Ft. In. | Ft. In. | Ft., In, Ft. Lb. (ſ) 4 100 348 || 16 || 1% 45 5% 15 | }.A. | 40 3% * * 5–9 30 20,000 E- 5 125 632 || 14 1% 45 3% 15 5% 20 | }.4 || 45 3% 6–7 30 32,800 6 125 934 24 1% 40 || 5% 15 3% 20 | }.4 50 | 3% 8–10 40 35,690 © 7 150 1,418 18 1% 55 3% 20 9% 20 | }.4 55 3% . . . . . . . . . . . . . . . . . 9–7 40 55,740 x S 175 2,027 | 20 |2% 55 Jº 20 | 3% 20 5% 20 | }.4 60 | 3% . . . . . . . . . . . 10–4 40 80,950 rºl 9 200 2,771 24 |2% 75 Jó | 20 | 3% 20 5% 25 | }.4 || 60 || 3% | . . . . . . . . . . . 12–5 55 108,900 : 10 200 3,448 26 2% 70 Jº 20 | 3% 20 9% 25 | }.4 || 65 3% . . . . . . . . . . . 13–3 50 119,000 > 10 250 3,855 26 2% 80 9% 20 | }. 20 | }. 20 | 34 20 5% 25 J4 65 || 3 || || 13–4 55 187,400 12 225 5,330 || 32 2% 80 Jºſé 20 || 3% 25 || 5% 100 || JA | . . . . . . . . . . . . . . . . . 16–4 60 165,000 O 12 250 5,618 30 |2% | 85 | }.3 20 ſº | 20 | 3% 25 5% 100 | }.4 . . . . . . . . . . . 16–3 65 206,800 x (ſ) 14 225 7,310 | 40 | 1% 90 || 3% 25 5% 110 || JA e e i s = i e e i s e i e º i e º e = 19–8 65 173,400 14 275 8, 110 || 36 2% 75 | }.3 20 | }% 20 74% 25 || 3% 25 5% 110 || JA | . . . . . 19—3 75 265,600 15 225 8,440 || 42 1% | 85 3% 140 5% | . . * & J & sº 20–6 60 197,300 15 275 9,340 || 36 2% 85 | }. 25 Jº 25 || 3% 140 5% 19–8 65 288,500 16 250 | 10,138 42 2% 55 | }{6 30 Jº 25 3% 145 || 5% 20–6 55 250,300 16 300 11,105 || 38 |2% 60 9% 20 | 9% 25 | }. 25 ſº 25 | 3% 145 || 5% 20–0 60 357,500 18 250 | 12,894 || 50 | 1% 70 || 3% 30 || 3% | 150 5% a $ 25–0 70 262,800 18 300 || 14,123 44 2% 70 | }.3 25 | }% 25 76 30 || 3% 150 5% 23–6 70 375,300 20 250 15,980 || 54 1% 60 || 3% 190 3% * * 26–4 60 323,700 20 300 17,505 || 48 |2% 60 | }% 25 | }. 25 || 76 190 || 3% 25–0 60 442,600 SIZE OF STACKS FOR VARIOUS H.P. 5 Height of Stack in Feet Diam Area Effect | | c. Area 50 | 60 70 80 90 100 | 110 | 125 150 175 200 225 250 300 Inches | Sq. Ft. Sq. Ft Commercial Horse-power of Boiler 18 1.77 ,97 || 23 25 27 | 29 Ug 21 2.41 1.47 | 35 | 38 || 41 || 44 . . . 5 24 3.14 2,08 || 49 54 || 58 || 62 | 66 ºri 27 3.98 2.78 || 65 | 72 || 78 || 83 || SS > F- 30 4.91 3.58 | 84 92 || 100 || 107 || 113 | 119 | . . . . O 33 5.94 4.48 . . 115 125 | 133 141 149 156 . . . . 36 7,07 5.47 | . . . 141 | 152 | 163 173 || 182 | 191 204 | . . . . = 39 8.30 6.57 | . . . . . . 183 196 208 || 219 || 229 245 268 > 2. 42 9.62 7.76 . . . . . . . 216 231 || 245 258 271 289 || 316 || 342 . . . . . x 48 || 12.57 10.44 | . . . . . . . . . . . .311 || 330 || 348 || 365 389 426 || 460 || 492 | . . . . 54 | 15.90 | 13.51 . . . . . . . . . . . . . . . 427 | 449 || 472 503 551 595 636 || 675 | . . . . O 60 | 19.64 | 16.98 | . . . . . . . . . . . . . . 536 565 593 632 692 || 748 800 848 894 C 20 66 23.76 20.83 | . . . . . . . . . . . . . . . . . . . 694 | 728 776 849 918 981 || 1040 || 1097 | 120.1 *U 72 | 28.27 25.08 | . . . . . . . . . . . . . . . . . . . 835 | 876 934 || 1023 1105 || 1181 | 1253 || 1320 | 1.447 O 78 || 33.18 29.73 | . . . . . . . . . . . . . . . . . . . . . . 1038 1107 | 1212 || 1310 || 1400 1485 1565 1715 2 J 84 || 38.48 || 34.76 | . . . . . . . . . . . . . . . . . . . . . . . 1214 | 1294 | 1418 || 1531 1637 || 1736 1830 | 2005 : 90 44.18 40.19 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 1496 | 1639 || 1770 | 1893 | 2008 || 2116 || 2318 . 96 || 50.27 | 46.01 . . . . . . . . . . . . . . . . . . . . . . . . . . . 1712 | 1876 | 2027 | 2167 2298 || 2423 2654 : 102 || 56.75 52.23 . . . . . . . . . . . . . . . . . . . . . . . . . . . 1944 2130 || 2300 2459 2609 || 2750 3012 108 || 63.62 58.83 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2090 || 2399 || 2592 || 2771 2939 || 3098 || 3393 114 || 70.88 || 65.83 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2685 2900 || 3100 || 3288 3466 3797 120 | 78.54 73.22 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2986 || 3226 3448 || 3657 | 3855 || 4223 132 | 95.03 | 89.18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3637 || 3929 || 4200 4455 4696 || 5144 144 113. 10 106.72 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4352 || 4701 || 5026 5331 || 5618 6155 S M O K E S T A C K S Wel. in miles per hour WIND VELOCITIES IN THE UNITED STATES WIND PRESSURE The wind pressure (P) in pounds per square foot on a flat surface normal to the direction of the wind for any given velocity (V) in miles per hour is given quite accurately by the formula P = 0.004 V2 The following table gives the pressure per square foot on a flat surface normal to the direc- tion of the wind for different velocities as calculated by formula. square foot Pressure, lbs. per 0.4. . . . . . . . . . . . . . Fresh breeze 1.6. . . . . . . . . . . . . . Fair wind 3.6. . . . . . . . . . . . . . Strong wind 6.4. . . . . . . . . . . . . . High wind 10.0. . . . . . . . . . . . . . Storm 14.4. . . . . . . . . . . . . . Violent storm 25.6. . . . . . . . . . . . . . Hurricane 40.0. . . . . . . . . . . . . . Violent hurricane Average hourly velocity of the wind at selected stations of the United States Weather Bureau, also the highest velocity ever reported for a period of five minutes. º Highest º Highest º Hourly Ever a +3 on c. Hourly Ever Stations Velocity | Reported Stations Velocity | Reported Miles Miles Miles Miles Abilene, Texas. . . . . . . . 11 66 Leavenworth, Kan.i. 7 66 Albany, N. Y. . . . . . . . . 6 70 Louisville, Ky. . . . . . . 7 60 Alpena, Mich. . . . . . . . . 9 72 Lynchburg, Va. . . . . . 4. 50 Atlanta, Ga. . . . . . . . . . . 9 66 Memphis, Tenn. . . . . . 6 75 Bismarck, N. D. . . . . . . 8 74 Montgomery, Ala. . . . 5 54 Boise, Idaho. . . . . . . . . . .4 55 Nashville, Tenn. . . . . . 6 75 Boston, Mass. . . . . . . . . 11 72 New Orleans, La. . . . . 7 66 Buffalo, N. Y. . . . . . . . . 11 90 New York, N. Y. . . . . 9 96 Charlotte, N. C. . . . . . . 5 55 North Platte, Neb. . . 9 96 Chattanooga, Tenn. . . . 6 60 Omaha, Neb. . . . . . . . 8 66 Chicago, Ill. . . . . . . . . . . 9 84 Palestine, Texas. . . . . 8 60 Cincinnati, Ohio. . . . . . 7 59 Philadelphia, Pa. . . . . 10 75 Cleveland, Ohio. . . . . . . 9 73 Pittsburgh, Pa. . . . . . . 6 69 Custer, Mont, t . . . . . . . 7 72 Portland, Me. . . . . . . . 5 61 Denver, Colo. . . . . . . . . 7 75 Red Bluff, Cal. . . . . . . 7 60 Detroit, Mich. . . . . . . . . 9 76 Rochester, N. Y. . . . . 11 78 Dodge City, Kan. . . . . . 11 75 St. Louis, MO. . . . . . . 11 80 Dubuque, Iowa. . . . . . . 5 60 St. Paul, Minn. . . . . . 7 102 Duluth, Minn. . . . . . . . . 7 78 St. Vincent, Minn. f. , 9 72 Eastport, Me. . . . . . . . . 9 78 Salt Lake City, Utah 5 66 El Paso, Texas. . . . . . . . 5 78 San Diego, Cal. . . . . . 6 43 Fort Smith, Ark. . . . . . . 5 66 San Francisco, Cal. . . 9 60 Galveston, Texas . . 10 *84 Santa Fe, N. M. . . . . . 6 53 Havre, Mont. . . . . . . . . . 11 76 Savannah, Ga. . . . . . . 7 88 Helena, Mont. . . . . . . . . 6 70 Spokane, Wash. . . . . . 4 52 Huron, S. D. . . . . . . . . . 10 69 Toledo, Ohio. . . . . . . . 9 72 Jacksonville, Fla. . . . . . 6 70 Vicksburg, Miss. . . . . 6 62 Keokuk, Iowa . . . . . . . . 8 60 Washington, D. C. . . . 5 66 Knoxville, Tenn. . . . . . . 5 84 Wilmington, N. C. . . . 7 68 *Anemometer blew away at a velocity of 84 miles per hour, September, 1900. fstations discontinued. (112) B U F F A L O T A N K C O R P O R A T I O N BREECHINGS, FLUES, DUCTS SMOKE BREECHINGS Breechings are of many kinds, usually rectangular, although sometimes circular in cross section, sometimes elaborately constructed and made with elbows or turns. In cases where they serve a battery of boilers, it is usual practice to taper the breechings, increasing the cross- sectional area on the stack side of each boiler. Breechings are of several types, such as: 1. Breechings with uptake connections from boilers, using separate control dampers in each uptake. 2. Breechings with a single boiler connection leading direct to stack. 3. Breechings connecting into side of smokestack. 4. Breechings feeding into bottom of stack. When conditions require it, breechings are built with expansion joints and we illustrate two different types of joints in common use. Dampers, clean-out doors, hangers or supports, bracing and other items are provided when needed. wº {< *s PLUG welds 6" CENTERs 44 CONTINUCUs SEAL WELD —l *—— k—size OF BRE ECH | NFG → BREECH i NG PL. —I r BO LTE D JO) NTS BELLOWS TYPE EXPANSION JOINT yeo-ree L JOINT SLOTTEO Holes - VA. *Bolts – 12" 4 A- JO | N T PL , º-º-º-º-º-º-º-º-º: --E- & º 'º º e º 'º º ºſmº º º *= <=- * ING PL. sººººººººººººººº. B.I. washers "> Lock NUTs errºne PL. SLI PE TYPE EXPANSION JOINT DUCTS AND FLUES Fan ducts, air conditioning ducts, flues for conveying gases and ducts of all kinds are part of the large line of Buffalo products. Fabrication of ducts by welded construction makes it possible to take advantage of many special shapes and to fit the ducts into unusual surroundings; another important feature is that smooth welded joints undoubtedly reduce friction to a mini- mum, permitting free passage of gases and better draft or ventilation. BINS AND HOPPERS The design and manufacture of steel bins, silos, hoppers, coal bunkers, etc., covers an extremely large field. Bins are used mainly for storage purposes and may contain dry, semi- liquid or liquid contents. Some materials are abrasive in action while other materials might set up a chemical action affecting the steel, yet there are some materials stored in bins without any appreciable effect on the steel itself. The physical and chemical differences in stored materials, as well as the great differences in specific gravity, require that in most cases storage bins of any kind should be designed by engineers familiar with the many problems and conditions encountered. Given a complete knowledge of existing conditions and material to be handled, Buffalo engineers will be glad to recommend the proper types and design for any purpose. (113) B | N S STRESSES IN GRAIN BINS (Ketchum) The problem of calculating the pressure of grain on bin walls is somewhat similar to the problem of the retaining wall, but is not so simple. The theory of Rankine will apply in the case of shallow bins with smooth walls where the plane of rupture cuts the grain surface, but will not apply to deep bins or bins with rough walls. (It should be remembered that Rankine assumes a granular mass of unlimited extent.) STRESSES IN DEEP BINS Where the plane of rupture cuts the sides of the bin the solution for shallow bins does not apply. Nomenclature.—The following nomenclature will be used: q = angle of repose of the filling; dº' = the angle of friction of the filling on the bin walls; p = tan q = coefficient of friction of filling on filling; p' = tan dº' = coefficient of friction of filling on the bin walls; x = angle of rupture; w = weight of filling in lb. per cu. ft.; V = vertical pressure of the filling in lb. per sq. ft.; L = lateral pressure of the filling in lb. per sq. ft.; A = area of bin in sq. ft.; U = circumference of bin in ft.; R = A/U = hydraulic radius of bin. JANSSEN'S SOLUTION The bin in (a) Fig. 1, has a uniform area A, a constant circumference U, and is filled with a granular material weighing w per unit of volume, and having an angle of repose p. Let V be the vertical pressure, and L be the lateral pressure at any point, both V and L being assumed as constant for all points on the horizontal plane. (More correctly V and L will be constant on the surface of a dome as in (b).) The weight of the granular material between the sections of y and y + dy = A x w x dy; the total frictional force acting upwards at the circumference will be = L x U x tan q' x dy; the total perpendicular pressure on the upper surface will be = V x A; and the total pressure on the lower surface will be = (V -- d.V.).A. Now these vertical pressures are in equilibrium, and V x A — (V -- d.V.) A + A x w x dy – L x U x tan de' x dy = 0 dV = (* — L x tan do' '..) dy (1) and Now in a granular mass, the lateral pressure at any point is equal to the vertical pressure times k, a constant for the particular granular material, and L = k x V Also let A/U = R (the hydraulic radius), and tan d' = u’. Substituting the above in (1) we have k x V |V = – " ? - u" | d C (w R. 2) y Now let l < x º' 2 R. Il (2) and d V = d 3 w — n x V Cly (3) B U F F A L O T A N K - C O R P O R A T I O N STRESSES IN BINS (Continued) -º- A * Surface of | //a/e/7a/- | y ! - - | | ~%– → /, #—f l | oy Q -º- | ts s * † ! § sº § §, \l § YS, | § S + § | Ş $ N S. (CR) (C) Fig. 1 Integrating (3) we have log (w — n x V) = — n x y + C (4) Now if y = 0, then V = 0, and C = log w, and (4) reduces to log (*-**) = — n x y W and w — n x V F * = O—n X y W en X y where e is the base of the Naperian system of logarithms. Solving for V we have W = W (1 – e-nx y) (5) 1] Substituting the value of n from (2), we have w x R (1 — e-k X u' x y/R) (6) k X u" Now if h be taken as the depth of the granular material at any point we will have V W x B (1 – e-k x 9’ x hyr) (7) • k x 10' Also since L = k x V L = W x R (1 – e-k x u' x h/R) (8) AM. Now if w is taken in lb. per cu. ft., and R in ft., the pressure will be given in lb. per sq. ft. . For deep bins with a depth of more than two and one-half diameters the last term of the right hand member of (8) may be omitted, and L’ – w x R ( f approx.) (9) Now both g’ and k can only be determined by experiment on the particular grain and kind of bin. For wheat and a wooden bin, Janssen found u' = 0.3 and k = 0.67 , making k x u’ = 0.20, (115) B I N S STRESSES IN BINS (Continued) Ketchum has calculated the lateral pressures on steel plate bins, as shown in graph Fig. 2. |00 90 80 © Nº §ITTTS SS ſu S. . 70 \ § t $-H $ C S •t 60. § Q. S § © = Q § 50 U º 40 +- -º- .S 50 # Ca/ºz/a/aa’ 20 /*%-35ures h/heaf 50/65.co.7% A/-73/7% =/2552 / / |O Ax'=7ar, gº2 (2.365 jfee/A/afe Air, O O | 2 3 4. 5 6 7 8 3 Pressure in Ibs. per sq. in. Fig. 2. Lateral Pressure in Steel Plate Grain Bins Calculated by Janssen’s Formula. To use Fig. 2 to calculate the pressures in rectangular bins, calculate the pressure in a circular or square bin which has the same hydraulic radius, R (R = area of bin -- perimeter of bin), as the rectangular bin. It will be seen in Fig. 2 that the pressure varies as the diameters, where the height divided by the diameter is a constant. By using this principle the pressure for any other diameter within the limits of the diagram may be directly interpolated. PRESSURE OF GRAIN IN DEEP BINS The laws of pressure of grain and similar materials are very different from the well known laws of fluid pressure. Dry wheat and corn come very nearly filling the definition of a granular mass assumed by Rankine in deducing his formulas for earth pressures. As stored in a bin the grain mass is limited by the bin walls, and Rankine's retaining wall formulas are not directly applicable. If grain is allowed to run from a spout onto a floor it will heap up until the slope reaches a certain angle, called the angle of repose of the grain, when the grain will slide down the surface of the cone. If a hole be cut in the bottom of the side of a bin, the grain will flow out (116) B U F F A L O T A N K C O R P O R AT I O N STRESSES IN BINS (Continued) until the opening is blocked by the outflowing grain. There is no tendency for the grain to spout up as in the case of fluids. If grain be allowed to flow from an orifice it flows at a con- stant rate, which is independent of the head and varies as the diameter of the orifice. Experiments with wheat have shown that the flow from an orifice is independent of the head and varies as the cube of the diameter of the orifice. This phenomenon can be explained as follows: The wheat grains in the bin tend to form a dome which supports the weight above. The surface of this dome is actually the surface of rupture. When the orifice is opened the grain flows out of the space below the dome and the space is filled up by grains dropping from the top of the dome. As these grains drop others take their place in the dome. Experiments with glass bins show that the grain from the center of the bin is discharged first, this drops through the top of the dome, while the grain in the lower part of the dome discharges last. The following conclusions are given by Ketchum: 1. The pressure of grain on bin walls and bottoms follows a law (which for convenience will be called the law of “semi-fluids”), which is entirely different from the law of the pressure of fluids. 2. The lateral pressure of grain on bin walls is less than the vertical pressure (0.3 to 0.6 of the vertical pressure, depending on the grain, etc.), and increases very little after a depth of 2% to 3 times the width or diameter of the bin is reached. 3. The ratio of lateral to vertical pressures, k, is not a constant, but varies with different grains and bins. The value of k can only be determined by experiment. 4. The pressure of moving grain is very slightly greater than the pressure of grain at rest (maximum variation for ordinary conditions is, probably, 10 per cent). 5. Discharge gates in bins should be located at or near the center of the bin. 6. If the discharge gates are located in the sides of the bins, the lateral pressure due to moving grain is decreased near the discharge gate and is materially increased on the side opposite the gate (for common conditions this increased pressure may be two to four times the lateral pressure of grain at rest). 7. Tie rods decrease the flow but do not materially affect the pressure. 8. The maximum lateral pressures occur immediately after filling, and are slightly greater in a bin filled rapidly than in a bin filled slowly. Maximum lateral pressures occur in deep bins during filling. 9. The calculated pressures by either Janssen's or Airy's formulas agree very closely with actual pressures. 10. The unit pressures determined on small surfaces agree very closely with unit pressures on large surfaces. 11. Grain bins designed by the fluid theory are in many cases unsafe as no provision is made for the side walls to carry the weight of the grain, and the walls are crippled. 12. Calculation of the strength of wooden bins that have been in successful operation shows that the fluid theory is untenable, while steel bins designed according to the fluid theory have failed by crippling the side plates. CIRCULAR STEEL BINS In the designing of steel grain bins particular attention should be given to the horizontal joints, and to the strength of the bin to act as a column to support the grain. To calculate the thickness of the metal the horizontal pressure L is obtained from Janssen's formula, and then the thickness may be found by the formula t = L x d 2S x e where t = thickness of the plate in in...; L = horizontal pressure in lb. per Sq. in...; = diameter of bin in in...; working stress in steel in lb. per Sq. in...; efficiency of the joint. -- = F. d S € UNUSUAL SHAPES - For bins or hoppers of special styles or construction, consult us for designs and prices. (117) B N S CAPACITY OF CIRCULAR GRAIN BINS AND TANKS IN BUSHELS Height Diameter in Feet Feet 10 12 14 16 18 20 22 24 10 631 910 | 1,238 1,616 2,042 2,525 3,060 3,550 15 946 1,364 1,855 2,420 3,060 3,785 4,590 5,320 20 1,212 1,820 2,475 3,230 4,090 5,050 6,125 7,100 25 1,578 2,275 3,095 || 4,040 5,100 6,310 || 7,650 8,880 30 1,892 2,730 3,715 4,840 6,125 || 7,575 || 9,180 10,630 35 2,208 2,185 4,340 5,650 7,145 || 8,840 10,700 12,400 40 2,525 3,640 4,950 6,460 8,170 10,018 12,240 14,560 45 2,840 4,095 5,570 7,270 || 9,190 11,350 | 13,780 16,380 50 3,158 || 4,550 6,195 8,080 10,210 | 12,620 15,300 18,200 55 . . . . 5,005 || 6,814 || 8,888 11,231 || 13,882 16,830 20,020 60 5,460 || 7,433 || 9,696 || 12,252 15,144 18,360 21,840 65 . . . . 8,053 10,504 || 13,273 16,406 || 19,890 23,660 70 8,672 11,312 14,294 17,668 21,420 25,480 75 9,293 12,120 15,315 18,930 22,950 27,300 80 . . . . . 12,928 16,336 20,192 24,480 29,120 85 17,736 17,357 21,454 26,010 || 30,940 90 14,544 18,378 22,716 27,510 || 32,760 95 | . . . . . . . . . . . . . . . . . . . . 19,399 || 23,978 29,070 34,580 100 . . . . . . . . . . . . . . . . . . . . 20,420 25,240 30,600 36,400 1 bushel = 2,150 cu. in. = 1.245 cu. ft. or 1 cu. ft. = 1,728 cu. in. = 1.245 cu. ft. per bu. CAPACITIES OF FORMED BIN BOTTOMS For bin bottoms of various shapes, use the following formulae: HEMISPHERICAL BOTTOMS Radius; x 2.0944 = Cubic feet capacity. concAL BOTTOMS Diameter” x Height x .2618 = Cubic feet capacity. PYRAM ID BOTTOMS }% Height x Area of Base = Cubic feet capacity. - - Stainless Steel Bin with Gate (118) B U F F A L. O. T AN K C D R P O RAT I O N CAPACITY IN CALLONS OF 45° CONICAL BIN OR TANK BOTTOMS Many bins or vertical storage tanks are made with 45° sloping bottoms and the following table indicates the capacities for various diameters of vertical tanks or bins. Diameter Depth Capacity of Cone Capacity of Cone of Cone of Cone in Cubic Feet in Gallons 24" 12” 1.0472 7.833 30" 15" 2.0453 15.298 36" 18" 3.5343 26.436 42" 21” 5.6123 41.980 48" 24" 8.3776 62.664 54." 27” 11.9282 89.223 60" 30" 16.3625 122.391 66" 33" 21.7784 162.902 72” 36" 28.2744 211.492 78" 39" 35.9484 268.894 84" 42" 44.8987 335.842 90" 45" 55.2234 413,071 96" 48" 67.0208 501.315 102" 51" 80.3889 601.309 108" 54." 95.4261 713.787 114" 57" 112.2303 839.482 120" 60" 130.9000 979.132 126." 63" 151.5331 1133.467 132" 66" 174.2279 1303.224 138" 69" 199,0825 1489.137 144" 72” 226, 1952 1691.940 150." 75” 255.6640 1912.366 Diameter*.x Height x .2618 = No. of cubic feet 1 cubic foot = 7.48 gallons Special Offset Conical Tank Bottoms (119) B I N S HORIZONTAL PRESSURE Exerted Against Vertical Retaining Walls Per Foot of Length Tables are based on dry material, and would not apply to wet or slippery ma- terial, where a hy- draulic condition would be approached. (Trautwine's) * 5 S; "- : º, ø - * > ... • ‘. ... o . ‘2: A N *.*.*. • o Y. N'es A. *...", - ºr º ow .* 27° Y Anthracite Coal. Bituminous Coal. 35 35 Sand and Gravel. - Anthracite Coal Weight, 52 Pounds per Cu. Ft., Angle of Repose, 27° Bituminous Coal Weight, 50 Pounds per Cu. Ft., Angle of Repose, 35° Depth Level Full Surcharged Depth Level Full | Surcharged 1I] Pressure Pressure in Pressure Pressure Feet Total Total Feet Total Total D Pressure | * Hºst Pressure OIl Fºes D Pressure | * Hºst Pressure on;ºt 1 10 10 14 14 1 7 7 11 11 2 39 29 57 43 2 27 20 43 32 3 88 49 128 71 3. 61 34 96 53 4 156 68 228 100 4 108 47 170 74 5 245 88 356 128 5 169 61 266 96 6 352 108 512 157 6 244 75 383 117 7 479 127 697 185 7 332 88 521 138 8 626 147 910 213 8 433 102 681 160 9 792 166 1152 242 9 548 115 862 181 10 978 186 1422 270 ‘10 677 129 1064 2O2 I 1. 183 205 1721 299 11 819 142 1287 223 12 1408 225 2048 327 12 975 156 1532 245. 13 1653 245 2403 356 13 1144 169 1798 266 14 1917 264 2787 384 14 1327 183. 2O85 287 15 220.1 284 3200 412 15 1523 196 2394 309 16 2504 303 3640 440 16 1733 210 2724 330 17 2826 323 4.110 469 17 1957 223 3075 351 18 3169 342 4607 497 18 2194 240 3447 372 19 3531 362 5134 526 19 2444 251 3841 394 20 3912 382 5688 555 20 2708 264 4256 415 21 4313 401 6271 583 21 2986 278 4692 436 22 4734 421 6883 612 22 3277 291 150 458 23 5174 440 7523 640 23 3581 305 5629 479 24 5633 460 819.1 669 24 3900 3.18 6129 500 25 61.13 479 8888 697 25 4232 332 6650 521 26 6611 499 96.13 725 26 4577 345 71.93 543 27 7130 518 10366 754 27 4935 359 7757 564 28 7668 538 11149 782 28 5308 372 8342 585 29 8225 558 11988 811 29 5694 386 89.48 606 30 8802 577 12797 839 30 6093 399 95.76 628 Sand and Gravel, Weight, 100 Pounds per Cubic Foot. Angle of Repose, 35° 1 Depth Leve #. * Depth Level #. *: 1n TeSSUire ressure IIl reşSure TCSSUlre Total Total Total Total Feet Pressure | * #ºt Pressure | * Hºst F; t Pressure | * #ºst Pressure | * Hºst I 14 14 22 22 26 9150 690 14260 1090 2 54 41 86 64 27 9880 718 15480 1130 3. 122 68 192 106 28 10640 744 16670 1175 4 216 95 342 150 29 11360 774 17880 1220 5 338 122 532 192 30 12200 800 19120 1260 6 488 149 767 234 31 13020 828 20425 1300 7 662 176 1046 277 32 13856 853 21750 1350 8 868 203 1366 320 33 14578 881 23015 1390 9 1096 230 1728 362 34 15648 909 24620 1430 10 1354 258 2132 405 35 16550 936 26100 1480 11 1642 284 2578 448 36 17586 963 27600 1520. 12 1950 312 3064 490 37 186 29.100 1560 13 2290 338 3594 532 38 196 1015 30700 1610 14 2660 366 4164 576 39 20610 1043 32350 1645 15 3050 393 4796 618 40 21680 1069 34OOO 1690 16 3464 420 5452 661 41 22750 1096 35700 1730 17 3912 446 6150 704 42 23880 1124 37500 1775 18 4394 474 6900 746 43 25200 1150 39.300 1815 19 4900 502 768O 788 44 26.200 1177 41250 1860 20 5420 528 8520 832 45 27450 1204 43200 900 21 5970 556 9380 874 46 28640 1232 45000 1940 22 6550 583 1028O 916 47 29960 1259 46800 1985 23 7160 610 11240 958 48 31280 1286 48000 2030 24 7820 636 12240 1000 49 32438 1313 51200 2075 25 8500 664 13280 1045 50 34 1340 532OO 2115 ºzºo Bºaº WºRº B U F F A L. O. T A N K C D R P 0 RAT I O N Vºlº Unusual Steel Plate Construction by Buffalo (121) T SECTION VII Bºſato TANIKS Nº. BREWERY TANKS AND EQUIPMENT COATING FOR BEER TANKS (123) B. R. E. W. E. R. Y T A N K S Buffalo Beer Tanks and Brewery Equipment The Buffalo Tank Corporation operates a completely modern brewery division, manu- facturing beer tanks and other standard steel equipment, also furnishing and installing the well-known MAMMUT tank coating. - There are many reasons why Buffalo tanks should be installed in breweries. They are properly designed, expertly fabricated and are the result of many years' specialized experience in the brewery field. Unloading Beer Storage Tanks and plac- Horizontal type Pressure Storage Tanks ing in brewery through wall opening in double tier setting ADVANTAGES OF STEEL BEER TANKS Steel tanks can be made in any shape or size and can be built square or rectangular when needed, thus allowing for the largest volume in a given space. This also means that more storage capacity can be obtained with steel than with wood tanks, due to the thickness of the side walls and bindings. While this difference appears small in an individual tank, it amounts to a considerable volume when figuring the entire cellar capacity. Steel tanks have to be painted on the outside about every four or five years. This is the only maintenance, since once steel tanks are installed, the tanks will hold pressure continuously. Steel tanks can be built for twenty-five pounds or any desired pressure and under ordinary circumstances wood tanks are only good for a maximum of fifteen pounds pressure. There is less tendency for moulds or fungus growths in steel tanks than in wood. Steel tanks are neater in appearance and the exterior surfaces may be enameled, thus enhancing their natural superiority in this respect. Insurance rates are less on steel tanks, especially in such cases where equipment is not in use. Buffalo engineers will cheerfully outline in detail the many advantages of Buffalo steel tanks and if desired will assist in layout or placing of tanks to best advantage in brew houses or storage cellars. BUFFALO BREWERY PRODUCTS INCLUDE: AIR RECEIVERs GRAIN BINs PREssure, TANks BINs Hop JAcks RECTANGULAR TANKs CEREAL CookERs HoPPERs SETTLING TANKs CO2 TANKs Hot WATER TANKs Storage, TANKs CoLD WATER TANKs KETTLES TANK CoATING CookERs MASH CookERs WATs FERMENTING TANKs MASH TUBs WoRT TANKs (124) B U F F A L O T A N K C O R P O R A T I O N CAPACITIES OF BEER STORACE TANKS IN BARRELS SHELL CAPACITIES Inside Diameter of Tank Shells Length 727 78" S4" 90" 96" 102" 1’–0" 6.82 8.00 9.28 10.66 12.13 13.69 2'-0" 13.64 16.01 18.57 21.32 24.26 27.38 3'-0" 20.47 24.02 27.85 31.98 36.39 41.07 4'-0" 27.29 32.03 37.14 42.64 48.52 54.77 5'-0" 34.11 40.03 46.43 53.30 60.65 68.46 6’—0" 40.93 48.04 55.71 63.96 72.78 82.16 7'-0" 47.76 56.04 65.00 74.62 S4.91 95.85 8’–0” 54.58 64.05 74.28 85.28 97.04 109.54 97–()” 61.40 72.06 83.57 95.95 109.17 123.23 10'-0" 68.23 80.07 92.86 106.61 121.30 136.93 Inside Diameter of Tank Shells Length 108" 114" 120" 126." 132" 144" 1/_0" 15.35 17.10 18.95 20.89 22.93 27.29 2’-()” 30.70 34.20 37.90 41.78 45.86 54.58 3'-0" 46.05 51.31 56.85 62.68 68.79 81.87 4/–0" 61.40 68.41 75.80 S3.57 91.72 109.16 5'-()" 76.75 85.52 94.76 104.47 114.66 136.45 6’—0" 92.10 102.62 113.71 125.36 137.59 163.74 7'-0" 107.45 119.72 132.66 146.25 160.52 191.03 S’–0" 122.80 136.83 151.61 167.15 183.45 218.32 9/–0" 138.15 153.93 170.56 188.04 206.38 245.61 10’—()” 153.51 171.04 189.52 208.94 229.32 272.91 HEAD CAPACITIES Based on Buffalo Standard Beer Tank Heads Inside ID º Radius Of Cº. in Inside Dºn Radius of Cºin Diameter Dish Dish Two Heads Diameter Dish Dish Two Heads 144" 12" 18'-6" 27.5 132" 10" 18'— 634" 19.2 132" 12" 15–7%." 23.1 126." 10" 16’—11%" 17.5 126." 12" 14–3%" 21.1 120" 10” 157– 5" 15.9 120” 12" 13'-0" 19.1 114" 10" 13’–11%" 14.4 114" 12" 11’–9%" 17.3 108" 10" 12'— 634" 12.9 108" 12" 10–7]4" 15.6 102" 10" 11' 3" 11.5 102” 12" 9–6%;" 13.9 96" 10" 10’– 0}4" 10.2 96" 12" 8’–6" 12.4 90" 10" 8’—10}4" % - - - ai '' . 84" 10" 7’— 914" .9 One B l t 31 U. S. Gallons. 4 §: . iº. # ãº, rºbºl ºf 10" º, 6.8 'a 'relS = .00 $3t) X : I, \ Figur - ſ/ 5// '— 1%t. ğ. |. é. = .0034 x º º } #ºn 72 9% 6’— 4% 5.6 NOTE–For capacities of heads formed with standard dish and used for tanks other than Beer Tanks, see page 82. (125) B. R. E. W. E. R. Y T A. N. K. S. MAMMUT TANK COATINGS For coating Beer Storage and Fermenting Tanks, the Buffalo Tank Corporation uses and recommends MAMMUT the world's standard tank coating. MAMMUT comes in a solid condition and when used, is broken into pieces and melted, to allow brushing into the surface to be coated. Heat is applied to the inner surface of tanks, so that it will be perfectly dry and the surface pores opened to receive the melted material. For coating new steel storage tanks, 10 pounds of MAMMUT Eisen Black is recommended per 100 square feet. We apply two separate coats. MAMMUT-The safe coating—Proved by over 30 years' experience. MAMMUT is used by the majority of brewers throughout the world and as we are in direct connection with the manufacturers, we are in position to handle coating requirements for new tanks or the re-coating of existing tanks. Since repeal the brewers in the United States have been using MAMMUTized tanks with a total capacity of more than 5 million barrels, and MAMMUT is by far the most extensively used of all tank coatings. It is not explosive, is not inflammable and absolutely does not impart any taste or odor to the beer. No bacteria can grow on MAMMUT, because it is lightly flamed over after being applied, resulting in a surface as smooth as enamel. MAMMUT'S long record saves labor and expense. MAMMUT is coating economy. TOOLS Proper tools are absolutely essential for dependable coating jobs. Experience shows the wisdom of using the right kind of torch, brush, ventilating and drying equipment, and ther- mometer. Detailed information given upon request. Showing MAMMUT Application in Open Steel Fermenting Tank (126) - - Tºº - ". . . - – º º Mash Tub Fermenting Tanks under construction in shop Hot Wort Tank Automatic Malt Hoppers Horizontal Pressure Storage Tanks Vertical Pressure Storage Tanks BUFFALO BREWERY TANKS AND Equipment (127) SECTION VIII Bºaº LANKS N- WELDING VARIOUS TYPES syMEOLS – DEFINITIONS POSITIONS OF WELDS CHOOSING ELECTRODES STRESSES IN JOINTS WEIGHTS OF ELECTRODES (129) W E L D N G ARC WELDING | | | ALTERNATING CURRENT DIRECT CURRENT | | | | ATOMIC HYDROGEN | | METAL ARC | |CARBON ARC - | | | SHIELDED UNSHIELDED Welding The process of welding may be divided into three classes, namely (1) Pressure processes (2) non-pressure processes, and (3) brazing processes. There are various divisions of each of these processes such as forge, resistance, and pressure thermite welding in the pressure class; gas, thermite, and arc welding in the non-pressure group, and gas, dip, electric, and furnace brazing in the brazing class. The following description deals mainly with arc welding. Arc welding is a process wherein the heat is obtained from an electric arc formed either between the base metal and an electrode or between two electrodes. The current used may be direct or alternating and the arc may be shielded, or unshielded, depending upon the process used. (See diagram above.) Arc welding in itself may be divided into three main classes, atomic hydrogen, carbon arc, and metallic arc. ATOMIC HYDROGEN With this process, an alternating current arc, maintained between two suitable electrodes and surrounded by an atmosphere of hydrogen gas, produces the heat required for fusion. It is especially valuable for welding special alloys and metals which do not yield readily or suc- cessfully to fusion welding by other processes. Among its advantages are: 1. Unusual freedom from oxidation due to the de-oxidizing or shielding action of the hydrogen gas. - 2. Excellent heat transfer obtained by the atomized hydrogen. 3. Instant control of heat because the arc is not connected to the work. 4. Welds are unusually ductile, homogeneous and smooth in appearance because the hydrogen keeps the molten metal clean and the arc causes no turbulence in the weld bead. Since the electrodes do not enter into the weld bead with this process, a filler metal must be added in rod form where needed. This feature is especially valuable in such work as repair- ing, because filler metals of exactly the same character and chemical analysis as the base metal itself can be added. Atomic hydrogen arc welding is also used with outstanding success in welding thin metals such as stainless steel, Monel metal, etc. (130) B U F F A L O T A N K C O R P O R AT I O N CARBON-ARC WELDING With this process, the arc is established and maintained between a carbon or graphite electrode and the work. A filler metal must be added when required. This process is quite fast on corner, edge, and the lap welds where a portion of the parent metal can be melted down into the joint. On butt welds, it is possible to obtain 100% penetration on 3%" low carbon steel by welding from one side and on 34" low carbon steel by welding from both sides without groove preparation. In any case, however, the arc is erratic and the quality of weld is not of the best because of brittleness induced by the carbon inclusions. METALLIC-ARC WELDING With this process, the arc is maintained between a metallic electrode and the work, the electrode melting and supplying filler metal to the weld. The intense heat of the arc forms a molten pool in the metal to be welded and at the same time melts the tip of the electrode. As the arc is continued, molten metal from the tip of the electrode passes into the pool where it fuses with the base metal. With electrodes of the proper character, molten metal is actually transported across the arc from the electrode to the work, thus permitting welding to be done in the vertical and overhead positions as well as in a downward position. This method of fusion welding is relatively rapid, convenient, and inexpensive, which reasons have been large con- tributing factors to its rapid advance, and wide use in industry today. - SOURCES OF WELDING CURRENT In order to weld successfully, it is necessary to have a supply of electric current, sufficient in amount for the size of electrode used, of suitable voltage for striking and maintaining the arc, and of suitable characteristics to provide stability for the arc. The usual range of current for manual operation of the arc is from 30 to 300 amps.; and for automatic operation 75 to 600 amps. Striking (open circuit) voltage ranges from 55 to 90 volts. Voltage across the arc ranges from 15 to 26 volts with the usual bare or lightly coated electrodes, and from 20 to 40 volts with the usual heavy coated electrodes. Characteristics depend largely on the type and design of the source of supply. Welding current is usually obtained from one of the following sources of supply: 1. A direct current generator with variable voltage characteristics. 2. A direct current generator with constant voltage characteristics used in combination with resistors and / or reactors to reduce the voltage to the proper value and give the desired control during operation. 3. An existing power line used in conjunction with resistors to reduce the voltage and current. 4. A transformer or generator with variable voltage characteristics supplying alternating current for welding. - ELECTRODES In metallic-arc welding, the material to be welded is usually a ferrous or non-ferrous alloy. In the former class can be considered cast iron, rolled or plate steel, cast steel, chrome steel, chrome—nickel steel, manganese steel, and many others. In the latter class can be considered bronze, Everdur, brass, Duralumin, etc. There are, of course, other metals which in their practically pure state can be welded; for example, aluminum, Monel metal, etc. The action of the various elements under the influence of the heat of the arc differs and requires electrodes of suitable characteristics. Also, the action of combinations of these elements differ. When subjected to heat, some metals expand more than others and some oxidize more rapidly than others. Since the metal being welded has a different coefficient of expansion than that of the filler or deposited metal, undue strains and even cracking of the weld may occur. It is essential that the electrode have suitable characteristics to meet this condition. Oxidation of some of the elements, when subjected to the temperature of the electric arc, occurs readily in the atmosphere. The electrode must be so constructed or treated that it will prevent such oxidation. In general, there are two classes of arc welding electrodes, that is, the bare or lightly coated type and the heavily coated type. A heavily coated electrode consists of a steel core around which has been applied a coating material by some process such as dipping, winding, or extruding. This coating acts to shield the molten metal from oxidation or contamination by the atmosphere as it passes from the electrode to the work. It also helps stabilize the arc. As a result, physical qualities of the de- posited weld metal are superior to those obtained with bare or lightly coated electrodes and for that reason, heavily coated electrodes are in predominant use today. (131) W E L D I N G SELECTION OF JOINTS The selection of the best type of joint is, of course, a very important part of the arc welding job. Conditions sometimes dictate the selection but very often a choice is possible. Naturally, the best joint is the least expensive one which will perform all duties required. Some of the factors which must be considered are the adaptability to bending stress, the effects of warping, the cost of preparation, the speed and ease of welding, the smoothness in appear- ance of the joint, and the amount of metal deposited. On thin material where metallic arc welding is used, the edge weld, the straight butt weld, or the lap weld are usual. The edge and lap welds are somewhat easier to make, because of the minimized danger of burning through. - Heavy sections, over }% inch thick, are usually joined by some kind of a beveled butt joint. On very heavy sections, this bevel is preferably made from both sides. TYPES OF CONTINUOUS WELDS The four general types of continuous welds are bead (used for building up surfaces), fillet, groove, and plug welds. There are, of course, many modifications of these types, depending upon the positions of the work, the physical requirements of the weld, and the arc welding process employed. INTERMITTENT WELDS A weld of broken continuity is called an intermittent weld. Usually these welds consist of short beads placed on equidistant centers. TACK WELDS Tack welding is that which is used prior to finish welding for assembly purposes only and should be done by a process which is approved for the class of welding called for on the work. Craters in all tack welds should be properly filled at the time they are made to prevent cracks from starting at this point. CLASSIFICATION OF WELDS Metallic arc welds are usually placed in one of four classes, depending upon the tensile strength required, and the material which is to be welded. EXPANSION AND CONTRACTION The expansion and contraction of metals are important actions which should be understood by the welding operator. Ductility of material, lock-up stresses, distortion and other physical characteristics, or changes, need only be mentioned here, but all are of utmost importance. When you have proper procedure and selection of electrodes and each job is handled by skilled welders, qualified for code work, such as you obtain in the shops of Buffalo Tank Cor- poration, you have the benefits of the latest modern technique, together with wide experience and can be assured of a welded job of highest quality, strength and durability. STRAICHT vs. REVERSE POLARITY In considering the selection of proper electrodes, undue significance is sometimes given to the question of polarity. When such is the case, the user may insist upon a choice which results in a sacrifice of speed and appearance, and which gains no benefits that could not be obtained equally well without sacrifice. For instance, it is generally recognized that a reverse-polarity, all-position electrode, gives deeper penetration and better quality than a straight-polarity, all-position electrode. There- fore, users sometimes reason that reverse-polarity electrodes also should be preferred when welding in the flat or horizontal positions. While such reasoning by chance may lead to selection of the best type in isolated cases, such cases should be viewed as exceptions which prove the rule that “best over-all results in the flat and horizontal position are usually obtained with straight-polarity electrodes.” As a matter of fact, various types of electrodes are designed to meet various requirements for physical properties, operating positions, etc., and at the same time, to operate with all possible speed and ease. The particular polarity which may be necessary to obtain these results is rather incidental and should be viewed as such. (132) B U F F A L O T A N K C O R P O R A T L O N WELDING (Continued) DRAWING SYMBOLS To provide for uniformity on drawings wherein fusion welding is specified the weld symbols shown on chart have been adopted and are in general use today. FUSION VVELDING SYNA BOLS - TYPE OF VVELD | =|FELD WELD . GROOVE PLUG ALL | FLUSH BEADFILE= V-fºr-U-Tlášić. IWFLDIAftºp Clell D-1-1-1+1-1+1-1+ NEAR S DE FAR SIDE BOTH S] DES Fl EU. O VVE LO SEE NOTE 8 <-NcuuoED ANGLE- S12E SIZE 90° 40° |NCRENA ENT | WELD ALL SIZE | SIZES O LENGTH AROUND #Né * ! N2-5 § A ) B2. y - ROOT ROOT 2. OFFSET IF PITCH OF FLUSH OPENING Sl ZE OPENING NOTE 82 STAGGERED INCRENA ENTS | * SIGNIFICANCE -2-5 — ſ . # AJA w" - y | } >k<^_| T -º--—-º- - U-- . SEE NOT E 2 SEE NOT E 6 SEE NOT E 7 1. In plan or elevation, near, far and both sides locations refer to nearest member parallel to plane of drawing and not to others farther behind. . In Section or end views only, when weld is not drawn the side to which arrow points is considered near side. . Welds on both sides are of same size unless otherwise shown. . Symbols govern to break in continuity of structure or to extent of hatching or dimension lines. . All welds are continuous and of user's standard proportions and all except V- and bevel- grooved welds are closed unless otherwise shown. 6. When welds are drawn in section or end views, obvious information is not given by symbol. 7. In joints in which one member only is to be grooved arrows point to that member. 8. Tail of arrow used for specification reference. 2 º 5 Note: All dimensions are in inches. DEFINITIONS OF WELDING TERMS* Actual Throat: See Throat of Fillet Weld. See Figure 40. Air-Acetylene Welding: A gas welding process wherein the welding heat is obtained from the combustion of air and acetylene. All Weld Metal Test Specimen: A test specimen wherein the portion being tested is com- posed wholly of weld metal. Alternating Current Arc Welding: An arc welding process wherein the power supply at the arc is alternating current. *NOTE: 1. In some definitions alternative terms are shown in parentheses. In each instance the first term is preferred. 2. For definitions of electrical terms see definitions prepared by National Electrical Manufacturers Association. 3. Prepared by the Committee on Definitions and Chart and approved by Executive Committee as “Tenta- tive,” Jan. 18, 1940.-American Welding Society. (133) W E L D I N G DEFINITIONS OF WELDING TERMS (Continued) Arc Brazing: An electric brazing process wherein the heat is obtained from an electric arc, formed between the base metal and an electrode, or between two electrodes. Arc Voltage: The voltage across the arc. Arc Welding: A non-pressure (fusion) welding process wherein the welding heat is obtained from an arc either between the base metal and an electrode, or between two electrodes. Atomic. Hydrogen Welding: An alternating current arc welding process wherein the welding heat is obtained from an arc between two suitable electrodes in an atmosphere of hydrogen. Automatic Welding: Welding with equipment, which automatically controls the entire welding operation. (Including feed, speed, Oscillation, interruption, etc.) Axis of a Weld: A line through the weld parallel to the root. See Figure 1. Backfire: The momentary recession of the flame into the torch tip followed by immediate reappearance or complete extinguishment. Backhand Welding: A gas welding technique wherein the flame is directed opposite to the progress of welding. Back-Step Welding: A welding technique wherein the increments of weld metal are deposited Opposite to the direction of progression. Backing Strip: Material (metal, asbestos, carbon, etc.) backing up the root of the weld. Bare (Lightly Coated) Electrode: A solid metal electrode with no coating other than that incidental to the manufacture of the electrode, or with a light coating. Base Metal (Parent Metal): The metal to be welded, or cut. Base Metal Test Specimen: A test specimen composed wholly of base metal. Bead Weld: A type of weld made by one passage of electrode or rod. See Figure 17. Beading (Parallel Beads): A technique of depositing weld metal without oscillation of the electrode. See Figure 46. Bend Test: See Free Bend Test and Guided Bend Test. Bevel Angle: See Groove Angle, Figure 32. Bevel Weld: See Groove Weld. Bond: The junction of the weld metal and the base metal. Brazing: A group of welding processes wherein the filler metal is a non-ferrous metal or alloy whose melting point is higher than 1000°F. but is lower than that of the metals or alloys to be joined. Build-Up Sequence: The method of depositing a multiple pass weld with respect to its cross section. Butt Joint: See Figure 2. Butt Resistance Weld: See Figure 25. Butt Resistance Welding: See Resistance Butt Welding. Carbon Arc Cutting: The process of severing metals by melting with the heat of the carbon 8.T.C. Carbon Arc Welding: An arc welding process wherein a carbon or graphite electrode or electrodes is used, with or without the use of filler metal. Carbon Electrode: See Electrode. Carburizing (Carbonizing) Flame: A gas flame having the property of introducing carbon into the metal heated. Cast Iron Thermit: A thermit mixture containing additions of ferrosilicon and mild steel. Chain Intermittent Fillet Welds: See Figure 20. (134) B U F F A L O T A N K C O R P O R A T | O N DEFINITIONS OF WELDING TERMS (Continued) Chemical Dip Brazing: A dip brazing process wherein the filler metal is added to the joint before immersion in a bath of molten chemicals. Coated Electrode: See Covered Electrodes. Collar: The reinforcing metal of a non-pressure thermit weld. Composite Electrode: An electrode with or without a flux having more than one filler material combined mechanically. Composite Joint: A joint wherein welding is used in conjunction with a mechanical joint. Concave Fillet Weld: See Figure 41. Concurrent Heating: Supplementary heat applied to a structure during the course of welding. Cone: The conical part of a gas flame which is next to the orifice of the tip. Contact Jaw: An electrical terminal used in a resistance butt-welding machine to securely clamp the parts to be welded and conduct the electric current to these parts. Continuous Weld: A weld which extends continuously for its entire length. Convex Fillet Weld: See Figure 41. Convexity Ratio: See Figure 47. Corner Joint: See Figure 3. Covered (Shielded Arc) Electrode: A metal electrode which has a relatively thick covering material serving the dual purpose of stabilizing the arc and improving the properties of the weld metal. Cover Glass: A clear glass used to protect the lens in goggles, face shields and helmets from spattering material. Crater: A depression at the termination of an arc weld. Cutting Process: Chemical reaction type—See Gas Cutting. Melting type—See Carbon Arc and Metal Arc Cutting. Cutting Tip (Nozzle): A gas torch tip especially adapted for cutting. Cutting Torch or Blowpipe: A device used in gas cutting for controlling the gases used for preheating and the oxygen for severing the metal. Cylinder (Bottle): A portable container used for storage of a compressed gas. Deposited Metal: Metal that has been added by a welding process. Deposition Efficiency: The ratio of the weight of deposited metal to the net weight of the electrodes consumed (exclusive of stubs). Depth of Fusion: See Penetration. See Figure 42. Dip Brazing: A group of brazing processes wherein the heat is obtained from a bath of molten metal or chemical; the filler metal may or may not be obtained from the bath. Direct Current Arc Welding: An arc-welding process wherein the power supply at the arc is direct current. Double Groove Welds: See Groove Welds. Edge Joint: See Figure 4. Edge Preparation: See Figure 26. Effective Length of Weld: The length of the correctly proportioned cross section of a weld. Electric Brazing: A group of brazing processes wherein the heat is obtained from electric current. Electrode: - A. Metal Arc Welding: Filler metal in the form of a wire or rod, either bare or covered, through which current is conducted between the electrode holder and the arc. B. Carbon Arc: A carbon or graphite rod through which current is conducted between the electrode holder and the arc. C. Atomic Hydrogen: One of two tungsten rods between the points of which the arc is maintained. D. Resistance Welding: A bar, wheel or die through which the current is conducted and the pressure applied to the work. (135) W E L ID | N G DEFINITIONS OF WELDING TERMS (Continued) Electrode Holder: A device used for mechanically holding the electrode. Electrode Tip (Point): A replaceable tip of metal on an electrode having the electrical and physical characteristics required for spot and projection welding. Face of Weld: See Figure 35. Filler Metal: Material to be added in making a weld. Fillet Weld: See Figure 16. Fillet Weld Size: See Size. Filter Lens: A colored glass used in goggles, helmets and shields to exclude harmful light rays Flashback: A recession of the flame into or back of the mixing chamber of the torch. Flash Butt Welding: A resistance butt welding process wherein the potential is applied before the parts are brought in contact and where the heat is derived principally from a series of arcs between the parts being welded. Flash (Fin): Metal expelled from a joint made by the resistance welding process. Flat Position of Welding (Downhand): See Figure 1. Flush Weld: A weld made with a minimum reinforcement. Flux: A fusible material or gas used to dissolve and/or prevent the formation of oxides, nitrides or other undesirable inclusions formed in welding. Forehand Welding: A gas welding technique wherein the flame is directed toward the progress of welding. Forge Welding (Blacksmith, Roll, Hammer): A group of pressure welding processes wherein the parts to be welded are brought to suitable temperature by means of external heating and the weld is consummated by pressure or blows. Forging Thermit: A thermit mixture with the addition of carbon, manganese, nickel and mild steel. Free Bend Test Specimen: A specimen which is tested by bending without constraint of a jig. Full Fillet Weld: A fillet weld whose size is equal to the thickness of the thinner member joined. Furnace Brazing: A brazing process wherein the heat is obtained from a furnace. Fusion Welding (See Chart): A group of processes in which metals are welded together by bringing them to the molten state at the surfaces to be joined, with or without the addition of filler metal, without the application of mechanical pressure or blows. Gas Brazing: A brazing process wherein the heat is obtained from a gas flame. Gas Cutting: The process of severing ferrous metals by means of the chemical action of oxygen on elements in the base metal. Gas Pocket (Blow-Hole): A cavity in a weld caused by gas inclusion. Gas Welding: A non-pressure (fusion) welding process wherein the welding heat is obtained from a gas flame. Groove (Scarf): See Figure 27. Groove Angle: See Figure 32. Groove Welds: (a) Square Groove Weld: See Figure 7 (b) Single-Wee Groove Weld: & 4 & 4 8 (c) Single Bevel Groove Weld: “ { { 9 (d) Single-U Groove Weld: { { “ 10 (e) Single-J Groove Weld: { { ‘‘ 11 (f) Double-Wee Groove Weld: ( { “ 12 (g) Double Bevel Groove Weld: “ “ 13 (h) Double-U Groove Weld: { { “ 14 (i) Double-J Groove Weld: & 4 “ 15 Ground Connections: See Welding Ground. Guided Bend Test: A bending test wherein the specimen is bent to a definite shape by means of a jig. (136) B U F F A L O T A N K C O R P O R AT I O N DEFINITIONS OF WELDING TERMS (Continued) Hammer Welding: See Forge Welding. Hand (Face) Shield: A protective device used in arc welding for shielding the face and neck, equipped with suitable filter glass lens and designed to be held by hand. Heat-Affected Zone: The portion of the base metal whose structure or properties have been altered by the heat of welding or cutting. Heating Gate: The opening in a thermit mould through which the parts to be welded are preheated. Helmet Shield: A protective device used in arc welding for shielding the face and neck, equipped with suitable filter glass lens and designed to be worn on the head. Horizontal Position of Welding: See Figure 1. Included Angle: See Figure 33. Induction Brazing: An electric brazing process wherein the heat is obtained from induced Current. Interrupted Spot Welding: A spot welding process wherein fusion is accomplished by means of successive applications of electrical energy between contact electrodes during a single application of pressure to the electrodes. Intermittent Weld: A weld whose continuity is broken by unwelded spaces. J Groove Welds: See Groove Welds. Kerf: The space from which the metal has been removed by a cutting process. Lap Joint: See Figure 5. Layer: See Figure 44. Leg of Fillet Weld: See Figure 39. Lens: See Filter Lens. Manifold: A multiple header for connection of individual gas cylinders or torch supply lines. Manual Weld: A weld wherein the arc is controlled or the torch is manipulated by hand. Melting Rate: The weight of electrode consumed in a unit of time. Melting Ratio: The ratio of the volume of weld metal below the original surface of the base metal to the total volume of the weld metal. Metal Arc Cutting: The process of severing metals by melting with the heat of the metal arc. Metal Arc Welding: An arc welding process wherein the electrode supplies the filler metal in the weld. Metal Dip Brazing: A dip brazing process wherein the filler metal is obtained from the molten metal bath. Metal Electrode: See Electrode. Mixing Chamber: That part of a gas welding or cutting torch wherein the gases are mixed for combustion. Multiple Resistance Welding: A resistance welding process wherein two or more separate welds are made simultaneously. Neutral Flame: A gas welding flame wherein the portion used is neither oxidizing nor reduc- ing. See Figure 48. Non-Pressure Welding: A group of welding processes wherein the weld is made without pressure. Open Joints: See Root Opening. See Figure 31. Overhead Position of Welding: See Figure 1. Overlap (Roll): Protrusion of weld metal at the toe of a weld beyond the limits of fusion. Oxidizing Flame: A gas welding flame wherein the portion used has an oxidizing effect. See Figure 49. Oxy-Acetylene Welding: A gas welding process wherein the welding heat is obtained from the combustion of oxygen and acetylene. Oxy–Other Fuel Gas Welding: A gas welding process wherein the welding heat is obtained from the combustion of oxygen and any fuel gas other than acetylene. (137) W E L ID | N G DEFINITIONS OF WELDING TERMS (Continued) Pass: The weld metal deposited by one general progression along the axis of a weld. See Figure 43. Pass Sequence: The method of depositing a weld with respect to its length. Peening: Mechanical working of metal by means of hammer blows. Penetration: The penetration, or depth of fusion, of a weld is the distance from the original surface of the base metal to that point at which fusion ceases. See Figure 42. Percussive Welding: A resistance welding process utilizing stored up electrical energy sud- denly discharged. Piping—Positions for Welding: (a) Horizontal Fixed Position: When the axis of the piping is in a horizontal position (within the same limits as specified for axis of welds in Figure 1) and the piping is not rotated during welding. In this position welding is done in the flat, vertical and overhead positions, as defined in Figure 1. tº a B. (b) Horizontal Rolled Position: When the axis of the piping is in a horizontal position (within the same limits as specified for axis of welds in Figure 1) and the piping is rotated during welding. In this position welding is done in the flat position, as defined in Figure 1. (c) Vertical Position: When the axis of the piping is in a vertical position (within the same limits as specified for axis of welds in Figure 1); the piping may or may not be rotated during welding. In this position welding is done in the horizontal position, as defined in Figure 1. Plain Thermit: A mixture of iron oxide and finely divided aluminum. Plug Weld: See Figure 18. Poke Welding: A spot welding process wherein pressure is applied manually to one electrode only. Porosity: The presence of gas pockets or inclusions. Positions of Welds: See Figure 1 and Piping—Positions for Welding. Postheating: Heat applied subsequent to welding or cutting operations. Preheating: Heat applied prior to welding or cutting operations. Pressure Thermit Welding: A pressure welding process wherein the heat is obtained from the liquid products of a thermit reaction. Pressure Welding: A group of welding processes wherein the weld is consummated by pressure. Progressive Spot Welding: A resistance spot welding process, wherein two or more spot welds are made automatically one after the other by the actuation of a single control device. Projection Weld: See Figure 23. Projection Welding: A resistance welding process wherein localization of heat between two surfaces or between the end of one member and surface of another is effected by pro- jections. Rate of Deposition: The weight of weld metal deposited in a unit of time. Rate of Flame Propagation: The speed at which a flame travels through a mixture of gases. Reducing Flame: A gas welding flame wherein the portion used has a reducing effect. See Figure 50. Reinforcement of Weld: See Figure 37. Residual Stress: Stresses remaining in a structure or member as a result of thermal or mechanical treatment, or both. Resistance Brazing: An electric brazing process wherein the heat is obtained from the resistance to the flow of an electric current. Resistance Butt Weld: See Figure 25. Resistance Butt Welding: A group of resistance welding processes wherein the fusion occurs simultaneously over the entire contact area of the parts being joined. Resistance Flash Butt Welding: See Flash Butt Welding. Resistance Welding: A pressure welding process wherein the heat is obtained from the resistance to the flow of an electric current. (138) B U F F A L O T A N K C O R P O R A T I O N DEFINITIONS OF WELDING TERMS (Continued) Resistance Welding Time: Duration of the welding current. Reversed Polarity (Electrode Positive): The arrangement of direct current arc welding leads wherein the work is the negative pole and the electrode is the positive pole in the arc Circuit. Root Edge: See Figure 28. Root Face (Shoulder): See Figure 29. Root Opening: See Figure 31. Root of Weld: See Figure 34. Root Radius: See Figure 30. Seal Weld: A weld used primarily to obtain tightness. Seam Weld: See Figure 24. Seam Welding: A resistance welding process wherein overlapping or tangent spot welds are made progressively. Semi-Automatic Metal Arc Weld: A weld made with equipment which automatically controls the feed of the electrode—the manipulation of the electrode being controlled by hand. Series Welding: A resistance welding process wherein two or more welds are made simul- taneously in a single welding circuit with the total current passing through every weld. Shielded Carbon Arc Welding: A carbon arc welding process wherein the arc and molten weld metal are protected from the atmosphere by a shielding medium. Shielded Metal Arc Welding: A metal arc welding process wherein the arc and weld metal are protected from the atmosphere by a shielding medium. Silver Alloy Brazing (Silver Soldering): A brazing process wherein a silver alloy is used as a filler metal. Single-Groove Welds: See Groove Welds. Size: - e (a) Fillel Weld: The size of a fillet weld is the leg length of the largest inscribed isosceles right triangle. See Figure 41. (b) Groove Weld: The size of a groove weld is the depth of the groove. Where fusion mate- rially exceeds the groove depth, the size of the weld is the depth of the groove plus the depth of fusion. Slag Inclusion: Non-metallic material entrapped in a weld. Slot Weld: See Figure 19. Spatter Loss: The difference in weight between the weight of electrode deposited and the weight of the electrode consumed (melted). Spot Weld: See Figure 22. Spot Welding: A resistance welding process wherein the fusion is confined to a relatively small portion of the area of the lapped parts to be joined. Square Groove Weld: See Groove Welds. Staggered Intermittent Fillet Welds: See Figure 21. Straight Polarity (Electrode Negative): The arrangement of direct current arc welding leads wherein the work is the positive pole and the electrode is the negative pole of the arc circuit. Stress Relief Heat Treatment: * Uniform heating of a structure or portion thereof to a sufficient temperature below the critical range, to relieve the major portion of the residual stresses, followed by uniform cooling. *Note: Terms normalizing, annealing, etc., are misnomers for this application. Tack Weld: A weld used for assembly preparation purposes only. Tee Joint: See Figure 6. Theoretical Throat: See Throat of Fillet Weld. See Figure 40. Thermal Stress: The stresses produced in a structure or member caused by differences in temperature or coefficients of expansion. (139) W E L D | N G DEFINITIONS OF WELDING TERMS (Continued) Thermit Crucible: The vessel in which the thermit reaction takes place. Thermit Mixture: A mixture of plain thermit and other alloying metals. Thermit Mould: A mould formed around the parts to be welded, to receive the molten metal. Thermit Reaction: A chemical reaction between iron oxide and aluminum which produces a highly superheated liquid iron and aluminum oxide slag. Thermit Welding: A non-pressure (fusion) welding process wherein the heat is obtained from liquid steel produced by a thermit reaction, and the filler metal is supplied by the steel produced in this reaction. Throat of Fillet Weld: See Figure 40. Toe of Weld: See Figure 36. Types of Welds: See “Bead,” “Fillet,” “Plug,” “Slot” and “Groove.” Welds. U Groove Welds: See Groove Welds. Unaffected Zone: That portion of the base metal outside of the heat-affected zone wherein no change in physical properties or micro-structure has taken place. Undercut: See Figure 38. Unshielded Carbon Arc Welding: A carbon arc welding process wherein no shielding medium is used. Unshielded Metal Arc Welding: A metal arc welding process wherein no shielding medium is used. Upset Butt Welding: A resistance butt welding process wherein the potential is applied after the parts to be welded are brought in contact and where the heat is derived principally from resistance. Vertical Position of Welding: See Figure 1. Wax Pattern: Wax moulded around the parts to be welded by the thermit welding process, to the form desired for the completed weld. Weaving: A technique of depositing weld metal in which the electrode is oscillated. See Figure 45. Weld: A localized consolidation of metals by a welding process. Welded Joint: A localized union of two or more parts by welding. Weldment: An assembly whose component parts are joined by welding. Weld Metal: The metal resulting from the fusion of the filler or base metals or both. Weld Penetration: See Figure 42. Welding Ground: The side of the circuit opposite the welding electrode, Welding Leads: Conductors furnishing an electrical path between source of welding power and electrodes. Welding Operator: An operator of welding equipment. Welding Pressure: External force applied in the pressure welding processes to control the current density throughout the weld, or effects of fusion, or both. Welding Procedure: The detailed methods and practices involved in the production of a welded structure. Welding Rod: Filler metal, in wire or rod form, used in the gas welding process and those arc welding processes wherein the electrode does not furnish the metal. Welding Sequence: The order of welding the component parts of a structure. Welding Tip: A gas torch tip especially adapted for welding. Welding Torch or Blow Pipe: A device used in gas welding for mixing and controlling the gases. (140) B U F F A LO T A N K C O R P O R AT I O N TA B U L A T | O N OF P O S | T | O N S OF W E LDS Position ºngººn ***giºn Cver head O"- 30° 3OO°– GO’ Horizontol O°- 3O” zºº. 3. Flat- O°- 3O” |50°-2IO* VerHicol 33.33. 63:33. S (0 O. The horizontal reference plane is taken to lie always below the weld under consideration. Inclination of axis is measured from the horizontal reference plane toward the vertical. Angle of rotation of face is measured from a line perpendicular to the axis of the weld and lying in a vertical plane he reference position (0°) of rotation of the face invariably points in the direction opposite to that in which the axis angle increases. The angle of rotation of the face of weld is measured in a clockwise direc- containing this axis. tion from this reference position (0°) when looking toward point "P. Fig. 1–Position of Welds (141) W E L D N G - ºr Fig. 2–Butt Joint Fig. 3–Corrier Joint Fig. 4.—Edge Joint Types of Welds Applicable to Butt Types of Welds Applicable to Types of Welds Applicable to Edge oints ornar Joints Joints Square Groove Fillet (Illustrated) Bead (Illustrated) Single-V Groove Square Groove Single-V Groove Double-V Groove (Illustrated) Single-V Groove Single-U Groove Single Bevel Groove Single Bevel Groove Double Bevel Groove Double Bevel Groove ingle-U Groove Single-U Groove Double-U Groove Single-J Groove Single-J Groove Double-J Groove Double-J Groove Projection (Resistence) Butt (Resistance) see Fig. 5–Lap Joint Fig. 6—Tee Joint Type of Welds Applicable to Lap Joints Types of Welds Applicable to Tee Joints Fillet (Illustrated) Fillet (Illustrate lug Single Bevel Groove Slot Double Bevel Groove Spot (Resistance) Single-J Groove Seom (Resistance) Double-J Groove Projection (Resistance) & Fig. 7–Square Fig. 8—Single-V Fig. 9–Single Fig. 10—Single-U Fig. 11—Single-J Groove Weld Groove Weld Bevel Groove Weld Groove Weld Groove Weld Fig. 12—Double- Fig. 13—Double Fig. 14—Double- Fig. 15—Double- Fig. 16—Fillet V Groove Weld Bevel Groove Weld U Groove Weld J Groove Weld Weld (142) B U F F A L O T A N K C O R P O R A T I O N ... —- - -— - - - - - - **** * * Fig. 17—Bead Weld – —º } * -* -- -sº —# =- Ø º Fig. 18—Plug Weld Fig. 19—Slot Weld 2- == *—- •= Jºe -: :* -º- —+ k— Fig. 20–Chain Interrmittent Fillet Welds F3 Fig. 21—Staggered Intermittent Fillet Welds – º Fig. 22—Spot Weld Fig. 23—Projection Welds (143) W E L D N. G + →. → -4. L1 (CºQ) , +- * → -º- +– Y Fig. 25—Flash (Butt) Weld غzzº &ººzºº Fig. 24—Searn Weld s/- *. / Fig. 26–Edge Preparation *-s— Fig. 27—Groove ROOT EDGE 2noor FACE FIG. 28 ROOT EDGE FIG. 29 ROOT FACE /ºr *— V-roo OPENING — + \{2/ -- + \#/ > Z - FIG. 3O ROOT RADIUS FIG. 31 ROOT OPENING GROOVE ANGLE |NCLUDED ANGLE —s - -l --- «- - | > —F \, | –E \se/ -- —£TN/T-P- FIG. 32 GROOVE ANGUE FIG. 33 INCLUDED ANGLE (144) B U F F A L O T A N K C O R P O R A T I O N F G. 35 FACE OF WELD FIG. 37 RElNFORCEMENT OF WELD -—UNDERCUT 2- – - º FIG. 38 UNDERCUTTING ISST + [i. |Fº | = FIG. 39 LEG OF FILLET WELD * THEORETICAL THROAT ACTUAL THROAT FIG, 4 O THRO AT OF FILLET WELD (145) W E L ID | N G ~-L-surface OF VERTICAL MEMBER —I- SłZE OF WELD Ts. CONVEX FIL LET WELD SURFACE OF HORIZON TAL % MEM BER THROAT SURFACE OF VERTICAL MEMBER ~W- CONCAVE FILLET W E L D THEORETICAL THROAT—S- 2% SURFACE OF HORIZONTAL 2% MEMBER - - -- -- {{Tºš FT "| 2 || 333 Šá'í || 3.3% Šč T 4. sITITY x -f-1 5/46 || 0.296 || 0.237 —— —— % 1/(6 || 0.47 0.37 0.10 0.08 ! T % 0.427 | 0.341 - --> */32 0.53 0.43 0.14 0 12 - % 0.760 0.607 -- -- SOUARE GRO OVE % |0 0.11 0.09 - - % 1.185 || 0.947 -- -- WITH STEEL BACKING ‘As 0.15 || 0.12 || 0.05 || 0.04 ||For flat fillets. º weights 1% §§ §§ == –– 4- _LR-0.07" */[6 | A 6 0.23 0.18 0.07 0.06 should be increased 10 per cent iſ-ºgy-- 3.232 0.27 0.21 0. l I 0.09 % | 1.49 1.18 -- T HH % */32 0.33 0.26 0.14 (). 12 “U” GROOVE q) ;: 3% – }% –– % 0.38 0.30 0.19 0.15 4. - - SOUARE GRO OVE */16 |0 0.16 0.13 - - }, 89 3.47 –– 50% PENETRATION 1/16 || 0.20 0.16 0.04 || 0.03 |}} |&# : | – 1 R-007" | }.4 | As 0.23 0.19 0.05 || 0.04 s - - -- H-q24–3 | " | #| ##| 5 | # & }% ||3: 1é; II + S-- k— 2% |12.75 12.05 -*. */16 | */16 0.27 0.22 0.06 0.05 Tºv" GROOVEA }% 1/6 || 0.25 | 0.20 || 0.15 0.12 2% |17.40 16.60 --- 3/15 3/32 0.46 || 0.37 || 0.31 0.25 3 |20.00 19. 10 -- 60” R = O O8 % % O.70 0.56 0.50 0.40 YT TY } 3%. 25.50 ; --- 0.91 0.87 0.70 4 31.90 i º : ; : 1.3 5 }: }% 3 54 2 86 –– at 27 per cent for heavily coated electrodes. 1.88 DOUBLE “U” GRO OVE (B | 1 - s- % 1 % 4.62 3.91 - 8 l % 4.00 || 3.20 | 3.45 || 2.76 13% 5.83 5.05 --e. “V.GROQWE WITH | 4 || – 0.61 || 0.49 || 0.41 0.33 1 % | 7. 12 6.30 - ** STEEL BACKING 5, 16 || – O ; º § § § § § §§ §§ -- 60° R = 0.08" 3.4% — 1.0 0. * 9.90 - -- Y- *>"; Ž8 % T % - 1.58 1.26 1.25 1.00 2% 11.45 10.45 -** T X. % — 2.23 | 1.78 | 1.82 | 1.46 2% 13.05 12.00 -- 4– 3 - l % - 3.00 2.39 2.50 2.00 3 14.90 13.85 --> % = F *% || — 4.83 3.87 || 4.23 || 3.40 3% | 18.40 17.20 | —— 4 22.30 21.00 -- DOUBLE “V” % | – | 1.29 | 1.03 0.90 0.72 1 2.85 2.55 | –– GRO OVE A % — | 1.68 1.34 | 1.22 0.98 1 34 4.00 —— | 3.64 -- l - 2.71 2.17 2. 10 1.68 1 % 5.15 --- 4.80 --- 60° R=0.08° *T*Tºi 1 % — 3.92 || 3.13 || 3.17 | 2.53 1 % 6.55 —— | 6. 12 -** - - 1 Vº - 5.35 4.28 4.45 3.56 7.87 -- 7.40 -- 1 % - 6.98 5.58 5.95 4.77 2% 9.42 --- 9.00 -a- 2 — | 8.88 || 7.10 || 7.68 || 6.13 -- - 2% — 10.95 || 8.75 9.60 | 7.70 § {}}} | II }}}} | – 2}} | – || 13.20 | 10.60 | 11.80 9.43 3 |14.80 — | 1.4.20 | —— 3 - 18.50 14.75 16.70 13.36 1 -- --- 3% - 24.60 19.70 22.60 18.10 3% }} }} - ; 00 --- 4 - 31.70 25.40 29.40 23.50 SINGLE BEVEL “T” (9 % - 0.10 0.08 0.05 0.04 */[6 — 0.20 0.16 O. l 1 0.09 l 2.37 - 1.87 -- R-008). A % — 0.31 || 0.25 O. 19 0.15 #: 33; - ;: --- —s BLE-1. I’” G ROOW 2 | *r. - J. *-*- T , og oao o as oa, Double-“J” GR90VE 9 T 'º. % - 1.00 0.80 0.76 0.61 1 % 5.00 --- 4.37 --- 3. % - 1.50 1.19 1. 19 0.95 2 6. 1 1 -- 5.47 --- 2% 7.21 -º-º-º: 6.55 -- 1 - 2.81. 2.25 2.33 1.86 2% 8.38 - 7.65 - DO UBLE-BEVEL “T” (B | }% - 0.39 0.32 0.22 0.17 2% 9.60 - 8.85 --- % - 0.62 0.50 0.38 0.30 3 10.85 10, 10 -- % — 0.90 0.72 0.59 0.48 3% 13.55 — | 12.70 -- 1. - 1.58 1.27 1.16 0.93 4 16.60 15.70 -**- 1 % - 2.46 1.97 1.92 1.54 1% - 3.54 2.83 2.87 2.30 1 % - 4.78 3.83 4.01 3.21 2 - 6.25 5.00 5.33 4.27 § Listed weights apply to average conditions and are intended for use . If underside of first bead is chipped out and welded, add to listed as a guide in approximating the total quantity of electrodes required. weights, as follows: . They include scrap and losses at 17% for 14-inch cut lengths; also spatter AQ. 18 lb for heavily coated; 0.14 lb for lightly coated. and flux-coating losses at 13 per cent for lightly coated electrodes and (B0.34 lb for heavily coated; 0.27 lb for lightly coated. COURTESY GENERAL ELECTRIC CO. (151) SECTION IX N- AIR, WATER, CAS, STEAM, HEAT (153) A 1 R, W A T E R , G A S, S T E A M, H E AT PROPERTIES OF AIR Air is a mechanical mixture of the gases, oxygen and nitrogen, with about 1 per cent by volume of argon. Atmospheric air of ordinary purity contains about 0.04 per cent of carbon dioxide. The composition of air is variously given as follows: By Volume By Weight N O Ar N () Ar 1 79.3 20.7 - - - - 77 23 2 79.09 20.91 * * * * 76.85 23.15 - - - - 3 78.122 20.941 ().937 75.539 23.024 1.437 4 78.06 21 0.94 75.5 23.2 1.3 The weight of pure air at 32° F. and a barometric pressure of 29.92 inches of mercury, or 14.6963 pounds per square inch, or 2116.3 pounds per square foot, is 0.080728 pound per cubic foot. Volume of 1 pound = 12.387 cubic feet. At any other temperature and barometric 1.3253 x B 459.6 –- T' barometer, T = temperature, and 1.3253 = weight in pounds of 459.6 cubic foet of air at 0° F. and 1 inch barometric pressure. Air expands 1/491.6 of its volume at 32° F. for every increase of 1° F., and its volume varies inversely as the pressure. pressure its weight in pounds per cubic foot is W = where B = height of the VOLUME AND WEIGHT OF AIR At Atmospheric Pressure Temperature Cubic Feet Pounds Temperature Cubic Feet Pounds Degrees Per Por Degrees Por er Fahrenheit Pound Cubic Foot Fahrenheit Pound Cubic Foot 32 12,390 .080710 230 17.379 .057541 50 12.843 .077863 240 17.631 ,056718 55 12.969 .077107 250 17.883 .055919 60 13.095 .076365 260 18. 135 .055142 65 13.221 .075637 270 18.387 .054386 70 13.347 .074923 280 18.639 .053651 75 13.473 .0742.23 290 18.891 .052935 SO 13.599 .0735.35 300 19. 143 ,052.238 85 13.725 .07.2860 320 19.647 .050898 90 13.851 .072197 340 20.151 ,0496.25 95 13.977 .07 1546 360 20.655 .048414 100 14.103 .070907 380 21.159 .047.261 110 14.355 .069662 400 21.663 .046.162 120 14.607 .0684.60 425 22.293 .044857 130 14.859 .067299 450 22.923 .043624 140 15.111 .066177 475 23.554 .04.2456 150 15.363 .065092 500 24.184 .04.1350 160 15.615 .064041 525 24.814 .040300 170 15.867 .063024 550 25.444 .039302 180 16.1.19 .062039 575 26.074 .038352 190 16.371 .061084 600 26.704 .037448 200 16.623 .060158 650 27.964 .035760 210 16.875 .059259 700 29.224 .0342.19 212 16.925 .059084 750 30.484 .032804 220 17.127 .058388 800 31.744 .031502 (154) B U F F A L O T A N K C O R P O R A T I O N AIR PROPERTIES OF SATURATED AIR (Standard Atmospheric Pressure of 29.921 Inches of Mercury) Weight per Cubic I'oot of Mixture B. T. º sº * rTw * * * * * * ** Vapor Absorbed by Saturated Air Temperature * * * Degrees. #. . Weight of Weight of |Total Weight 1 s º wB. Fahrenheit Wi. Dry Air Vapor of Mixture *. j : Pound Pound Pound Deg. Fahr. B. T. U. O 0.0383 0.086.25 0.000069 0.08632 0.02082 48.04 10 0.0631 0.0843.3 0.000111 0.08444 0.02039 49.05 20 0.1030 0.08247 0.000177 0.08265 0.01998 50.05 30 0.1640 0.08063 0.000276 0.080)1 0.01955 51.15 40 0.2477 0.07880 0.00()409 0.07921 0.01921 52.06 50 0.3625 0.07694 0.000587 0.07753 0.01883 53.11 60 0.5220 0.07506 0.000S.29 0.07589 0.01852 54.00 70 0.7390 0.0731() 0.001152 0.07425 0.01811 55.22 80 1.0290 0.07095 ().001576 0.07.253 0.01788 55.93 90 1.4.170 0.0688.1 ().002132 0.07094 0.01763 56.72 100 1.9260 0.06637 ().002848 0.06922 0.01737 57.57 110 2.5890 0.06367 ().003763 ().06743 0.01716 58.27 120 3.4380 0.06062 0.0049 || 4. 0.06553 0.01696 58.96 130 4.5200 0.05716 0.006357 0.06352 0.01681 59.50 140 5.8800 0.05319 0.008140 ().06133 0.01669 59.92 15() 7.5700 0.04864 0.01 ()310 0.05894 0.01663 60.14 160 9.6500 0.04341 ().01.2956 0.05637 0.01664 60.10 170 12.2000 0.03735 ().01614() ().05349 0.01671 59.85 180 15.2900 0.03035 0.019940 0.05029 0.01682 59.45 190 19.0200 0.02227 0.024.465 0.04674 0.01706 58.80 200 23.4700 0.01.297 0.029780 0.04275 0.01750 57.15 PRESSURE OF THE ATMOSPHERE PER SOUARE INCH AND PER SOUARE FOOT AT VARIOUS READINGS OF THE BAROMETER Rule.--Barometer in inches x 0.4916 = pressure per square inch; pressure per square inch x 144 = pressure per square foot. * † Tº ºf * * *Y* f \ iſ ºn Pressure per | Pressure per ** **** * Pressure per | Pressure per IBarometer Square Inch | Square i. t IBarometer Square i. Square Foot Inches Pounds Pounds Inches Pounds Pounds 28.00 13.75 1980 29.75 14.61 2104 28.25 13.88 1998 30.00 14.73 2122 28.50 14.00 2016 30.25 14.86 2140 28.75 14.12 2033 30.50 14.98 2157 29.00 14.24 2051 30.75 15.10 2175 29.25 14.37 2069 31.00 15.23 219.3 29.50 14.49 2086 (155) A I R, W A T E R , G A S, S T E A M, H E AT WATER PRESSURE coºlson OF HEADS OF WATER IN FEET WITH PRESSURES IN VARIOUS One foot of water at 39.1° F. One foot of water at 39.1° F. One foot of water at 39.1° F. One foot of water at 39.1° F. One foot of water at 39.1° F. One pound on the square foot, at 39.1° F. . . . . . . One pound on the square inch, at 39.1° F. . . . . . . One atmosphere of 29.922 inches of mercury. . . . One inch of mercury at 32° F. . . . . . . . . . . . . . . . . One foot of air at 32° F. and 1 atmosphere . . . . . One foot of average sea-water. . . . . . . . . . . . . . . . . One foot of water at 62°F. . . . . . . . . . . . . . . . . . . . One foot of water at 62°F. . . . . . . . . . . . . . . . . . . . One inch of water at 62°F. = 0.5774 ounce . . . . One pound of water on the square inch at 62°F. One ounce of water on the square inch at 62°F. 62.425 pounds per square foot; 0.4335 pound per square inch; 0.0295 atmosphere; 0.8826 inch of mercury at 32°F.; 773.3 feet of air at 32°F. and atmospheric pressure; 0.01602 foot of water; 2.307 feet of water; 33.9 feet of water; 1.133 feet of water; 0.001293 foot of water; 1,026 feet of pure water; 62.355 pounds per square foot; 0.43302 pound per square inch; 0.036085 pound per square inch; 2.3094 feet of water; 1.732 inches of water. : PRESSURE OF WATER DUE TO ITS WEIGHT The pressure of still water in pounds per square inch against the sides of any pipe, channel, or vessel of any shape whatever is due solely to the “head” or height of the level surface of the water above the point at which the pressure is considered, and is equal to 0.43302 pound per square inch for every foot of head, or 62.355 pounds per square foot for every foot of head (at 62°F.). The pressure per square inch is equal in all directions, downwards, upwards, or sideways, and is independent of the shape or size of the containing vessel. The pressure against a vertical surface, as a retaining-wall, at any point, is in direct ratio to the head above that point, increasing from 0 at the level surface, to a maximum at the bottom. The total pressure against a vertical strip of a unit’s breadth increases as the area of a right-angled triangle whose perpendicular represents the height of the strip and whose base represents the pressure on a unit of surface at the bottom; that is, it increases as the square of the depth. The sum of all the horizontal pressures is represented by the area of the triangle, and the resultant of this sum is equal to this sum exerted at a point one-third of the height from the bottom. (The center of gravity of the area of a triangle is one-third of its height.) The horizontal pressure is the same if the surface is inclined instead of vertical. The amount of pressure on the interior walls of a pipe has no appreciable effect upon the amount of flow. WATER CONVERSION TABLES Capacity of a cylinder in gallons = Square of diameter in inches x height in inches x 0.0034. Maximum lift on suction end of pump should not be over 22 feet with cold water. Pressure of column of water in pounds per sq. in - height in feet x .434. 1 Miner's inch = 1% cu. ft. per minute = 11.25 gals. per minute. 1,000 Boiler Horse Power (a) 30 pounds feed = 60 gallons per minute (approx.). U. S. Gals. per minute x .41 (diameter of pipe in inches) One Acre-foot = 325,850 U. S. Gallons. U. S. Gals. per minute x head in ft. 3970 (4000 approx.) U. S. Gals. per minute x head in lbs. 1720 Theoretical Water Horse Power Pump efficiency 1,000,000 U. S. gallons per day = 695 U. S. Gallons per minute. 500 pounds per hour = 1 U. S. Gallon per minute. Velocity in feet per second = Theoretical Water Horse Power = Theoretical Water Horse Power = Brake Horse Power = (156) B U F F A L O T A N K C O R P O R A T I O N TABLE OF PRESSURES CORRESPONDING TO GIVEN HEADS OF WATER Water at maximum density, 62.425 lbs. per cubic foot = 1 gram per cubic centimeter; corresponding to a temperature of 4° Centigrade = 39.2° Fahrenheit. Pressure in lbs. per square inch = 0.433507 x head in feet. Pressure in lbs. per square foot = 62.425 x head in feet. Pressures corresponding to heads not given in the table can be found by these formulae, or taken from the table by simple proportion. Head Pressure Head Pressure Inches Lbs. per Sq. In. Lbs. per Sq. Ft. Inches Lbs. per Sq. In. Lbs. per Sq. Ft. 1 0.036126 5.202083 7 0.252879 36.414583 2 0.072251 10.404,167 8 0.289005 41.616667 3 0.108377 15.606250 9 0.325.130 46.8187.50 4 0.144502 20.808333 10 0.361.256 5.2.020833 5 0.180628 26.01.0417 11 0.397.381 57.222917 6 0.216753 31.212500 12 0.433507 62.425000 Head Pressure Head Pressure Head Pressure Lbs. per | Lbs. per + Lbs. per | Lbs. per Lbs. per | Lbs. per Feet Sq, In, Sq. Ft. Feet, Sq. In. Sq. Ft. Feet Sq. In. Sq. Ft. 1 0.4335 62.425 36 | 15.6063 2247.300 71 .30.7790 4432.175 2 0.8670 124.850 37 | 16.0398 2309.725 72 31.2125 4494.600 3 1.3005 187.275 38 | 16.4733 2372.150 73 || 31.6460 4557,025 4 1.7.340 249.700 39 || 16.9068 2434.575 74 || 32.0795 4619.450 5 2,1675 312.125 40 || 17.3403 2497,000 75 32.5130 4681.875 6 2.6010 374.550 41 17.7738 2559.425 76 || 32.94.65 4744,300 7 3.0345 436.975 42 | 18.2073 2621.850 77 || 33.3800 4806.725 8 3.4681 499.400 43 | 18.6408 2684.275 78 || 33.8135 4869. 150 9 3.9016 561.825 44 || 19.0743 2746,700 79 || 34.2471 4931.575 10 4.3351 624.250 45 | 19.5078 2809.125 80 || 34,6806 4994.000 11 4.76.86 686.675 46 | 19.94.13 2871.550 81 | 35.1141 5056.425 12 5.2021 749.100 47 | 20.3748 2933,975 82 || 35.5476 5118.850 13 5.63.56 811.525 48 || 20.8083 2996,400 83 35.9811 5181.275 14 6.0691 873.950 49 || 21.2418 3058,825 84 || 36,4146 5243.700 15 6.5026 936.375 50 21.6753 3121.250 85 || 36.8481 5306.125 16 6.9361 998.800 51 22.1089 3183.675 86 || 37.2816 5368.550 17 7.3696 1061.225 52 22.5424 3246.100 87 37.7151 5430.975 18 7.8031 1123.650 53 22.97.59 3308.525 88 || 38.1486 5493.400 19 8.2366 1186.075 54 || 23.4094 3370.950 89 || 38.5821 5555.825 20 8.6701 1248.500 55 || 23.8429 34.33.375 90 || 39.0156 5618.250 21 9.1036 1310.925 56 24.2764 3495.800 91 || 39.4491 5680,675 22 9.5372 1373.350 57 || 24.7099 35.58.225 92 || 39.8826 5743.100 23 9.9707 1435.775 58 || 25.1434 3620.650 93 || 40.3162 5805.525 24 || 10.4042 1498.200 59 || 25,5769 3683.075 94 | 40.7497 5867.950 25 | 10.8377 1560,625 60 | 26.0104 3745.500 95 || 41.1832 5930.375 26 11.2712 1623.050 61 26.4439 3807.925 96 || 41.6167 5992,800 27 | 11.7047 1685.475 62 26.8774 3870.350 97 || 42.0502 6055.225 28 || 12.1382 1747.900 63 || 27.3109 3932.775 98 || 42.4837 6117,650 29 | 12.5717 1810.325 64 27.7444 3995.200 99 || 42.9172 6180.075 30 || 13.0052 1872.750 65 28.1780 4057.625 || 100 43.3507 6242.500 31 13.4387 1935, 175 66 28.6115 4120.050 || 101 || 43.7842 6304.925 32 || 13.87.22 1997,600 67 29.0450 4182,475 || 102 || 44.2177 6367.350 33 || 14.3057 2060.025 68 29.4785 4244.900 || 103 || 44.6512 6429.775 34 || 14.7392 2122,450 69 || 29.9120 4307.325 || 104 || 45.0847 6492.200 35 | 15.1727 2184.875 70 || 30.3455 4369,750 || 105 || 45.5182 6554.625 (157) A I R, W A T E R , G A S, S T E A M, H E A T TABLE OF PRESSURES CORRESPONDING TO GIVEN HEADS OF WATER (Continued) Pressure Pressure Pressure Head Head Head €SS Feet | Lbs. per | Lbs. per | Feet | Lbs. per | Lbs, per Feet | Lbs. per | Lbs. per Sq. In. Sq. Ft. Sq. In. Sq. Ft. Sq. In. Sq. Ft. 106 || 45.9517 6617.050 || 140 || 60.6910 8739.500 || 174 || 75.4302 || 10861.950 107 || 46.3852 6679,475 || 141 | 61.1245 S801.925 || 175 75.8637 || 10924.375 108 || 46.818.8 6741.900 || 142 | 61.5580 8864.350 || 176 || 76.2972 10986.800 109 || 47.2523 6804.325 || 143 | 61.9915 8926.775 || 177 || 76.7307 || 11049.225 110 || 47.6858 6866.750 || 144 62.4250 8989,200 || 178 || 77.1642 | 11111.650 111 || 48.1193 6929.175 || 145 || 62.8585 9051.625 || 179 || 77.597S 11174.075 112 || 48.5528 6991.600 || 146 63.2920 9114,050 || 180 || 78.0313 | 11236.500 113 || 48.9863 7054.025 || 147 | 63.7255 91.76.475 || 181 || 78.4648 || 11298.925 114 || 49.4.198 7116.450 || 148 || 64.1590 92.38.900 || 182 || 78.8983 || 11361.350 115 || 49.8533 7178.875 || 149 || 64.5925 9301.325 || 183 || 79.3318 || 11423.775 116 || 50.2868 7241.300 || 150 || 65.0260 9363.750 || 184 || 79.7653 || 11486.200 117 | 50.7203 7303.725 || 151 || 65.4596 94.26.175 || 185 | 80.1988 || 11548.625 118 || 51.1538 7366,150 || 152 65.8931 9488.600 || 186 S0.6323 11611.050 119 || 51.5873 7428.575 || 153 | 66.3266 9551.025 || 187 | 81.0658 || 11673.475 120 || 52,0208 7491,000 || 154 | 66.7601 96.13.450 || 188 81.4993 || 11735.900 121 | 52.4543 7553.425 || 155 | 67.1936 96.75.875 || 189 || 81.9328 || 11798.325 122 52.8879 7615,850 || 156 67.6271 9738.300 || 190 | 82.3663 11860.750 123 53.3214 7678.275 || 157 | 68.0606 9800.725 || 191 | 82.7998 || 11923.175 124 53.7549 7740.700 || 158 | 68.494.1 9863. 150 || 192 || 83.2333 11985.600 125 54.1884 7803.125 || 159 | 68.9276 9925.575 || 193 || S3.6669 || 12048.025 126 54,6219 7865,550 || 160 | 69.3611 9988,000 || 194 | 84.1004 || 12110,450 127 | 55.0554 7927.975 || 161 | 69.7946 10050.425 || 195 | 84.5339 12172.875 128 || 55.4889 7990.400 || 162 || 70.2281 || 101.12.850 || 196 || S4.9674 || 12235.300 129 || 55,9224 8052.825 || 163 || 70.6616 || 10175.275 || 197 || 85.4009 || 12297.725 130 56.3559 8115.250 || 164 || 71.0951 || 10237.700 || 198 || S5.8344 | 12360.150 131 || 56,7894 8.177,675 || 165 || 71.5287 | 10300.125 || 199 || 86.2679 || 12422,575 132 || 57.2229 8240.100 || 166 71.9622 || 10362.550 || 200 | S6.7014 | 12485,000 133 || 57.6564 8302.525 || 167 | 72.3957 | 10424.975 || 201 || 87.1349 | 12547.425 134 || 58,0899 8364.950 || 168 || 72.8292 || 10487.400 || 202 || 87.5684 || 12609.850 135 | 58.5234 84.27.375 || 169 || 73.2627 | 10549.825 || 203 || 88.0019 || 12672.275 136 || 58,9570 8489.800 || 170 | 73.6962 | 10612.250 || 204 || 88.4354 | 12734.700 137 || 59.3905 S552.225 || 171 74.1297 || 10674.675 || 205 || 88.8689 || 12797.125 138 || 59.8240 8614.650 || 172 || 74.5632 10737.100 || 206 | 89.3024 | 12859.550 139 60.2575 S677.075 || 173 || 74.9967 10799.525 || 207 || 89.7359 || 12921.975 HORSE-POWER OF FALLINC WATER To calculate the horse-power of falling water, on the ordinary assumption that a horse- power is equal to 33,000 pounds lifted one foot vertically per minute. Multiply the number of cubic feet of water falling per minute by the vertical height or head in feet through which it falls, then multiply this result by the number 62.425 (the weight of a cubic foot of water in pounds) and divide the product by 33,000. Or by formula cu. ft. vertical height pounds in feet x 62.425 33,000 er min. x The number of horse-powers = p (158) B U F F A L O T A N K C O R P O R A T I O N TABLE OF HEADS OF WATER CORRESPONDING TO GIVEN PRESSURES Water at maximum density, 62.425 lbs. per cubic foot = 1 gram per cubic centimeter; corresponding to a temperature of 4° Centigrade = 39.2° Fahrenheit. Head in feet = Head in feet 2.306768 x pressure in lbs. per square inch. 0.0160192 x pressure in lbs. per square foot. Heads corresponding to pressures not given in the table can be found by these formulae, or taken from the table by simple proportion. Pressure Head Pressure Head Pressure Head Lbs. per | Lbs. per º Lbs. per Lbs. per P Lbs. per Lbs. per + Sq. In. Sq. Ft. Feet, Sq. In. Sq. Ft. Feet Sq. In. Sq. Ft. Feet 1 144 2.3068 51 7344 117.645 101 14544 232.984 2 288 4.6135 52 7488 119.952 102 14688 235.290 3 432 6.9203 53 7632 122.259 103 14832 237.597 4 576 9.2271 54 7776 124.565 104 14976 239.904 5 720 11.5338 55 7920 126.872 105 15120 242.211 6 864 13.8406 56 8064 129.179 106 15264 244.517 7 1008 16. 1474 57 8208 131.486 107 15408 246.824 8 1152 18.4541 58 8352 133.793 108 15552 249.131 9 1296 20.7609 59 8496 136.099 109 15696 251.438 10 1440 23.0677 60 8640 138.406 110 15840 253.744 11 1584 25.3744 61 87.84 140.713 1 11 15984 256.051 12 1728 27.6812 62 8928 143.020 112 16128 258.358 13 1872 29.9880 63 9072 145.326 113 16272 260.665 14 2016 32.2948 64 92.16 147.633 114 16416 262.972 15 2160 34.6015 65 9360 149.940 115 16560 265.278 16 2304 36.9083 66 9504 152.247 116 16704 267.585 17 2448 39.2151 67 9648 154.553 117 16848 269.892 18 2592 4.1.5218 68 9792 156.860 118 16992 272,199 19 2736 43.8286 69 9936 159. 167 119 17136 274.505 20 2880 46. 1354 70 10080 161,474 120 17280 276.812 21 3024 48.4421 71 10224 163.781 121 17424 279. 119 22 31.68 50.7489 72 10368 166.087 122 17568 281.426 23 3312 53.0557 73 10512 168.394 123 17712 283.732 24 3456 55.3624 74 10656 170.701 124 17856 286.039 25 3600 57.6692 75 10800 173.008 125 18000 288.346 26 3744 59.9760 76 10944 175.314 126 18144 290.653 27 3888 62.2827 77 11088 177,621 127 18288 292.960 28 4032 64.5895 78 11232 179.928 128 18432 295.266 29 4176 66.8963 79 1 1376 182.235 129 18576 297.573 30 4320 69.2030 80 11520 184.541 130 1872O 299.880 31 4464 71.5098 81 11664 186.848 131 18864 302.187 32 4608 73.81.66 82 11808 189. 155 132 19008 304.493 33 4752 76.1233 83 1 1952 191.462 133 1915.2 306.800 34 4896 78.4301 84 12096 193.769 134 19296 309.107 35 5040 80.7369 85 12240 196.075 135 19440 3.11.414 36 5184 83.0436 86 12384 198.382 136 19584 313.720 37 5328 85.3504 87 12528 200.689 137 19728 316.027 38 5472 87.6572 88 12672 202.996 138 19872 3.18.334 39 5616 89.9640 89 12816 205.302 139 20016 320.641 40 5760 92.2707 90 12960 207.609 140 20160 322.948 41 5904 94.5775 91 13104 209.916 141 20304 325,254 42 6048 96.8843 92 13248 212.223 142 20448 327.561 43 6.192 99.1910 93 13392 214.529 143 20592 3.29.868 44 6336 101.4978 94 13536 216.836 144 20736 332.175 45 6480 103.8046 95 13680 219. 143 145 20880 334.481 46 6624 106.1113 96 13824 221.450 146 21024 336.788 47 6768 108.4181 97 13968 223.756 147 21,168 339.095 48 6912 110.7249 98 14112 226.063 148 21312 341.402 49 7056 113.0316 99 14256 228.370 149 21456 343.708 50 7200 115.3384 100 14400 230.677 150 21600 346.015 (159) A 1 R, W A T E R , G A S, S T E A M, H E A T WATER AT DIFFERENT TEMPERATURES There are four notable temperatures for pure water, viz.: 1. Freezing point at sea level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32° F. 2. Point of maximum density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39.1° F. 3. TXritish standard for specific gravity . . . . . . . . . . . . . . . . . . . . . 62° F. 4. Boiling point at sea level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212° F. WATER Water boils under atmospheric pressure (14.7 pounds at sea level) at 212° F., passing off as steam. Its greatest density is at 39.1° F., when it weighs 62.425 pounds per cubic foot. BOILING POINT OF WATER Temperature in degrees F., barometer in inches of mercury Inches | 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 28 208.7 | 208.9 || 209.1 | 209.2 | 209.4 209.5 209.7 209.9 || 210.1 || 210.3 29 210.5 210.6 210.8 210.9 || 211.1 211.3 || 211.4 211.6 211.8 || 212.0 30 212.1 || 212.3 212.4 212.6 212.8 212.9 || 213.1 | 213.3 || 213.5 213.6 At 70°F. pure water will boil at 1° less of temperature for an average of about 550 feet of elevation above sea level, up to a height of 9% mile. At the height of 1 mile, 1° of boiling temperature will correspond to about 560 feet of elevation. Boiling Altitude || Boiling Altitude|| Boiling Altitude point in Bºm- above | point in Bºr above | point in Bººm- above degrees inches | * level, || degrees inches |* level, || degrees inches sea level, Ches feet F. In CIAGS feet F. $ feet 184 16.79 15,221 196 21.71 8481 208 27.73 2063 185 17.16 14,649 197 22.17 7932 208.5 28.00 1809 186 17.54 14,075 198 22.64 7381 209 28.29 1539 187 17.93 13,498 199 23.11 6843 209.5 28.56 1290 188 18.32 12,934 200 23.59 6304 210 28.85 1025 189 18.72 12,367 201 24.08 5764 210.5° 29.15 754 190 19.13 11,799 202 24.58 5225 211 29.42 512 191 19.54 11,243 203 25.08 4697 211.5 29.71 255 192 19.96 10,685 204 25.59 4169 212 30.0 S. L. = 0 193 20.39 10,127 205 26.11 3642 212.5 30.30 —261 194 20.82 9,579 206 26.64 31.15 213 30.59 —511 195 21.26 9,031 207 27.18 2589 CORRECTIONS FOR TEMPERATURE Mean temp. F. in shade. . . . . . O 10° 20° 30° | 40° 50° | 60° 70° 80° 90° 100° Multiply by . . . . . 0.933 0.954 0.975 0.996 | 1.016 | 1.036 | 1.058 | 1,079 | 1.100 | 1.121 | 1.142 WATER IN THE PROCESS INDUSTRIES One of the most important problems in the process industries is that of water supply. Examples of daily requirements in several fields list an alcohol distillery with a consumption of 8,000,000 gallons; a pulp and paper mill with 18,000,000 gallons; a heavy chemical plant using 6,000,000 gallons and a drug and pharmaceutical plant consuming 2,000,000 gallons per day. An average size sugar refinery will use more water than a small town. Buffalo water storage and pressure tanks are well-known in these important industries. (160) B U F F A L. O. T A N K C O R P O R A T I O N CAS PHYSICAL PROPERTIES OF CASES When a mass of gas is inclosed in a vessel it exerts a pressure against the walls. This pressure is uniform on every square inch of the surface of the vessel; also, at any point in the fluid mass the pressure is the same in every direction. In small vessels containing gases the increase of pressure due to weight may be neglected, since all gases are very light; but where liquids are concerned, the increase in pressure due to their weight must always be taken into account. EXPANSION OF GASES; MARIOTTE'S LAW The volume of a gas diminishes in the same ratio as the pressure upon it is increased, if the temperature is unchanged. This law, by experiment, is found to be very nearly true for all gases, and is known as Boyle's or Mariotte's law. V If p = pressure at a volume V, and p1 = pressure at a volume VI, plvi = pv; p = −P; pv = a constant, C. V1 The constant, C, varies with the temperature, everything else remaining the same. Air compressed by a pressure of seventy-five atmospheres has a volume about 2 per cent less than that computed from Boyle's law, but this is the greatest divergence that is found below 160 atmospheres pressure. LAW OF CHARLES The volume of a perfect gas at a constant pressure is proportional to its absolute temperature. If Vo be the volume of a gas at 32° F., and Vi the volume at any other temperature, ti, then tº + 459.2 \ . tº — 32° VI = V0 | * ºr ); V = | 1 + º-rººt- ) Vo, 1 ( 491.2 ) 1 ( " *ſūlā ) 0 Or, v1 = {1 + 0.002036 (t1 – 32°)]V0. If the pressure also changes from po to pi, v, v. Poſt, it 459.2º) |)1 491.2 THE DENSITIES of the elementary gases are simply proportional to their atomic weights. The density of a compound gas, referred to hydrogen as 1, is one-half its molecular weight; thus the relative density of CO2 is }/3 (12 + 32) = 22. AVOGADRO'S LAW Equal volumes of all gases, under the same conditions of temperature and pressure, contain the same number of molecules. To find the weight of a gas in pounds per cubic foot at 32° F., multiply half the molecular weight of the gas by 0.00559. Thus 1 cubic foot of marsh-gas, CH, = % (12 + 4) x 0.00559 = 0.0447 pound. When a certain volume of hydrogen combines with one-half its volume of oxygen, there is produced an amount of water vapor which will occupy the same volume as that which was occupied by the hydrogen gas when at the same temperature and pressure. LIQUEFIED PETROLEUM CASES These important and useful gases are stored under pressure in heavy, welded, steel tanks and many thousands of liquefied petroleum gas containers made by Buffalo Tank Corpora- tion are now in service throughout the country. & e 4- The field of utilization for liquefied petroleum gases may be classified in three major groups. I. Direct Gas Service in which the undiluted vapors are employed. II. Gas Enrichment or cold carburetion. III. Base Material for manufactured gas. As the design, installation and construction of liquefied petroleum gas containers is thor- oughly covered by regulations of the National Board of Fire Underwriters, the following ex- tracts from the current N.B.F.U. regulations are of general interest in connection with tanks Or containers. (161) A I R, WA T E R , G A S, ST EA M, H E A T LIQUEFIED PETROLEUM GASES (Continued) STANDARDS FOR THE STORAGE AND HANDLING OF LIQUEFIED PETROLEUM GASES INTRODUCTION The continued increase in the use of liquefied petroleum gases for domestic, commercial, industrial, gas manufacturing and motor fuel purposes, and the attendant development in the design, construction, and methods of installation of systems employed has made necessary a complete revision of the standards. The composition of liquefied petroleum gases varies, but in all the established grades the predominant compounds are propane and butane (iso-butane and normal butane). Under moderate pressure the gases liquefy, but upon relief of the pressure are readily converted into the gaseous phase. Advantage of this characteristic is taken by the industry, and for con- venience the gases are shipped and stored under pressure as liquids. When in the gaseous state, these gases present a hazard comparable to any flammable natural or manufactured gas, except that being heavier than air, ventilation requires added attention. The range of combustibility is considerably narrower than that of manufactured gas. When below 30°F. butane is a liquid and the hazard is similar to that of a flammable liquid. Propane is a liquid at atmospheric pressure at temperatures below minus 44° F. and normally does not present a flammable liquid hazard. Rapid vaporization takes place at temperatures above the boiling points (butane about 30° F.; propane about minus 44° F.) and tends to lessen the hazard as leaks would be gaseous and not liquid. Normal storage of these gases is as a liquid under pressure. The term “liquefied petroleum gases” as used in these standards shall mean and include any material which is composed predominantly of any of the following hydrocarbons, or mix- tures of them; propane, propylene, butanes (normal butane or iso-butane), and butylenes. In the interest of safety it is important that employees understand the inherent hazards of these gases, and that they be thoroughly trained in safe practices for handling, distribution and operation. When reference is made to gas in these standards it shall refer to liquefied petroleum gases in either the liquid or gaseous state. The term “containers” includes all containers such as lº cylinders or drums used for shipping or storing liquefied petroleum gases as regulated €reIIl. REOUIREMENT FOR CONSTRUCTION AND ORIGINAL TEST OF CONTAINERS Containers shall be constructed in accordance with the Unfired Pressure Vessel Code of the American Society of Mechanical Engineers, or in accordance with the A.P.I.-A.S.M.E. Code; or in accordance with the rules of the authority under which the containers are installed, provided such rules are in substantial conformity with the rules of the A.S.M.E. Code or the A.P.I.-A.S.M.E. Code, except that compliance with the following shall not be required; Paragraph U-2 to U-10 inclusive and U-19 of the aforesaid A.S.M.E. Code; Paragraph W-601 to W-606 inclusive and Section I and appendix to Section I of the aforesaid A.P.I.-A.S.M.E. Code. All containers shall be tested at the time of manufacture in accordance with the require- ments of the rules or code under which the containers are manufactured. LOCATION OF CONTAINERS AND REGULATING VALVES (a) Containers and first stage regulating equipment shall be located outside of buildings other than those especially provided for this purpose. Except as herein provided, each indi- vidual container shall be located with respect to nearest important building or group of build- ings or line of adjoining property which may be built upon in accordance with the following table: {º Minimum Distance Water Capacity Under- Above- per Container ground ground Less than 125 gallons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 feet None 125 to 500 gallons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 feet 10 feet 500 to 1200 gallons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 feet 25 feet over 1200 gallons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 feet, 50 feet Aboveground containers of capacity exceeding those shown in the above table may be installed close to buildings or property lines when specifically approved by the inspection department having jurisdiction. (162) ºuffalo B U F F A L O T A N K C O R P O R AT I O N TANIKS D LIQUEFIED PETROLEUM GASES (Continued) (b) In the case of buildings devoted exclusively to gas manufacturing and distributing operations the above distances may be reduced provided that in no case shall containers of capacity exceeding 500 gallons be located closer than 10 ft. to such gas manufacturing and distributing buildings. (c) Readily ignitable material such as weeds and long dry grass should not be within ten feet of any container. DESIGNED WORKING PRESSURE AND CLASSIFICATION OF STORAGE CON- TAINERS (a) Storage containers shall be designed and classified as follows: For Gases with Vapor Minimum Design Pressure of Containers by: « Lyº &. J. y C `r, n + ºn in or T Pressure not to Exceed ſ f Container Type Llbs. per Sq. In. Gauge A. § \!. E. A. P. "dº M. E. at 100° F. O(|C OCI62 Factor of Safety—5 Factor of Safety-4 S0 lb). 80 80 lb). Ga. 100 lb). Ga. 100 lb). 100 100 lb. Ga. 125 lb. Ga. 125 lb). 125 125 lb). Ga. 156 lb). Ga. 150 lb). 150 150 lb). Ga. 187 |}). Ga. 175 lb). 175 175 lb). Ga. 219 lb. Ga. 200 lb. 200 200 lb). Ga. 250 lb., Ga. (b) The shell or head thickness of any container shall not be less than % inch. NotE.—Because of low soil temperature usually encountered, and the insulating effect of the earth, the average vapor pressure of products stored in underground containers will be materially lower than when stored aboveground. This reduction in actual operating pressure therefore provides a substantial corrosion allowance for these containers when installed underground. REINSTALLATION OF CONTAINERS (a) Containers once installed underground shall not later be reinstalled aboveground or underground, unless they successfully withstand hydrostatic retests at the pressure specified for the original hydrostatic test as required by the code under which constructed, and show no evidence of serious corrosion. Where containers are reinstalled underground, the corrosion resistant coating shall be put in good condition. - CAPACITY OF LIQUID CONTAINERS (a) No liquid storage container shall exceed 30,000 standard U. S. gallons capacity. INSTALLATION of STORAGE containers (a) Containers installed aboveground shall be provided with substantial masonry or non- combustible structural supports on firm masonry foundations. (b) Except as modified by the note, aboveground containers shall be supported as follows: 1. Horizontal containers shall be mounted on saddles and secured thereto in such a manner as to permit expansion and contraction. Every container shall be so supported as to prevent the concentration of excessive loads on the supporting portion of the shell. Structural metal supports may be employed when they are protected against fire in an approved manner. Suitable means of preventing corrosion shall be provided on that portion of the container in contact with the foundations or saddles. NOTE.-Containers of 5,000 lb. water capacity or less, may be installed with non-fireproofed ferrous metal supports if mounted on concrete pads or footings, and if the distance from the outside bottom of the container shell to the ground does not exceed 24 in. (c) Any container may be installed with non-fireproofed ferrous metal supports if mounted on concrete pads or footings, and if the distance from the outside bottom of the container to the ground does not exceed five (5) feet, provided the container is in an isolated location and such installation is approved by the regulatory bodies having jurisdiction. (163) A 1 R, W A T E R, G A S, S T E A M, H EAT LIQUEFIED PETROLEUM GASES (Continued) (d) Containers buried underground shall be so placed that the top of container is below the established frost line and in no case less than 2 feet below the surface of the ground. Should ground conditions make compliance with this requirement impracticable, installation shall be made otherwise to prevent mechanical injury. It will not be necessary to cover the portion of the container to which manhole and other connections are affixed. When necessary to prevent floating, containers shall be securely anchored or weighted. (e) Underground containers shall be set on a firm foundation (firm earth may be used) and surrounded with soft earth or sand well tamped in place. As a further means of resisting corrosion, the container, prior to being placed underground, shall be given a protective coating satisfactory to the inspection department having jurisdiction. Such protective coating shall be equivalent to hot dip galvanizing, or to two preliminary coatings of red lead followed by a heavy coating of coal tar or asphalt, and the container thus coated completely covered by a suitable protective wrapping in order to prevent abrasion of the coating when the container is lowered in place. N. or further information or complete regulations covering Liquefied Petroleum Gases, see N. B. F. U. Pamph- let No. 58. HEAT EQUIVALENT VALUES OF DEGREES FAHRENHEIT AND CENTIGRADE Two-Way Temperature Conversion Table C. F. C. F. C. F. C. F. –40.0 – 40 – 40 –2.78 27 80.6 11.7 53 127.4 28.3 83 181,4 –34.4 –30 — 22 –2.22 28 82.4 | 12.2 54 129.2 28.9 84 183.2 –28.9 —20 — 4 – 1.67 29 84.2 12.8 55 131.0 29.4 85 185.0 —23.3 –10 14 — 1.11 30 86.0 13.3 56 132.8 30.0 86 186.8 – 17.8 0 32 —().56 31 87.8 13.9 57 134.6 30.6 87 188.6 – 17.2 1 33.8 () 32 89.6 | 1.4.4 58 136.4 31.1 88 190.4 — 16.7 2 35.6 ().56 33 91.4 15.0 59 138.2 31.7 89 192.2 — 16.1 3 37.4 1.11 34 93.2 15.6 60 140.0 32.2 90 194.0 — 15.6 4 39.2 1.67 35 95.0 | 16.1 61 14.1.8 32.8 91 195.8 — 15.0 5 41.0 2.22 36 96.8 16.7 62 143.6 33.3 92 197.6 — 14.4 6 42.8 2.78 37 98.6 17.2 63 145.4 33.9 93 199.4 — 13.9 7 44.6 3.33 38 100.4 17.8 64. 147.2 34.4 94 201.2 — 13.3 8 46.4 3.89 39 102.2 18.3 65 149.0 35.0 95 203.0 — 12.8 9 48.2 18.9 66 150.8 35.6 96 204.8 — 12.2 10 50.0 19.4 67 152.6 36.1 97 206.6 — 11.7 11 51.8 20.0 68 154.4 36.7 98 208.4 – 11.1 12 53.6 20.6 69 156.2 37.2 99 2.10.2 – 10.6 13 55.4 21.1 70 158.0 37.8 100 212.0 – 10.0 14 57.2 4.44 40 104.0 | 21.7 71 159.8 43 110 230 – 9.44 15 59.0 5.00 41 105.8 22.2 72 161.6 49 120 248 – 8.89 16 60.8 5.56 42 107.6 22.8 73 163.4 54 130 266 – 8.33 17 62.6 6.11 43 109.4 || 23.3 74 165.2 60 140 284 — 7.78 18 64.4 6.67 44 111.2 23.9 75 167.0 66 150 302 — 7.22 19 66.2 7.22 45 113.0 | 24.4 76 168.8 71 160 320 – 6.67 20 68.0 7.78 46 114.8 25.0 77 170.6 77 170 338 – 6.11 21 69.8 8.33 47 116.6 25.6 78 172.4 82 180 356 — 5.56 22 71.6 8.89 48 118.4 26.1 79 174.2 88 190 374 – 5.00 23 73.4 9.44 49 120.2 26.7 80 176.0 93 200 392 – 4,44 24 75.2 | 10.0 50 122.0 27.2 81 177.8 99 210 410 — 3.89 25 77.0 | 10.6 51 123.8 27.8 82 179.6 100 212 413 – 3.33 26 78.8 || 11.1 52 125.6 ExAMPLE 1. 42° Fahrenheit to be converted to Centigrade: Find 42 in the center column (bold face type) and read 5.56° C. to the left. ExAMPLE 2. 42° Centigrade to be converted to Fahrenheit: Find 42 in the center column (bold face type) and read 107.6° F. to the right. (164) B U F F A L O T A N K C O R P O RAT I O N STEAM Steam is an elastic fluid resulting from the combination of heat with water, and when the steam is not in contact with the water from which it is formed, it follows the same general law as all other gases. This law is as follows: All gases expand by heat 1/491 part of their volume for every degree Fahr., while their elastic pressure remains unaltered; and so long as the temperature of a gas remains unaltered, its elastic pressure will vary inversely as the volume. Steam is of several qualities: Saturated Steam or steam that is at the evaporation temperature corresponding to its pressure. Dry Saturated Steam is steam that contains no more moisture than is necessary for its existence as a vapor in presence of water from which it is formed; Wet Saturated Steam or simply “wet steam” saturated steam in which particles of water are held in suspension. Superheated steam is steam removed from contact with water and heated to a temperature higher than is due to its pressure. The temperature of saturated steam is always equal to that of water from which it is formed, and the elastic force of steam formed is equal to the pressure under which it is formed. The elastic force of steam, barometer at 30 in., at 212° Fahr., is one atmosphere, or 14.7 lbs. per square inch; while at 250° Fahr, its elastic force is two atmospheres, or 29.4 lbs. per square inch absolute pressure or 14.7 lbs. per square inch above the pressure of the atmosphere com- monly called “gauge pressure” or “boiler pressure.” ABSOLUTE PRESSURE May be defined as the pressure above a perfect vacuum. A barometer indicates the absolute pressure of the atmosphere. If the mercury well of a mercurial barometer be closed, and con- nected by means of a tube to any vessel containing a fluid under pressure, the barometer will indicate the absolute pressure of the fluid within the vessel, provided of course that the tube is long enough to hold a column of mercury corresponding to the absolute pressure of the fluid. GAUGE PRESSURE Inasmuch as it is difficult to obtain and maintain a perfect vacuum, absolute pressure gauges are not commonly used. The ordinary “U”-tube gauge and those of the “Bourdon-tube” type indicate pressure relative to atmospheric pressure only. Unless specially noted as “abso- lute pressure,” all figures are understood to mean gauge pressure. If absolute pressure readings are required, they may be obtained by observing the gauge pressure and adding the absolute pressure of the atmosphere as observed from a barometer. Although the barometric pressure varies with altitude and also from day to day, it is customary in engineering calculations to use the figure 14.7 pounds per square inch. Example: A steam pressure gauge on a boiler indicates 105 pounds per square inch. The absolute pressure then = 105 -- 14.7 = 119.7 pounds per square inch absolute. FLOW OF STEAM IN PIPES To determine the velocity of steam in feet per minute through a pipe, the quantity, pressure and area being known. V = Velocity in feet per minute. A = Pounds of steam per hour. B = Volume in cubic feet per lb. at given pressure. C = Area of pipe in square inches. 1728 = Cubic inches in a cubic foot. 60 = Minutes in an hour. LOSS OF PRESSURE 12 = Inches in a foot. The above formula does not con- Then V = A x B x 1728 A x B x 2.4 sider the probable drop, or loss of 1G.Il 60 x C x 12 C pressure which is dependent upon * . . v. the velocity of flow, length of line, A = Cx V number of turns in fittings or valves, B x 2.4 and the covering of the pipe. In - C x V every steam line there must be a B = TA X 2.4 difference in pressure between the inlet and outlet or there could be C = A x B. × 24 no flow, and this difference is in- V creased by friction and radiation. (165) A 1 R, W A T E R , G A S, S T E A M, H E A T STEAM TABLE OF PROPERTIES OF SATURATED STEAM: Pr ... 3 * - Heat of R I'êSSUll’é l]] Tempera- |Total heat Heat in vaporiza- || Density or Volume of Factor of Total pounds per ture In liquid tion, or ||weight of 1 pound equivalent pressure *...* a..., ||...] § latentheat gºod ||...in. *...* | abºve V8, CUIUl Iſl º at 32° units heat units in pounds | cubic feet at 212° V3, Clllll Il 1 101.99 1113.1 70.0 1043.0 || 0.00299 || 334.5 0.9661 1 2 126.27 1120.5 94.4 1026.1 , ()()576 || 173.6 .9738 2 3 141.62 1125.1 109.8 1015.3 ,00844 || 118.5 .9786 3 4 153.09 1128.6 121.4 1007.2 .01.107 90.33 .9822 4 5 162.34 1131.5 130.7 1000.8 .0.1366 73.21 .9852 5 6 170.14 1133.8 138.6 995.2 ,01622 61.65 .9876 6 7 176.90 1135.9 145.4 990.5 ,01874 53.39 .9897 7 8 182.92 | 137.7 151.5 986.2 ().2125 47.06 ..9916 8 9 188.33 1139.4 156.9 982.5 ,02374 42.12 .9934 9 10 193.25 1140.9 161.9 979.0 ,02621 38.15 .9949 10 15 213.03 1146.9 181.8 965.1 ,03826 26.14 1.0003 15 20 227.95 1151.5 196.9 954.6 .050.23 19.91 1,0051 20 25 240.04 1155.1 209.1 946.0 ,06199) 16.13 1.0099 25 30 250.27 1158.3 219.4 938.9 ,07360 13.59 1.0129 30 35 259.19 1161.0 228.4 932.6 ()S508 11.75 1.0157 35 40 267.13 1163.4 236.4 927.0 ,09644 10.37 1.0182 40 45 274.29 1165.6 243.6 922.0 .1077 9.285 | 1.0205 45 50 280.85 1167,6 250.2 917.4 .1.188 S.418 | 1.02.25 50 55 286.89 1169.4 256.3 913.1 . 1299 7.698 || 1.0245 55 60 292.51 1171.2 261.9 909.3 1409 7,097 | 1.0263 60 65 297.77 1172.7 267.2 905.5 . 1519 6.583 | 1,0280 65 7() 302.71 1174.3 27.2.2 902.1 . 1628 6.143 | 1.0295 70 75 307.38 1175.7 276.9 898.8 1736 5.760 | 1.0309 75 80 3.11.80 1177.0 281.4 S95.6 .1843 5.426 1.0323 80 S5 316.02 1178.3 285.8 892.5 1951 5.126 | 1.0337 S5 90 320.04 1179.6 290.0 889.6 .2058 4.859 1.0350 90 95 323.89 1180.7 294.0 886.7 .2165 4,619 | 1.0362 95 100 327.58 1181.9 297.9 884.0 .2271 4.4()3 | 1.0374 100 105 331.13 1182.9 301.6 SS1.3 .2378 4.205 1.0385 105 110 334.56 1184.0 305.2 878.8 .2484 4,026 1,0396 110 115 337.86 1185.0 308.7 876.3 .2589 3.862 | 1,0406 115 120 341.05 1186.0 3.12.0 S74.0 .2695 3.71 || || 1,0416 120 125 344.13 1186.9 315.2 S71.7 .2800 3.571 | 1,0426 125 13() 347.1.2 1187.8 3.18.4 869.4 .2904 3.444 1,0435 130 140 352.85 1189.5 324.4 S65.1 .3113 3.212 | 1.0453 140 150 358.26 1191.2 330.0 S61.2 .3321 3.011 | 1,047() 150 160 363.40 1192.8 335.4 857.4 .35:30 2.83.3 | 1,0486 160 17() 368,29 1194.3 340.5 853.8 .3737 2.676 | 1.0502 170 180 372,97 1195.7 345.4 S50.3 .3945 2.535 | 1,0517 180 190 377.44 1197.1 350.1 847.0 .4153 2,40S | 1,0531 190 200 381.73 1198.4 354.6 843.8 ,4359 2.294 | 1.0545 200 225 301.79 1201.4 365.1 836.3 .4876 2.()51 1.0576 225 250 400.99 1204.2 374.7 829.5 ,5395 1.854 | 1.0605 250 275 409.50 1206.8 383.6 S23.2 .59.13 1.691 | 1.0632 275 300 417.42 1209.3 391.9 S17.4 .644 1.553 | 1.0657 300 325 424.82 1211.5 399.6 811.9 ,696 1.437 | 1.0680 325 350 431.90 1213.7 406.9 806.8 .748 1.337 | 1,0703 350 375 438.40 1215.7 414.2 801.5 .800 1.250 | 1.0724 375 400 445.15 1217.7 421.4 796.3 .853 1.172 | 1.0745 400 500 466.57 1224.2 444.3 779.9 | 1,065 0.939 1,0812 500 (166) B U F F A L O T A N K C O R P O R A T I O N HEAT ExPANsion...of STEEL AT HIGH TEMPERATURES Composition of steels Mean coefficients of expansion from Coefficients between C | Mn Si P | 1.5° to 200° 200° to 500° 500° to 650° 0.03 || 0.01 || 0.03 || 0.013 | 11.8 x 10–6] 14.3 x 10–6] 17.0 x 10–6] 24.5 x 10–6 880° and 950° 0.25 0.04 || 0.05 || 0.010 | 11.5 14.5 17.5 23.3 800° and 950° 0.64 0.12 0.14 |0.009 | 12.1 14.1 16.5 23.3 720° and 950° 0.93 || 0.10 || 0.05 || 0.005 || 11.6 14.9 16.0 27.5 720° and 950° 1.23 0.10 || 0.08 || 0.005 || 11.9 14.3 16.5 33.8 720° and 950° 1.50 | 0.04 || 0.09 || 0.010 || 11.5 14.9 16.5 36.7 720° and 950° 3.50 || 0.03 || 0.07 | (),005 || 11.2 14.2 18.0 33.3 720° and 950° Nickel steels Mean coefficients of expansion from Ni C | Mn 15° to 100° 100° to 200° 200° to 400° | 400° to 600° 600° to 900° 26.9 ().35 | 0.30 11.0 x 10–6 | 18.0 x 10–6 | 18.7 x 10–6 22.0 x 10–6 23.0 x 10–9 28.9 || 0.35 | 0.36 | 10.0 21.5 19.0 20.0 22.7 30.1 || 0.35 | 0.34 9.5 14.0 19.5 19.0 21.3 34.7 | 0.36 || 0.36 2.0 2.5 11.75 19.5 20.7 36.1 || 0.39 || 0.39 1.5 1.5 11.75 17.0 20.3 32.8 ().29 || 0.66 8.0 14.0 18.0 21.5 22.3 35.8 || 0.31 || 0.69 2.5 2.5 12.5 18.75 19.3 37.4 || 0.30 || 0.69 2.5 1.5 8.5 19.75 18.3 25.4 | 1.01 || 0.79 | 12.5 18.5 19.75 21.0 35.0 29.4 || 0.99 || 0.89 || 11.0 12.5 19.0 20.5 31.7 34.5 0.97 || 0.84 3.0 3.5 13.0 18.75 26.7 EXPANSION OF HEATED METALS Expansion in inches of a bar 1 foot long when its temperature is raised 100° C. (180° F.). Metal Expansion Inches Millimeters Aluminum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0267 0.67818 Cast iron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0133 0.337.82 Mild steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0144 0.36576 Copper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0206 0.52324 Brass (cast). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0225 0.57150 Silver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0229 0.58|166 Wrought iron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0148 0.37592 Lead. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0340 0.8636 Tin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0266 0.62564 Zinc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0354 0.89916 Stainless iron 18 per cent Cr, 8 per cent Ni. . . . . . . . . . . . . . . . . . . . . . . . . 0.0210 0.5334 12 per cent Cr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0120 0.3048 Monel Metal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0170 0.4318 Manganese steel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0350 0.8890 A 1 R, W A T E R, G A S, S T E A M, H E A T HEAT EXPANSION AND CONTRACTION OF BODIES BY CHANGES IN TEMPERATURE The linear coefficient of expansion of a body is the rate at which the unit of length changes, under constant pressure, with a change of one degree of temperature; the square surface coefficient of expansion is, approximately, two times, and the cubical or volumetric coefficient three times the linear coefficient of expansion. A bar, if not fixed, undergoes a change in length = ltn, where l is the length of the bar in inches, t the change in temperature in degrees, n the corresponding linear coefficient; if fixed at both ends, the internal stress per unit of area = the pounds per square inch, where E is the modulus of elasticity, and the total temperature stress = AtnE pounds, where A is the area of the cross section of the bar in square inches. To find the change in length of a bar, due to a change in temperature, multiply the length of the bar by that change in degrees and by the coefficient for one degree. LINEAR COEFFICIENTS OF EXPANSION FOR ONE DEGREE Coefficient, n Coefficient, n Substance Centi- || Fahren- Substance Centi- Fahren- grade heit grade heit Metals and Alloys Stone and Masonry Aluminum, wrought. . . . . . . .0000231 || 0000128 || Ashlar masonry. . . . . . . . . .0000063 || 0000035 Brass. . . . . . . . . . . . . . . . . . . .0000188 |.0000104 || Brick masonry . . . . . . . . . .()()00055 ()()00031 ‘‘ wire . . .0000193 || 0000107 || Cement, Portland . . . . . . . .0000107 || 0000059 Bronze . . . . . . . . . . . . . . . . . .0000181 | .0000101 || Concrete . . . . . . . . . . . . . . .0000143 || 0000079 Copper . . . . . . . . . . . . . . . . . .0000168 || 0000093 { { masonry . . . . . . .0000120 .0000067 German Silver . . . . . . . . . . . .0000183 .0000102 || Granite . . . . . . . . . . . . . . . ()000084 .0000047 Gold . . . . . . . . . . . . . . . . . . . .0000150 | .0000083 || Limestone . . . . . . . . . . . . . ()000080 || 0000044 Iron, cast, gray. . . . . . . . . . .0000106 || 0000059 || Marble . . . . . . . . . . . . . . . . , ()()00100 .0000056 “ wrought . . . . . . . . . . . .0000120 || 0000067 || Plaster . . . . . . . . . . . . . . . . ,0000166 .0000092 “ wire. . . . . . . . . . . . . . . .00001.24 || 0000069 || Rubble masonry. . . . . . . . . .0000063 || 0000035 Lead . . . . . . . . . . . . . . . . . . . .0000286 || 0000159 || Sandstone . . . . . . . . . . . . . .0000110 | ()()00061 Nickel. . . . . . . . . . . . . . . . . . .00001.26 || 0000070 || Slate . . . . . . . . . . . . . . . . . . , ()()001.04 || 000005S Platinum . . . . . . . . . . . . . . . . .0000090 || 0000050 Timber Platinum-Iridium, 15% Ir. 0000081 || 0000045 Fir ()000037 .0000021 Silver * * * * * * * * * * * * * * * * * * * .0000192 || 0000107 Maple arallel to fiber 0000064 0000636 Steel, cast . . . . . . | 0000110 0000061 |\ºpl" parallel to ther. ..sºsºvºy. & & * & }=y & 8. K .()000049 || 0000027 hard . . . . . . . . . . . . . . 0000132| 0000073|pi. ()000054 ()()00030 “ medium . . . . . . . . . . . 0000120 0000007 |jº loooo;s loooo; “ soft. . . . . . . . . . . . . . . .0000110 || 0000061 Mapl erpendicular \| 00061s º Tin . . . . . . . . . . . . . . . . . . . . 0000210 0000117|\ºple, pºllºular ||}}} |. Zinc, rolled boºij || 00001}}|Qak ( to fibel .000054 ()()0030 3 * ~ * * *-*.*. . . . . . . . . . . . . . . * º * * || Pine .000034 .000019 Miscellaneous Solids Liquid Substances |Volumetric Expan. Glass. . . . . . . . . . . . . . . . . . . .0000085 | .0000047 || Alcohol. . . . . . . . . . . . . . . . , ()()104 ()()().58 Graphite. . . . . . . . . . . . . . . . .0000079 || 0000044|| Acid, nitric . . . . . . . . . . . . , ()()110 || 00061 Gutta-percha. . . . . . . . . . . . .00059.80 | .0003322 “ sulphuric . . . . . . . . . .00063 .00035 Paraffin. . . . . . . . . . . . . . . . . .0002785 || 0001547 || Mercury. . . . . . . . . . . . . . . .00018 .00010 Porcelain. . . . . . . . . . . . . . . . . .0000036 0000020 || Oil, turpentine . . . . . . . . . ,000.90 .00050 EXPANSION OF WATER, MAXIMUM DENSITY = 1 C* | Volume C* | Volume || Cº Volume || Cº Volume | C* | Volume | C* | Volume () | 1.0001.26 || 10 | 1.000257 || 30 | 1.004.234 || 50 | 1.011877 || 70 | 1.02.2384 || 90 | 1,035.829 4 | 1.000000 || 20 | 1.001732 || 4() | 1.007627 || 60 | 1.016954 || 80 | 1.029003 || 100 | 1.0431.16 (168) Average Temperatures for Cities CLIMATIC CONDITIONS COMPILED FROM UNITED STATES WEATHER BUREAU RECORDS Average Average Wind Direction Average Average Wind | Direction Temper- || Lowest Velocity of Prevailing Temper- || Lowest Velocity of Prevailing State City ature | Temper- || Dec., Jan., Wind State City ature | Temper- || Dec., Jan., Wind Oct. 1 to ature Feb. Dec., Jan., Oct. 1 to ature Feb. Dec., Jan., May 1 Miles per Hr. Feb. May 1 Miles per Hr. Feb. Ala. . | Mobile . . . . . . . . . 57.7 — 1 8.3 N Nev. . . . . Tonopah. . . . . . 39.6 — 7 9.9 SE Birmingham . . . . . . 53.9 — 10 S.6 N Winnemucca . . 37.9 —28 9.5 NE Ariz Phoenix . . . . . . . . . . 59.5 16 3.9 E N. H. . . . Concord . . . . . . . . . . 33.4 –35 6.0 NW Flagstaff. . . . . . . . . . 34.9 —25 6.7 SW N. J. . . . Atlantic City. . . . . . . 41.6 — 7 10.6 NW Ark. . . . . Fort Smith. . . . . . . . . 49.5 — 15 S.0 E N. Y. . . . Albany . . . . . . . . 35.1 –24 7.9 S Little Rock . . . . . . . 51.6 – 12 9.9 NW Buffalo . . . . . . . . . . 34.7 — 14 17.7 W Cal. | San Francisco . . . . . 54.3 29 - - - N New York. . . . . . . 40.3 — 6 13.3 NW Los Angeles . . . . . . . 58.6 28 - - - NE N. M. . . | Santa Fe. . . . . . . . 38.0 — 13 7.3 NE Colo | Denver . . . . . . . . . . . . 39.3 –29 7.4 S N. C. . . . Raleigh. . . . . . . . 49.7 – 2 7.3 SW Grand Junction. . . 39.2 — 16 5.6 SE Wilmington . . . 53.1 5 S.9 SW Conn. . . . . New Haven . . . . . . . 38.0 — 14 9.3 N N. D. . . . Bismarck . . . . . . 24.5 –45 - - - NW D. C | Washington . . . . . . . . 43.2 — 15 7.3 NW Devil's Lake . . . . 18.9 –44 11.4 W Fla... . . . . Jacksonville. . 61.9 10 8.2 NE Ohio. . . . Cleveland. . . . . . 36.9 — 17 14.5 SW Ga. | Atlanta. . . . . . . 51.4 — 8 11.8 NW Columbus. . . . . . . . . 39.9 –20 9.3 SW Savannah. . . . . . . . . 58.4 8 8.3 NW Okla. . . Oklahoma City . . 48.0 — 17 12.0 N Idaho. . . . Lewiston. . . . . . 42.5 — 13 4.7 E Ore. Baker . . . . . . . . . . 34.1 –20 6.0 SE Pocatello . . 36.4 – 20 9.3 SE Portland. . . . . . . . . . . 45.9 — 2 6.5 S Ill. . . | Chicago . . . . . . . . . . 36.4 — 23 17 SW Pa. . . . . Philadelphia. . . . . 41.9 — 6 11.0 NW Springfield . . . . . . . . 39.9 –24 10.2 NW Pittsburgh . . . . . . . 40.8 –20 13.7 NW Ind. . Indianapolis. . . . . . . . 40.2 —25 11.8 S R. I. . . . . Providence. . . . . 37.6 — 9 14.6 NW Evansville . . . . . . . . . 44.1 — 15 8.4 S S. C. . . . . Charleston . . . . . . 56.9 7 11.0 N Iowa. . . . . Dubuque . . . . . . . . . . 33.9 —32 6.1 NW Columbia . . . . . . . . 53.7 — 2 8.0 NE Sioux City . . . . . . . . ; 32.1 —35 12.2 NW S. D. . . . Huron. . . . . . . . . 28.1 —43 11.5 NW Kan | Concordia. . . . . . . . . 38.9 —25 7.3 N Rapid City. . . . . 32.3 –34 7.5 W Dodge City . . . . . . . . 40.2 –26 10.4 NW Tenn. . . . Knoxville . . . - 47.0 — 16 6.5 SW Ky. . . . . . Louisville . . . . . . . . 45.2 –20 9.3 SW Memphis . . . . . . . . 50.9 — 9 9.6 NW La. | New Orleans . . . . . . . 61.5 7 9.6 N Tex. . . . . El Paso. . . . . . . . 53.0 — 2 10.5 NW Shreveport. . . . . . . . 56.2 — 5 7.7 SE Fort Worth . . . . . 54.7 — 8 11.0 NW Me... . . . . | Eastport. . . . . . . . . . . 31.1 —23 13.8 W San Antonio. . . . . 60.7 4 8.2 N Portland. . . . . . . . . 33.6 – 17 10.1 TNW Utah. . . . Modena. . . . . . . . . 38.1 —24 8.9 W Mol. . . . . . Baltimore. . . . 43.6 — 7 7.2 NW Salt Lake City. . . 40.0 –20 4.9 SE Mass. . . . . Boston . . . 37.6 — 13 11.7 W Vt. . . . . . Burlington . . . . . . 29.3 –27 12.9 S Mich. . . . . Alpena. . . . . . . . . . 29.1 –27 11.3 W Va. . . . . . Norfolk. . . . . . . . . . . . 49.1 2 9.0 N Detroit . . . . . . . . . 35.4 –24 13.1 SW Lynchburg. . . . . . . . . 45.2 — 7 5.2 NW Marquette . . 27.6 –27 11.4 NW Richmond. . . . . . 47.4 — 3 7.4 S Minn. . . . . Duluth . . . . . . . . . . . . 25.1 –41 11.1 SW Wash. . . Seattle. . . . . . . . 45.3 3 9. 1 SE Minneapolis. . . . . 29.6 —33 11.5 NW Spokane . . . . . . 37.5 –30 - - - SW Miss. . . . . Vicksburg. . . . . . . . . 56.0 — 1 7.6 SE W. Va., | Elkins. . . . . . . . . . . . 38.8 –21 4.8 W MO. . St. Joseph . . . . . . . . . 40.3 –24 9.1 NW Parkersburg. . . . . . . . 41.9 –27 6.6 S Springfield . . . . . . . . . 43.0 — 29 11.3 SE Wis. . . . . Green Bay . . . . . . . . . 28.6 –36 12.8 SW Mont . . . . Billings. . . . 34.7 —49 - - - W La Crosse. . . . . . 31.2 —43 5.6 NW § SECTION X (171) BOLTS AND STAYBOLTS B O L T S 08z“†g | OIL ‘Off | 069‘OL | 020“ ºg | 066“†6 | 098° 19 | 08Z“†g8Ziff * g690° ſ.%88 OOzº 95 || Og9“†8 || 00ý‘6g | 08g“†† | 078°08 | 091, º 19 | 00Zº9ffOZ9* †Oğ6 ºg†Ž%Z 09 Iº 1,8 | 018° ſ.z | 060‘6Ť | 028°98 || 0ț0‘g9 | 0gŤ“9Ť | 091° 189Țſ, * 8.606 * ſ;†%Z OIz‘08 | 099ºZZ | 091, ‘68 || 0Z8‘6Z | 01.8“ Zg | 01.1“ 1.8 || OIZº08IØ0° 891,6 ° 8%ț¢Žíz 000‘ez | Ogz‘ LI I OZŤ“IĘ | 09g‘ºz | Ogz‘OŤ | 091.“8Z | 000‘EZ008“ ZZiffI º 8%ț¢Z 06Ť“Oz | 018 ºg I | 019, 14 || OIL“ OZ | 098‘g8 | 019 ºg Ø | 06ý“OZ6ğ0° Z.Ț9), “ Z9% I Offſ“ LI | 080° ET | 090“†Z | Off0‘8I I OZgº 08 | 008‘ IZ | OgŤ“ LIgiffſ, º Tg0Ť“ Z9% I Og I ºg I | 098 ‘II | Oſſ.“ OZ | Ogg ºg I | OȚg‘9Z | Oý6°9'I | OgTºgȚgȚgº I† 1,0° Z.%íg8% I Oý6‘ZI | 001.‘601.9' LI | Ogz‘ ĢI | Off9° ZZ | OLI ‘9Ț | 076‘ZI†68* T1,9), º T994 I OŤgº OT | OT 6° ſ.Og8“†I | OýI‘II || Ogſ ‘9I | 08I ‘GI | Offg“OI†g0* Ig8ſ; * I98% I 006‘80.19°9OLZ“ZI | 00Z ‘601.gºgI | OZI“ II | 068‘8068* 0AZZ" I1.ŽÁI 086°900ZºgOý6‘6Ogſº 1,08T ‘ZI | 099° 8086‘9869° 0†66° 01.84 I OȚg ºg0£I“†098° 1.068 ºgOý9‘6068‘9OȚgºgIggº 0981, * 08I 06I“†Og I ºgOIO‘9O Ig“†OŤ8° 1.Oýzºg06I“†6IŤ * 0I09° 0684 OZO‘8OLZ“ ZOzý“†OI8 ºg06Zºg01.1*8OZO‘8Z08* 0Ziffſ; * 00IŽ% OZO‘ZOȚgº I01.0‘8008“ Z08g ºgOZgºzOZO‘ZZOZ° 0},08° 0II8% OZ9“IOZZ“I08Ť“ Z098‘’ſOý8“ Z080‘ZOZ9‘IZ9I* 08ff"Z° 0ZI9 ſq 09Z ‘IOff6096 “IOL† ‘I00Z“ Z01.g‘I09Z ‘I9ZI° 096TI” 08I% 086001,00gº I0£I ‘I089°IOLI ‘I086860* 009 I“ 0ţI994 0890ȚgOOI ‘I08806I‘I098089890 ° 00II* 09I8% Ogiſ;Off801.ſ.089061,01.9Ogiſ;gï0* 01,10° 08I99% 01. Z00Z06%0880.15%0Þ801.31,30* 06ț0° 00ZŽ{ ºu I ºbs• UII ºbs‘UII º b޺u I ºbŞ Jºſ (g. Iłęg ſąȚ39% (gºſ3ęg ſą I* UII ºbs‘UII ºbs* UII ºb޺u I ºbs• UII ºbŞ‘UII Iąd‘UI 000“OI QV009’ E, QV || 000°0'ſ QV || 009’ E, QVJºdſ º qTJºđ · q'IJºđ º qº'I || ºpt29IUINI, JO‘QIO8ISpeº IUĻI,‘QUO8I JO 00g‘AI QV || 00g“ZI QV || 000‘01 QVULIOQQO8IIII., IJO ! ONI* UDI'ețCI peº.IUISI, JO ULIO44O8I!}[O8I IIn. I ‘q’I ‘qqãUIæIqS 3uqu'eauſs‘q’I ‘ų45UIæIQS 9IȚ8UI3.J.Seory SILTO™E "CIJLS " S "T! -IO H. LEONERI. ILS (172) B U F F A L O T A N K C O R P O R A T 1 O N 000“ g6?000“ 8ſ%000“ Z08000° 99-I000“ggI000 º ff&I900:39#9 000‘69%000‘ ſ.ſ.º000 º ffºſ000‘0ſ. I000“ ZWI00g“ ºȚI99,99†Ž% g 00g“ Þý,000‘90,000‘ ſ.9100g“ ºg I000° 6′ZI000“ 801009 º 19ș% g 000‘IZZ000*981000° IgI000° 0ýI00g“ 9ȚI00.4° 86009º 9††Ží g 000 º 66100g“ 191000° 98T000° 9′ZI000“ gOI008‘ 88006“ I††g 000“ 8.LI000° 09'I000“ ZZI000“ ZII001,“ 86 000“ gſ.00ý“ 1.8†Ž% ţ 000“ 8GI000“ 881000“ 801000‘00I00&º 89009º 9900£º 88ſý%% # 00£º 68T00ý“ D.II00Þº g600I“ 8800$*$/,001,“ 8gOg8 * 6Z†Ží † 000“ ZZI008“ ZOI00Þº £8000‘ ſ.ſ.003“ Þ900ý* Ig001,“ gz†† 00g“ gOI000‘68008“ Zſ.001,“ 99009 ºgg00g“ Þý00Zº ZZ†Ž% 8 00ý“ 06003° 9),006“ I900&º 1.g009“ ſý00I° 88000° 61†% 8 00ý“ 91.00ý“ #9OO。º Zg00Þº 8 %00:4° Off00:4° Z800Țº 9I†ŽÁ £ 009“ 89009“ ºg009“ º.ſ.00:4° Off00g“ ºg008‘9800ý“ EI†8 00Zº Zg000 º ffff;001.ºgg000“ 8800g“ Lºſ000“ ZZ000° II†· Ž% Z 00g“ IŤ000“ g800ý“ 8:400£º 9×006“ IZ00g“ º.ſ.091.° 8†% Z 008‘ 8800g“ 8Z001 º $300ý“ IZ008‘ LI00:4° №ſOZI * 1.%% #Ží z 00gº gº00g“ IZ00ý“ LI00I“ 9I00ý“ ȘI091.° 01098 ºg% ţ% 008“ ZZ00:4° 6′I009 º gI00ý“ ÞI000“ ZI009 º 6008‘ †Q% I Ogzº 6ſ00Zº9I00:4° EI003“ ZIOgI“ OIOZI * 9090‘ ſ.9% I Og 1.° 9I00I“†I00gº II009“ OIOZ8° 8090‘ ſ.08 gº £% g.% I 008.“ ÞIOg0° ZI008‘ 6090‘60ýg“).0 #0° 9OZ0° 8994 I 009“ II081.° 6Oý6° ſ.08:£* 1.OII° 9068‘ †Offý“ Z9% I 0£8º 608:4° 8081, * 90Ț8° 908Ț* g0țIº își01.0‘ ſ.!ŽÁ I 0.Lgº 1.088° 908I ºg062.“†066° 806I º £g6gº I1.84 I OTO' 9090‘gOZI * ſ;008‘ 801.1* 808gº zg9׺ I8Ț 09gº †098° 80ţI ‘ 8006“ ZOIŤ“ Z0£6° Iîș966% 08&º £091.“ Z0ý zº z01.0‘ Zgº), ‘I08£º I0690IŽ% OLI“ ZOZ8‘ I09 ſº I01.8 * IOff Iº I8Ț69.giffII% 081.“ I09ý“ I98Țº Ig60‘IZI608).998ZT996 0ý8“ ĮgŻI“ ĮgȚ6giff8†0),†9g8888Ț% 98608891.9£8496ȚggIiff1,0%†T9 y 4 îșTĮ Į,Ț0988†Igiº91,8Ț0809T9ȚI% 01.);9688881,63Aiff886Ț668Ț9y6 %ſ,%6%98181.T£țIgȚI1,908% sºuſ 3.IO ŞI9ZUIOI91%% ºſz S3UIȚãIOJIA 19ÚIȚų[0'eINI[eļ194€IAIIeprø4 eKIpºȚIO? I 48981ºzuo Iq%0I|ſſs §§§§Z puſe I · SON3;&#{&#pUI’e UIOJI-JOUȚd souſ&I%88 ºn O‘UII Iądſ‘UII øpte Iă-ųĂȚEIV SS'eIOv SS'eIO8IIOQU[3no IAAÁOTIVSp'80IUIT,‘‘uu eļCI -O ° OTUI 000 º g6000° 08000“ g9000° 09000“ Og000“ Off000° 03ļO “ONI['e'UIȚIUUIONI ºu I ºbs 19đ º qŽI ‘ų ąžuºlą S. 94 eurņIn SILTO™E "CILLS "S "TT NOE SCIVOT ELEIVS (173) Aº 80* 34 | 69* IOſº º I£I * I8° 0 | 82, º 0 || 89° 0 || 69° 0g * 0 || Ziff * 0€ 0 | 83:0 || || J. J.%|‘qouſ Jºſ žiūķī£323}} Ziff* 98* Ig | gº gI9º III º 8A, * 9g * gș* ſ;9 ° 89 " ?0° 8g· T | ' : qī ºnu ºbs I puſę pęêſþ8 I 323&\ 98* ZZ* Alſ8I8 ^ 68° 9Aº 99* ſ;9° 86° 8ș* &!,’ Iz- t | ql qmu "xa q I puſe peøq “xoq 1. Jo “¡AA % 88Ž% Z % zŽÁ Z8% I% I% I|% I|% IŽÁ I84 I|gøųou I uț qĮog go 1940ta ețCI (sąſoq aguel jo ļų3ļawa auſ 5uļņeInoleo do-I) [5 sy! Nv Hs CINw sqwETH LTOE ‘SLTIN HO SLH3OIANA £* && | 0° ſ. Į | gº ŻIAº 89* gI º ££ º £8 | 40° ſ.Igº ºſAº 89* ggº †I° 8£ º £†” IIſeuoſqĮppe „I 968968ZIŁ$$II6601;808A189ī£I86^ $1 8981984A8'ſ1,8T08¡98698836II8I848Ț9£T A081,38849160I89088988A9ſſýIIȚA,890T 988OIZ6ÏT00Ț89988688I8†gI90'ſ996ff† 8.6 (98%#6I1,8186898891,8%808ſýIA,609giff888 (ſ)Iſſº1.AlſgłZI#884968iż984g8T!68T8899Off68! ſ=08889I6II6),6;! 8$ſ,9Aſ£&T†8899888••% 9 -!6IZ09I£II94,9†98488889 IAIT6.ſ.6;9898ATII9 808IGT90II №.†††%08%69'ſIII9A,9††8989IOT% g ©A6Ț8țI00ſ99Iý886608Ig'ſ†0ſȚſ,$i;868884gȚ0I9 ſº98.Iș8I$68988IZ96TſýI8699Iſ}08IZſýI6% # 9Aſ9&T8889986I68T$$I836849889808£I9ș 99I8II88†g888I8ſ. I98&T988998g88I&I!% £ †gI60 [ºſ,6†089I1,91||!, ¡lſ08†g88†%AlſIIl.8 8 #I90'ſ31.1. №689II9I£IIAl.IgI8889I0I9% ſº £(; IIOT69gi;1,8QIggſ60I†A,6ý08IZgȚ0I9% z A8TA,699£;98† I09 I†0IȚA.Aiff8808gȚ69ŽÁ Z 848 I86$90);†%$TI†† ITOȚI1,9giff! 86I#I698 *• • •098888&T$9$ſ;988I8I8g% I - !,9988%8I89Iſ}†?)LlŁT8Q% I †g†808II6968889TII1.†% I 849886I0I•991,8£84QIII!!I I8%Ž%%%8%I84Ž%8%%9%8%99%%!}[O8I sºuſou IupQUO8IĮoI049Uueſ CIsøų[OUII UI!QI081ļoJ949ULI"BļCIunțat SJL/m. NI CINIV SCIVEIHI NOÐVX£IHSL/m.N. CINV SCIVAIH 2I?IVO OS s LnN HLIAVA CIEĽMICIN nH MEHej SLH SOIEINA-S.LTO8 (174) SQUARE AND HEXAGONAL RECULAR BOLT HEADS All Dimensions in Inches Rough and Semi-Finished Finished Bol Width Across Min. Width g Width Across Min. Width Diºr Flats Across Corners Height Flats Across Corners Height Max Min. Hex. Square Max. IMin. Hex. Square % % 0.363 0.414 0.498 1}64 %. 6 0.428 0.488 0. 588 316 94.6 }% 0.484 0. 552 0.665 1964 916 0. 552 0.629 O. 758 1364 % 9íg 0. 544 0.620 0.747 % % 0.613 0.699 0.842 %; % 6 % 0.603 0.687 0.828 1964 34 0.737 0.840 1.012 *}64 }% 34 0.725 0.827 0.995 *}64 1316 0.799 0.911 1.097 % 94.6 % 0.847 0.966 1. 163 % % 0.861 0.982 1. 182 *764 * | * | *; #; # º tº ; #; #; º 4 8 e e tº 2 8 e © § * 16 % 1946 1.269 1.447 1.742 1962 1946 1.293 1.474 1.775 *}62 1 1% 1.450 1.653 1.991 2%2 1% 1. 479 1. 686 2.031 34 1% 11}| 6 1. 631 1.859 2.239 34 11}{6 1.665 1. 898 2.286 27.62 # # # #; #; I’” #: #; #; ##| | Iºw 2 4 wº e & 4 & e tº XS 1% 2% 2.538 2.893 3.485 1962 2% 2. 593 2.956 3. 560 1916 2 3 2.900 3.306 3.982 11% 2 3 2.964 3.379 4.070 1% 2% 3% 3.263 3.720 4.480 1% 3% 3.335 3. 802 4. 579 11}| 6 2% 3% 3. 625 4.133 4.977 12% 2 .3% 3.707 4.226 5.090 1% 2% 4% 3.988 4. 546 5.476 15364 4% 4.078 4.649 5. 599 2}{6 3 4% 4.350 4.959 5.973 2 4% 4.449 5.072 6.108 2}4 Regular nuts (rough, semi-finished and finished) have a maximum width across flats of 1%D except for D = }4 to 946 when the width = 1 %D + 91 6. D is bolt diameter. Tolerance for width is — .050D. Thickness is 7/6 D. § * 1949Uueſp 9Uues aqq qo qoq qo qņāuÐI 19ņuoqs ņxou aqq Joy aſqeq aqq uſ pagſoºds qeq se aures aqq aq Iſeqs qņāuºſ pealųą urnuuſuſuu aqq ‘sqqāuº[ ºſ[oq 94 eſpaudºņuſ JOJ *(\\ſuoſ peÐIųq uſ papn ſouſ qou sy sȚIOq quļoſ Jo quĮod jo qąžuºſ qdeoxo) qĮoq eqq Jo può aqq oq paºq aqq jo 908Juns Jepun aqq Jo Jºnºureļp qsºņgadā aqq ULIO IJ pº InseQUI SĂ qȚžđuÐI QIOĶI, ºspeÐIųn 34 z pºſºoxa qou [[eqs pga.Ių') 049|duuoouſ Jo qąžuºT *QAȚsnĮou! “uſ g on 84 z sazſs uo ºuį ſą puº ſa Aſsn ſouſ “uſ z on 84 I sozis uo ºu! 34 #9AȚsnĮouſ ºu! I Oq % sºzĮs uo iuſ 8% ſºuſ % župnĮouſ puſē Oļ dn sozis uo (ſoºu IO pºgºu Jo ºu! ŽÁ uqqqqAA Oų poȚIOJ JO qno 9q II gųs spē9.Iųą ºs qąžuºſ pºgº-IųQ U Inuuſuſtu pagſoºds oqq IOJ QIOųS OOQ STIOQ IOJI ºpeo.IųQ9ņaſduu00ņseſ9ųqOļQĮOqQUIQJOpuò9ų}ULIOJŲpo Insgauu.s!qqſueſpºgºJU!!!UūnūIȚuțIN ’sºqouſ uy u9AȚ3 suoſsuòUup IV 349949349% gŽÁg%††%8Ž%Z9M Z%íz,% IŽ% I& & &! !! &08 Ž49Ž%gŽÁg%†%†%††%8Ž%Z9Mí z84 Z% I94 I% II0Z ŽÁ9Ž%gŽÁgŽ%†ŽÁ#Ž%9ŽÁgŽÁg%Z9M Z84 Z% I94 I9% II9I Ž49Ž%gŽÁgŽ%†ŽÁ#Ž%gŽÁgŽ%ZŽ%Z% z84 Z% I54 I% I8%ZI ��%†%ſ.Ž%†Ž%ſ',Ž{#%%ŽÁgŽ%z,%íz,% z%íz,% I% I9% I%0[ Ž%+84 #7†††Ž%gŽÁgŽ%ZŽÁZZZ% I94 I9% I848 |-Ž%†84 #7†%gŽÁgŽÁgŽÁg%ZŽízZŽ% I94 I34 I9% I8%9 -lŽ{#84 #7†%8ŽÁg%Z%ZŽ%ZŽÁZZ% I94 IŽÁI9% L8%Q ©ŽÁgŽÁgŽÁg%Z34 zŽÁZŽÁzZŽ% I94 IŽÁI[8%# ∞ & & &«» , «· · -34 Z%Z84 ZŽ% IŽ% IŽ% I34 IŽÁII8%8 … -> •ZZŽ% I% I94 I94 IŽÁIIŽ%%Z & & »% I% I% I% IŽÁIŽÁI[%Z % I% I% I9% II8%Ž%Ž% I ± ø •84 I% I84 II84%94 I � � �IIIŽ%Ž%ŽÁI �■ ■ ■Ž%Ž%ſęŽ%I Uſąžuºt I pga. IųJ, UunuIſuſ IN • „º|ſę į | 3íſ || ?íſ[8%Ž%8%34% || % || q \ſuº I % I% I8% Í84 Il.8‘9%‘9/‘9% || ‘OI’ ON | iſ||Oſſ }[OºſJOJ0ņ9Uut3{CI[BUȚUION S_ILTO™E. NOE SH_LEONE IT CIVERNIHIL IN TININIWN (176) B U F F A L O T A N K C O R P O R A T I O N Staybolts MAXIMUM PITCH IN INCHES FOR SCREWED STAYEOLTS WITH ENDS RIVETED OVER (For Flat Surfaces) Pres- SUITé Lbs. per Sq. In. 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 160 170 175 180 190 200 210 220 230 240 250 Thickness of Plate (Inches) % | }} | 3% | }} 8% - 7% | . . 7% | 8% 7% 7% 6% 7% 8% . . . % 7% 7% 8% ºff ºf 7% 8% 6% 6% 7% 7% 5% º? |7% 7% 5% 6% 6% 7% 5% 6% 6% | 734 5% 5% 6% 7% 5% 5% 6% 6% 5% 5% 6% 6% ;) 5% | 6 6% 4% 5% 5% | 6% 4% 5% 5% 6% 4% 5% 5% 6% 4% 5% 5% | 6 4% 5 5% 5% 4% 4% 5% 5% 4% |4% 5% 5% 4% 434 5% 5% 4% |4% | 5 || 5% 4% 4% |4% 5% 4 4% 4% 5% 3% 4% 4% 5% 3% 4% 4% 5 3% |4% |4%|4% 3% || 4 || 4% 4% 3% 3% 4% 4% 3% 3% 4% 4% 3% |3% 4% 4% 3% 3% || 4 || 4% % | }} | }% | }} | .9% | }} | 9% | # | }{6 | # 34 8% 8% 8 734 . . . . 7% 8% 7% 8% | . . . 7% | 8 8% 7% 7% 8% 6% 7% 8% 634 || 7 || 4 || 8 8% 6% 7% 7% 8% 6% 7% 7% 8% | . . . 6% 7% | 7% | 8 8% 6% 6% 7% 7% 8% 6% 6% 7% 7% 8% 6 6% 7% 7% | 8 8% 5% 6% 6% 7% 7% 8% 5% 6% 6% 7% 7% 7% 8% 5% | 6% | 6% 7% | 7% 7% 8% 5% 6% 6% 6% 7% | 734 8} 5% 5% 6% 6% 7% 7% 7% 8% 5% 5% 6% 6% |º 7% 7:4 |S}} | 8% 5% 5% | { 6% 6% 7% 7% 7% 8% | . . . 5 5% 5% 6!4 || 6% | 7 || 73% | 734 || 8% 8% 4% 5% 5% 6% 6% 6% 7% 7% 7% 8% 4% 5% 5% | 6 6% 6% 7% 7% 7% 8% 8% 4% 5% 5% 5% 6% 6% 6% 7% 7% 7% 8% The above table for pitch of staybolts on flat surfaces is based on the formula: where p P T C : p – Vº maximum pitch between centers of staybolts, inches maximum allowable working pressure, lbs. per sq. in. the number of sixteenths of an inch in the plate thickness 112 for plates not over 7%" thick 120 for plates more than %" thick Plates thinner than % inch should not be used for stay-bolted surfaces. (177) S T A Y B O L T S PRESSURES ON STAY-BOLTED FLAT PLATES Thick- Maximum Pitch in Inches In CSS Inches || 4 |4% |4}4 |4%|4%|4% 434 |4% | 5 || 5% 5% 5% 5% 5% 534 || 5% | 6 % 112 || 105 || 99 || 94 | 89 | 84 || 79 75 | 72 | 68 || 65|| 62 50 | 57 || 54 || 52 50 9% 175 | 164 | 155 | 1.46 || 138 || 131 124 || 118 112 || 106 || 102 || 97 || 93 | 89 || 85 | 81 || 78 % . . . . . . . . .223 211 || 199 || 188 || 179 || 170 | 161 | 153 | 1.46 || 139 || 133 127 | 122 || 117 | 112 % * - - • - - - - - - - - - - - 231 219 || 209 || 199 || 190 | 181 || 173 | 166 159 || 152 % * - - * * * e . . . . . . . . .232 223 213 6% |6% 6% |6% 6% 6% 6% | 7 || 7% 7% 7% 7% 7% 7% 7% | 8 % 48 || 46 || 44 || 42 || 41 || 39 || 38 37 35 | 34 || 33 || 32 || 31 || 30 | 29 28 % 75 || 72 | 69 | 66 64 61 59 || 57 | 55 53 || 51 || 50 || 48 || 47 || 45 || 43 % 107 || 103 || 99 || 95 92 || 88 85 82 79 || 77 || 74 | 72 69 || 67 || 65|| 63 % 146 || 140 || 135 | 130 | 125 | 120 | 116 || 112 || 108 || 104 || 101 || 98 || 94 || 91 || 88 || 85 % 205 || 197 | 189 | 182 || 179 168 || 162 157 | 151 | 1.46 141 || 136 || 132 | 128 || 124 || 120 % . . . . . . . . . . . 230 221 213 | 205 || 198 || 191 | 185 179 || 173 | 167 | 162 | 156 | 152 % . . . . . . . . . . . . . . . . . . . . . . . 237 228 221 213 || 207 || 200 193 | 188 ALLOWABLE LOAD ON STAYS AND STAYBOLTS OF VARIOUS DIAMETERS The allowable loads based on the net cross-sectional areas of staybolts with V threads are computed from the following formula. The diameter of a staybolt at the bottom of a V thread is as follows: where D P d 1.732 D — (P x 1.732) = d diameter of staybolt over the threads, in inches pitch of threads, in inches diameter of staybolt at bottom of threads, in inches Constant When United States threads are used, the formula becomes as follows: D — (P x 1.732 x 0.75) = d Tables 1 and 2 give the allowable loads on net cross-sectional areas for staybolts with V threads having 12 and 10 threads per inch. Table 1–Allowable loads on staybolts with V threads, 12 threads per inch Diameter, Net sectional| Maximum Maximum Maximum Maximum Outside diameter of at bottom | area at bot- || stress, 6,000 || stress, 7,500 || stress, 8,000 || stress, 9,000 staybolts, inches of thread, tom of thread, pounds per | pounds per | pounds per | pounds per inches square inches square inch square inch | Square inch square inch % 0.7500 || 0.6057 0.288 1,728 2,160 2,304 2,592 % ().8125 0.6682 0.351 2,106 2,632 2,808 3,159 % 0.8750 0.7307 0.419 2,514 3,142 3,352 3,771 % 0.9375 0.7932 0.494 2,964 3,705 3,952 4,446 1.0000 0.8557 0.575 3,450 4,312 4,600 5,175 1% 1.0625 ().9182 0.662 3,972 4,965 5,296 5,958 1% 1.1250 0.9807 0.755 4,530 5,662 6,040 6,795 1% 1.1875 1.0432 0.855 5,130 6,412 6,840 7,695 1% 1.2500 1.105.7 0.960 5,760 7,200 7,680 8,640 1% 1.3125 1.1682 1.072 6,432 8,040 8,576 9,648 1% 1.3750 1.2307 1,190 7,140 8,925 9,520 10,710 1% 1.4375 1.2932 1.313 7,878 9,849 10,504 11,817 1% 1.5000 1.3557 1.444 8,664 10,830 11,552 12,996 (178) B U F F A L O T A N K C O R P O R A T I O N PRESSURES ON STAY-BOLTED FLAT PLATES (Continued) Table 2—Allowable loads on staybolts with V threads, 10 threads per inch Diameter, Net sectional Maximum Maximum Maximum Maximum Outside diameter of at bottom area at bot– stress, 6,000 || stress, 7,500 stress, 8,000 || stress, 9,000 staybolts, inches of thread, tom of thread, pounds per | pounds per pounds per | pounds per inches square inches] square inch square inch square inch square inch 1% 1.2500 1.0768 ().911 5,466 6,832 7,288 8,199 1% 1.3125 1.1393 1,019 6,114 7,642 8, 152 9,171 1% 1.3750 1.2018 1.134 6,804 8,505 9,072 10,206 1% 1.4375 1.2643 1.255 7,530 9,412 10,040 11,295 1}^ 1.5000 1.3268 1.382 8,292 10,365 11,056 12,438 1% 1.5625 1.389.3 1.515 9,000 11,362 12,120 13,635 1% 1.6250 1.4518 1.655 9,930 12,412 13,240 14,895 Table 3—Allowable loads on round braces or stay rods Minimum diameter of circular stay, inches Net cross- sectional area of stay, square inches Allowable stress, in pounds per square inch, net cross-sectional area 6,000 7,500 8,000 9,000 10,000 Allowable load, in pounds, on net cross-sectional area 1.0000 1.0625 1.1250 1.1875 1.2500 1.3125 1.3750 1.4375 1.5000 1.5625 1.625() 1.6875 1.75()() 1.81.25 1.87.50 1.9375 2.0000 2.125() 2.2500 2.375() 2.5000) 2.625() 2.750() 2.875() 3.00()() 0.7854 0.8866 O.9940 1. 1075 1.2272 1.3530 1,4849 1.6230 1.7671 1.917.5 2,0739 2.2365 2.4053 2.5S02 2.7612 2.94.83 3, 1416 3.5466 3.9761 4.4301 4.9087 5.4119 5.9396 6.4918 7.06S6 4,712 5,320 5,964 6,645 7,362 8,118 8,909 9,738 10,602 11,505 12,443 13,419 14,431 15,481 16,567 17,689 18,849 21,279 23,856 26,580 29,452 32,471 35,637 38,950 42,411 5,890 6,649 7,455 8,306 9,204 10,147 11,136 12,172 13,253 14,381 15,554 16,773 18,039 19,351 20,709 22,112 23,562 26,599 29,820 33,225 36,815 40,589 44,547 48,688 53,014 6,283 7,092 7,952 8,860 9,817 10,824 11,879 12,984 14,136 15,340 16,591 17,892 19,242 20,641 22,089 23,586 25, 182 28,372 31,808 35,440 39,269 43,295 47,516 51,934 56,548 7,068 7,979 8,946 9,967 11,044 12,177 13,364 14,607 15,903 17,257 18,665 20,128 21,647 23,221 24,850 26,534 28,274 32,019 35,784 39,870 44,178 48,707 53,456 58,426 63,617 7,854 8,866 9,940 11,075 12,272 13,530 14,849 16,230 17,671 19,175 20,739 22,365 24,053 25,802 27,612 29,483 31,416 35,466 39,761 44,301 49,087 54,119 59,396 64,918 70,686 (179) SECTION XI (181) rººfs I- PIPE AND TUBES P I PE T U B E S A N D Pi pe DIMENSIONS AND PROPERTIES (American Standard Drilling Templates shown on page 204) DIMENSIONS COUPLINGS PROPERTIES Nom. | Outside | Inside Thick- Wt. per Ft. Lb. Threads] outside | r Dia. Dia. Dia. I ness || Plain |ſº per Dia. Length] Weight |n.4 |n.? ln. |n. ln. |n. |n. Ends & Cplg. Inch |n. |n. Lb. STANDARD % .405 | .269 |.068| .24 .25 | 27 .562 | }} | .03 .001 | .072 | .12 }% .540 | .364 |.088 .42 | .43 | 18 .685 | 1 .04 .003 .125 | .16 % .675 .493 |.091 .57 .57 | 18 .848 1% .07 .007 .167 .21 % .840 | .622 |.109 | .85 .85 | 1.4 1.024 || 1% .12 .017| .250 .26 % | 1.050 | .824|.113 | 1.13 | 1.13 || 14 1.281 | 15% .21 .037 .333 .33 1 1.315 | 1.049 |.133 | 1.68 | 1.68||11% || 1.576 || 1 % .35 .087 .494 | .42 1% | 1.660 | 1.380 |.140 || 2.27 2.28 11% || 1.950 |2% .55 .195] .669 | .54 1% | 1.900 | 1.610|.145 || 2.72 2.73 || 11% || 2.218 |2% .76 .310| .799 .62 2 2.375 2.067 |.154 || 3.65 || 3.68||11% || 2.760 |2% | 1.23 .666|| 1.075 .79 2% 2.875 2.469 .203 || 5.79 5.82 || 8 3.276 |2% | 1.76 || 1.530 1.704 .95 3 3.500 || 3.068 .216 || 7.58 || 7.62 || 8 3.948 3% 2.55 || 3.017| 2.228 1.16 3% 4.000 || 3.548 |.226 9.11 | 9.20 | 8 4.591 |3% 4.33 || 4.788 2.680 | 1.34 4. 4.500 || 4.026 .237 || 10.79 || 10.89 || 8 5.091 35% 5.41 7.233 3.174 | 1.51 5 5.563 || 5.047 | .258 || 14.62 || 14.81 || 8 6.296 |4%| 9.16 || 15.16 || 4.300 | 1.88 6 6.625 | 6.065 .280 | 18.97 || 19.19 || 8 7.358 |4% | 10.82 || 28.14 || 5.581 2.25 8 8.625 || 8.071 .277 || 24.70 || 25.00 || 8 9.420 |4% 15.84 || 63.35 | 7.265 2.95 8 8.625 || 7.981 | .322 28.55 28.81 || 8 9.420 |4% 15.84 || 72.49 8.399 || 2.94 10 |10.750 1 0.192 | .279 || 31.20 32.00 || 8 11.721 |6% 33.92 ||125.4 9.178 || 3.70 10 1 0.750 10.136 | .307 || 34.24 || 35.00 || 8 11.721 |6% 33.92 ||137.4 | 10.07 || 3.69 10 10.750 |10,020 | .365 | 40.48 |41.13 || 8 11.721 |6% 33.92 ||160.7 11.91 || 3.67 12 12.750 |12.090 | .330 || 43.77 45.00 || 8 13.958 |6% 48.27 ||248.5 | 12.88 || 4.39 12 12.750 12.000 | .375 || 49.56 50.71 || 8 13.958 |6% 48.27 ||279.3 14.38 || 4.38 - EXTRA STRONG }% .405 .215 .095 .31 .32 27 .582 || 1 % .05 .001 | .093 .12 % .540 .302 |.119 .54 .54 18 .724 | 1.3% .07 .004 .157 | .16 % .675 .423 .126 .74 .75 | 18 .898 || 1% .13 .009| .217 | .20 }% .840 .546 .147 | 1.09 | 1.10 || 14 1.085 1% .22 .020, .320 | .25 34 | 1.050 | .742 |.154 | 1.47 | 1.49 14 1.316 || 2% .33 .045] .433 | .32 1 1.315 .957 .179 2.17 | 2.20 | 11% || 1.575 2% .47 ..106) .639 .41 1% | 1.660 | 1.278 |.191 3.00 3.05 || 11% || 2.054 |2% | 1.04 .242 .881 .52 1% | 1.900 | 1.500 |.200 || 3.63 || 3.69 || 11% || 2.294 |2% | 1.17 .391 | 1.068 .61 2 2.375 | 1.939 .218 5.02 || 5.13 | 11 J/3 || 2.870 |3% 2.17 .868| 1.477 | .77 2% 2.875 || 2.323 .276 || 7.66 || 7.83 || 8 3.389 |4% 3.43 1.924, 2.254 . .92 3 3.500 2.900 .300 | 10.25 | 10.46 || 8 4.014 |4% 4.13 || 3.894 3.016 | 1.14 3% 4.000 || 3.364 .318||12.51 | 12.82 || 8 4.628 |4% 6.29 || 6.280 3.678 | 1.31 4. 4.500 || 3.826 | .337 || 14.98 || 15.39 || 8 5.233 |45% 8.16 || 9.610| 4.407 | 1.48 5 5.563 || 4.813 .375 20.78 || 21.42 || 8 6.420 5% 12.87 || 20.67 6.112 | 1.84 6 6.625 5.761 .432 28.57 || 29.33 || 8 7.482 |5% 15.18 || 40.49 || 8.405 || 2.20 8 8.625 || 7.625 | .500 43.39 || 44.72 || 8 9.596 |6% 26.63 ||105.7 | 12.76 2.88 10 |10.750 | 9.750 | .500 54.74 56.94 || 8 11.958 65% 44.16||211.9 | 16.10 || 3.63 12 12.750 1 1.750 | .500 65.42 | 68.02 || 8 13.958 || 65% 51.99 ||361.5 | 19.24 || 4.34 DO U BLE-EXTRA STRONG }% .840 .252 | .294 | 1.71 | 1.73 || 14 1.085 1% .22 .024| .504 .22 % | 1.050 | .434 .308 || 2.44 || 2.46 | 1.4 1.316 2% .33 .058 .718 .28 1 | 1.315 .599 .358 || 3.66 || 3.68||11% || 1.575 |2% .47 .140|| 1.076 .36 1% | 1.660 | .896 |.382 5.21 5.27 | 11% || 2.054 |2% | 1.04 .341|| 1.534 .47 1% | 1.900 | 1.100 | .400 | 6.41 6.47 | 11% || 2.294 |2% | 1.17 .568| 1.885 .55 2 2.375 | 1.503 |.436 9.03 |. 9.14 || 11% || 2.870 |3% 2.17 || 1.311| 2.656 .70 2% 2.875 | 1.771 .552 13.70 || 13.87 | 8 3.389 |4}% 3.43 2.871 || 4.028 .84 3 3.500 2.300 .600 | 18.58 18.79 || 8 4.014 |4%| 4.13 || 5.992 5.466 | 1.05 3% 4.000 | 2.728 |.636 22.85 23.16|| 8 4.628 |45% 6.29 9.848, 6.721 | 1.21 4 4.500 || 3.152 .674 || 27.54 || 27.95 || 8 5.233 |4% 8.16 || 15.28 8.101 | 1.37 5 5.563 || 4,063 .750 38.55 39.20 || 8 6.420 |5% | 12.87 || 33.64 11.34 || 1.72 6 6.625 || 4.897 .864 53.16 || 53.92 || 8 7.482 |5% 15.18 || 66.33 15.64 2.06 8 8.625 | 6.875 . .875 | 72.42 | 73.76 || 8 9.596 |6% 26.63 |162.0 21.30 | 2.76 LARGE. O. D. P. PE Pipe 14" and larger is sold by actual O. S. diameter and thickness. e e Sizes 14", 15", and 16" are available regularly in thicknesses varying by %" from 34" to 1", inclusive. (182) B U F F A L O T A N K C O R P O R AT I O N SAFE LOADS ON STEEL PIPE COLUMNS Allowable Concentric Loads in Kips STANDARD PIPE Unit Stress—American Institute of Steel Construction Nominal Size, In, | 12 12 10 || 10 10 8 8 6 5 4 |3% | 3 || 2% 2 External Dia, In, || 12.750 | 12.750 | 10.750 | 10,750 10,750 | 8,625 8.625 | 6,625 5.563 || 4.500 || 4,000 || 3,500 2.875 2.375 Thickness, In, | .375 | .330 .365 .307 | .279 | .322 .277 .280 .258 .237 | .226 .216 .203 .154 5 || 218.7|193.2|178.6|151.1 || 137.7|126.0|109.0 | 83.7 || 64.5 47.6 | 40.2|33.4 || 25.0 || 14.7 6 || 218.7|193.2|178.6|151.1 | 137.7|126.0|109.0 | 83.7 64.5 47.6 |40.2|| 33.1 |23.2|13.3 7 || 218.7|193.2|178.6|151.1 | 137.7|126.0|109.0 83.7 | 64.5 47.6 || 39.6 || 31.1 |21.3 || 11.9 8 ||218.7|193.2|178.6|151.1 | 137.7 126.0|109.0|83.7 | 64.5 || 46.6 |37.5 29.1 | 19.5 T0.6 9 || 218.7|193.2| 178.6 151.1 || 137.7|126.0|109.0| 83.7 | 64.5 |44.4 |35.4 || 27.2 17.8 || 9.5 10 || 218.7|193.2|178.6 151.1 | 137.7|126.0|109.0 | 83.7 || 63.1 42.2 33.3 || 25.2 | 16.2 | 8.5 11 || 218.7|193.2|178.6 151.1 | 137.7|126.0|109.0 83.7 || 60.7 40.1 31.3 23.4 || 14.7| 7.6 12 |218.7|193.2|178.6|151.1||137.7|126.0|109.0|81.8 |58.3 ||37.9|29.3|21.7|13.4| 6.8 13 || 218.7|193.2|178.6|151.1 | 137.7|126.0|109.0|79.2 55.9 |35.8 27.5 |20.1 | 12.2 | 6.1 sº 14 || 218.7|193.2 || 178.6 151.1 | 137.7 126.0 109.0 76.6 53.6 33.8 || 25.7 | 18.6 11.1 § 15 ||218.7|193.2|178.6|151.1 | 137.7|125.1 |108.4 74.0 51.2 31.9 |24.0 17.2|10.2 # 16 || 218.7 | 193.2 | 178.6 | 151.1 | 137.7|122.2|106.0 | 71.4 || 49.0 |30.0 22.5 | 16.0 g 17 |218.7|193.2|178.6|151.1 || 137.7|119.3| 103.4 | 68.8 46.8 |28.3 |21.0 || 14.8 º 18 || 218.7 193.2 178.6 151.1 | 137.7 116.3 100.9 | 66.3 44.6 26.7 | 19.7 13.8 GD 19 || 218.7|193.2|176.6 149.5||136.5 113.3| 98.3 | 63.8 || 42.6 || 25.2 | 18.5 | 12.1 # 20 || 218.7|193.2|173.3|146.8 134.0|110.3| 95.8|61.4|40.6 || 23.7|17.3 Gº i 21 ||218.7|193.2|169.9|144,0||131.4|107.3| 93.2| 59.1 |38.7 22.4 | 16.2 22 || 218.3 193.1 | 166.6 | 1.41.2|128.9 || 104.4 90.6 56.8 || 36.9 |21.2 15.2 23 || 215.0 | 190.2|163.2|138.4|126.3| 101.4| 88.1 54.6|35.2|20.0 24 || 211.6 | 187.1 | 159.8|135.5 123.7| 98.6 85.6 || 52.5 || 33.5 | 18.9 25 ||208.2 184.1 | 156.4|132.7|121.1 95.8 83.2|50.4 || 32.0 17.9 26 || 204.7 | 181.1 | 153.1 129.8 118.5 93.8 80.8 || 48.4 || 30.6 27 ||201.2|178.1 || 149.7|127.0|115.9 90.2| 78.4 || 46.6 29.2 28 || 197.8|174.9|146.3|124.1 |113.3 87.6 || 76.1 |44.7|27.8 29 || 194.3 |171.9|143.1 | 121.4 110.8 | 84.9 | 73.9 || 43.0 |26.6 30 || 190.8|168.9||139.8||118.6|108.4| 82.5| 71.7|41.5|25.4 Area, in 2 || 14.58||1299||11.91 10.07 9.18 840 | 727 558 || 4:30 3.17 | 2.68 2.23 | 1.70 | 1.08 I, in." 279.3 248.5 160.7 | 137.4 125.9 | 72.5 63.4 28.1 15.2 7.23 || 4.79 || 3.02 | 1.53 0.666 r, in. 4.377 || 4.393 || 3.674 || 3,694 || 3.703 || 2.938 || 2.953 2.245 | 1.878 || 1.510 | 1.337 | 1.164 0.947 |0.787, weign, bº. T assº Tasm | 40.48 || 34.24 ſai.20 |28.55 21.70 | 1897|14.62/10.79ſ 9,11758 B.79 || 3.85 Safe loads in accordance with A. I. S. C. Column Formula, maximum 15,000 pounds for ratios of l/r=60 and under. Safe load values above upper zig-zag line are for ratios of l/r not over 60, those between zig-zag lines are for ratios up to 120 and those below lower zig-zag line are for ratios not over 200. (183) P I PE A N D T U B E S SAFE LOADS ON STEEL PIPE COLUMNS Allowable Concentric Loads in Kips EXTRA STRONG PIPE Unit Stress—American Institute of Steel Construction. Nominal Size, In, 12 10 8 6 5 4 3% 3 2% 2 External Dia, In, 12,750 10,750 8,625 6,625 5.563 4.500 4,000 3,500 2.875 2.375 Thickness, In. .500 .500 .500 .432 .375 .337 .318 .300 .276 .218 5 || 288.6 241.5 191.4 126.1 91.7 | 66.1 55.2 45.2 || 32.8 || 19.9 6 || 288.6 241.5 | 191.4 | 126.1 91.7 | 66.1 55.2 || 44.4 || 30.3 || 17.9 7 || 288.6 241.5 191.4 | 126.1 91.7 | 66.1 || 53.9 || 41.7 27.8 | 16.0 8 || 288.6 241.5 191.4 126.1 | 91.7 || 64.3 || 51.0 38.9 25.2 || 14.3 9 || 288.6 241.5 191.4 || 126.1 91.7 || 61.2 || 48.0 || 36.2 23.0 | 12.7 10 || 288.6 || 241.5 | 191.4 | 126.1 || 88.9 || 58.1 || 45.1 || 33.6 || 20.9 || 11.3 11 || 288.6 241.5 | 191.4 | 126.1 | 85.5 55.0 || 42.3 || 31.1 || 19.0 | 10.1 12 || 288.6 241.5 | 191.4 || 122.2 | 82.0 || 52.0 | 39.7 || 28.8 17.3 || 9.0 13 || 288.6 241.5 191.4 || 118.2 78.6 || 49.0 || 37.0 26.6 15.7 # 14 || 288.6 241.5 | 191.4 || 114.2 75.2 46.2 || 34.6 24.5 14.3 li- 15 || 288.6 241.5 | 188.7 || 110.2 || 71.8 || 43.5 32.3 22.7 || 13.0 * +: 16 || 288.6 241.5 | 184.2 | 106.2 | 68.5 | 40.9 || 30.1 21.0 # 17 | 288.6 241.5 179.6 102.3 65.3 38.5 28.1 | 19.5 —l 18 || 288.6 241.5 || 174.9 98.4 || 62.2 || 36.3 | 26.3 | 18.1 $ 19 || 228.6 || 237.6 || 170.3 94.6 || 59.3 || 34.2 24.6 § 20 || 288.6 || 233.1 | 165.7 | 91.0 || 56.5 | 32.2 23.0 lul 21 || 288.6 || 228.5 | 161.0 | 87.4 || 53.8 30.3 21.5 22 || 287.1 223.9 156.5 83.9 || 51.2 28.6 23 || 282.6 || 219.3 152.0 || 80.6 || 48.8 27.1 24 || 278.2 214.6 | 1.47.6 || 77.4 46.5 25.7 25 || 273.6 210.0 143.3 || 74.3 || 44.4 26 || 268.9 205.4 || 139.0 || 71.3 || 42.3 27 || 264.3 | 200.8 || 134.8 | 68.5 | 40.4 28 || 259.7 | 196.3 || 130.6 || 85.8 || 38.6 29 || 255.0 191.8 || 126.7 63.2 36.8 30 || 250.3 | 187.2 | 122.9 || 60.7 || 35.1 Area, in.” 19.24 16.10 12.76 8.41 6.11 4.41 3.68 3.02 2.25 1,48 I, in." 361.5 212.0 105.7 40.5 20.7 9.61 6.28 3.89 1.92 0.870 r, in. 4.335 3.628 2.878 2,195 1.839 1.477 1.307 1.136 0.924 0,767 Weight, lb./ft. 65.42 54.74 43.39 28.57 20.78 14.98 12,51 10.25 7.66 5.02 Safo loads in accordance with A. I. S. C. Column Formula, maximum 15,000 pounds for ratios of l/r=60 and under. Safe load values above upper zig-zag line are for ratios of l/r not over 60, those between zig-zag iines aro for ratios up to 120 and those below lower zig-zag line are for ratios not over 200. (184) ººzºo ºuffalo TANIKS WARS B U F F A L O T A N K C D R P O R AT I O N TABLE CIVING AMOUNT OF SQUARE FEET OF HEATING SURFACE IN STANDARD PIPE Size of Pipe Length of Pipe in Ft. 34 1 1% 1% 2 2}% 3 4 5 6 1 .275 .346 .434 .494 | .622 | .753 | .916 | 1.175 | 1.455 | 1.739 2 .5 .7 .9| 1. 1.2| 1.5| 1.8| 2.4| 2.9| 3.5 3 .8| 1. 1.3| 1.5| 1.9| 2.3 2.7| 3.5| 4.4 5.2 4 1.1| 1.4| 1.7| 2. 2.5| 3. 3.6|| 4.7| 5.8, 7. 5 1.4| 1.7| 2.2| 2.4 3.1| 3.8 4.6 5.8 7.3| 7.7 6 1.6| 2.1| 2.6| 2.9| 3.7| 4.5 5.5| 7. 8.7| 10.5 7 1.9| 2.4| 3. 3.4 4.4| 5.3| 6.4| 8.2| 10.2| 12.1 8 2.2| 2.8 3.5| 3.9| 5. 6. 7.3 9.4| 11.6|| 13.9 9 2.5| 3.1| 3.9| 4.4 5.6 6.8| 8.2| 10.6|| 13.1| 15.7 10 2.7| 3.5| 4.3| 4.9| 6.2| 7.5 9.1| 11.8; 14.6|| 17.4 11 3. 3.8| 4.8| 5.4| 6.8| 8.3| 10. 12.9| 16. 19.1 12 3.3| 4.1| 5.2| 5.9| 7.5 9. 11. 14.1. 17.4| 20.9 13 3.6|| 4.5| 5.6| 6.4| 8.1| 9.8| 11.9| 15.3| 18.9| 22.6 14 3.8| 4.8 6.1| 6.9| 8.7| 10.5 12.8| 16.5| 20.3| 24.3 15 4.1| 5.2| 6.5| 7.4| 9.3| 11.3| 13.7| 17.6; 21.8| 26.1 16 4.4| 5.5| 6.9| 7.9| 10. 12. 14.6| 18.8 23.2| 27.8 17 4.7| 5.9| 7.4| 8.4| 10.6 12.8| 15.5| 20. 24.7| 29.5 18 5. 6.2| 7.8, 8.9| 11.2| 13.5| 16.5| 21.2| 26.2| 31.3 19 5.2| 6.6| 8.3| 9.4| 11.8; 14.3| 17.4| 22.3| 27.6|| 33.1 20 5.5| 6.9| 8.7| 9.9| 12.5 15. 18.3| 23.5| 29.1| 34.8 25 6.9| 8.6|| 10.9| 12.3| 15.6| 18.8 22.9| 29.3| 36.3| 43.5 30 8.3| 10.4 13. 14.8| 18.7| 22.5| 27.5| 35.3| 43.6|| 52.1 35 9.6|| 12.1| 15.2| 17.3| 21.8| 26,3| 32. 41.1| 50.9| 60.8 40 11. 13.8| 17.4| 19.8. 24.9| 30.1| 36.6| 47. 58.2| 69.5 45 12.4| 15.6| 19.5 22.2| 28. 33.8| 41.2| 52.9| 65.5| 78.2 50 13.8 17.3| 21.7| 24.7| 31.1| 37.6|| 45.8 58.7| 72.7| 87. 55 15.2| 19.0|| 23.9| 27.1| 34.3| 41.3| 50.4| 64.6| 80.1| 95.6 60 16.6| 20.8. 26.0| 29.6|| 37.3| 45.2| 55. 70.5| 87.3| 104.3 65 18.0 22.6| 28.2| 32.1| 40.5| 48.8| 59.5| 76.4| 94.5| 112.9 70 19.4| 24.2| 30.4| 34.6| 43.5 52.7| 64.1. 82.3| 101.9| 121.7 75 20.7| 26.0|| 32.6|| 37.1| 46.6|| 56.5 68.7| 88.1| 109.1| 130.4 80 22. 27.7| 34.7| 39.6|| 49.8| 60.2| 73.3| 94.0|| 116.4| 139.1 85 23.4| 29.4| 36.9| 42.0 53.4| 63,9| 77.8| 99.9| 123.7| 147.9 90 24.8| 31.1| 39.1| 44.5| 56. 67.8| 82.4| 105.8| 130.9| 156.5 95 26.2| 32.9| 41.2| 46.9| 59.6| 71.5| 87.2| 111.6|| 138.2| 165.2 100 27.5| 34.6|| 43.4| 49.4| 62.2| 75.3| 91.6|| 117. 5| 145. 5| 173.9 (185) g TABLE OF EQUATION OF PIPES The table below gives the number of pipes of one size required to equal in delivery other larger pipes of same length and under same conditions. The upper portion above the diagonal line of stars pertains to “standard” steam and gas pipes, while the lower portion is for pipes of the ACTUAL internal diameters given. The figures given in the table opposite the intersection of any two sizes is the number of the smaller-sized pipes required to equal one of the larger. Thus, it requires 29 standard 2-inch pipes to equal one standard 7-inch pipe. STANDARD STEAM AND GAS PIPES Dia. % 34 1 1% 2 2% 3 4 5 6 7 8 9 10 | 11 | 12 || 13 || 14 | 15 | 16 || 17 | Dia. J% | * * * | 2.27 4.88 15.8 |31.7 |52.9 |96.9 205 || 377 | 620 | 918 |1292 |1767 2488 |3014 |3786 |4904 |5927 7321 S535 |9717 % 34 2.60 | * * * | 2.05 | 6.97 ||14.0 |23.3 |42.5 90.4 | 166 273 | 405 || 569 779 ||1096 |1328 1668 |2161 |2615 |3226 |3761 |4282 34 1 7.55 2.90 | * * * | 3.45 6.82|11.4 |20.9 |44.1 |81.1 133 198 || 278 || 380 536 || 649 S15 |1070 |1263 |1576 |1837 |2092 || 1 1% 24.2 9.30 || 3.20 | * * * | 1.26 3.34 6.13||13.0 |23.8 |39.2 |58.1 (81.7 | 112 || 157 | 190 239 || 310 || 375 463 539 || 614 || 1% 2 54.8 || 21.0 7.25 2.26 |* * *| 1.67| 3.06| 6.47|11.9 |19.6 |29.0 |40.8 |55.8 |78.5 (95.1 | 119 | 155 187 231 269 || 307 || 2 2% 102 || 39.4 || 13.6 4.23 | 1.87|* * *| 1.83| 3.87| 7.12||11.7 |17.4 24.4 |33.4 |47.0 |56.9 |71.5 |92.6 112 || 138 | 161 | 184 2% 3 170 || 65.4 22.6 7.03 || 3.11| 1.66|* * *| 2.12| 3.89| 6.39| 9.48|13.3 |20.9 |23.7 |31.2 |39.1 |50.6 |61.1 |75.5 |88.0 | 100 || 3 4 376 144 49.8 || 15.5 | 6.87| 3.67| 2.21 |* * *| 1.84| 3.02| 4.48| 6.30 S.61|12.1 |14.7 | 18.5 |23.9 |28.9 |35.7 |41.6 |47.4 || 4 5 686 263 || 90.9 || 28.3 |12.5 6.70; 4.03|| 1.83|* * *| 1.65| 2.44|| 3.43| 4.69| 6.60 S.00|10.0 |13.0 |15.7 |19.4 (22.6 |25.S 5 6 1116 429 148 || 46.0 |20.4 |10.9 | 6.56| 2.97.| 1.63|* * *| 1.48| 2.09| 2.85| 4.02| 4.86| 6.11| 7.91| 9.5611.8 |13.8 |15.6 || 6 7 1707 656 226 || 70.5 |31.2 |16.6 |10.0 || 4.54| 2.49| 1.51 |* * *| 1.41 1.93| 2.71 || 3.28, 4.12| 5.34|| 6.45| 7.97.| 9.31|10.6 7 8 2435 936 322 || 101 |44.5 |23.8 ||14.3 6.48| 3.54|| 2.18| 1.43|* * *| 1.35| 1.93| 2.33| 2.92|| 3.79| 4.57| 5.67| 6,60 7.52| S Q 3335 | 1281 440 | 137 (60.8 |32.5 |19.5 | 8.85| 4.85| 2.98| 1.95| 1.37|* * *| 1.41| 1.71| 2.14| 2.77|| 3.35| 4.14| 4.83| 5.50. 9 10 4393 || 1688 582 | 181 |80.4 |42.9 25.8 11.7 6.40. 3.93| 2.57| 1.80| 1.32 * * *| 1.21 | 1.52| 1.97.| 2.38| 2.94| 3.43| 3.91 || 10 11 5642 216S 747 || 233 || 103 |55.1 |33.1 |15.0 | 8.22| 5.05 3.31| 2.32 1.70 | 1.28|* * * 1.26|| 1.63| 1.88| 2.43| 2.83 3.22| 11 12 7087 2723 938 293 | 129 69.2 |41.6 18.8 |10.3 6.34 4.15| 2.91| 2.13| 1.61 | 1.26|* * *| 1.30| 1.57| 1.93| 2.26 2.58|| 12 13 S657 || 3326 || 1146 || 358 || 158 |S4.5 |50.7 |23.0 |12.6 || 7.75 5.07| 3.56. 2.60| 1.98| 1.53| 1.22|* * *| 1.21 | 1.49| 1.74| 1.98| 13 14 10600 | 4070 1403 || 438 193 || 103 |62.2 |28.2 |15.4 9.48, 6.21| 4.35| 3.18| 2.41 | 1.88| 1.50| 1.22|* * *| 1.24| 1.44|| 1.64|| 14 15 12824 4927 | 1698 || 530 || 234 125 |75.3 ||34.1 | 18.7 |11.5 || 7.52| 5.27| 3.85| 2.92. 2.27| 1.81 | 1.48| 1.21|* * * 1.17| 1.35| 15 16 14978 || 5758 1984 619 || 274 || 146 |88.0 |39.9 |21.8 |13.4 8.78, 6.15 4.51| 3.41| 2.66|| 2.12| 1.73| 1.42 1.18|* * *| 1.14 16 17 17537 || 6738 || 2322 || 724 || 320 171 | 103 |46.6 |25.6 |15.7 |10.3 || 7.20 5.27| 3.99| 3.11| 2.47 2,03|| 1.66|| 1.37| 1.17|* * *| 17 1S 20327 | 7810 2691 | 840 || 317 | 198 || 119 |54.1 |29.6 |18.2 |11.9 || 8.35| 6.11 4.63| 3.60| 2.87| 2.35| 1.92|| 1.59| 1.36|| 1.16|| 18 20 26676 || 10249 || 3532 | 1102 || 487 260 | 157 |70.9 |38.9 |23.9 |15.6 |10.9 8.02| 6.07| 4.73| 3.76|| 3.08| 2.52| 2.0S 1.78 1.52| 20 24 42624 | 16376 || 5644 1761 | 778 || 416 || 250 | 113 |62.1 |38.2 25.0 |17.5 |12.8 9.70 7.55| 6.01| 4.92 4.02| 3.32| 2.84| 2.43| 24 30 75453 28990 9990 || 3117 |1378 || 736 443 | 201 || 110 |67.6 |44.2 |31.0 22.7 |17.2 |13.4 |10.7 8.72| 7.14 5.88 5.03| 4.30|| 30 36 120100 46143 15902 || 4961 |2193 |1172 || 705 || 319 175 108 |70.4 |49.3 |36.1 |27.3 |21.3 |16.9 |13.9 |11.3 9.37| 8.01 6.85| 36 42 177724 | 68282 || 23531 | 7341 |3245 |17|34 || 1044 || 473 || 259 || 159 || 104 |73.0 |53.4 |40.5 |31.5 |25.1 |20.5 |16.8 |13.9 |11.9 |10.1 || 42 48 249351 95818 || 33020 10301 |4554 |2434 ||1465 | 663 || 363 223 146 || 102 |75.0 |56.8 |44.2 |35.2 |28.8 |23.5 |19.4 |16.6 ||14.2 || 48 Dia. % % 1 1% 2 2% | 3 4 5 6 7 8 9 10 | 11 | 12 || 13 || 14 || 15 | 16 || 17 : | B U F F A L O T A N K C O R P O R A T I O N WORKINC AND BURSTINC PRESSURES OF WROUGHT STEEL PIPE BASED ON BARLOW'S FORMULA D — Outside diameter in inches P — Pressure in pounds per square inch t – Thickness of wall in inches f — Fiber stress in pounds per square inch - Bursting Working Pressure Size External Pressure of Pipe Di h eter Thickness in Pounds | Factor of Factor of Factor of (Inches) 18.II) (21.6 per Safety Safety Safety Sq. In. 6 8 10 Standard Pipe ~ }% .405 .068 134.32 2239 1679 1343 E % .540 .088 13037 217.3 1630 1304 2: % .675 .().91 10785 1798 1348 1079 E. % .840 . 109 10381 1730 1298 1038 3. % 1.050 .113 86.10 1435 1076 861 1 1.315 .133 8091 1349 1011 809 1% 1.66() . 140 8434 1406 1054 843 == 1% 1.900 .145 7632 1272 954 763 2: 2 2.375 .154 6484 1081 811 648 * 2% 2.875 .203 7061 1177 883 706 3. 3 3.500 .216 6171 1029 771 617 }-i 3% 4.000 .226 5650 942 706 565 4 4.500 .237 5267 878 658 527 Extra Strong Pipe ~ % .405 .095 18765 31.28 2346 1877 º % .540 . 119 17630 2938 2204 1763 P: % .675 .126 14933 2489 1867 1493 * % .840 .147 14000 2333 1750 1400 3. 34 1.050 . 154 11733 1956 1467 1173 F- 1 1.315 179 10890 1815 1361 1089 Tº: 1% 1,660 .191 11506 1918 1438 1151 QD 1% 1,900 .200 105.26 1754 1316 1053 * | 3 2.375 .218 91.79 1530 1147 918 3 2% 2.875 .276 9600 1600 1200 960 — ;3 3.500 .300 85.71 1429 1()71 857 Double Extra Strong Pipe | - }% .840 .294 28000 4667 3500 2800 £75 % 1.050 .308 23467 3911 2933 2347 ă: 1. 1.315 .358 21779 3630 2722 21.78 1}4 1.660 .382 18410 3068 2301 1841 _ 1% 1,900 ,400 21053 3509 2632 2105 #5 2 2.375 .436 18358 3060 2295 1836 : : 2% 2.875 .552 19200 3200 2400 1920 3 3.500 .600 17143 2857 2143 1714 Large O. D. Pipe—3% Inch Thick 14 - - - - 4 * * * 2680 447 335 268 15 - * * * - - - - 2500 417 313 250 16 • * * * • * * * 234() 390 293 234 18 - * * * * e a e 2080 347 260 208 20 • * * * * * * * 1870 312 234 187 22 - * * * s = a - 1700 283 213 170 24 - - 4 º' - - - - 1560 260 195 156 (187) P 1 P E A N D T U B E S WATER IN PIPES Quantity of water contained in 1 linear foot of standard wrought pipe. Number of linear feet to contain 1 cubic foot weight of pipe and diameters. 1 gallon 1 cubic foot = 7.4805 gallons 1 cubic foot = 62.4 231 cubic inches pounds water 1 gallon = 0.13368 cubic foot 1 gallon = 8.3356 pounds Diameter Weight of Length of U. S. gallons Water Size pipe per pipe contained in contained in linear containing | 1 linear foot | 1 linear foot |External Internal foot 1 cubic foot of pipe of pipe Inches Inches Inches Pounds | Linear Feet Gallons Pounds % 0.405 ().269 0.24 2533.8 0.0030 0.0246 % 0.540 0.364 0.42 1383.8 0.0054 0.0451 % 0.675 0.493 0.56 754.36 0.0099 0.0827 % 0.840 0.622 0.84 473.91 0.0158 0.1316 % 1.050 0.824 1.12 270.03 0.02777 0.2309 1. 1.315 1.049 1.67 166.62 0.0449 0.3742 1% 1.660 1.380 2.24 96.275 0.0777 0.6477 1% 1.900 1,610 2.68 70,733 0.1058 0.8816 2 2.375 2,067 3.61 42.913 0.1743 1.4530 2% 2.875 2.469 5.74 30.077 0.2487 2,0732 3 3.500 3.068 7.54 19.479 0.3840 3.2012 3% 4.000 3.548 9.00 14.565 0.5136 4.2812 4 4.500 4.026 10.66 11.312 0.6613 5.5.125 4% 5,000 4,506 12.49 9.0301 0.8284 6,9053 5 5.563 5,047 14.50 7.1979 1.0393 8,6629 6 6.625 6.065 18.76 4.9844 1.5008 12.5101 7 7.625 7.023 23.27 3.7173 2.01.24 16.7743 8 8.625 8,070 25.00 2.87.84 2.5988 21.6627 9 9.625 8.941 33.70 2.2935 3.2616 27.1876 10 10.750 10.140 35.00 1.8262 4,0963 34.1456 11 11.750 11,000 45.00 1.5153 4,9368 41.1513 12 12.750 12.090 49.00 1.2732 5.8752 48.97.35 13 14,000 13.250 56.10 1.0443 7.1629 59.7077 14 15.000 14.250 60.70 ().90291 8,2849 69.0603 15 16,000 15.250 64.90 ().78838 9.4885 79.0931 18,000 17.250 70.65 0.61616 12.1405 101.1992 20,000 19.250 78.67 0.49478 15.1189 126,0270 22,000 21.250 86.68 0.40603 18.4237 153.5736 24.000 23.250 94.70 0.339.18 22.0549 183.8419 (188) B U F F A L O T A N K C O R P O R A T I O N COMPARATIVE WEIGHTS OF NON-FERROUS PIPE Standard Pipe Sizes In Pounds per Linear Foot Nominall Outside Wall S Monel Size Diameter | Thickness 2 85 OI)6. Inches Inches Inches Alumi- º Red Copper * and Illl Iſl TaSS Brass Nickel % .405 .0620 .084 .246 .253 .259 .247 .274 % .540 ,0825 .147 .437 .450 .460 .438 .477 % .675 ,0905 .196 .612 ,630 .643 .614 .638 % .840 .1075 .294 .911 .938 .957 .914 .957 % 1.050 .1140 .390 1.24 1.27 1.30 1.24 1.272 1 1.315 .1265 .580 1.74 1.79 1.83 1.75 1.889 1% 1,660 .1460 .785 2.56 2.63 2.69 2.57 2.558 1% 1.900 .1500 .939 3.04 3.13 3.20 3.05 3.059 2 2.375 . 1565 1.262 4.02 4.14 4.23 4.03 4.112 2% 2,875 .1875 2,002 5.83 6.00 6.14 5,85 6,522 3 3,500 .2190 2.617 8.31 8.56 8.75 8.34 8.529 3% 4.000 .2500 3.147 10.85 11.17 11.41 10.89 10.248 4 4.500 .2500 3.729 12.29 12.66 12.94 12.34 12.139 4% 5.000 .2500 4.333 13.74 14.15 14.46 13.79 14.105 5 5.563 .2500 5.051 15.40 15.85 16.21 15.45 * * * * * 6 6.625 .2500 6.556 18.44 18.99 19.41 18.51 7 7.625 .2815 8.136 23.92 24.63 25.17 24.00 8 8.625 .3125 9.867 30.05 30.95 31.63 30.16 | . . . . . 9 9.625 .3440 12,000 36.94 38.03 38.83 37.07 | . . . . . 10 10.750 .3655 14.500 43.91 45.20 46.22 44.07 | . . . . . 11 11.750 .3750 - - - - - 49.37 50.81 51.94 49.53 | . . . . . 12 12.750 .3750 53.71 55.29 56.51 53.88 Extra Heavy Pipe Sizes In Pounds per Linear Foot Nominall Outside Wall Size Diameter | Thickness 2 S 85 Monel Inches Inches Inches Alumi- º Red Copper º and Ill IIIl SS Brass Nickel % .405 ..100 .109 .353 .363 .371 .354 .383 % .540 .123 .185 .593 .611 .624 .596 .602 % .675 .127 .255 .805 .829 .847 .808 .830 % .840 .149 .376 1.19 1.23 1.25 1.20 1.223 % 1.050 .157 .509 1.62 1.67 1.71 1.63 1.657 1 1.315 .182 .750 2.39 2.46 2.51 2.39 2.442 1% 1.660 .194 1,035 3.30 3.39 3.46 3.30 3.371 1% 1.900 .203 1.254 3.99 4.10 4.19 4.00 4.085 2 2.375 .221 1.735 5.51 5.67 5,79 5.53 5.650 2% 2.875 .280 2.647 8.41 8.66 8.84 8.44 8.619 3 3.500 .304 3.543 11.24 11.57 11.82 11.28 * - - - 3% 4.000 .321 4.321 13.67 14.07 14.37 13.71 4 4.500 .341 5.178 16.41 16.89 17.25 16.47 4% 5.000 .375 6,086 20.07 20.66 21.10 20.14 5 5.563 .375 7.180 22.52 23.18 23.67 22.59 6 6.625 .437 9.874 31.32 32.21 32.93 31.40 7 7.625 .500 13.147 41.23 42.43 43.34 41.37 8 8.625 .500 14.993 42.02 48.39 49.42 47.17 9 9.625 .500 17.010 52.81 54.34 55.56 52.98 10 10.750 .500 19.103 59.32 61.05 62.40 59.51 (189) P 1 P E A N D T U B E S COMPARATIVE WEIGHTS OF NON-FERROUS PIPE (Continued) Double Extra Heavy Pounds per Foot Nº. Outside Wall ize Diameter Inches 67 Brass 85 Red - Inches Inches Admiralty Brass Copper % 1840 .294 1.86 1.91 1.95 % 1.050 .308 2.64 2.72 2.78 1 1.315 .358 3.97 4.08 4.17 1% 1.660 .382 5.65 5.82 5.94 1% 1.900 .400 6.94 7.15 7.31 2 2.375 .436 9.78 10.07 10.29 2% 2.875 .552 14.84 15.28 15.61 3 3.500 .600 20.14 20.73 21.19 3% 4.000 .636 24.76 25.49 26.05 4. 4.500 .674 29.85 30.72 31.40 4% 5.000 .710 35.25 36.29 37.09 5 5.563 .750 41.78 43.00 43.96 6 6.625 .864 57.61 59.30 60.61 7 7.625 .875 68.36 70.36 71.92 8 8.625 .875 78.48 80.78 82.57 Variations from these weights must be expected in practice. For weights of Admiralty Mixture – Use Weight of 67 Brass Aluminum (17 S) – Use Weight of 2 S Aluminum multiplied by 1.03 Ambrac (20% Nickel) – Use Weight of 67 Brass multiplied by 1.04 Everdur (1010) – Use Weight of 85 Red Brass | - ºf º º “ | > | | | | | - º - - - - Power and Industrial Plant Piping Furnished by Buffalo Tank Corporation (190) B U F F A L O T A N K C O R P O R A T I O N EXPANSION OF PIPES (Increase in inches per 100 feet) NOTE.-Expansion given is approximately correct to the best known information. Temperature, w Degrees Cast Iron Wrought Iron Steel º: º Fahrenheit pp () 0.00 0.00 0.00 0.00 50 0.36 (),40 0.38 0.57 100 0.72 0.79 0.76 1.14 125 0.88 0.97 0.92 1.40 150 1.10 1.21 1.15 1.75 175 1.28 1.41 1.34 2.04 200 1.50 1.65 1.57 2.38 225 1.70 1.87 1.78 2.70 250 1.90 2.09 1.99 3.02 275 2.15 2.36 2.26 3.42 300 2.35 2.58 2.47 3.74 325 2.60 2.86 2.73 4.13 350 2.80 3.08 2.94 4.45 375 3.15 3.46 3.31 5.01 400 3.30 3.63 3.46 5.24 425 3.68 4.05 3.86 5.85 450 3.89 4.28 4.08 6.18 475 4.20 4.62 4.41 6.68 500 4.45 4.90 4.67 7.06 525 4.75 5.22 4.99 7.55 550 5.05 5.55 5.30 8.03 575 5.36 5.90 5.63 8.52 600 5.70 6.26 5.98 9.06 625 6.05 6.65 6.35 9.62 650 6.40 7.05 6.71 10.18 675 6.78 7.46 7. 12 10.78 700 7.15 7.86 7.50 11.37 725 7.58 S.33 7.96 12.06 750 7.96 8.75 8.36 12.66 775 8.42 9.26 8.84 13.38 800 8.87 9.76 9.31 14.10 TUBES FOR PRESSURE PURPOSES AND BOILERS Steel tubes, also iron tubes, are used extensively in connection with boilers and certain types of pressure vessels. Lap-weld steel tubes are made from hot-rolled skelp, to standard uniform thicknesses and usually furnished with the original mill scale, or iron oxide coating, on both surfaces. This coating aids in protecting the metal when tubes are used in boiler operations. Charcoal iron tubes are manufactured in a successive number of heating, forging and rolling operations, resulting in a highly refined iron product, insuring long service. (191) P I P E A N D T U B E S BOILER TUBES STANDARD WEIGHTS OF LAP-WELDED STEEL BOILER TUBES Weight, lb. per ft. of Length Thickness Outside Diameter, in. B.W.G. In. 1% | 2 || 2% 2% 2% | 3 || 3% 3% 3% || 4 || 4% | 5 || 5% 5% 5% | 6 13 0.095 |1.67911.932|2.186|... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 0.109 |1.910|2.201|2.492.2.783|3.074|3.365! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 0.120 |2.089|2.409|2.729|3.050|3.370|3.6914.011 || 4.331|4.652| . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 0.134 2.312|2.670.3.028|3.386|3.743|4.1014.459| 4.817|5.175|5.532|6.248|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 0.148 |2,532|2.927|3.3223.717|4.112|4.508|4.903; 5.298||5.693|6.088|6.879| 7.669|8.064|8.262| 8.459| . . . . . . 8 0.165 | . . . . . 3.233| . . . . . 4.1.14|4,555|4.995|5.436|| 5.877|6.317|6.7587.639| 8.52018.960|9. 181| 9.401|10.282 7 0.180 | . . . . . . . . . . . . . . . . . 4.460|4.940|5.421|5.901 || 6.382|6.863|7.343|8.304 || 9.266|9.746|9.987|10.227|11.188 6 0.203 |... . . . . . . . . . . . . . . 4.980|5.522|6.064|6.606| . . . . . . . . . . . |8.232|9.316|10.400 . . . . . . . . . . . . . . . . . . 12.568 5 0.220 l. . . . . . . . . . . . . . . . . 5.357|5.944|6.531.7.1.19| . . . . . . . . . . . . . . . . . . . . . . . . 11.231 | . . . . . . . . . . . . . . . . . . 13.580 4% 0.229 |. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0.238 . . . . . . . . . . . . . . . . . 5.749|6.385|7.02017.656. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.646 3% 0.24821. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0.258 | . . . . . 4.815|5.507|6.198|6.890|7.582|8.273| 8.965] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2% 0.2715l. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0.284 | . . . . . . . . . . . . . . . . . 6.721 | . . . . . 8.238|8.996] 9.754|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1% 0.295 |. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0.300 | . . . . . . . . . . . . . . . . . 7.0487.849|8.650|9.451 10.252. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MAXIMUM ALLOWABLE WORKING PRESSURES For Different Diameters and Gauges of Lap-Welded Steel Tubes When Used in Water Tube Boilers º Minimum Gauge—B. W. G. 18.IIl. of . "... 14 13 12 11 10 9 S 7 6 5 fy"|t =0.083 t—0.095 ||t =0,109 t=0,120 it =0.134 t=0.148 t=0.165|t =0,180 ||t =0.203 ||t =0.220 1% 383 557 758 - * * 1% 278 422 590 722 * * * * * * 1% 203 326 470 583 727 871 2 146 254 380 479 605 731 * - - 2% - 4 - 198 310 398 510 622 7.58 • * * 2% 153 254 333 434 535 657 765 - - - 2% 117 208 280 372 464 575 673 824 - - - 3 - - - 170 236 320 404 506 596 734 836 3% - * * 199 276 354 448 531 658 752 3% 167 238 310 398 475 594 681 3% 139 206 273 355 427 537 619 4 - * * 178 240 317 385 488 565 4% - * * 186 254 314 406 474 5 142 204 258 340 402 (192) B U F F A L O T A N K C O R P O R A T I O N MAXIMUM ALLOWABLE WORKING PRESSURES BOILER TUBES For Different Diameters and Gauges of Charcoal Iron Tubes When Used in Water Tube Boilers Outside Minimum Gauge—B. W. G. Diam. of . º .." 14 13 12 11 10 9 7 6 5 ſº "? t = 0.083 | t = 0.095 t = 0.109 t = (). 120 t = 0.134 t = (). 148 t = 0.165 t = 0.180 t ={).203 t = 0.220 194 373 475 593 687 805 - - - * 6 & 1% 278 396 494 572 670 77() a * * # * * 134 203 326 424 490 575 660 763 * * * 2 146 254 371 43() 502 577 668 747 e e s 2% - - - 198 310 382 447 513 594 665 773 * * * 2% 153 254 333 401 462 535 598 696 766 234 | 1 7 208 28() 366 420 485 543 633 697 3 • * * 170 236 320 385 445 497 580 639 3% * c & 199 276 354 411 460 535 590 3% 167 238 310 382 427 496 548 3% 139 206 273 355 399 464 511 4 * * * 178 240 317 374 435 480 4% * * * 186 254 314 387 426 5 142 204 258 340 383 _ (t – 0.039) * (t — 0.039) $ where (A) P = D 18,000 — 250; (B) P = —p- '9" P = maximum allowable work- ing pressure, lbs./in.” t = thickness of tube wall, in. D = outside diameter of tube, in. For maximum allowable working pressures, use formula. “A” for pressures below 358 lbs. per square inch and formula “B” for pressures of 358 lbs. per square inch and above. The formulas govern for pressures other than those tabulated. SUBJECTED TO EXTERNAL PRESSURE MAXIMUM ALLOWABLE WORKING PRESSURE AND MINIMUM THICKNESS For Lap-Welded Boiler Tubes, Subject to External Pressure Maximum Allowable Working Pressure, Pounds per Square Inch and Minimum Gauge B. W. G. and Thickness in Inches Diameter 13 12 11 10 9 8 7 ().095 (). 109 0.120 (). 134 (). 148 0.165 (). 180 Inches 1 237 - - - 1% 190 296 * * * 1% 158 247 316 1% 136 212 271 * * * * * s 2 119 185 237 304 370 2% 105 165 210 270 330 2% • $ & 148 190 243 296 * * * 2% 135 172 221 269 328 * * 4 3 123 158 202 247 301 348 3% * * * * * * 187 228 278 321 3% 174 212 258 299 3% 162 197 240 278 4 152 185 225 261 4% * * * * * * 200 232 5 180 208 6 150 174 (193) SECTION XII Tºſſalo TANIKS N- ENGINEERING TABLES CYLINDERS AND SPHERES CIRCLES AND ARCS PROPERTIES OF SECTIONS WEIGHTS AND MEASURES USEFUL INFORMATION (195) C Y L I N D E R S A N D S P H E R E S TABLE OF CAPACITIES OF CYLINDERS AND SPHERES Diam. Cu. Ft. Gallons º Sphere Sphere | Diam. | Cu. Ft. Gallons “..." Sphere | Sphere in per per per Surface Volume in per per per Surface | Volume Feet § of Foot of Foot of | In in Feet | Foot of Foot of Foot of in in ylinder Cylinder Cylinder Sq. Ft. Cu. Ft. Cylinder | Cylinder Cylinder Sq. Ft. Cu. Ft. % .0002 | .00143.000034 .00077 .000002; 2% 4.9087| 36.720 .87428. 19.635 8.1812 * | #| #; ; ; ; ; ; ; ; ; 16 || - - - - 7| . 8 8 .411 e .96390 21. - % .0069 .05164.001.23 .02761| .000431|| 21% 5.6727| 42.4341.01.03 22.691| 10.164 % .0123 .09180.00219 ,04909 .00102 || 234 5.9396 44.431|1.0578 23.758 10.889 : .0192 | .14344.00342 . .07670. .00200 % 6.2126, 46.474|1.1065 24.850. 11.649 (6 .0276 .20655.00492 .11045 .00345 || 2% 6.4918, 48.562|1.1562 25.967| 12.443 % .0376 .28114.00669 .15033 .00548 || 21% 6.7771 50.6961.2071 27.109 13.272 % .0491 | .36720.00874 .19635 .00818 % .0621 | .46474.01.107 .24850 .01.165 || 3 7.0686 52.877|1.2590 28.274| 1.4.137 % .0767 | .57375.01366 .30680 .01598 || 3% 7.3662 55.1031.3120 29.465. 15.039 1% .0928 .69424.01653 .37122 .02127 || 3% 7.6699, 57.375:1.3661 30.680 15.979 % .1104 | .82620.01967 .44179 .02761 || 3% 7.9798 59.6931.4213 || 31.919, 16.957 13% .1296 |, .96964,02309 .51849 .03511 || 3% 8.2958 62.0571.4775 || 33.183| 17.974 % .1503 |1.1245 |.02677 .60132 .04385 || 3% 8.6179| 64.4661.5349 || 34.472| 19.031 1% .1726 1.2909 .03074 .69029 .05393 || 3% 8.9462 66.922|1.5934 || 35.785. 20.129 }% .1963 |1.4688 |.03497 .78540 .06545 || 3% 9.2806 69.424|1.6529 || 37.122 21.268 1% .2217 1.6581 |.03948 .88664 .07850 || 3% 9.6211| 71.971|1.7136 || 38.485 22.449 % .2485 |1.8589 |.04426 .99402 .09319 || 3% |10.321 || 77.2041.8382 || 41.282 24.942 1% .2769 |2.0712 |.04932 |1.1075 .10960 || 3% |11.045 82.62O1.9671 44.179| 27.612 % .3068 (2.2950 |.05464 |1.2272 .12783 || 3% |11.793 || 88.2202.1005 || 47.173 30.466 *% .3382 2.5302 |.06024 |1.3530 .14798 1% .3712 2.7769 |.06612 |1.4849 .17014 || 4 12.566 94.003|2.2382 50.265 33.510 * | * ::, ; };}|†: | #||3: ;%; ; ; 4 º - - - - 4 º e - - - *% .4794 |3.5859 |.08538 1.9175 .24967 || 4%. 15.033 |112.45 2.6775 60.132| 43.846 1% .51.85 3.8785 |.09235 |2.0739 .28085 || 4%. 15.904 |118.97 |2.8327 | 63.617 47.713 2% .5591 |4.1826 |.09959 |2.2365 .31451 || 4% |16.800 |125.67 2.9922 || 67.201 || 51.800 % .6013 |4.4982 |.10710 |2.4053 .35077 || 4%. 17.721 |132.56 |3.1562 || 70.882 56.115 2% .6450 4.8252 .11489 |2.5802 | .38971 || 4% |18.665 |139.63 |3.3245 74.662 60.663 1% .6903 |5.1637 |.12295 2.7612 .43143 8% .7371 |5.5137 |.131.28 2.9483 .47603 Éw #; #: #4. ſ: ;: 8 s º - - - h. §: § #; #. 5%. 21.648 |161.93 |3.8556 86.590 75.766 ii. º, .35.4% 3.3% ºf 5% ºf 169.74 4.9414 99.763. 31.308 33 || º º º tº 5% |23.758 177.72 4.2315 95.033 87.114 1% |1.1075 | 8.2849.19726 4.4301| .87680 5% |24.850 |185.89 |4.4261 | 99.402 93.189 1% |1.2272 9.1800.21857 || 4.9087|1.0227 § 25.367 liga 25 4.6250 103.37 gº.54- 1% |1.3530 10.121 |.24097 || 5.41191.1838 § 27,109 (202.79 |4.3233 lio3.43 |106.17 º 1.4849 |11.108 |.26447 5.93961.3612 8 º s - - º }% 13339 12:14 |28393 || 3:33.131-3353 || 6 |28.274 211.51 5.0359 |113.10 |113.10 1% |1.7671 |13.219 |.31474 || 7.0686|1.7671 6% |29.465 220.41 |5.2479 |117.86 120.31 1% |1.9175 |14.344 |.34152 || 7.66991.9974 §§ 36,636 223.50 5.4643 |122.73 |127.33 1% (2,0739 15.514 |.36938 8.29582.2468 § 31 gig 233.77 |56350 |127.63 |135.66 11% (2.2365 |16.731 |.39835 | 8.94622.5161 6%. 33.133 (243.23 5.5103 |13273 |143.79 1%. 2.4053 |17.993 |.42840 | 9.62112.8062 é 34.473 (257.37 6.1337 ||37.39 iè3.25 11% (2.5802 |19.301 |.45955 10.321 |3.1177 § e º - - - 7 6% |35.785 (267.69 |6.3735 |143.14 |161.03 1% (2.7612 20.655 .49178 11.045 (3.4515 6%. 37.122 |277.69 (6.6118 148.49 170.14 11% (2.9483 |22.055 .52512 11.793 3.8082 8 |J / . º - º - 2 |3.1416 |23.501 |.55954 |12.566 |4.1888 || 7 ||38.485 287.88 |6.8544 |153.94 |179.59 2% |3.3410 |24.992 |.59506 |13.364 4.5939 || 7% |39.871 |298.26 7.1014 159.48 |189.39 2% |3.5466 (26.530 |.631.67 |14.186 (5.0243 || 7% |41.282 |308.81 |7.3527 165.13 |199.53 2% |3.7583 28.114 |.66937 15.033 |5.4808 || 7% |42.718 (319.56 7.6085 |170.87 (210.03 2% |3.9761 29.743 |.70817 |15.904 |5.9641 7%. 44.179 |330.48 |7.8686 |176.71 |220.89 2% 4.2000 |31.418 .74806 |16.800 (6.4751 75% |45.664 |341.59 |8.1330 182.65 |232.12 2% 4.4301 |33.140 |.78904 |17.721 |7.01.44 || 7% |47.173 |352.88 (8.4019 188.69 |243.73 2% 4.6664 |34.907 |.83112 |18.665 |7.5829 || 7% 48.707 364.35 (8.6751 |194.83 (255.71 B U F F A L O T A N K C O R P O R AT I O N TABLE OF CAPACITIES OF CYLINDERS AND SPHERES on ºf |Gº 'hºsº | Sº loºm. ºf |*|†" sº º Fººt F. Of Fé. of Fºr of in in Fººt Foot of Foot of Fºot in in Cylinder | Cylinder | Cyfinder | Sq. Ft. Cu. Ft. Cylinder Cylinder Čylinder | Sq. Ft. Cu. Ft. 8 50.265 376.01 || 8.9527, 201.06 || 268.08 || 18 254.47 | 1903.6 45.323| 1017.9 3053.6 8% 51.849, 387.85 9.2346 207.39| 280.85 1894 | 261.59 || 1956.8 46.591| 1046.3 || 3182.6 8% 53.456 399.88 9.5209| 213.82 294.01 || 18% 268.80 |2010.8 || 47.876 1075.2 3315.2 8% 55.088 412.09 9.8116 220.35 | 307.58 || 18% 276.12 2065.5 49.178; 1104.5 || 3451.5 #|#######|##|##|12, 233:3|2|299| 39.4%||1341|35914 % 53.428 437.9819.406 || 233.71 || 333.95 || 1314||237.04 || 3177.1 || 5 || 336||1164.3 ||37.50 8% 69.132. 449.8219.7.19 |24053 339.7% jí |3%. , 3,346 ºf Hºč|3;. 72 2 º e * & e 8%| 61.862 462.76.11.018 |24745 366.02 iós; 30.35|225;} gºšā Āš. ºf 3, #| ####|##|##| 29, 31313|230|| 339:12:33, 4,883 % 35.397. 483.29.11.343 |231.33 || 397.83 || 2014 || 3:33.06 || 3:03.3 57.333 1333.3| 43. Z 24 3- g º & tº & A" 22 || JJU. & & .3 || 4510.9 ºš 63,929 Slºž!???? |3.312|| 33.43 || 20%| 333i: |2533.6| Goºg #35.7 43% 9% 70.882 530.2412.625 283.53 || 448.92 4 J CO. & ge * & 9% | 72.760. 544.28,12.959 291.04 || 466.88 21 346.36 2591.0 | 61.689| 1385.4 || 4849.0 9% 74.662 558.5113.298 || 298.65 || 485.30 21% 354.66 2653.0 63.167 1418.6 || 5024.3 9%| 76.589 572.92.13.641 |306.35. 50421 31%|363.93|37.33 ±214:22|32037 10 || 78,540. 537,5213,989 |314.16|| 523.60 || 21% |371.54|2779.3 | 66.175 1486.2 5387.4 10% 82.516. 617.2614.697 || 330.06 || 563.86 || 22 || 380.13 2843.6 | 67.705 1520.5 5575.3 10% 86.590) 647.7415.422 || 346.36 606.13 || 22% 388.82 2908.6 69.252 1555.3 5767.5 10%| 90.763 678.95,16,166 |363.05 65047 33%|37.3.23.43| 793. 1599.4|5964. 11 95.033 710,9016.926 |380.13. 696.91 22% |40649|30408, 72.399) 1626.0|6165.1 1134 99.402 743.58|17.704 || 397.61 745.51 23 || 415.48 || 3108.0 | 73.999 1661.9 || 6370.6 11 M, 103.87 || 776.99|18.500 || 415.48 || 796.33 || 23% 424.56 3175.9 || 75.617| 1698.2 6580.6 11% 108.43 811.1419.313 433.74|849.40 33%|433.4|32443 Z23, 17343| 6.933 12 |113.10 | 846.03.20.143 452,39| 904.78 || 23% 443.01 || 33140 78.904 1772.1 || 7014.4 1214 |117.86 881.6520.992 || 471.44 962.51 || 24 452.39 || 3384.1 80.574 1809.6 | 7238.2 12% |122.72 918.00 21.857 490.87 1022.7 || 2494 || 461.86 3455.0 82.261| 1847.5 7466.8 12% 127.68 955.0822.740 |510.71 1085.2 24%|#144|3:23; 33.3%. 1335.7 2.99. 13 |132.73 || 992.6123,641 530.93||1150.3 || 24% 481.11 || 3598.9| 85.689, 1924.4|7938.2 1314 |137.89 |1031.5 24.559 || 551.55 |1218.0 || 25 || 490.87 || 3672.0 | 87.428, 1963.5 8181.2 13% |143.14 |1070.8 25.494 || 572.56 |1288.2 || 25% 500.74 || 3745.8 | 89.186 2003.0 | 8429.1 13% 14849 [1110.8 26.447 |593.961361.2 || 33%|3.37, 3:29: 39.9% ºf 3:29 14 153.04 |1151.5 27.418 615.75 1436.8 || 25% 520.77|3895.6 92.753 2083.1 | 8939.9 14% |159.48 |1193.0 |28.405 || 637.94 |1515.1 || 26 || 530.93 3971.6 94.563| 2123.7 || 9202.8 14% |165.13 |1235.3 29.411 | 660.52 |1596.3 || 26% 541.19 |4048.4 || 96.390. 2164.8 9470.8 14%|170.87 12782 30.434 |683.49|16803 || 33% sºlº 3,333.5239;2|, .440 15 176.71 |1321.9 |31,474 || 706.86 |1767.1 || 26% |562.00 4204.1 100.10 |2248.0 10022 15}4 |182.65 |1366.3 |32.532 | 730.62 |1857.0 || 27 572.56 || 4283.0 |101.98 2290.2 10306 15% |188.69 |1411.5 33.607 || 754.77|1949.8 || 27% 583.21 || 4362.7 |103.87 2332.8 |10595 15% |194.83 |1457.4 |34.700 |779.31 (2045.7 || 27% |593.96 |4443.1 105.79 |2375.8.10889 16 201.06 |1504.0 |35.811 || 304.25 2144.7 || 27% |604.81 |4524.3 |107.72 2419.2 11189 16% |207.39 1551.4 |36.938 |829.58 2246.8 || 28 615.75 |4606.1 ||109.67 2463.0 |11494 16% (213.82 1599.5 |38.084 || 855.30 2352.1 || 28% |626.80 |4688.8 |111.64 || 2507.2 11805 16% |220.35 |1648.4 |39.247 |881.41 |2460.6 || 28% 637.94 || 4772.1 |113.62 2551.8 |12121 17 226.98 |1697.9 |40,427 | 907.92 2572.4 || 28% 649.18|4856.2|115.62 |2596.7|12443 1734 (233.71 1748.2 |41.625 | 934.82 (2687.6 || 29 |660.52 |4941.0 |117.64 2642.1 |12770 17% |240.53 |1799.3 |42.840 |962.11 |2806.2 || 29% 671.96 || 5026.6 |119.68 || 2687.8 |13103 17% (247.45 |1851.1 |44.073 |989.80 |2928.2 || 29% | 683.49 || 5112.9 |121.74 2734.0 |13442 29% 695.13 || 5199.9 |123.81 2780.5 |13787 C Y L I N D E R S A N D S P H E R E S TABLE OF CAPACITIES OF CYLINDERS AND SPHERES Diam. | Cu. Ft. Gallons º Sphere | Sphere | Diam. | Cu. Ft. Gallons * ºn Sphere Sphere in per per per Surface Volume in per per per Surface Volume Feet | Foot of | Foot of Foot of ! In | n Feet Foot of Foot of Foot of | In | In Cylinder | Cylinder Cylinder Sq. Ft. Cu. Ft. Cylinder Cylinder Cylinder Sq. Ft. Cu. Ft. 30 706.86 5287.7| 125.90 2827.4 || 14137 || 42 1385.4 || 10364 246.76 5541.8 38792 30% 718.69 5376.2 128.00 2874.8 || 14494 || 42% 1402.0 | 10488 249.70 || 5607.9 || 39489 30% | 730.62 5465.4|130.13 || 2922.5 | 1.4856 || 42% 1418.6 || 10612 || 252.67 5674.5 | 401.94 30% 742.64. 5555.4|132.27 2970.6 | 15224 || 42% 1435.4 10737 255.65 |5714.5 | 40908 31 754.77|| 5646.1 | 134.43 3019.1 15599 || 43 1452.2 10863 || 258.65 5808.8 || 41630 31}4 || 766.99, 5737.5 136.61 || 3068.0 | 15979 || 43% 1469.1 | 10990 || 261.66 || 5876.5 || 42360 31% 779.31|| 5829.7|138.80 || 3117.2 16366 || 43% 1486.2 11117 | 264.70 || 5944.7 || 43099 31% 791.73 5922.6 141.01 || 3166.9 | 16758 || 43% 1503.3 || 11245 267.75 |6013.2 || 43846 32 804.25 6016.2 143.24 3217.0 17157 || 44 1520.5 1 1374 270.82 | 6082.1 44602 32% 816.86 6110.6 145.49 || 3267.5 17563 || 44% | 1537.9 11504 || 273.90 6151.4 45367 32% 829.58 6205.7|147.75 || 3318.3 17974 || 44% 1555.3 11634 277.01 || 6221.1 || 46140 32% | 842.39| 6301.5 150.04 || 3369.6 | 18392 || 44% 1572.8 || 11765 280.13 |6291.2| 46922 33 855.30| 6398.1 152.34 || 3421.2 | 18817 || 45 1590.4 1 1897 || 283.27 6361.7 || 47713 33% | 868.31|| 6495.4 154.65 3473.2 19247 || 4514 | 1608.2 | 12030 286.42 |6432.6 || 48513 33% 881.41| 6593.4 156.99 || 3525.7 | 19685 || 45% 1626.0 | 12163 289.60 || 6503.9 || 49321 33% | 894.62| 6692.2 159.34 |3578.5 20129 || 45% | 1643.9 | 12297 292.79 || 6575.5 50139 34 907.92 6791.7| 161.71 || 3631.7 20580 || 46 1661.9 || 12432 296.00 | 6647.6 50965 34% 921.32 6892.0 164.09 || 3685.3 21037 || 4614 | 1680.0 | 12567 299.22 || 6720.1 || 51800 34% | 934.82 6992.9 166.50 3739.3 21501 || 46% 1698.2 | 12704 || 302.47 |6792.9 52645 34% 948.42| 7094.7 168.92 || 3793.7 21972 || 46% 1716.5 12841 || 305.73 | 6866.1 || 53499 35 962.11 || 71.97.1 || 171.36 || 3848.5 22449 || 47 1734.9 | 12978 || 309.01 || 6939.8 54362 35% 975.91| 7300.3 173.82 3903.6 22934 || 47% 1753.5 | 13117 | 312.30 || 7013.8 55234 35% 989.80, 7404.2 176.29 || 3959.2 23425 || 47% 1772.1 13256 315.62 || 7088.2 56115 35% |1003.8 || 7508.9 178.78 |4015.2 || 23924 || 47% 1790.8 || 13396 || 318.95 || 7163.0 57006 36 |1017.9 || 7614.2 181.29 | 4071.5 24429 || 48 1809.6 || 13536 || 322.30 | 7238.2 57906 36% |1032.1 || 7720.4 183.82 || 4128.2| 24.942 || 4814 | 1828.5 || 13678 325.66 | 7313.8 || 58815 36% |1046.3 || 7827.2 186.36 || 4185.4 25461 || 48% 1847.5 13820 | 329.05 | 7389.8 59734 36% |1060.7 7934.8 188.92 || 4242.9 || 25988 || 48% 1866.5 13963 || 332.45 || 7466.2 60663 37 [1075.2 8043.1 | 191.50 4300.8 26522 || 49 1885.7 141 06 || 335.86 7543.0 | 61601 37%. 1089.8 || 8152.2 194.10 || 4359.2 27063 || 4914 | 1905.0 || 14251 || 339.30 |7620.1 | 62549 37% |1104.5 | 8262.0 196.71 || 4417.9 27612 || 49% 1924.4 || 14396 || 342.75 7697.7 | 63506 37%. 1119.2 8372.5 199.35|4477.0 | 28168 || 49% 1943.9 || 14541 346.23 7775.6 || 64473 38 |1134.1 | 8483.8 201.99 || 4536.5 28731 || 50 1963.5 | 1.4688 || 349.71 7854.0 65450 38%. 1149.1 | 8595.8|204.66 || 4596.3 29302 || 50% | 1983.2 14835 | 353.22 |7932.7 | 66437 38%. 1164.2 8708.5 207.35 || 4656.6 29880 || 50% 2003.0 | 1.4983 || 356.74 |8011.8 || 67433 38%. 1179.3 | 8822.0 210.05 || 4717.3 30466 || 50% 2022.8 15132 || 360.28 |8091.4 | 68439 39 |1194.6 | 8936.2| 212.77 4778.4 || 31059 || 51 2042.8 15281 363.84 || 8171.3 69456 39%. 1210.0 | 9051.1| 215.50 || 4839.8 || 31660 || 51% 2062.9 | 15432 367.42 8251.6 || 70482 39%. 1225.4 9166.8. 218.26 4901.7 || 32269 || 51% 2083.1 15582 || 371.01 |8332.3 || 71519 39%. 1241.0 9283.2 221.03 || 4963.9 || 32886 || 51% 2103.3 | 15734 374.62 | 8413.4 || 72565 40 1256.6 9400.3| 223.82 5026.5 || 33510 || 52 2123.7 | 15887 || 378.25 | 8494.9 | 73622 4034 1272.4 9518.2 226.62 5089.6 || 34143 || 52% 2144.2 | 16040 || 381.90 |8576.7 || 74689 40% (1288.2 9636.8 229.45 || 5153.0 34783 || 52% 2164.8 | 16193 385.56 |8659.0 || 75766 4034 1304.2 9756.1 232.29 |5216.8 || 35431 || 52% 2185.4 | 16348 || 389.24 || 8741.7 || 76854 41 |1320.3 || 9876.2. 235.15 5281.0 | 36087 || 53 2206.2 | 16503 || 392.94 | 8824.7 || 77952 41% |1336.4 9997.0 238.02 || 5345.6 || 36751 || 53% 2227.0 | 16659 396.65 | 8908.2 || 79060 41% |1352.7 |101.19. 240.92 || 5410.6 || 37423 || 53% 2248.0 | 16816 |400.39|8992.0 | 80179 41% |1369.0 10241. 243.83 5476.0 || 38104 || 53% 2269.1 | 16974 |404.14|9076.3 || 81308 (198) B U F F A L O T A N K C O R P O R A T I O N TABLE OF CAPACITIES OF CYLINDERS AND SPHERES Diam. | Cu. Ft. Gallons º Sphere Sphere | Diam. | Cu. Ft. Gallons “ºn Sphere | Sphere in per per per Surface Volume in per per per Surface | volume Feet | Foot of Foot of | Foot of In 1 In Feet | Foot of Foot of Foot of In | In Cylinder Cylinder |&inder | Sq. Ft. Cu. Ft. Cylinder | Cylinder | Cylinder | Sq. Ft. Cu. Ft. 2290.2 17132 | 407.91 || 91.60.9| 82448 || 66 3421.2 || 25592 || 609.34 || 13685 | 150533 54% 2311.5 17291 |411.69 || 9245.9 83598 || 66% 3447.2 || 25787 |613.97 || 13789 | 152250 54% 2332.8 17451 || 415.49 || 9331.3| 84759 || 66% 3473.2 25982 618.61 | 13893 || 153980 54% 2354.3 17611 || 419.32 94.17.1| 85931 || 66% 3499.4 26177 | 623.27 | 13998 || 155723 55 2375.8 17772 423.15 9503.3| 871 14 || 67 3525.7 26374 || 627.95 | 1.4103 || 157479 55% 2397.5 17934 |427.01 || 9589.9 88307 || 67% 3552.0 26571 632.64 14208 159249 55% 2419.2 | 18097 |430.88 9676.9 89511 || 67% 3578.5 26769 || 637.35 | 14314 | 161031 55% 2441.1 18260 |434.77| 9764.3 90726 || 67% 3605.0 | 26967 642.08 || 14420 | 162827 56 2463.0 | 18245 || 438.68|| 9852.0 91952 || 68 || 3631.7 | 27167 646.83 || 14527 | 164636 56% 2485.0 | 18589 |442.61 | 99.40.2 93189 || 68% 3658.4 27367 651.59 || 14634 | 166459 56% 2507.2 18755 446.55 10029 94437 || 68% 3685.3 27568 656.38 14741 | 168295 56% 2529.4|| 18921 |450.51 |10118 95697 || 6834 3712.2 27769 | 661.18 14849 || 170144 57 || 2551.8 19088 454.49 |10207 96967 || 69 || 3739.3 27.972 | 665.99 || 14957 172007 57% 2574.2 19256 |458.48 |10297 98248 || 69% 3766.4 28175 | 670.83 || 15066 || 173883 57% 2596.7 | 19425 || 462.50 |10387 995.41 || 69% 3793.7 28379 |675.68 15175 175773 57% 2619.4|| 19594 |466.53 |10477 | 100845 || 69% |3821.0 28583 | 680.55 | 15284 177677 58 2642.1 19764 || 470.57 |10568 102160 || 70 3848.5 28788 | 685.44 15394 179594 58% 2664.9 | 19935 |474.64 |10660 | 103487 || 70% 3876.0 |28994 || 690.34 15504 | 181525 58% 2687.8 || 20106 |478.72|10751 | 104825 || 70% 3903.6 29201 |695.27 | 15615 183470 58% 2710.9 20279 || 482.82 |10843 | 106175 || 70% 3931.4 29409 || 700.21 | 15725 | 185429 59 2734.0 | 20452 || 486.94 ||10936 || 107536 || 71 3959.2 29617 | 705.16 | 15837 | 187402 59% 2757.2 20625 || 491.08 |11029 || 108909 || 7134 || 3987.1 29826 || 710.14 15948 189388 59% 2780.5 20800 495.23 |11122 || 110293 || 71% |4015.2 30035 | 715.13 | 16061 | 191389 59% 2803.9 20975 |499.40 |11216 || 111690 || 7134 |4043.3 30246 | 720.14 | 16173 || 193404 60 2827.4 21151 503.59 |11310 | 113097 || 72 | 4071.5 || 30457 | 725.17 | 16286 1954.32 60% 2851.0 21327 | 507.79 |11404 || 114517 | 72% |4099.8 || 30669 |730.21 | 16399 || 197475 60% 2874.8 21505 || 512.02 |11499 || 115948 || 72% 4128.2 30881 | 735.27 | 16513 | 199532 60% 2898.6 21683 || 516.26 11594 | 117392 || 72% 4156.8 || 31095 || 740.35 | 16627 | 201603 61 2922.5 21862 520.51 |11690 || 1 18847 || 73 4.185.4 || 31309 || 745.45 16742 203689 61% 2946.5 22041 524.79 |11786 | 120314 || 73% |4214.1 31524 |750.56 | 16856 205789 61% 2970.6 22221 529.08 |11882 | 121793 || 73% |4242.9 || 31739 755.70 | 16972 207903 61% 2994.8 22402 || 533.39|11979 123285 || 73% 4271.8 31956 |760.85 17087 210032 62 3019.1 22584 537.72 12076 | 124788 || 74 || 4300.8 32.173 || 766.01 || 17203 212175 62% 3043.5 22767 542.06 |12174 | 126304 || 74% 4329.9 || 32390 |771.20 17320 | 214332 62% 3068.0 22950 546.43 |12272 127832 || 74% 4359.2 || 32609 || 776.40 17437 216505 62% 3092.6 || 23134 550.81 |123.70 | 129372 || 74% 4388.5 32828 781.62 17554 218692 63 || 3117.2 23319 555.21 |12469 || 130924 || 75 4417.9 || 33048 786.86 17671 220893 63% 3142.0 23504 || 559.62|12568 || 132489 || 75% |4447.4 || 33269 |792.11 || 17789 223110 63% 3166.9 23690 564.05 12668 || 134066 || 75% 4477.0 33490 797.38 17908 225341 63% 3191.9 || 23877 |568.50 12768 || 135656 || 75% |4506.7 || 33712 || 802.67 | 18027 227587 64 || 3217.0 | 24065 572.97 |12868 || 137258 || 76 || 4536.5 || 33935 | 807.98 || 18146 229847 64% |3242.2| 24253 |577.46 |12969 || 138873 || 76% |4566.4 || 34159 |813.30 | 18265 232123 64% 3267.5 24442 581.96 |13070 140500 || 76% |4596.3 || 34383 || 818.64 18385 234414 64% 3292.8 24632 586.48 |13171 142141 || 76% |4626.4 34608 || 824.00 | 18506 || 236719 65 || 3318.3 24823 591.02 |13273 || 143793 || 77 || 4656.6 34834 829.38 18627 || 239040 65% | 3343.9 || 25014 || 595.57 |13376 145459 || 77% |4686.9 || 35061 834.77|| 18748 241376 65% | 3369.6 || 25206 |600.14|13478 147137 || 77% |4717.3 || 35288 | 840.19 | 18869 243727 65% 3395.3 25399 |604.73 |13581 148828 || 77% 4747.8 35516 | 845.62 18991 246093 C Y L I N D E R S A N D S P H E R ES TABLE OF CAPACITIES OF CYLINDERS AND SPHERES 4. || Diam. | Cu. Ft. Gallons #." Sphere | Sphere | Diam. | Cu. Ft. Gallons *..." Sphere | Sphere in per per per Surface | Volume in per per per Surface | Volume I ſh | In in in Cylinder | Cylinder Čyfinder | Sq. Ft. Cu. Ft. Cylinder Cylinder Öyſinder | Sq. Ft. Cu. Ft. 78 4778.4 || 35745 851.06; 19113 248475 || 90 6361.7 47589 1133.1 25447 || 381704 78% 4809.0 | 35974 || 856.53, 19236 || 250872 || 90% 6397.1 47854 |1139.4|| 25588 || 384893 78% |4839.8 || 36204 || 862.01| 19359 || 253284 || 90% 6432.6 || 48119 |1145.7 || 25730 || 388101 78% 4870.7 || 36435 | 867.51, 19483 || 255712 || 90% 6468.2 || 48385 1152.0 25873 391326 79 || 4901.7 || 36667 873.02 19607 || 258155 || 91 6503.9 || 48652 || 1158.4 26016 || 394569 79% 4932.7| 36899 || 878.56 19731 260613 || 91% 6539.7 || 48920 | 1164.8 26159 || 397830 79% 4963.9 || 37133 884.11| 19856 263087 || 91% 6575.5 || 49189 || 1171.2 26302 || 401109 79% 4995.2 37367 || 889.68| 19981 265577 || 91% | 6611.5 || 49458 1177.6 26446 | 404405 80 5026.5 37601 | 895.27 20106 || 268083 || 92 6647.6 || 49728 1184.0 26590 | 407720 80% 5058.0 | 37837 900.87| 20232 270604 || 92% | 6683.8 49998 || 1190.4 || 26735 || 411053 80% 5089.6 || 38073 906.49| 20358 273141 || 92% 6720.1 50270 | 1196.9 26880 || 414404 80% 5121.2|38310 912.13 20485 275693 92% 6756.4 50542 | 1203.4 27026 || 417773 81 5153.0 385.47 917.79| 20612 278262 || 93 6792.9 50814 | 1209.9 271.72 || 421 160 81% 5184.9 || 38785 923.46. 20739 280846 || 93% | 6829.5 || 51088 1216.4 27318 || 424566 81% 5216.8 || 39024 929.15, 20867 283447 || 93% | 6866.1 || 51362 | 1222.9 27465 || 427990 81% 5248.9 || 39264 || 934.86. 20995 || 286063 || 9334 6902.9 || 51637 1229.5 27612 || 431432 82 5281.0 39505 || 940.59| 21124 288696 || 94 6939.8 || 51913 || 1236.0 27759 || 434893 82% 5313.3 || 39746 946.33| 21253 291344 || 94% 6976.7 || 52190 | 1242.6 27907 || 438372 82% 5345.6 || 39988 || 952.09| 21382 294009 || 94% | 7013.8 52467 | 1249.2 28055 441870 82% 5378.1 | 40231 957.87| 21512 296690 || 94% 7051.0 | 52745 1255.8 28204 || 445386 83 5410.6 | 40474 963.67 21642 299387 || 95 7088.2 53024 1262.5 28353 448920 83% 5443.3 | 40718 969.48 21773 || 302100 || 95% 7125.6 53303 || 1269.1 28502 || 452474 83% 5476.0 | 40963 975.32. 21904 || 304830 || 95% 7163.0 53583 1275.8 28652 456046 83% 5508.8 || 41209 || 981.16 22035 | 307576 || 95% | 7200.6 53864 1282.5 28802 || 459637 84 5541.8 || 41455 987.03] 22167 310339 || 96 7238.2 54146 | 1289.2 28953 |463247 84% 5574.8 || 41702 || 992.92. 22299 || 313118 || 96% | 7276.0 54428 1295.9 29104 || 466875 84% 5607.9 || 41950 998.82 22432 || 315914 || 96% | 7313.8 || 54711 || 1302.6 29255 470523 84% 5641.2 42199 |1004.7 22565 318726 || 96% | 7351.8 54995 || 1309.4 29407 || 474189 85 5674.5 42448 |1010.7 22698 || 321555 || 97 7389.8 55280 || 1316.2 29559 || 477874 85% 5707.9 || 42698 |1016.6 22832 324401 || 97% 7428.0 55565 1323.0 29712 || 481579 85% 5741.5 42949 |1022.6 22966 327263 || 97% 7466.2 55851 1329.8 29865 || 485302 85% 5775.1 || 43201 |1028.6 || 23100 || 3301.42 || 97% 7504.5 56138 || 1336.6 30018 || 489045 86 5808.8 || 43453 |1034.6 23235 | 333038 || 98 7543.0 56425 | 1343.5 || 30172 || 492807 86% 5842.6 || 43706 |1040.6 23371 || 335951 || 98% |7581.5 56714 || 1350.3 || 30326 496588 86% 5876.5 43960 1046.7 || 23506 || 338881 || 98% 7620.1 57003 || 1357.2 30481 500388 86% 5910.6 44214 |1052.7 || 23642 341828 || 98% 7658.9 57292 || 1364.1 || 30635 | 504208 87 5944.7 44469 |1058.8 23779 || 344791 || 99 7697.7 57583 || 1371.0 30791 || 508047 87% 5978.9 || 44725 1064.9 || 23916 || 347772 99% |7736.6 57874 || 1377.9 || 30946 || 511906 87% 6013.2 44982 1071.0 24053 || 350770 || 99% 7775.6 58166 || 1384.9 || 31103 || 515784 8734 6047.6 45239 |1077.1 24190 || 353785 || 99% 7814.8 58458 || 1391.9 || 31259 || 519682 88 6082.1 || 45497 |1083.3 || 24328 || 356818 ||100 7854.0 58752 | 1398.9 || 31416 || 523599 88% 6116.7 || 45756 |1089.4 24467 359868 100% |7893.3 59046 1405.9 || 31573 527536 88% 6151.4|46016 ||1095.6 24606 || 362935 ||100% |7932.7 || 59341 || 1412.9 || 31731 || 531492 88% 6186.2 || 46276 |1101.8 24745 366019 100% 7972.2 59636 1419.9 || 31889 535468 89 6221.1 || 46537 |1 108.0 24885 || 369121 ||101 801 1.8 59933 1427.0 | 32047 || 539464 89% 6256.1 46799 |1114.3 || 25025 || 372240 10134 8051.6 | 60230 1434.0 | 32206 || 543480 89% 6291.2 47062 1120.5 25165 || 375377 ||101.3% 8091.4 60528 1441.1 32365 547516 89% 6326.4 || 47325 1126.8 || 25306 || 378531 ||101% 8131.3 60826 1448.2 32525 551572 B U F F A Lo T AN K c or Po R AT I o N TABLE OF CAPACITIES OF CYLINDERS AND SPHERES Cu. Ft. per Foot of Cylinder 81 71.3 4|| 8211.4 3. 8251.6 8291.9 8332.3 8372.8 84.13.4 8454.1 8494.9 8535.8 8576.7 8617.8 8659.0 8700.3 8741.7 8783.2 8824.7 8866 4 8908.2 8950. 1 8992.0 90.34.1 9076.3 91 18.5 91 60.9 9203.3 9245.9 9288.6 93.31.3 9374.2 941 7.1 9460.2 9503.3 95.46.6 9589.9 96.33.4 9676.9 97.20.5 9764.3 9808.1 9852.0 98.96.1 9940.2 9984.4 10029 1007.3 1 0118 10162 Gallons per Foot of Cylinder 61 125 61425 61726 62028 62330 62633 62936 63241 63546 63852 641.59 64466 64774 65083 65392 65703 66014 66325 66638 66951 67265 67580 67895 68211 68528 68846 691 64 69483 69803 701:24 70445 70767 71090 71413 71737 72062 72388 72715 73042 73370 73698 74028 74358 74689 75020 75.353 75686 76019 42 Gallon Barrels per Foot of Cylinder 1455.4 1462.5 1469.7 1476.8 1484.0 1491.3 1498.5 1505.7 1513.0 1520.3 1527.6 1534.9 1542.2 1549.6 1557.0 1564.3 1571.8 1579.2 1586.6 1594.1 1601.5 1609.0 1616.6 1624.1 1631.6 1639.2 1646.8 1654.4 1662.0 1669.6 1677.3 1684.9 1692.6 1700.3 1708.0 1715.8 1723.5 1731.3 1739.1 1746.9 1754.7 1762.6 1770.4 1778.3 1786.2 1794.1 1802.0 1810.0 Sphere Surface In Sq. Ft. 32685 32846 33006 331 68 33329 33491 33654 33816 3.3979 34143 34307 34471 34636 348O1 34967 35133 35299 35466 35633 35800 35968 361.36 36305 36474 36644 36813 36984 37154 37325 37497 37668 37841 38013 38186 38360 38533 38708 38882 39057 39232 39408 39584 39761 39938 401 15 40293 40471 40649 Sphere Volume In Cu. Ft. 555647 559743 563859 567994 5721.51 576327 580523 584.740 588977 | 593235 | 597513 601812 606131 61 0471 614831 619213 623615 628037 632481 6369.45 641431 645938 || 650.465 655014 659584 6641 75 668787 673421 678076 682752 687450 6921 69 696910 701672 706457 71 1262 71.6090 720939 72581 O 730704 735619 740556 745515 750496 755499 760525 765572 770642 Cu. Ft. per Foot of Cylinder 102O7 10252 10297 10342 10387 104.32 10477 10523 10568 10614 10660 10705 10751 10797 10843 10890 10936 10982 1 1029 1 1075 1 1122 11169 11216 1 1263 11310 11357 1 1404 1 1452 1 1499 11547 11594 11642 11690 11738 3| 11786 1 1834 1 1882 1 1931 1 1979 12028 12076 121:25 12174 12223 12272 12321 12370 12420 Gallons per Foot of Cylinder 76354 76689 77025 77362 77699 78038 78376 78716 79057 79398 79739 80082 80425 80769 811 14 81460 81806 82153 82501 82849 831.99 83548 83899 84251 84603 84.956 85309 85664 86019 86374 86731 87088 87446 87805 881 65 88525 88886 892.47 89610 89973 90337 90701 91067 91433 91800 92.167 92536 92905 42 Gallon Barrels per Foot of Cylinder Sphere Surface In Sq. Ft. Sphere Volume | In Cu. Ft. 1818.0 1825.9 1833.9 1841.9 1850.0 1858.0 1866.1 1874.2 1882.3 1890.4 1898.6 1906.7 1914.9 1923.1 1931.3 1939.5 1947.8 1956.0 1964.3 1972.6 1980.9 1989.2 1997.6 2006.0 2014.3 2022.8 2031.2 2039.6 2048.1 2056.5 2065.0 2073.5 2082.1 2090.6 2099.2 2107.7 2116.3 2124.9 21 33.6 2142.2 21 50.9 21:59.6 21 68.3 2177.0 2185.7 21 94.5 2203.2 2212.0 40828 41007 41 187 41367 41548 41728 41910 42091 42273 42456 42638 42822 43005 431.89 43374 43558 43744 43929 44115 44301 44488 44675 44863 45051 45239 45428 45617 45806 45996 461 86 46377 46568 46759 46.951 47144 47336 47529 47723 47916 481 11 48305 48500 48695 48891 49087 49284 49481 49678 775735 780849 785986 791146 796328 801533 806760 81 2010 817.283 822579 827897 833238 838603 843990 849.400 854833 860290 865769 871272 876798 882347 887920 893516 8991 36 904779 91 0445 916136 92.1850 927587 933349 93.9134 944943 950776 956633 962514 968419 974348 980301 986.278 99.2280 998.306 1004356 1 010431 1016530 1022654 1028802 1034975 1041172 c Y L I N D E R S A N D S P H E R Es TABLE OF CAPACITIES OF CYLINDERS AND SPHERES Diam. In Feet Ft. Cu. per Foot of Cylinder Gallons per Foot of Cylinder 42 Gallon Barrels per Foot of Cylinder Sphere Surface In Sq. Ft. Sphere Volume in Cu. Ft. Diam. | In Feet Cu. Ft. per Foot of Cylinder Gallons per Foot of Cylinder 42 Gallon Barrels per Foot of Cylinder Sphere Surface I rl Sq. Ft. Sphere Volume ! ſh Cu. Ft. 126 126% 126% 1.26% 127 127% 1.27% 1.27% 128 128% 128% 128% 129 129% 129% 129% 130 130% 130% 130% 131 131% 131% 131% 132 132% 1.32% 132% 133 1.33% 1.33% 133% 134 1.34% 1.34% 1.34% 135 135% 135% 135% 136 1.36% 1.36% 136% 137 137}4 137% 137% 12469 12519 12568 12618 12668 12718 12768 1281.8 12868 12918 12969 13019 13070 13121 13171 13222 13273 13324 13376 13427 13478 13530 13581 13633 13685 13737 13789 13841 13893 13945 13998 14050 141 03 14155 14208 14261 1431.4 14367 14420 14473 14527 14580 14634 14687 14741 14795 14849 14903 93274 93645 94.016 94388 94761 95134 95508 95883 96259 96635 97.013 97.390 97769 98148 98528 98.909 99.291 99673 100056 100440 100824 101.209 101595 101982 102369 102757 103.146 103536 103926 104.317 104709 105102 105495 105889 106284 106679 107075 107472 107870 108268 108667 109067 109468 109869 1 10271 1 10674 |11 1078 11 1482 2220.8 2229.6 2238.5 2247.3 2256.2 2265.1 2274.0 2282.9 2291.9 2300.8 2309.8 2318.8 2327.8 2336.9 2345.9 2355.0 2364. 1 2373.2 2382.3 2391.4 2400.6 2409.7 2418.9 2428.1 2437.4 2446.6 2455.9 2465.1 2474.4 2483.7 2493. 1 2502.4 251 1.8 2521.2 2530.6 2540.0 2549.4 2558.9 2568.3 2577.8 2587.3 2596.8 2606.4 2615.9 2625.5 2635.1 2644.7 2654.3 49876 50074 50273 50471 50671 50870 51071 51271 51472 51673 51875 52077 52279 52482 52685 52889 53093 53297 53502 53707 53913 54119 54325 54532 54739 54947 55155 55363 55572 55781 55990 56.200 56.410 56621 56832 57044 57256 57468 57680 57893 581.07 58321 58535 58750 58965 59180 59396 5961.2 104.7394 1053641 1059.913 1066209 1072531 1078877 10852.48 1091645 1098066 1 104513 1 110985 1117481 1124004 1 130551 1 137124 1143723 1150347 1156996 1163671 1170371 1177098 1 183850 1 190627 1 197431 1204.260 1211116 1217997 1 224904 1231838 1238797 1245.783 1252795 12598.33 1266898 1273988 1281 106 1288249 1295420 1302616 1309840 1317090 1324366 1331670 1339000 1346357 1353741 1361 152 1368590 138 138% 138% 138% 139 139% 139% 139% 140 140% 140% 140% 141 141% 141% 141% 142 142% 142% 1.42% 143 143% 143% 143% 144 144% 144% 144% 145 1.45% 1.45% 1.45% 146 146% 146% 146% 147 147% 147% 147% 148 148% 148% 148% 149 1.49% 1.49% 1.49% 150 14957 15011 15066 15120 15175 15229 15284 15339 15394 15449 15504 15559 15615 15670 15725 15781 15837 15893 15948 16005 16061 16117 16173 16230 16286 16343 16399 16456 16513 16570 16627 16684 16742 16799 16856 16914 16972 17029 17087 17145 17203 17262 17320 17378 17437 17495 17554 17613 17671 11 1887 112293 112699 113107 113514 113923 114333 114743 115154 115565 115978 116391 1 16805 117219 117634 1 18050 1 18467 1 18885 1 19303 1 19722 1 20142 120562 120983 121405 121,828 122251 122675 123100 1235.26 123952 124379 124807 125235 125665 126095 126525 126957 127389 127822 128256 128690 129125 129561 129998 130435 130873 131312 131751 132.192 2664.0 2673.6 2683.3 2693.0 2702.7 2712.5 2722.2 2732.0 2741.8 2751.6 2761.4 2771.2 2781.1 2790.9 2800.8 281 0.7 2820.6 2830.6 2840.5 2850.5 2860.5 2870.5 2880.6 2890.6 2900.7 291.0.7 2920.8 2931.0 2941.1 2951.2 2961.4 2971.6 2981.8 2992.0 3002.3 3012.5 3022.8 3033.1 3043.4 3053.7 3064.0 3074.4 3084.8 3095.2 3105.6 311 6.0 3126.5 3136.9 3.147.4 598.28 60045 60263 60481 60699 60917 61 136 61356 61575 61795 62016 62237 62458 62680 62902 63124 63347 63570 63794 64018 64242 64467 64692 64918 65144 65370 65597 65824 66052 66280 66508 66737 66966 671.96 67426 67656 67887 681 18 68349 68581 68813 69046 69279 69513 69746 69981 70215 70450 70686 1376055 1383547 1391067 1398613 14061.87 1413788 1421416 14290.72 1436755 1444466 1452204 1459.970. 1467763 1475584 1483.433 1491310 1499214 15071.46 1515107 1523095 15311 11 15391.56 1547228 1555329 1563458 1571615 1579800 1588014 1596.256 1604527 1612826 1621154 16295.11 1637896 1646310 1654752 1663224 1671724 1680253 168881 1 1697.398 1706015 1714660 1723334 1732038 1740771 1749533 1758325 1767.146 (202) B U F F A L O T A N K C O R P O R A T I O N COMPARISON OF CALLONS AND CUBIC FEET UNITED STATES GALLONS IN A GIVEN NUMBER OF CUBIC FEET 1 cubic foot = 7.480519 U. S. gallons; 1 gallon =231 cubic inches = . 13368056 cubic foot Cubic Feet Gallons Cubic Feet Gallons Cubic Feet Gallons 0.1 ().75 5() 374,0 8,000 59,844.2 ().2 : 1.5() 6() 448.8 9,000 67,324.7 ().3 2.24 7() 523.6 10,000 74,805.2 ().4 2.90 8() 598.4 20,000 149,610.4 ().5 3.74. {}() 673.2 30,000 224,415.6 (). (5 4.49 10() 748.0 40,000 299,220.8 ().7 5.24 200 1,496.1 50,000 374,025.9 ().S 5.9S 30() 2,244.2 60,000 448,831.1 ().9 6.73 40() 2,992.2 70,000 523,636.3 1 7.48 50() 3,740.3 80,000 598,441.5 2 14.96 (30() 4,488.3 90,000 673,246.7 ;3 22.44 700 5,236.4 100,000 748,051.9 4 29.92 80() 5,984.4 200,000 1,496,103.8 j 37.4() 90() 6,732.5 300,000 2,244,155.7 {} 44.88 1,000 7,480.5 400,000 2,992,207.6 7 52.36 2,000 14,961.0 500,000 3,740,259.5 8 59.84 3,000 22,441.6 600,000 4,488,311.4 9 (57.32 4,000 29,922.1 700,000 5,236,363.3 1() 74.8() 5,000 37,402.6 800,000 5,984,415.2 20 149.6 6,000 44,883.1 900,000 6,732,467.1 3() 224.4 7,000 52,363.6 1,000,000 7,480,519.0 4() 209.2 CUBC FEET IN A CIVEN NUMBER OF CALLONS Gallons – Cubic Feet Gallons Cubic Foet | Gallons Cubic Feet 1 . 134 1,000 133.681 1,000,000 133,680.6 2 .267 2,000 267.361 2,000,000 267,361.1 3 .401 3,000 401.042 3,000,000 401,041.7 4 .535 4,000 534,722 4,000,000 534,722.2 5 .66S 5,000 668.403 5,000,000 668,402.8 () .8()2 6,000 S()2,083 6,000,000 802,083.3 7 .936 7,000 935.764 7,000,000 935,763.9 S 1,069 8,000 1,069.444 8,000,000 1,069,444.4 9 1.203 9,000 1,203.125 9,000,000 1,203,125.0 1() 1.337 10,000 1,336.806 10,000,000 1,336,805.6 EQUILIBRIUM OF LIQUIDS This is a property of liquids that can be easily demonstrated, and examples are frequently seen. Thus, if two barrels are connected at the bottom with a pipe, and water is poured in one until it reaches within a foot of the top, the water in the other will be found to have attained the same height. PRESSURE OF LIQUIDS ON SURFACES The general proposition on this point is as follows: The pressure of a liquid on any surface immersed in it is equal to the weight of a column of the liquid whose base is the surface pressed, and whose height is the perpendicular depth of the center of gravity of the surface below the surface of the liquid. The pressure thus exerted is independent of the shape or size of the vessel or cavity containing the liquid. The pressure of a liquid against any point of any surface, either curved or plane, is always perpendicular to the surface at that point and at any given depth equal in every direction. (203) F L A N G E S DRILLING TEMPLATES: AMERICAN STANDARD - 150–Pound 300–Pound 400-Pound Nominal t o - Pipe Size Num- | Diameter and º; Num- | Diameter and º; Num- | Diameter and .."; Inches ber of Length of Bolt | ber of Length of Bolt | ber of Length of Bolt Bolts Bolts Circle | Bolts Bolts dº..., | Bolts | Stud Bolts | 6′. % 4 % x 1% 2% 4 % x 2 2% % 4 % x 1% 2% 4 % x 2% 3% 1 4 }% x 1% 3% 4 % x 2% 3% 1% 4 % x 1% 3% 4 % x 2% 3% For sizes 3%." and smaller, 1% 4 }% x 2 3% 4 34 x 2% 4% use 600-Pound 2 4 % x 2% 4% 8 % x 2% 5 American 2% 4. % x 2% 5% 8 34 x 3 5% Standard 3 4 9% x 2% 6 8 34 x 3% 6% 3% 8 % x 2% 7 8 34 x 3% 7% 4 8 % x 2% 7% 8 % x 3% 7% 8 % x 5% 7% 5 8 34 x 2% 8% 8 34 x 3% 9% 8 % x 5% 9% 6 8 % x 3 9% 12 34 x 4 10% 12 % x 5% 10% S 8 34 x 3% 1134 12 % x 4% 13 12 1 x 6% | 13 1() 12 % x 3% | 1.4% | 16 1 x 5 15% | 16 1% x 7% 15% 12 12 % x 3% 17 16 1% x 5% 1734 16 1}4 x 7% 1734 14 12 1 x 4 1834 20 1% x 5% 20% 20 1% x 8 20% 16 16 1 x 4% 21% 20 1% x 6 22% 20 1% x 8% 22% 18 16 1% x 4% 22% 24 1}4 x 6% 2434 24 1% x 8% 24% 20 20 1% x 4% 25 24 194 x 6% 27 24 1% x 9% 27 24 20 1}4 x 5% 29% 24 1% x 7% 32 24 134 x 10% 32 - 600-Pound 900-Pound 1500-Pound Nominal - - - ** | Num- | Diameter and º; Num- Diameter and º; Num- | Diameter and º; Inches ber of Length of Bolt | ber of Length of Bolt | ber of Length of Bolt, .* Bolts Stud Bolts | Girºie | Bolts Stud Bolts | 6i.ie | Bolts Stud Bolts | Circle % 4 % x 3 2% 4 34 x 3% 3% % 4 % x 3% 3% For sizes 2%." 4 34 x 4% 3% 1. 4 % x 3% 3% and smaller, 4 % x 4% 4 1% 4 % x 3% 3% use 1500-Pound 4 % x 4% 4% American 1% 4 34 x 4 4% Standard 4 1 x 5% 4% 2 8 5 3 X 4 5 8 % X 5% 6% 2%. 8 34 x 4% 5% S 1 x 6 7% 3 8 34 x 4% 6% 8 % x 5% 7% 8 1% x 6% 8 3% 8 % x 5% 7% 8 1 x 6% 8% 8 1% x 7 8% 4 8 % x 5% 8% 8 1% x 6% 9% 8 1% x 7% 9% 5 8 1 x 6% 10% 8 1}4 x 7% 11 8 1% x 9% 11% 6 12 1 x 634 11% | 12 1% x 7% 12% 12 1% x 10 12% 8 12 1% x 7% | 1.3% 12 1% x 8% 15% 12 1% x 11% 15% 1() 16 1}4 x 8% 17 16 1% x 9 18% 12 1% x 13 19 12 20 1}4 x 8% 19% 20 13% x 934 21 16 2 x 14% 22% 14 20 1% x 9 20% 20 1% x 10% 22 • * i v - - - - - e s e - - - - 16 20 1% x 9% 23% 20 1% x 11 24% | . . . . . . . . . . . . 18 20 1% x 10% 25% 20 1% x 12% 27 | . . . . . . . . . . . . . 20 24 1% x 11 28% 20 2 x 13% 29% . . . . . . . . . . . . 24 24 1% x 12% 33 20 | 2% x 16% | 35% . . . . . . . . . . . . Diameter of bolt holes 9%" larger than diameter of bolts. Flanges are drilled to straddle vertical and horizontal centerlines. (204) B U F F A L O T A N K C O R P O R A T I O N TABLE OF BEVELS + q; T y | } |------------124–––––––––– - º O I 2 3 4 5 6 7 8 Q IO II # Angle VAngle VAngle V Angle V Angle V|Angle V|Angle V Angle V Angle V Angle V Angle V Angle V ..? © : | tº d tº | H | 8 || 3 | tº E tº ti | tº ti | tº tº tº tº l tº | H | tº = à |#|#|#|#|#|#|#|#|#|#|#|#|#|#|#|#|#|#| || 3 | #|#|#|# o o |oo || 4 |46 || 9 || 28 || 14 o2 |18 || 26|22 ||37 || 26 ||34 || 30 | 15 |33 |4I | 36|| 52 39 || 48 |42 || 31 & o |09 || 4 || 55 || 9 || 36|| 14 | II | 18|34 |22 |45 26 |4I 30 |22 |33 |48 || 36|| 58 || 39 |54 |42 |35 is o 18 || 5 |O4 || 9 |45 I4 19 |18 |42 22 || 52 | 26 |48 || 3o 29 |33 |54 ||37 |O4 |39 59 |42 |4o * o 27 | 5 || 12 || 9 || 54 || 14 27 | 18 5o || 23 OO | 26 || 55 3o 35 |34 |oo ||37 || O9 |40 |O4 |42 |45 # o || 36|| 5 || 21 | Io of I4 || 36||18 || 58 || 23 o8 27 |oz | 3o |42 |34 || oé 37; 15 |4o o9 |42 |5o * o |45 || 5 || 30 | Io II | 14 |44 | 19 |06 || 23 15 27 | Io 30 |49 |34 || 12 ||37 || 21 |40 | I5 |42 |55 is o 54 || 5 || 39 Io 20 | 1.4 |53 |19|| 14 || 23 23 27 | 17 | 3o 55 |34 |18 ||37 || 26 |4o 20 |43 |oo * | I og | 5 |4S IO | 29 || I5 or | 19 |22 || 23 || 30 27 | 24 |31 || O2 |34 || 24 ||37 ||32 |40 ||25 |43 |O4 # | 1 |12 || 5 |57 | Io |37 | 15 log |19|30 |23 ||38|27 |31 |31 || 08 |34 |31 ||37 ||38||46 |3o |43 log * | 1 |21 || 6 || 06| Io |46 I5 18 19 |38|| 23 |45 27 ||38|31 || 15 ||34 ||37 ||37 |43 |40 |35 |43 || 14 * | 1 |30 || 6 || 15 | Io |54 I5 |26||19|46|23 |53 27 |45 |31 || 2 || ||34 |43 ||37 |49 |40 |41 |43 |19 $# | 1 ||38|| 6 || 23 II | 03 | 15 ||34 |19||54 24 |oo 27 | 52 |31 || 28 ||34 |49 |37 || 54 |40 |46 |43 || 23 # | 1 |47 || 6 |32 || II | 12 || I5 |43 |20 |O2 |24 || 08 || 27 | 59 |31 |34 ||34 || 55 ||38|| OO |40 || 51 |43 |28 # | 1 |56 || 6 || 41 | II | 20 I5 |51 20 | Io 24 | 15 28 o6 |31 || 41 |35 or ||38|os | 40 |56 |43 33 * | 2 |OS | 6 || 50 | II | 29 | 15 59 20 | 18|24 || 23 28 || 13 ||31 |47 |35 | O7 ||38|| II || 41 |o] |43 ||38 # | 2 || 14 || 6 || 59 II |38|16 || 07 || 20 |26|24 || 30 |28 20 |31 || 54 |35 | 13 ||38||17| 41 |06 |43 |42 } | 2 || 23 || 7 || 08 || II |46 | 16 | 16 20 |33 || 24 ||37 || 28 27 ||32 || OO |35 | 19 |38||22 || 41 || II |43 |47 $# || 2 |32 || 7 | 16|II 55 | 16 || 24 |20 |41 24 |45 28 ||34 |32 |07 ||35 |25 ||38|28 || 41 | 16 || 43 |52 * | 2 || 41 || 7 ||25 | 12 |03 | 16 |32 | 20 |49 24 |52 |28 |40 |32 || 13 ||35 |31 ||38|33 |41 21 |43 |56 *} | 2 |50 || 7 ||34 |12 | 12 | 16 |40 |20 |57 ||25 |oo 28 |47 |32 | 20 |35 |37 ||38|| 39 |41 26|44 |ol # || 2 |59 || 7 |43 |12 | 20 | 16 |49 |21 |oš ||25 |oy | 28 |54 |32 ||25 |35 |42 ||38||44 || 41 |31 |44 oš #} | 3 |o8 || 7 || 52 | 12 29 | 16|57 21 | 12 ||25 | 1.4|29 |ol ||32 |32 |35 |48 ||38||49 |41 || 36|44 || Io # | 3 |17| 8 |oo | 12 ||37 || 17 | 05 i21 |20 ||25 |22 29 |08 |32 |39|35 | 54 ||38||55 |41 |41 |44 15 # | 3 || 26 || 8 |09 | 12 |46 || 17 | 13 21 |28 ||25 | 29 |29 15 |32 |45 || 36|oo 39 |oo 41 |46|44|19 # | 3 ||35 | 8 || 18|12 || 54 || 17 | 21 |21 || 36||25 | 36|29 |21 |32 || 51 || 36|| 06 39 |06 || 41 || 51 |44|24 # | 3 |44 || 8 || 27 | 13 log | 17 | 29 |21 |43 ||25 |43 29 |28 |32 || 58 || 36||12|39 II || 41 |56 |44 |28 # | 3 || 52 || 8 || 35 | 13 | II | 17 ||38|| 21 || 51 ||25 || 51 |29 |35 |33 |O4 || 36||18 || 39 || 16 |42 or |44 || 33 # 4 or || 8 |44 || 13 | 20 | 17 |46 21 |59 ||25 |58 |29 |42 |33 || 10 | 36|| 23 ||39 |22 |42 |06 |44 |37 # | 4 || Io | 8 || 53 |13 28 || 17 54 |22 o? | 26 oš 29 |49 |33 |17|36|29 |39 27 |42 II |44 |42 # | 4 |19| 9 |O2 | 13 ||37 | 18 |O2 22 || 14 |26|12 || 29 |55 |33 || 23 || 36||35 | 39 |32 |42 | 16 |44 |47 # | 4 |28 || 9 || Io | 13 |45 18|Io 22 22 26|20 | 3o o2 |33 |29 || 36|| 41 |39 ||38||42 |21 |44 || 51 # | 4 ||37 || 9 |19||13 |54; 18|18 |22|30|26|27|30|oo |33 |35|36|46||39|43|42|26|44|56 BEVEL OF ROOFS The angle or bevel of steel roofs on vertical field storage tanks is usually kept as low as possible but of sufficient pitch to provide good drainage. Pitches of 1 inch in 12 inches to 2 inches in 12 inches are commonly used on conical tank roofs. Tank roofs with a minimum slope of 30 degrees are self-supporting when the roof plates are at least 3% inch thick on tanks not over 30 feet in diameter and when roof plates are 3% inch thick or heavier on tanks not over 40 feet in diameter. Flatter or larger diameter conical roofs should be supported by steel rafters. (205) U S E F U L I N F O R M A T I O N CAPACITY OF TANKS Quick rules for finding capacity in gallons or barrels Diameter in feet” x Height or Length x 5.875 = number of gallons capacity. Diameter in feet” x Height or Length x .13988 = number of oil barrels capacity. (Where 1 barrel = 42 gallons) Diameter in feet” x Height or Length x .1895 = number of beer barrels capacity. - (Where 1 barrel = 31 gallons) Contents in cubic feet x 7.48 = number of gallons capacity. Contents in cubic inches x .004329 = number of gallons capacity. (1 gallon = 231 cu. in.) NOTE–In horizontal tanks, add extra for capacity of dished heads, when used. (Capacity of dished heads = .403 x diam.8) USEFUL RECIPROCALS To Divide By— Multiply By— 28 day month . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .03571.4 29 day month . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,034.483 30 day month . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .033333 31 day month . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.32258 32 lbs. to a bushel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .03125 48 lbs. to a bushel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .020.833 56 lbs. to a bushel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .017857 60 lbs. to a bushel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .016666 144 gross—square in. to a foot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0069444 240 pence to a £ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0041666 360 days to a year—interest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0027777 365 days to a year—interest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0027397 480 sheets to a ream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0020833 1728 cu. in. to a foot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .00057870 2240 lbs. to a gross ton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .00044643 2268 lbs. to a sand ton. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0004.4092 5280 feet to a mile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,00018939 NATIONAL BUREAU OF STANDARDS MIN. LIVE LOADS Floors used for: * Minimum Live Load in Storage purposes (general). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Storage purposes (special) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Manufacturing (light). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Printing plants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Wholesale stores (light merchandise) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Retail salesrooms (light merchandise) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Stables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Garages All types of vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Passenger cars only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Sidewalks—250, or 8000 pounds concentrated, whichever gives the largest moment or shear. WEIGHTS OF CONCRETE MATERIALS Pounds per Cubic Yard Sand. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2700 Gravel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2700 34-inch crushed trap rock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2600 1%-inch crushed trap rock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2550 1%-inch crushed limestone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2360 34-inch crushed granite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2500 1%-inch crushed granite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , 2400 Crushed slag. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2000 B U F F A L O T A N K C O R P O R AT I O N CONCRETE FOUNDATIONS TANK SUPPORTS, PIERS, ETC. ALLOWABLE PRESSURES ON FOUNDATIONS The allowable pressures on foundations depend upon the material, the drainage, the amount of lateral support given by the adjacent material, the depth of the foundation and other con- ditions, so that it is not possible to give data that will be more than an aid to good judgment. When foundations are placed on solid rock, the surface of the rock should be carefully cleaned of loose and rotten rock and roughly brought to a surface as nearly perpendicular to the direction of the pressure as practicable. A layer of cement mortar placed directly on the rock surface will assist in bonding the foundations and the footing together. When foundations are placed on sand, gravel or clay it is usually only necessary to dig a trench and start the foundation below frost. If the soil is somewhat yielding or if the load is heavy the foundation should be carried to a greater depth or the footings should be made wider than for greater depths. TANK FOUNDATIONS Concrete tank foundations should be built of a 1 : 3 : 5 concrete mixture if not reinforced, or a 1 : 2 : 4 mixture if reinforced. Only sufficient water to produce workable concrete should be used with these mixes. The aggregates should be clean, and coarse aggregate should consist of stone or gravel not larger than 3 inch for 1 : 3 : 5 concrete, or 1% inch for reinforced concrete. Under the flat tank bottom, for poor soil, it is recommended that an 8 inch reinforced concrete slab be placed, this slab to extend about 3 inches beyond the outside edge of the bottom plates or outside base angle. The concrete slab should be surrounded by a concrete ring wall, not less than 2% feet deep and this ring wall should project about 4 inches above the ground level and should be reinforced with steel to about .25 per cent of the cross sectional area. It is further recommended that asphalt flashing be provided between the tank and the ring wall at the ground level. == Heater Pipe Fixed ... | Connections 3"| s== -- 4' 4 r. * . *— ~ - Manhole- º stone or ”; ;4] Hº.../ ſ: ... Sand Foundation. • VALVE PIT || || *— — — — — — — — — — — — — — — — — — — . * - - I - - - - e Support base elbow ? . wn * , on wooden wedges Until . H== tank is filled. Then install ; ". cement mortar pedestal—H·l−2.É. *\º * v-z. : *- : * r *s "şrain Typical Foundation Detail for Pump Suction Tank No sand cushion should be needed on the concrete slab for tanks with welded bottoms. Piles should be used in addition to the reinforced concrete, if soil conditions are extremely poor. When soil conditions are very good, a concrete slab can sometimes be eliminated and a Sand cushion of at least 6" of level sand used instead of a slab. In this case it is good practise to Saturate the sand with discarded oil and place on moistened and compacted gravel after removing soft surface. COLUMN FOOTINGS The simplest form of footing construction is plain concrete. It approximates the shape of the old spread masonry footing and is generally used for light structures. The thickness of the plain concrete footing must be sufficient to prevent the column punching through it. There- º the º of the base should be large enough so that the bearing capacity of the soil is In Ot, eXCeeCleCl. (207) F O U N D A T I O N S TANKS ERECTED ON BUILDINGS When a tank is erected on a building, it is usually supported by the walls of a stair or elevator tower or it may be supported on the building walls and interior building columns. Supporting buildings or building parts may be of reinforced concrete, steel frame, brick or stone masonry construction, carefully designed to resist all loads resulting from the tank structure. The adequacy of an existing building to carry the tank and wind loads should be determined by a competent local consulting engineer. Usually the tank manufacturer does not assume responsibility for the strength of the supporting building or for soil or pile carrying capacities. BEARING POWER OF SOILS IN TONS PER SQUARE FOOT Minimum Maximum Rock, hardest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 - - Rock equal to best ashlar masonry. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 30 Rock equal to best brick masonry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 20 Rock equal to poor brick masonry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 10 Clay, thick beds, always dry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 8 Clay, thick beds, moderately dry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 6 Clay, soft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. 2 Gravel and coarse sand, hard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S 10 Sand, dry, well packed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 6 Sand, clean, dry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 —UNIVERSAL ATLAS CEMENT CO . Reinforcing is used in a footing in order to decrease the quantity of concrete required as well as to save on the quantity of excavation. The reinforcing placed in the bottom of the slab prevents its buckling and breaking from the concentrated load of the column. Mixture for footings is generally 1 : 2% : 5 or 1 : 3 : 5. PIERS OR SINCLE UNREINFORCED FOUNDATIONS ALLOWABLE BEARINC, LOADS Kind of Material Tons per Square Foot Soft clay or loam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Ordinary clay and dry sand mixed with clay . . . . . . . . . . . . . . . . . . . . . 2 Dry Sand and dry clay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Hard clay and firm, coarse Sand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Firm, coarse Sand and gravel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Shale rock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S Hard rock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 —KETCHUM ANCLES OF REPOSE, p, FOR MATERIALS Materials (p Earth, loam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30° to 45° Sand, dry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25° to 35° Sand, moist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30° to 45° Sand, Wet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15° to 30° Clay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , * * * * * * * * * * * * * * * * * * * * * * * * * 25° to 45° Gravel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30° to 40° Cinders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25° to 40° Coke. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30° to 45° B U F F A L O T A N K C O R P O R A T I O N ACID TANKS Buffalo Tank Corporation builds storage tanks and other equipment for the various acids and is thoroughly familiar with the exacting requirements for vessels used in manufacture or storage. As sulphuric acid is one of the acids most frequently used in modern industry, we append the following information on this acid. SULPHURIC ACID STORACE TANKS CAPACITIES OF HORIZONTAL TANKS Diameter of Tank Capacity in Tons 2 or raes P. * Srvaniſ, r. § 2nt, H in Feet per Foot of Length Degrees Baumé Specific Gravity Per Cent, H2SO4 4 .597.981 50 1.5263 62. 18 4 .63121() 55 1.6111 69.65 4 .66834() 60 1.7059 77.67 4 .719 |(}() 66 1.8354 93.19 5 .934771 50 1.5263 62. 18 5 .986.299 55 1.6111 69.65 5 1.()443 16 60 1.7059 77.67 5 1. 123632 66 1.8354 93.19 (5 1.395521 50 1.5263 62.18 6 1.420289 55 1.6111 69.65 6 1.503836 60 1.7059 77.67 6 1.6 18128 66 1.8354 93.19 7 1.83 1348 50 1.5263 62.18 7 1.93.3064 55 1.6111 69.65 7 2.046826 60 1.7050 77.67 7 2.202282 66 1.8354 93.19 8 2.39198 50 1.5263 62.18 8 2.52490 55 1.6111 69.65 8 2.67343 60 1.7059 77.67 8 2.87647 66 1.8354 93.19 Q 3.02737 50 1.5263 62.18 {} 3. 19560 55 1.6111 69.65 9 3.38.357 60 1.7059 77.67 9 3.64055 66 1.8354 93.19 1() 3.73750 50 1.5263 62.18 1() 3.94519 55 1.6111 69.65 1() 4, 17772 60 1.7059 77.67 1() 4.494 52 66 1,8354 93.19 EFFECTS OF WATER AND ACID Sulphuric acid (H2SO4) boils at about 270° C. with partial decomposition. Some sulphur trioxide passes off as vapor, the acid in the retort becomes weaker, and the boiling point steadily rises until the acid has attained a strength of about 98 per cent H2SO4 (80 per cent SOs) when it distils over unchanged. On boiling dilute solutions of sulphuric acid, the acid becomes stronger since water or very dilute acid passes over; at the same time the boiling point steadily rises until the acid has attained a strength of 98 per cent H2SO4, when it distils over unchanged, at 317° C. When sulphuric acid is mixed with water, the volume of the cold mixture is much less than the sum of the volumes of the water and acid used. The greatest contraction occurs with a solution containing about 97.7 per cent of H2SO4, that is 79.7 per cent SOA. When sulphuric acid and water are mixed a considerable rise of temperature occurs. Hence sulphuric acid should be mixed with care. Do not pour the water into the acid, but always pour the acid into the water with constant stirring. SULPHURIC ACID IN STEEL TANKS Sulphuric acid is successfully stored in steel tanks except when in dilute form. Dilute sulphuric acid dissolves magnesium, zinc, iron, cobalt, cadmium, manganese, in the cold, forming a sulphate of the metal and hydrogen. The concentrated acid has very little action on these metals in the cold; a few bubbles of hydrogen may be evolved, but the action soon appears to stop. When heated, these metals give sulphur dioxide and the corresponding sulphates. (209) : ; : 5 MECHANICAL PROPERTIES OF METALS | Reduct. Tensiº ||Yield Point Elastic Limit ** | Pºgº, Brinell Hardness Strength psi psi Limit in 2 inch in Area pSl - pSI % % 500 kg. 3,000 kg. Monel. . . . . . . . . . . ... Annealed . . . . . . . . 70–85,000 || 25–30,000 | 20–30,000 35,000 35–50 65–75 80–105 118–135 Hot-worked. . . . . . 80–105,000 | 40– 85,000 || 25–65,000 35–40,000 20–45 50–65 125—150 | 150–175 Cold-worked . . . . . 75–175,000 | 40–150,000 || 30–100,000 || 35–50,000 35— 1 45–75 110–240 115–250 Nickel. . . . . . . . . . . . Annealed . . . . . . . . 65–75,000 | 20–30,000 || 17–23,000 30,000 43–53 65–75 85–105 115–130 Inconel. . . . . . . . . . . Annealed . . . . . . . 80– 95,000 || 30– 40,000 20–30,000 | . . . . . . 45–55 65–75 | . . . . . . . . . . . . . . . Cold-worked . . . . . to 200,000 | . . . . . . . . * : * * * * * * * ~ * * * * * * | * * * * * - * * * - I - - * * * * * : * * * * * * * Copper . . . . . . . . . . . Annealed . . . . . . . . 30,000 | . . . . . . . . . 3,000 10,000 70–75 50–55 30– 40 | . . . . . . . Cold-worked . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16,500 15 55 | . . . . . . . . . . . . . . . Brass. . . . . . . . . . . . . Annealed . . . . . . . . 45,000 | . . . . . . . . . 8,500 18,000 70 70 50– 60 | . . . . . . . Cold-worked . . . . . 80–85,000 | . . . . . . . . . 36–38,000 25,000 15 60 | . . . . . . . . . . . . . . . Phosphor Bronze. . . Annealed . . . . . . . . 50,000 | . . . . . . . . . 14,000 20,000 70 SO 60 | . . . . . . . Cold-worked . . . . . to 145,000 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * * * | * * * * * * * | * s is ~ e s , Everdur . . . . . . . . . . Annealed . . . . . . . . 65– 70,000 || 25–35,000 | . . . . . . . . . 25,000 50–60 55–65 | . . . . . . . . . . . . . . . Cold-worked . . . . . 85–110,000 | 60– 70,000 | . . . . . . . . . . . . . . . . 13–30 22–49 | . . . . . . . . . . . . . . . Nickel Silver . . . . . . Annealed . . . . . . . . 50,000 | . . . . . . . . . 6,500 20,000 40–50 70 75— 85 | . . . . . . . Cold-worked . . . . . 70,000 | . . . . . . . . . 30,000 23,000 25 50 | . . . . . . . . . . . . . . . Wrought Iron . . . . . . Annealed . . . . . . . . 40– 50,000 || 28–34,000 || 21–26,000 24,000 40–45 40–45 85— 95 | . . . . . . . Mild Steel . . . . . . . . . Heat-treated . . . . . 75,000 | . . . . . . . . . 45,000 35,000 30 65 | . . . . . . . 140–170 Alloy Steel (3120). | Heat-treated. . . . . 116,000 | . . . . . . . . . 85,000 | . . . . . . 23 48 . . . . . . . 270 14% Cr Iron . . . . . ... Annealed . . . . . . . . 80,000 | . . . . . . . . . 45,000 | . . . . . . 35 75 | . . . . . . . 160 Hot-worked. . . . . . 100–115,000 || 75- 85,000 | . . . . . . . . . . . . . . . . - - - - - * - * * * 1 - - - - - - - - - - - - - * * 17% Cr Iron . . . . . . Annealed . . . . . . . . 70– 75,000 || 45– 55,000 | . . . . . . . . . . . . . . . . 30–35 70–75 | . . . . . . . 140–175 Hot-worked. . . . . . 85–95,000 || 65–75,000 | . . . . . . . . . . . . . . . . 20–25 || 45–50 | . . . . . . . . . . . . . . . 18/8 Cr/Ni Iron . . . . Annealed . . . . . . . . 80–90,000 || 35–40,000 | 20–25,000 45,000 35–60 60–70 130–140 | . . . . . . . Cold-worked . . . . . to 300,000 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Aluminum . . . . . . . . Annealed . . . . . . . . 12– 15,000 4— 7,000 || 2– 3,000 6,000 30–45 75–80 30– 35 | . . . . . . . Cold-worked . . . . . 20,000 . . . . . . . . . 12,000 8,000 18 65 | . . . . . . . . . . . . . . . Duralumin. . . . . . . . Annealed . . . . . . . . 25–35,000 7– 10,000 || 7–10,000 14,000 15–20 40–45 | . . . . . . . . . . . . . . . Heat-treated. . . . . 55–65,000 | . . . . . . . . . 30– 44,000 18,000 18–25 20–25 90–105 | . . . . . . . Lead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2,800 . . . . . . . . . <21,000 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 COMPARATIVE PHYSICAL AND MECHANICAL PROPERTIES OF METALS (Approximate) * Melting Melting Specific Heat Heat Elec. Coef. Of Modulus Density Point Point Heat Expansion | Cond’y Cond’y | Elec. Res. of Elasticity Degrees C. Degrees F. Per ‘’C. % of Cu 9% of Cu | Per “C. psi Monel. . . . . . . . . . . . . . . 8.80 1300–1350 2370–2460 0.127 .000014 6.6 4 .0019 26,000,000 Nickel . . . . . . . . . . . . . . 8.85 1440 2625 0.130 .000013 15.5 16 .0041 30,000,000 Inconel. . . . . . . . . . . . . . 8.55 1370 2500 * - - - .000013 3.5 ! . . . . . * - - - 31,000,000 Copper. . . . . . . . . . . . . . S.89 1083 1980 0.093 .000017 100 100 .0040 16,000,000 Brass * - 8.46 900 1650 0.088 .000020 28 2S .0015 13,800,000 Phosphor Bronze . . . . . 8.66 :k * * * * (). 104 .000018 . . . . . 36 .0039 16,000,000 Everdur. . . . . . . . . . . . . S.30 1050 1920 - - - - .000017 30 6 e - - - 15,000,000 Nickel Silver . . . . . . . . . 8.75 :: - - - - 0.095 .000018 7.6 5.2 .0003 17,000,000 Iron . . . . . . . . . . . . . . . . 7.7 1535 2795 0.110 .000013 15 15 .0062 25,000,000 Steel. . . . . . . . . . . . . . . . 7.9 1400 2550 .000013 6–12 3–15 30,000,000 Cast Iron . . . . . . . . . . . . 7.2 1000–1200 | 1830—21.90 .000010 10–12 2–12 12–27,000,000 Duriron . . . . . . . . . . . . . 7.0 1260 2300 .000028 17.4 2.5 ! . . . . . . . . . . . . . . 14% Cr Iron . . . . . . . . . 7.7 1490 2715 .000011 5 2.8 * * * * 30,000,000 17% Cr Iron . . . . . . . . . 7.6 1400 2550 * - - - .000010 5 | . . . . . .0015 | . . . . . . . . - 18/8 Cr/Ni Iron . . . . . * 7.9 1400 2550 0.118 .000017 3.6 2.8 tº s - - 28,600,000 Zinc . . . . . . . . . . . . . . . . 7.14 420 760 0.094 .000029 29 28.2 .0040 13,700,000 Lead. . . . . . . . . . . . . . . . 11.38 327 620 0.031 .000029 9 7.8 .0041 800,000 Aluminum . . . . . . . . . . . 2.7 660 1220 0.218 .000024 52 56–59 .0042 10,000,000 Duralumin . . . . . . . . . . . 2.8 600 1110 - - - - .000022 40 32 • * * * 10,000,000 Silver . . . . . . . . . . . . . . . 10.51 960 1760 0.056 .000019 110 106 .0040 9,000,000 Platinum . . . . . . . . . . . . 21.5 1755 3190 0.032 .000008 18 15 .0036 23,000,000 *Varies according to Grade. R E C T A N G U L A R T A N K S *suoIIeſā up &\qoºdºo aqq sſ 19.Yasue aqą puſę &#'). Kq qȚnsa I syųQ KĻđņȚnuu uaqq º &qſoºdºo qoog oſ qno aqq uqeqqo oq ºqųāſøq aqq KQ ‘q’,5 uºſ aq?! Kq ‘q}pļA aqqÁȚdņȚnuI ' Xueq ieſnīšu eņ09 IKüre gö Kųoeddo o qą einºg offL z: , Zot ! … · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·& & & & & \ : e • • • • • ! » • • • • • •• • • • • • | • • • • • • • | • • • • • • • ! » • • • • • • | • • • • • • • | • • • • • • | • • • • • | • • • • • | • • • • • | • • • • •ZI grzęOI || 6g'696 ||• • • • • • • | · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · I · · · · · ·• I • • • • • • ► | * * * * * * *• • • g • • • • • • • • I • • • • • • • ! * • • • • • • | • • • • • • • W • • • • • • W • • • • • ; • • • • •�° ' ' | 'u! 9 II g+'/96 || Z.z.gſ6 |#I-g06 || • • • • • • • • • • • • • | · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ſ · · · · · · · · · · · · · · · * |* ' ° ' ' | ' ' ° ' 'II 9gºzț6 | 9zºgO6|| OO'ſ:93 || g/'ſzŞ | ' ' : ' ° ' ' | ' ' : ' ° ' ' | ' ' : ' ° ' ' | ' ° ' ' ° ' ' | ' ' ° ' ' ' ' | ' ° ' ' ° ' '« » • • • • • • • • • • I • • • • • • • ¡ ¿ • • • • • • | • • • • • • • I • • • • • • • I • • • • • •« T », « » º « I • • • • • | & * * * *ºu! 9 OI 99° 268 | 92, '093 || 99° ZZ$3 | Ģfrºg 82 | 90°8f / | * * * * * * * | " ' ' ° ' ' ' | ' ' : ' ° ' ' | ' ° ' ' ° ' ' | ' ' ° ' ' ’• • • • • I • • • • • • • İ • • • • • • • ; • • • • • • • I • • • • • • • ! • • • • • • • † • • • • • • I • * * * * | • • • • * I * * * * * ſ º * * * *0I //'zg3 |#z’ ZIg | IZ'I 32 | Z I-95) | g9 OI 2. || II ºg 19 |· · · · · · · I · · · · · · · I · · · · · · · · · · · · · * | " ' : ' ° ' ' | ' ° ' ' ° ' ' | ' ° ' ' ° ' ' | ' ' : ' ° ' ' | ' ' ° ' ' ° ' | ' ° ' ' ° ' ' | ' ' ' ° ' ' | ' ' ° ' ' | ' ' ° ' ' | ' ° ' ' ( |’’’’’‘uſ 9 6 63° 203 || g2'+22 | 9g'OŤ Z | 06’902 | gz: g29 | 3g'699 || Z6'g'O9|| ' ' : ' ° ' ' | ' ' : ' ° ' ' | ' ' ° ' ' ' ' | ' ' : ' ° ' ' | ' ' ° ' ' ' ' | ' ° ' ' ° ' ' | ' ° ' ' ° ' ' | ' ° ' ' ° ' ' | ' ° ' ' ° ' ' | ' ' ° ' ' ' | ' ° ' ' ' | ' ' ° ' ' | ' ' ° ' ' | ' ' ' ’6 00’892 | Izº I 82 | &#° 669 || 89° 299 || #8°989 | 90°+09 | gºzº ZZQ || 9†”Ofºg | ‘ ’ “ ’ “ ’ ”• • • • • • || … • • • • • • + • • • • • • • | • • • • • • • I • • • • • • • | • • • • • • • | • • • • • • • † • • • • • • | • • • • • I • • • • • | * * * * * | * * * * **UI! 9 8 zI (3L Z | Oz’339 || $3z^399 || 99°329 | ±± 869 || Ig'999 || 6g'8gg || 29’809 | 92,8/5 | · · * * * * ' | ' ° ' ' ° ' ' | ' ' ° ' ' ' ' | ' ' ' ° ' ' ' | ' ' ° ' ' ' ' | ' ° ' ' ° ' ' | ' ° ' ' ° ' ' | ' ' ' ° ' ' | ' ' ° ' ' | ' ' ° ' ' | ' ' ° ' ' | ' ' ’ ”8 Þzºg 19 | 6Ț ºg#9 | ÞI * ZI Q | $30,68g | #0’I 99 | 36′Zgg || 86°f°09 | 88’92, † || 89'8ff" | 8./'0ZŤ | ‘ ’ “ ” ' ' ' | ' ' ° ' ' , ' | ' ° ' ' ° ' ' | ' ° ' ' ° ' ' | ' ' ° ' ' ' ' | ' ° ' ' ° ' ' | ' ° ' ' ' | ' ' ° ' ' | ' ' ° ' ' | ' ' ° ' ' | ' ' ° ' '‘UI! 9 ſ. 99°329 | 31 ºz.09 | 66 g/g | I 3-6ſg | #9’gzg | Gř, 26Ť | ZZ” IZŤ | 60° giff | I6'8I fº | ZZ’Z68|| †g’998 || ' ' : ' ° ' ' | ' ' ° ' ' ' ' | ' ' ' ° ' ' ' | ' ' ° ' ' ' , ' ' ' ° ' ' ' | ' ' ' ° ' ' | ' ' ° ' ' | ' ' , ' ' | ' | ' | ' | ' ' ' ’Z Zººgºg | 9I ‘6gg | G3"#gg | †g’OIG I €3·93ț | Z6’I9Ť | 09' 28 f. | 08°8’I† | 86°888 || 29’f98 | 98°0ț8 | 90’918 || ' ' ° ' ' ' ' | ' ' : ' ° ' ' | ' ° ' ' ° ' ' | ' ° ' ' ° ' ' | ' ' ' ° ' ' | ' ' ° ' ' | ' ' ° ' ' | ' ' ° ' ' | ' ' , ' 'ºuſ 9 9 69'3gg | g[ '91 g | I Z’g6# | ZZ'I ZË | 88’8ff; || 69'9ZŤ | #6'80ţ | OgºI38 | 90,698 || Z.9°988 | 8 IºřI 8 | † 2.' [63 | 08°69Z |’‘ “ ’ ” ' ' | ' ° ' ' ° ' ' | ' ° ' ' ° ' ' | ' ' ° ' ' ' | ' ' ° ' ' | ' ' ° ' ' | ' ' ° ' ' | ' ' , ' '9 IZº96Ť | # Lºg/' + | Zgº zgſ | OO‘zgŤ | gț¢”I IŤ | g3'069 | 8Z'028 || LZ'6ț8 |#I'6Z8|| Zg’808 | 00’88Z | 8ț¢"/94 || 98°9fºZ | 8Z '92,'Z | " ' : ' ° ' ' | ' ° ' ' ° ' ' | ' ' ° ' ' ' | ' ' ° ' ' | ' ' ° ' ' | ' ° ' ' ' | ' ' ' ’‘UJ 9 g £8º3#ţ | g[ 'Ogſ | gț¢”IIŤ | ZZºz69 | 90'ſ/18 || Zgº ggg | Z9'989 | 36' ZIg | ZZ'66Z | Zgº08Z | Z8’I 93 || II '8řZ || If’fz. Z | IZ’g0Z I I0° 28 I || ' ' ' ° ' ' ' | ' ' ' ° ' ' | ' ' ° ' ' | ' ' ° ' ' | ' ' ° ' ' | ' ' ° ' 'Ç #6'90ſ | II · 139 | 3z’029 | Çiff'ggg | Z9'988 || 62,6 I 8 | 96°Z08 | ĢI’983 | 09’69Z | Ziff"Zg Z | 89'982 | 08’8IZ | 16° IOZ | ÞI’981 || I8'891 | 857’ L9 I || ' ' ° ' ' ' | ' ° ' ' ' | ' ' ° ' ' | ' ' ° ' ' | ' ' ° ' '‘uſ 9 † 90'6gg || OI ºff-g | ÞI’629 | $3 ['+I$ | ZZ'66Z | 9Z"#8Z | 08’ 69Z | †gº fºgº | Zg'68Z | I†”țzz | gț¢’60@ | 6f;"#6 I || 89°6ZI | Zgº ř9] | [9’6Ť I | g9, †8. I ||69’6II || ' ' ° ' ' | ' ' ° ' ' | ' ' ° ' ' | ' ' ° ' '# ŞI'#'Iº || 60° IO 8 || 00’88Z | 06’f ZZ || Z8° I 93 | $/,'8țzz, ſ 89'982 | †gº ZZZ | gț*60Z || 98°96 I | ZZ'88 I || 8I’02. I || 60° 29'I || 00’ffL | I6'08 I | Z8° Z.II |$/,'#0Ī | #9* I6|| ' ' ° ' ' | ' ' ° ' ' | ' ' ° ' '‘uſ 9 8 08°69Z | 10*$3gz | 98° 9f@ || 89'98 Z | Iſººfz. Z | 6 Iº ȘI Z | 2,6°ZOZ | g/'06. I || 89°62. I | Igº89 I || 60° 29'I | Z8’9 fL | 99’ř8 I | gjº’83 I || IZ’Z, II || 66°00 I | ZZ'68 | f-g’82||38° 29|| ' ' ° ' ' | ' ' ° ' '8 I fºfºzº | 90° GI Z | IZºQOZ | 99° 96 I | IO“ V8 I || 99° Z.ZI | [$'89 I || 96'39 I || I 9°6Ë I || 9Z "Of I || I6'08 I || 99” I ZI | IZ’ZII || 98° ZOI ] [9"86 || 9 Iºř8 |08“ fºſſ, |gf '99||OI "99|9}/, '97|| ‘ ’ “ ’ ”ºuſ 9 Z $9'6/ [ | Ç0° z.ZI | Zgº †9 I || 60° ſ.gI | I 9° 6ț¢ I | ĢI’ZțI | g9* #8 I | LI ‘ZZI | 69’6II | IZ’ZII | $/, 'f0'[ [ g'z' 26 || ZZ'68 | 6Z "Z8 || I8’f2 | 28′ 29 |†8’69 | 98°Z9|88’ff|0†” /,8|Z6’6õ| ''}} & ZI | 9 || I || II || 9 OI || 0 || || 9 6 || 6 || 9 8 | 8 | 9 / | Z | 9 9 || 9 | 9 g | 9 | 9 † | f | 9 8 || 8 | 9 % || 3 ‘QJ || ‘uſ ‘qų | “}} | ''Urſ ºng | “}} | ºuſ ‘qų | '4 g | ºu! `qų | “}} | ºuſ ºng | “}} | ruſ 'qj | “}} | ruſ ‘qj | “}} | ' uſ ºn J | °}} [‘uſ "qyſ "44 ſºuſ (13|| “}}! x{Uſe L jo qqõua"I [[}p {AA SXHINV_L \!\7"|T. SONVLOEIMI -IO LHROIE IH NI LOO− è l'Ele. A LIKOVeTVO SNOTTIVO (212) B U F F A L O T A N K C O R P O R A T I O N CIRCUMFERENCES AND AREAS OF CIRCLES Advancing by Eighths Dia Circum. Area.” Dia. Circum. Area.” IDia Circum. Area. * * .()4909 .00019 || 2% 6.6759 3.5466 || 5% | 16.886 22.691 a's .098.18 .00077 % 6.8722 3.7583 % 17,082 23.221 * . 14726 .00173 % 7,0686 3.9761 J% 17.279 23.75S % . 1963.5 .00307 % 7.2649 , 4.200() % 17.475 24.301 3% .29452 .00690 % 7.4613 4.4301 % 17.671 24.850 % ,3927() .01227 % 7.6576 4.6664 !!! 17.868 25.406 * .490.87 .01917 % 7.8540 4.9087 34 | 18.064 25.967 % .58905 .02761 % 8.0503 5.1572 % | 18.261 26.535 #3 .687.22 .03758 % 8.2467 5.4119 7% | 18.457 27.109 % 8.4430 5,6727 15% | 18.653 27.688 % .78540 .04909 34 8.6394 5.9396 # .88357 .06213 % 8.8357 6.2126 || 6. 18.85() 28.274 % .981.75 .07670 % 9.0321 6.4918 }% | 19.242 29.465 #} | 1.0799 .09.281 % 9.2284 6.7771 J.A. | 19.63.5 30.680 38 | 1.1781 .11045 % 20.028 31.919 }} | 1.2763 .12962 | . { * C) ſ }% 20.420 33.183 % i3744 iñº || 3 | §§ ſº 5% 20.813 34.472 ## | 1.472 25 % .6 º 34 21.206 35.785 32 .4726 .17257 1 r -- - -- % {j O. ( & ) % 9.8175 7.6699 % 21.598 37.122 I 1 º % | 10.014 7.9798 8 • 2 J J K *_j & = % .5708 .1963.5 1 K X 1 7 Tº ſº * * * J4 10.210 8.2958 || _ 4 * 4T Y ... ("Y º' 3-2. 1.6690 22166 % 10.407 8,6179 ( . 21.991 38.485 % | 1.7671 .24850 16 ſº º }% 22.384 39.871 I 9 a fºr g * % 10.603 8,9462 8 • *. , e -- - - 32. 1.8653 .27688 7 ( ) iſ Y ſº }4 22,776 41.282 5 * * * QT) % 10.799 9.2806 .4 s' . 94 % 1.9635 .30680 1% 10.996 9,6211 % 23.169 42.718 # 2.0617 .33824 3% "... & or }% 23.562 44.179 Q9 % 11.192 9.9678 22 "K- * . . . . % 2.1598 .37122 5 11.388 10.321 5% 23.955 45.664 33 2.2580 .40574 % ... • J (YC -º- 3/ 24.347 47173 3 2 !6 || 11.585 10.68() i. #6 is 70% y º º - º 34 2.3562 4479 || 4 |}}} | }}; 8 ## 2.4544 ,47937 16 944 ! ! :º) - * - sº 4 - # 3.5595 51849 % 12.174 11.793 8. 25.133 50.265 ; º: 5% | 12.370 12.177 }% 25.525 51.849 % 2.7489 .601:32 Q tº (; (R gº º ſº f * 㺠ºil šoss #} 2.847.1 .645()4 4. 12.5% 12.5% º 36 701 sº 15% 2.9452 .69029 || }% | 12.763 | 12.962 % | }. ºf # 3.0434 .73708 || 4 || 12.959 13.364 * | *... . .4% % 13.155 13.772 * º! (). 132 1. 3.1416 .7854 % 13.352 14.6 % 27.882 61.862 }% 3.3379 .8866 * | 13.548 14.607 &T) (T) gº " . * & }% 3.5343 .994() % 13.744 3% 9. 1 28.274 63.6.17 % 3.7306 1.1075 % 13,941 15.4% % 28'ſ. 65.397 % 3,9270 1.2272 % 14.137 15.9()4 }4 29,060 67.201 % 4.1233 1.353() % 14.334 16.349 * | *º 59.02% 3% 4.3197 1,4849 #3 || 14.5% 16.800 }% 29,845 70.8% % 4.5160 1.6230 % 14.72% 172.7 % 30.238 72.76() }% 4.7124 1.7671 34 14.9.23 17.72S % 30,631 74.662 % 4.9087 1.917.5 % 15.119 18:190 7% 31,023 76.589 5% 5.1051 2,0739 .8 1531. 18.665 % 5.3014 2.2365 % 15.512 19.147 1(). 31.416 78.540 34 5.4978 2.4053 }% 31.809 80.516 % 5.6941 2.5802 5. 15.7()S 19.63.5 14 || 32.201 82.516 % 5.8905 2.7612 % 15.904 20.12%) % 32,594 84.541 % 6.0868 2.94.83 J% 16.101 20.629 14 || 32.987 86.590 % | 16.297 21. 135 5% 33.379 88.664 2. 6.2832 3.1416 J4 | 16.493 21.648 34 || 33.772 90.763 }% 6.4795 3.34.10 5% | 16.690 22.166 % 34.165 92.886 *Approximate area, sufficiently accurate for practical purposes, including estimating. (213) C I R C L E S Advancing by Eighths CIRCUMFERENCES AND AREAS OF CIRCLES Dia. Circum. Area.” Dia. Circum. Area.” Dia. Circum. Area.” 11. 34,558 95.033 || 17% 54.192 233.71 || 23% | 73.827 433.74 }% | 34.950 97.205 % 54.585 237, 10 % 74.220 438.36 % 35.343 99.402 % 54.978 240.53 34 || 74,613 443.01 3% 35.736 101.62 % 55.371 243.98 % 75,006 447.69 J% 36.128 103.87 34 55.763 247.45 & % 36.521 106.14 % 56.156 250.95 || 24. 75.398 452.39 34 || 36.914 108.43 - J% 75,791 457.11 7% | 37.306 110.75 || 18. 56.549 254.47 % 76.184 461.86 % 56.941 258,02 % 76.576 466.64 12. 37.699 113.10 % 57.334 261.59 J% 76.969 471.44 }% 38,092 115.47 % 57.727 265.18 % 77.362 476.26 }4 || 38.485 117.86 }% 58.1.19 268.80 34 || 77.754 481.11 % 38.877 120.28 38 58.512 272.45 % 78.147 485.98 }% 39.270 122.72 % 58.905 276,12 % 39.663 125.19 % 59.298 279.81 || 25. 78.540 490.87 34 40.055 127.68 - J% 78.933 495.79 % | 40.448 130.19 || 19. 59.690 283.53 J4 || 79.325 500.74 % | 60.083 287.27 % 79.718 505.71 13. 40.841 132.73 % | 60.476 291.04 J% 80.111 510.71 }% 41.233 135.30 % 60.868 294.83 5% 80.503 515.72 % 41.626 137.89 % 61.261 298.65 34 80.896 520.77 % 42.019 140.50 % 61.654 302.49 % 81.289 525.84 }% 42.412 143.14 % 62.046 306.35 % 42.804 145.80 % 62.439 31024 || 26. 81.681 530.93 % 43.197 || 148.49 | Tº gTº Q &T & }% 82.074 536.05 % 43.590 151.20 || 20. 62.832 3.14.16 J4 || 82.467 541.19 !g 63.225 3.18.10 3. $3.3% 546.35 14. 43.982 153.94 % 63.617 322,06 i. s3.252 551.55 % 44.375 156.70 % 64.010 3.26.05 § $6.5 556.76 }% 44.768 159.48 % 64,403 330.06 5. 84,038 562.00 % 45.160 162.30 ºš 64.795 334.10 i. 84430 567.27 }% 45.553 165.13 % º § 8 - % 45.946 167.99 6 || 65. 342.25 || & 34 || 46.338 170.87 27, ; #; % 46.731 173.78 || 21. 65.973 346.36 % s3.60s §§33i % | 66.366 35().50 ;4 86001 §§§ 57 15. 47.124 176.71 % 66.759 354,66 % 86,394 593.96 }% 47.517 179.67 % 67.152 358.84 }% 6,786 56637 14 || 47.909 182.65 }% 67.544 363.05 º § Goſsi % 48.302 185,66 36 || 67.937 367.28 * | }}; 610.27 }% 48.695 188,69 % | 68.330 371.54 % g * 5% 49,087 191.75 % | 68.722 375.83 - º jºr 34 49.480 194.83 - - 28. 87.965 615.75 % 49.873 197.93 || 22. 69.115 380.13 }% 88.357 621.26 }% | 69.508 384.46 % 88.750 626.80 16. 50.265 201.06 A 69,900 388.82 $g | 89.143 632.36 }% 50.658 204.22 % 70.293 393.20 }% | 89.535 53.94 }% 51.051 207.39 }% 70.686 397.61 % | 89.928 643.55 % 51.444 210.60 5% 71.079 402.04 34 90.321 649.18 }% 51.836 213.82 34 71.471 406.49 7% 90.713 654.84 % 52.229 217.08 % 71.864 410.97 * 34 52.622 220.35 29. 91.106 660.52 % 53.014 223.65 || 23. 72.257 415.48 }% 91.499 666.23 }% | 72.649 420.00 }% 91.892 671.96 17. 53.407 226.98 }% | 73.042 424.56 % 92.284 677.71 }% 53.800 230.33 % | 73.435 429.13 }% 92.677 683.49 *Approximate area, sufficiently accurate for practical purposes, including estimating. (214) B U F F A L O T A N K C O R P O R A T I O N Advancing by Eighths CIRCUMFERENCES AND AREAS OF CIRCLES Dia Circum. Area.” Dia. Circum. Area.” Dia Circum. Area.” 29% 93.07.0 689.30 || 36. 113.097 || 1017.9 42% 132.732 1402.0 34 93.462 695.13 * 113.490 || 1025.0 * | }}}}} | {49; % | 93.855 700.98 4 113.883 || 1032.1 }% 133.518 1418.6 % | 114.275 | 1039.2 % 133.910 || 1427.0 30. 94.248 706.86 }% 114.668 || 1046.3 34 || 134.303 || 1435.4 }% 94.640 712.76 % 115.061 | 1053.5 % 134.696 || 1443.8 }% 95.033 718.69 34 115.454 1060.7 % 95.426 724.64 % 115.846 || 1068.0 || 43. 135.088 || 1452.2 J% 95.819 730.62 }% 135.481 1460.7 % 96.211 736.62 || 37. 116.239 || 1075.2 }% 135.874 || 1469.1 34 96.604 742.64 J% | 116.632 1082.5 % 136.267 1477.6 % 96.997 748.69 J4 117.024 || 1089.8 % 136.659 || 1486.2 3g | 117.417 | 1097.1 % | 137.052 1494.7 31. 97.389 754.77 }% 117.810 | 1104.5 34 || 137.445 1503.3 J% | 97,782 760.87 % 118.202 | 1111.8 % | 137.837 1511.9 }% 98.175 766.99 34 || 118.596 || 1119.2 4 y ç » « * < 3% 98.567 773.14 % 118.988 1126.7 || 44. 138.230 1520.5 }% 98.960 779.31 % 138,623 1529.2 5% 99.353 785.51 || 38. 119.381 | 1134.1 }} | {{}}|º º 34 99.746 791.73 J% 119.773 || 1141.6 º łº #: 7% 100.138 797.9S }% | 120.166 | 1149.1 22 || 3× • * 8 - R % 120.559 1156.6 º 140.194 1564.0 *... };} | # #| |3}} | #} | | | #; #. 8 $4. sº % 121.344 1171.7 8 - s #| |}}} | }; % 121,737 1793 || 45 141.372 | 1590.4 - g 7 ç & - • ? º i: | tº §5. % | 122.129 1186.9 % #7% º 38 1924.94 $33% |39. 122.522 || 1194.6 #| #; ºf % 102.88. $42.3% }% | 122.915 | 1202.3 i. 142.942 ič26.0 % 103.280 848.83 }% | 123.308 1210.6 5. 143335 ió34.9 6 * { - % 123.700 | 1217.7 º 3.338 º 33. 103.673 855.30 }% 124.093 1225.4 34 || 143.728 1643.9 J% | 104.065 861.79 5 is *...* *...* *. sº". % 144.121 | 1652.9 14 || 104.458 || 868.31 * | #; #. 3 104.851 874.85 24 º * || 46. 144.513 1661.9 * 105.243 | 881.41 % 125.271 1248.8 }% 144.906 | 1670.9 5% 105,636 888.00 º gº º ſº ſº % 145.299 || 1680.0 * 106,029 | 894.62 o,. . ; ɺ % #º 16:9. 3. Aſ & º 8 a v z º. H: . . 46 || 146.084 * 7% 106.421 901.26 }4 126,449 | 1272.4 § iº |}}} 34. 106,814 907.92 % 126.842 1280.3 34 146.869 1716.5 J% 107.207 914.61 % #; ; % 147.262 1725.7 1% 107.60() 921.32 % * • * 107.992 928.06 34 128,020 1304.2 || 47. 147.655 1734.9 J% 108.385 934.82 % | 128.413 1312.2 * łº 1744.2 5% 108.778 941.61 - - 4 * 1753.5 § ióło is 3 |41. 128.805 || 1320.3 % 148.833 1762.7 % 109.563 955.25 }% | 129.198 1328.3 }% 149.226 1772.1 }4 129.591 || 1336.4 % 149.618 1781.4 35. 109.956 962.11 % | 129.983 || 1344.5 34 150.011 || 1790.8 }% 110.348 969.00 }% | 130.376 1352.7 % 150.404 || 1800.1 J4 || 110.741 975.91 5% | 130.769 || 1360.8 % 111.134 982.84 % 131.161 1369.0 || 48. 150.796 1809 6 }% | 111.527 989.80 7% 131.554 || 1377.2 % | 151.189 | 1819.0 5% 111.919 996.78 % 151.582 | 1828.5 34 || 112.312 || 1003.8 || 42. 131.947 | 1385.4 % 151.975 | 1837.9 7% 112.705 || 1010.8 }% 132.340 || 1393.7 % | 152.367 | 1847.5 *Approximate area sufficiently accurate for practical purposes, including estimating. (215) C I R C L E S CIRCUMFERENCES AND AREAS OF CIRCLES Advancing by Eighths 157,865 1983.2 158.258 1993.1 158.650 2003.0 159,043 2012.9 || 57. 179,071 2551.8 159.436 2022.8 179.463 2563.0 159.829 2032.8 179.856 2574.2 180.249 2585.4 51. 160.221 | 2042.8 80 {D& O - 180.642 2596.7 160.614 | 2052.8 181.034 || 2608.0 161,007 || 2062.9 161,399 || 2073.0 181,427 | 2619.4 - *_N . .82 2630.7 . 201.062 3217, 161.792 2083.1 181.820 630.7 || 64 01.06 3.217.0 201.455 3229.6 #318; 20932 || 58. 182.212 264.2.1 201.847 3242.2 162,577 2103.3 182,605 2653.5 202.240 3254.8 162.970 2113.5 182.998 2664.9 202.633 3267.5 « { 183.390 2676.4 203,025 || 3280.1 52. łºś. # 183.783 2687.8 20.3.4.18 3292.8 - ... L & J & J . 184, 176 2699.3 203.81.1 3305.6 164.148 2144.2 184,569 || 2 164.541 2154.5 S+29. 710.9 . 184.961 2722.4 || 65. 204.204 || 3318.3 164.934 2164.8 204 596 3. & 165.326 217.5.1 { & . DY. 33.31.1 ič71, 5iš5.4 || 59. 185.354 || 2734.0 204.989 3343.9 ičii; 3iºs 185.747 | 2745.6 205.382 || 3356.7 - *_n . 186.139 2757.2 205.774 || 3369.6 53. 166.504 2206.2 186.532 2768.8 206. 167 3382.4 178.285 2529.4 178,678 2540.6 197.920 31.17.2 198.313 3129.6 198.706 3142.0 199.098 3154.5 199.491 3166.9 199.884 3179.4 200.277 3191.9 200.669 3204.4 Dia. | Circum. Area.” Dia. Circum. Area.” Dia. Circum. Area.” 48% 152.760 1857.0 55. 172,788 2375.8 61% 192.423 2946.5 % | 153.153 1866.5 % 173.180 2386.6 38 192.815 2958.5 % | 153.545 1876.1 % 173.573 2397.5 }% | 193.208 2970.6 % 173.966 2408.3 5% 193.601 2982.7 49. 153.938 1885.7 J% 174.358 2419.2 34 || 193.993 2994.8 }% 154.331 1895.4 5% 174.751 2430.1 7% | 194.386 3006.9 % 154,723 1905.0 34 175.144 244.1.1 % 155.116 1914.7 % 175.536 2452.0 62. 194,779 3019.1 % 155.509 1924.4 }% 195.171 3031.3 % 155.902 1934.2 56. 175.92%) 2463.0 }% 195.564 3043.5 34 156.294 1943.9 }% 176.322 2474.() % 195,957 3055.7 % 156.687 1953.7 J4 176.715 2485.() J% | 196.350 3068.0 % 177.107 2496.1 5% 196.742 3080.3 50. 157,080 1963.5 J% 177.500 2507.2 34 197.135 3092.6 157.472 1973.3 5% 177.893 2518.3 % 197.528 3104.9 % % 6. 3 }% | 166.897 2216.6 186.925 278().5 206,560 3395.3 J4 || 167.290 2227.0 187.317 2792.2 206.952 3408.2 % | 167,683 2237.5 187.71() 2803.9 % | 168.075 2248.0 188.103 2815.7 || 66. 207.345 3421.2 % 168,468 2258.5 ||. * T} 1% 207.738 3434.2 34 168.861 2269.1 || 60. 188.496 2827.4 J4 208.131 3447.2 % | 169.253 2279.6 J% | 188.888 2839.2 3% 208.523 3460.2 }4 189.281 2851.() Jº, 208.916 3473.2 54. 169.646 2290.2 3% 189.674 2862.9 5% 209.309 3486.3 }% 170,039 2300.8 }% 190.066 2874.S 3'ſ 209.701 3499.4 }4 || 170.431 2311.5 5% 190.459 2886.6 7% 210.094 3512.5 % 170.824 2322.1 34 190.852 2898.6 }% 171.217 2332.8 % 191.244 291 ().5 || 67. 210.487 3525.7 % 171.609 2343.5 J% 210.879 3538.8 34 || 172.002 2354.3 || 61. 191,637 2922.5 J4 211.272 35.52.0 % 172.395 2365.0 }% | 192.030 2934.5 3% 211.665 3565.2 *Approximate area, sufficiently accurate for practical purposes, including estimating. (216) B U F F A L O T A N K C O R P O R A T I O N CIRCUMFERENCES AND AREAS OF CIRCLES Advancing by Eighths Dia. | Circum. Area.” Dia. Circum. Area.” Dia. Circum. Area.” 67% 212,058 3578.5 7334 || 231.692 4271.8 80. 251.327 5026.5 % 212.450 3591.7 % 232,085 4286.3 J% 251.720 5042.3 34 212.843 3605. () }4 252.113 5058.0 % 213.236 3618.3 74. 232.478 4300.8 % 252.506 5073.8 % 232.871 4315.4 }% 252.898 5089.6 68. 213.628 3631.7 % 233.263 4329.9 % 253.291 5105.4 % 214,021 3645.0 % 233.656 4344.5 34 253.684 5121.2 % 214.414 3658.4 }% 234.049 4359.2 % 254.076 5137.1 3% 214.806 3671.8 % 234.441 4373.8 }% 215.199 3685.3 % 234.834 4388.5 S1. 254,469 5153.0 % 215.592 3698.7 % 235.227 4403.1 }% 254,862 5.168.9 34 215.984 3712.2 % 255.254 5184.9 % 216.377 3725.7 75. 235,619 44.17.9 % 255.647 5200.8 }% 236.012 4432.6 }% 256.040 5216.8 69. 216.770 37:39.3 % 236.405 4447.4 % 256.433 5232.8 }% 217.163 37:52.8 % 236.798 4462.2 34 || 256.825 5248.9 }4 || 217.555 3766.4 }% 237.190 4477.0 % 257.218 5264.9 % 217.948 3780.() 5% 237.583 4491.8 % 218.341 3793.7 34 237.976 4506.7 S2. 257,611 5281.0 % 218.733 3807.3 % 238.368 4521.5 }% 258.003 5297.1 % 219.126 3821.0 }4 258.396 5313.3 % 219.519 3834.7 76. 238.761 4536.5 % 258.789 5329.4 }% 239.154 4551.4 }% 259.181 5345.6 70. 219.911 3848.5 J4 || 2:39.546 4566.4 % 259.574 5361.8 % 220.3()4 3862.2 % 239.939 4581.3 34 259.967 5378.1 % 220,697 3876.0 % 240.332 4596.3 % 260.359 5394.3 % 221.090 3889.8 5% 240.725 4611.4 }% 221.482 3903.6 % 241.117 4626.4 83. 260.752 5410.6 % 221.875 3917.5 % 241.510 4641.5 % 261.145 5426.9 34 222.268 3931.4 }4 261.538 5443.3 % 222.660 3945.3 77. 241.903 4656.6 3% 261.930 5459.6 % 242.295 4671.8 }% 262.323 5476.0 71. 223.053 3959.2 }4 242.688 4686.9 5% 262.716 5492.4 % 223.446 3973.1 % 243.081 4702.1 34 263.108 5508.8 }% 223.838 3987.1 J% 243.473 4717.3 % 263.501 55.25.3 % 224.231 4001.1 % 243.866 4732.5 }% 224.624 4015.2 34 244.259 4747.8 84. 263.894 554.1.8 % 225.017 4029.2 % 244.652 4763.1 }% 264.286 5558.3 34 225,409 4043.3 J4 264.679 5574.8 % 225.802 4057.4 78. 245.044 4778.4 % 265.072 5591.4 % 245.437 4793.7 J% 265.465 5607.9 72. 226,195 407 1.5 % 245.830 4809.0 % 265.857 5624.5 }% 226.587 4085.7 % 246.222 4824.4 34 266.250 5641.2 J4 226.980 4099.8 }% 246.615 4839.8 % 266.643 5657.8 3% 227,373 41 14.0 5% 247.008 4855.2 }% 227,765 4128.2 34 247.400 4870.7 85. 267.035 5674.5 % 228.158 4142.5 % 247.793 4886.2 J% 267,428 5691.2 34 228.551 4156.8 }4 || 267.821 5707.9 % 228.944 417.1.1 79. 248.186 4901.7 % 268.213 5724.7 }% 248.579 4917.2 }% 268.606 5741.5 73. 229,336 4.185.4 }% 248.971 4932.7 5% 268.999 5758.3 J% 229.729 4.199.7 % 249.364 4948.3 34 269.392 5775.1 }4 || 230.122 4214.1 }% 249.757 4963.9 % 269.784 5791.9 % 230.514 4228.5 5% 250.149 4979.5 }% 230.907 4242.9 34 250.542 4995.2 6. 270.177 5808.8 % 231.300 4257.4 % 250.935 5010.9 }% 270.570 5825.7 *Approximate area, sufficiently accurate for practical purposes, including estimating. (217) C I R C L E S CIRCUMFERENCES AND AREAS OF CIRCLES Advancing by Eighths Dia. | Circum. Area.” Dia. | Circum. Area.” Dia Circum. Area.” 86% 270.962 5842.6 92% 290.597 6720.1 98% 3.10.232 7658.9 % 271.355 5859.6 % 290.990 || 6738.2 % 310.625 7678.3 J% 271.748 5876.5 % 291.383 67.56.4 5% 272.140 5893.5 % 291.775 6774.7 99 3.11.018 7697.7 34 272.533 5910.6 311.410 7717.1 % 272.926 5927.6 93 292.168 6792.9 3.11.803 7736.6 292,561 68.11.2 292.954 6829.5 293,346 6847.8 293.739 6866.1 294,132 6884.5 294.524 6902.9 2.94.917 6921.3 ||100. 3.14.16 7854 314.55 7873 314.95 7893 312, 196 77.56.1 312.588 7775.6 312.981 7795.2 313.374 7814.8 313.767 7834.4 87. 273.319 5944.7 273.711 5961.8 274.104 5978.9 274,497 5996.0 274.889 601 3.2 275.282 6030.4 275.675 6047.6 276,067 6064.9 || 94. 295.310 6939.8 % % }% 295.702 6958.2 % 315,34 7.913 88. 276.460 6082.1 % 296.095 6976.7 % 3.15.73 7933 J% 276.853 6099.4 % 296.488 6995.3 % 316.12 7952 }% 277,246 6116.7 J% 296.881 7013.8 % 316.52 7.972 3% 277.638 61.34.1 % 297.273 7032.4 % 316.91 7992 }% 278.031 6151.4 34 297.666 7051.0 5% 278.424 6168.8 % 298.059 7069,6 || 101. 3.17.30 8012 34 278.816 6186.2 317.69 8032 % 279.209 6203.7 95. 298.451 7088.2 3.18.09 8052 298.844 7106.9 318,48 8071 89. 279.602 6221.1 299,237 71.25.6 3.18.87 8091 279.994 6238.6 280.387 6256.1 280.780 6273.7 281.173 6291.2 281.565 6308.8 299.629 7144.3 300,022 7163.0 300,415 7181.8 300.807 7.200.6 301.200 7219.4 ||102. 320,44 8171 319.27 8111 319,66 8131 320,05 815.1 285.100 6468.2 285.492 6486.0 || 97. 304.734 7389.8 305. 127 7408.9 305.520 7428.0 305.913 7447.1 306.305 7466.2 306.698 7485.3 307,091 7504.5 307.483 7523.7 ||104. 326,73 84.95 323.98 8352 324,37 837.2 324,76 8393 325, 16 8413 325.55 8434 325.94 8454. 326.33 8474 281.958 6326.4 }% 320.84 8.191 282,351 6344.1 96. 301.593 7238.2 % 3.21.23 8211 % 301.986 7257.1 % 321.62 8231 90. 282,743 6361.7 }% 302.378 7276.() }% 322.01 8252 }% 283. 136 6379.4 % 302.771 7294.9 % 322.41 8272 }% 283.529 6397.1 }% 303.164 7313.8 34 || 322.80 8292 3% 283.921 6414.9 5% 303.556 7332.8 % 323.19 8312 % 284.314 6432.6 34 || 303.949 7351.8 5% 284,707 6450.4 % 304.342 7370.8 ||103. 323.59 S332 34 % 91. 285.885 6503.9 286.278 6521.8 286.670 6539.7 287.063 6557.6 287.456 6575.5 287.848 6593.5 /* 8 288.241 6611.5 }% 327.12 85.15 288,634 6629.6 98. 307,876 7543.0 % 327.51 8536 J% 308.269 7562.2 % 327.91 8556 92. 289.027 6647.6 J4 || 308.661 7581.5 }% 328.30 8577 - J/3 289.419 6665.7 % 309.054 7600.8 % 328.69 8597 }4 || 289.812 6683.8 J% 309.447 7620.1 % 329,08 86.18 % 290.205 6701.9 % 309.840 7639.5 % 329.48 8638 *Approximate area, sufficiently accurate for practical purposes, including estimating. (218) B U F F A L O T A N K C O R P O R A T | O N Advancing by Eighths CIRCUMFERENCES AND AREAS OF CIRCLES Dia Circum. Area.” Dia. Circum. Area. * Dia. Circum. Area. * | ()5. 3.29.87 8659 || 11.1% 349.50 97.20 | 1.17% 369.14 10844 J% | 330.26 8679 % 349.90 97.42 % 369.53 10867 % 330.65 870() }% 350.29 97.64 34 || 369.92 10890 % 331.05 872] % 350.68 9786 % 370.32 10913 }% 331.44 874.1 34 || 351.07 980.8 % 331.83 8762 % 351.47 98.30 || 1 18. 370.71 10936 34 || 332.22 8783 }% 371.11 10960 % 332.62 8804 || 12. 351.86 9852 }4 || 371.49 10983 }% 352.25 987.4 % 371.89 11007 106. 333.01 882.5 % 352.65 9897 }% 372.28 11030 }% | 333.40 884.5 % 353.04 99.19 % 372.67 11053 % | 333.80 8866 }% 353.43 994.1 34 373.07 11076 38 || 334.19 8887 % 353.82 9963 % 373.46 11099 }% 334.58 8908 34 || 354.22 9985 % 3.34.97 8929 % 354.61 10007 || 19. 373.85 11122 34 || 335.37 895() % 374.24 11.146 % 335.76 897.1 || 13. 355.00 100.29 }A 374.64 11169 }% 355.39 100.52 % 375.03 11 193 107. 336.15 8992 % 355.79 10074 }% 375.42 11216 }% 336.54 9014 % 356.18 100.97 5 e & Y & & % 375.81 11240 }% 336.94 9035 }% 356.57 101.19 34 || 376.21 11263 % 337.33 9056 % 356.96 101.41 % 376.60 11287 }% 337.72 9077 % 357.36 101.63 5 $ { ( * r $ ºl? º %| 357.75 || 10185 ||20. 376.99 || 11310 34 || 338.51 | 91.19 J% 377.39 || 11334 % 338.90 9140 || 14. 358.14 10207 % s & 1 *] º Q º tº % 377.78 11357 }% 358,54 102.30 3.2% 378.17 11381 108. 339.29 916.1 }4 || 358.93 10252 ; : 73.5 11404 J% 339.69 91.83 % 359.32 10275 #| #; #: }4 || 340.08 9.204 }% 359.71 10297 * | 3.9% 8 3.A. | * { 5 t 34 379.35 11451 % 340.47 92.25 % 360.11 10320 7 7 }% 340.86 9246 34 || 360.50 10342 % 379.74 11475 % 341.26 9268 % 360.89 10365 % 341.65 9.289 121. 380.13 11499 % 342.04 931() || 15. 361.28 10387 J% 380.53 11522 }% 361.68 10410 J4 || 380.92 11546 109. 342.43 93.31 }% 362.07 104.32 % 381.31 11570 % 342.83 9353 % 362.46 10455 % 381.70 11594 }4 || 343.22 9374 }% 362.86 10477 3% 382.10 11618 3% 343.61 9396 % 363.25 10500 34 || 382.49 11642 }% 344.01 94.17 34 || 363.64 10522 % 382.88 11666 % 344.40 9439 % 364.03 10545 34 || 344.79 9460 . 122. 383.28 11690 % 345.18 9481 || 16. 364.43 10568 }% 383.67 1171.4 - }% 364.82 10590 J4 || 384.06 11738 110. 345.58 9503 % 365.21 10613 % 384.45 11762 !g | 345.97 95.25 % 365.60 10636 }% 384.85 11786 }4 || 346.36 9546 }% | 366.00 10659 % 385.24 11810 % 346.75 9568 % 366.39 10682 34 || 385.63 11834 % 347.15 9589 % 366.78 10705 % 386.02 11858 % 347.54 96.11 % 367.18 10728 34 347.93 96.33 123. 386.42 11882 % 348.33 96.55 ||117. 367.57 10751 }% 386.81 11907 % 367.96 10774 J4 387.20 I 1931 111. 348.72 96.77 }4 || 368.35 10798 % 387.60 1 1956 }% 349.11 96.98 % 368.75 10821 }% 387.99 11980 *Approximate area, sufficiently accurate for practical purposes, including estimating. (219) C I R C L E S CIRCUMFERENCES AND AREAS OF CIRCLES Advancing by Eighths Dia. | Circum. Area.” Dia. | Circum, Area.” Dia Circum. Area” 1.23% 388.38 12004 || 130. 408.41 13273 || 1.36% 428.04 14580 34 || 388.77 12028 }% | 408.80 13299 % 428.44 14607 % 389.17 12052 }% | 409.19 13324 J% 428.83 14633 % | 409.59 13350 % 429.22 14660 124. 389.56 12076 J% | 409.98 13375 34 || 429.61 14687 }% 389.95 12101 % 410.37 13401 % 430.01 14714 }4 || 390.34 121:25 34 || 410.76 13426 % 390.74 1215() % 411.16 13452 ||137. 430.40 14741 }% 391.13 12174 J% 430.79 14768 % 391.52 12199 ||131. 411.55 13478 J4 || 431.19 14795 34 391.92 12223 }% 411.94 13504 % 431.58 14822 % 392.31 12248 % 412.34 13529 J% 431.97 14849 % 412.73 13555 5% 432.36 14876 125. 392.70 12272 }% 413.12 13581 34 || 432.76 14903 }% 393.09 12297 % 413.51 13607 % 433.15 14930 }4 || 393.49 12321 34 413.91 13633 % 393.88 12346 % 414.30 13659 |138. 433.54 14957 }% 394.27 12370 J% 433.93 14984 % 394.66 12395 ||132. 414.69 13685 J4 || 434.33 15012 34 || 395.06 12419 }% | 415.08 13711 % 434.72 15039 % 395.45 12444 }4 || 415.48 13737 }% 435.11 15067 % || 415.87 13763 5% 435.50 15094 126. 395.84 12469 }% 416.26 13789 34 435.90 15121 % 396.23 12494 % 416.66 13815 % 436.29 15148 % 396.63 12518 34 || 417.05 1384.1 % 397.02 12543 % 417.44 13867 ||139. 436.68 15175 }% 397.41 12568 J% 437.08 15203 % 397.81 12593 |133. 417.83 13893 14 || 437.47 15230 34 || 398.20 12618 }% 418.23 13919 % 437.86 15258 % 398.59 12643 }4 || 418.62 13946 }% 438.25 15285 r: *... ; # tº #} | # #| # # % º % 419.80 || 14025 % 439.43 | 15367 } | }. 37; 34 420.19 || 14051 * | |0,1} | }. % 420.58 14077 ||140. 439.82 | 15394 }% | 400.55 12768 1 % | 400.95 || 12793 J% 440.22 || 15422 § toº išiš |134, 420.97 14103 ;4 440.61 15449 % 401.73 1284.3 % 421:37 14130 % 441.00 15477 }% 421.76 14156 % #! #: - 2.1. 2 % 422.15 14183 % 441. *D 128 % § #; }% 422.55 14209 34 || 442.18 15559 % 402.91 12919 % 422.94 14236 % 442.57 15587 % 403.30 12944 % 423.33 14262 }% 403.70 12970 % 423.72 14288 ||141. 442.97 15615 % 404.09 12995 }% 443.36 15642 34 404.48 13020 |135. 424.12 14314 % 443.75 15670 % | 404.87 13045 }% 424.51 14341 % 444.14 15697 % 424.90 14367 % 444.54 15725 129. 405.27 13070 % 425.29 14394 % 444.93 15753 }% | 405,66 13096 % 425.69 14420 34 445.32 15781 }% | 406.05 13121 % 426.08 14447 % 445.72 15809 % 406.44 13147 % 426.47 14473 }% 406.84 13172 % 426.87 14500 ||142. 446.11 15837 % | 407.23 13198 }% 446.50 15865 34 407.62 13223 |136. 427.26 14527 }% 446.89 15893 % | 408.02 13248 }% 427.65 14553 % 447.29 15921 *Approximate area, sufficiently accurate for practical purposes, including estimating. (220) B U F F A L O T A N K C O R P O RAT I O N CIRCUMFERENCES AND AREAS OF CIRCLES Advancing by Eighths Dia. | Circum. Area.” Dia. Circum. Area.” Dia. Circum. Area.” 142% 447.68 15949 14.8% 467.31 17379 |155. 486.95 18869 % 448.07 15977 % 467.71 17408 % 487.34 18900 % 448.46 16005 % 487.73 18930 % 448.86 16033 ||149. 468.10 17437 % 488.13 18961 % 468.49 17466 % 488.52 18991 143. 449.25 16061 % 468.88 17496 % 488.91 19022 % 449.64 16089 % 469.28 17525 % 489.30 19052 % 450.03 16117 % 469.67 17555 % 489.70 19083 % 450.43 16145 % 470.06 17584 % 450.82 1617.3 % 470.46 17614 ||156. 490.09 19113 % 451.21 16201 % 470.85 17643 % 490.48 19144 % 451.61 16229 % 490.88 1917.4 % 452.00 16258 150. 471.24 17672 % 491.27 19205 471.63 17702 % 491.66 19235 144. 452.39 16286 472.03 17731 % 492.05 19266 452.78 16314 472.42 17761 % 492.45 19297 453.18 16342 472.81 17790 % 492.84 19328 453.57 16371 453.96 16399 473.20 17820 473.60 17849 |157. 493.23 19359 454.35 16428 473.99 17879 493.62 19390 454.75 16456 494.02 19421 455.14 16485 |151. 474.38 17908 494.41 19452 474.77 17938 494.80 19483 145. 455.53 16513 475.17 17967 495.20 19514 455.93 16542 475.56 17997 495.59 19545 456.32 16570 475.95 18026 495.98 19576 456.71 16599 476.35 18056 457.10 16627 476.74 18086 ||158. 496.37 19607 457.50 16656 477.13 18116 496.77 19638 457.89 16684 497.16 19669 458.28 16713 #152. 477.52 18146 497.55 19701 477.92 18175 497.94 19732 146. 458.67 16742 478.31 18205 498.34 19763 % 459.07 16770 478.70 18235 498.73 19794 }4 || 459.46 16799 479.09 18265 499.12 1982.5 3. 8 459.85 16827 479.49 18295 }% 460.24 16856 479.88 18325 ||159. 499.51 19856 % 460.64 16885 480.27 18355 J% 499.91 19887 34 || 461.03 16914 14 || 500.30 19919 % 461.42 16943 |153. 480.67 18385 % 500.69 19950 481,06 18415 % 501.09 19982 147. 461.82 16972 481.45 18446 % 501.48 20013 462.21 17000 481.84 18476 34 501.87 20044 462.60 17029 482.24 18507 % 502.26 20075 462.99 17058 463.39 17087 463.78 17116 464.17 17145 482.63 18537 483.02 18567 ||160. 502.66 20106 483.41 18597 503.05 20138 503.44 20169 % % 464.56 17174 ||154. 483.81 18627 % 503.83 2020.1 % || 484.20 18658 }% 504.23 20232 148. 464.96 17203 % || 484.59 18688 % 504.62 20264 % 465.35 17232 % || 484.99 18719 34 505.01 20295 }4 || 465.74 17262 % 485.38 18749 % 505.41 20327 % 466.14 17291 5% 485.77 18779 }% 466.53 17321 34 || 486.16 18809 ||161. 505.8() 20358 % 466.92 17350 % 486.56 18839 J% 506.19 20390 *Approximate area, sufficiently accurate for practical purposes, including estimating. (221) c 1 R c L E S CIRCUMFERENCES AND AREAS OF CIRCLES Advancing by Eighths Dia. | Circum. Area.” Dia. | Circum. Area.” Dia Circum. Area. * 161% 506.58 20421 || 167% 526.22 22035 || 17334 || 545.85 23711 % 506.98 20453 % 526.61 22068 % 546.25 23745 }% 507.37 20484 34 527.00 22101 % 507.76 20516 % 527.40 22134 ||174. 546.64 23779 % 508.15 20548 }% 547.08 23813 % 508.55 20580 ||168. 527.79 22167 }4 || 547.42 23848 }% 528.18 22200 % 547.82 23882 162. 508.94 20612 % 528.57 22233 }% 548.21 23917 % 509.33 20644 % 528.97 22266 % 548.60 23951 % 509.73 20675 }% 529.36 22.299 34 549.00 23985 % | 510.12 20707 5% 529.75 22332 % 549.39 24019 % | 510.51 20739 34 530.15 22366 % | 510.90 20771 % 530.54 22399 ||175. 549.78 24053 34 511.30 20803 J% 550.17 24087 % 511.69 20835 |169. 530.93 224.32 }% 550.57 24.122 }% 531.32 22465 3% 550.96 24156 163. 512.08 20867 }% 531.72 22499 }% 551.35 24.191 }% 512.47 20899 % 532.11 22532 5% 551.74 24225 }4 || 512.87 20931 }% 532.50 22566 34 552.14 24260 % 513.26 20964 5% 532.89 22599 % 552.53 24294 }% 513.65 20996 34 || 533.29 22632 % 514.04 21028 % 533.68 22665 ||176. 552.92 24329 34 || 514.44 21060 J% 553.31 24363 % 514.83 21092 ||170. 534,07 22698 % 553.71 24398 }% 534.47 22731 % 554.10 24432 164. 515.22 21124 }% 534.86 22765 }% 554.49 24467 }% | 515.62 21157 % 535.25 22798 % 554.89 24.501 }4 || 516.01 21189 }% 535.64 22832 34 555.28 24536 % | 516.40 21222 % 536.04 22865 % 555.67 24571 }% 516.79 21254. % 536.43 22899 % 517.19 21287 % 536.82 22932 ||177. 556.06 24606 34 517.58 21319 }% 556.46 24640 % 517.97 21351 || 71. 537.21 22966 % 556.85 24.675 }% 537.61 22999 % 557.24 24,710 165. 518.36 21383 }% 538.00 23033 % 557.63 24745 }% 518.76 21416 % 538.39 23066 5% 558.03 24780 % | 519.15 21448 }% 538.78 23100 34 558.42 24815 % 519.54 21481 % 539.18 231.33 % 558.81 24850 }% 519.94 21513 34 || 539.57 23.167 % 520.33 21546 % 539.96 23201 ||178. 559.21 24.885 % 520.72 21578 }% 559.60 24920 % 521.11 21610 ||172. 540.36 23235 J4 559.99 24955 }% 540.75 23268 % 560.38 24990 166. 521.51 21642 % 541.14 23302 J% 560.78 25025 % 521.90 21675 % 541.53 23336 % 561.17 25060 % 522.29 21707 J% 541.93 23370 34 561.56 25095 % 522.68 21740 % 542.32 23404 % 561.95 25130 }% 523.08 21772 34 542.71 234.38 % 523.47 21805 % 543.10 234.72 |179. 562.35 25165 34 || 523.86 21838 }% 562.74 25200 % 524.26 21871 ||173. 543.50 2.3506 % 563.13 25236 }% 543.89 23540 % 563.53 25271 167. 524.65 21904 % 544.28 23575 }% 563.92 25.307 }% 525.04 21937 % 544.68 23609 % 564.31 25342 % 525.43 21969 }% 545.07 23643 34 564.70 25.377 % 525.83 22002 % 545.46 23677 % 565.10 25412 *Approximate area, sufficiently accurate for practical purposes, including estimating. (222) B U F F A L O T A N K C O R P O RAT I O N CIRCUMFERENCES AND AREAS OF CIRCLES Advancing by Eighths Dia. Circum. Area. * Dia. Circum. Area.” Dia. Circum. Area. * 180. 565.49 25447 186% 585.12 27.245 192% (504.76 29.103 % 565.88 25482 % 585.52 27.281 5 605.15 29.141 % 566.27 255.18 }% 585.91 273.18 34 605.54 291.79 * º 25553 * 586.30 27354 % 605.94 292.17 2 * 25589 24 586.59 27.391 * #: 25624 % 587.09 27428 lº, 606.33 29255 4. - 25660 8 606.72 29.293 % 568.24 25695 ||187. 587.48 27.465 % 607.11 29331 % 587.87 27501 % 607.51 29369 181. 568.63 25730 % 588.27 27.538 % 607.90 29.407 % 569.02 25765 % 588.66 27574 % 608.29 29445 % 569.42 25801 % 589.05 27611 34 608.58 29.483 : º º 25836 * 589.44 27648 % 609.08 29521 2 º 25872 4. 589.84 27685 * #; 25908 % 590.23 27722 |194. 609.47 29.559 % • J. N. 25944 % 609.86 295.97 % 571.38 25980 ||188. 590.62 277.59 % 610.26 29636 % 591.01 27796 % 610.65 29674 182. 571.77 26016 % 591.41 278.33 % 611.05 29713 % 572.16 26051 % 591.80 27870 % 611.43 29751 }4 572.56 26087 % 592.19 27907 % 611.83 29789 i. #; 26122 * 592.58 27944 % 612.29 298.27 2 3. 26158 % 592.98 27.981 : º: 26.194 % 593.37 28018 |195. 612.61 29865 %| e 26230 % 613.00 29.903 % 574.52 26266 ||189. 593.76 28055 % 613.40 29942 % 594.16 28092 % 613.79 29.980 183. 574.91 26302 }4 594.55 28130 % 614.18 30019 % 575.31 26338 % 594.94 28167 % 614.57 30057 % 575.70 26374 % 595.33 28205 % 614.97 30096 % 576.09 26410 % 595.73 28242 % 615.36 301.34 }% 576.48 26446 % 596. 12 28279 * º; 26482 % 596.51 28316 ||196. 1 615.75 30172 4 - 26518 % 616.15 30210 % 577.66 26554 |190. 596.90 28353 % 616.54 30249 % 597.29 28390 % 616.93 30287 184. 578.05 26590 % 597.68 28428 }% 617.32 30326 % 578.45 26626 % 598.08 28465 % 617.72 30364 *4 578.84 26663 }% 598.47 28503 34 618.11 30403 : #; ; : 598.86 285.40 % 618.50 30442 2 {) ($9. 4 599.25 28578 : º § % 599.64 28615 17, 618.89 30481 4. - 268 8 619.29 30519 % 580.80 26844 |191. 600.04 28652 % 619.68 30558 % 600.44 28689 % 620.08 30596 185. 581.20 26880 % 600.83 28727 % 620.47 30635 % 581 .59 26916 % 601.22 287.64 % 620.86 30674 % 581 98 26953 % 601.62 28802 % 621.25 30713 : º;; ; * 602.01 º % 621.64 30752 2 - 4 602.40 2887 ; § §§ % 602.79 289.15 lºs, 622.04 30791 4 Jöj. Z8 622.44 30830 % 583.95 27135 |192. 603.19 28953 % 622.83 30869 % 603.58 28990 % 623.22 .30908 186. 584:34 27172 % 603.97 29028 }% 623.62 30947 % 584.73 27208 % 604.36 29065 % 624.01 30986 *Approximate area, sufficiently accurate for practical purposes, including estimating. (223) C I R C L E S CIRCUMFERENCES AND AREAS OF CIRCLES Advancing by Eighths Dia Circum. Area.” Dia. | Circum. Area.” Dia. | Circum. Area.” 19834 || 624.40 31025 || 204% 643.63 32966 ||211. 662.88 34967 % 624.79 31064 % | 663.28 35008 205. 644.03 33006 }4 | 663.67 35050 199. 625.18 3.1103 % 644.43 33046 % | 664.07 35091 }% 625.58 31142 % 644.82 3.3087 }% | 664.46 35133 }4 || 625.97 31181 % 645.21 33127 5% | 664.85 35174 % 626.36 31220 % 645.61 331.68 % | 665.24 35216 }% 626.76 31260 % 646.00 33208 % | 665.63 35257 * 627.15 31299 % 646.39 33249 tº , #Tº & t ”) % 627.94 31377 Tº ſº § & % 666.43 35340 206. 647.17 33329 % 666.82 3538.2 200. 628.32 3.1416 }% 647.57 33369 3. ºf § }% 628.72 3.1455 }% 647.96 33410 º º §º |A || 629.11 31495 % | 648.35 33450 § §: 800 3 ; % 629.51 31534 }% 648.75 33491 3. §§ §4) }% 629.90 31574 % 649.14 33531 i. § §oi 5% 630.29 31613 % 649.53 33572 8 UOO. 9 34 630.58 3.1653 % 649.93 33613 % 631.08 3.1692 213. 669.16 35633 207. 650.31 33654 }% | 669.57 35674 201. 631.46 31731 }% 650.71 33694 }% | 669.96 35.716 }% 631.86 31770 }4 || 651.10 33735 3% 670.35 357.58 }% 632.26 3.1810 % 651.50 3.3775 J% | 670.75 35800 % 632.65 3.1849 J% 651.89 33816 % 671.14 35842 }% 633.05 31889 % 652.28 33857 34 671.53 35.884 % 633.43 31928 34 652.57 33898 % | 671.93 35926 % 633.83 31968 % 653.07 33939 %| 634.29 32007 | Tº ſº Q A tº 214. 672.30 || 35968 208. 653.45 33.980 J% 672.71 3601() 202. 634.60 32047 }% 653.85 34020 i. 673 ió 300; }% 635.00 32086 % 654.25 34061 3. §§ 36051 }% 635.40 3.2126 % 654.64 34102 § §§ § % 635.79 32166 }% 655.04 34143 5. §3. §iº }% 636.18 32206 % 655.42 34.184 3. ### §§331 % | 636.57 3.2246 34 || 655.82 342.25 * | };}} 36363 34 636.97 32286 % 656.28 || 34266 % 675. *_2 * * * * * * % 637.36 32326 * 209. 656.59 34307 ||215. 675.44 36305 203. 637.74 32366 J% 656.99 34348 }s 675.85 3.34. }% 638.15 32405 J4 || 657.39 34389 % (76.25 36390 % 638.54 32445 3% 657.78 34431 % 676.64 36.432 3% 638.93 32485 }% 658.17 34.472 % 677.04 36475 }% 639.32 32525 % 658.56 34513 % 677.42 365.17 % 639.72 32.565 34 658.96 34554 % 677.82 36500 34 640.11 32605 % 659.35 34595 % 678.28 36602 % 640.50 32645 210. 659.73 34636 ||216. 678.58 36644 204. 640.88 32685 }% | 660.14 34677 J% | 678.99 366.86 }% 641.28 32725 }% | 660.53 34719 }% 679.39 36729 J4 641.67 3.2766 % | 660.92 34760 % | 679.78 36771 3% 642.07 32806 }% | 661.31 34802 J% | 680.17 36814 }% 642.46 32846 % | 661.71 34843 % | 680.56 36856 % 642.85 32886 34 | 662.10 34.885 34 | 680.96 36899 % 643.24 3.2926 % | 662.49 34926 % | 681.36 36941 *Approximate area, sufficiently accurate for practical purposes, including estimating. (224) B U F F A L O T A N K C O R P O R AT I O N AREAS OF CIRCLES IN SQUARE FEET FROM DIAMETERS GIVEN IN INCHES (From 10 to 150 inches inclusive) Diameter Area in Diameter Area in Diameter Area in in Inches Square Feet in Inches Square Feet in Inches Square Feet 1() .545 57 17.72() 104 58.989 11 ,660 58 18.347 105 60.12S 12 .785 59 18.985 106 61.281 13 .022 6() 19.63.5 107 62.440 14 1,069 61 20,294 108 63.617 15 1.227 (52 20.965 109 64.794 16 1.396 63 21,646 110 65.989 17 1.57(5 64 22.339 111 67.197 1S 1.767 65 23.042 112 68.412 19 1.96%) (36 23,757 113 69.641 20 2.182 67 24,482 114 70.877 21 2.405 6S 25.219 115 72.127 22 2,639 69 25.966 116 73.384 23 2.886 7() 26.724 117 74.655 24 3.142 71 27.493 118 75.940 25 3.409 72 28.274 119 77.231 26 3.687 73 29,063 120 78.540 27 3,976 74 29,865 121 79.849 28 4.276 75 30.678 122 S1.175 20 4.587 76 31.501 123 S2.509 30 4.909 77 32.335 124 83.856 31 5.241 78 33.181 125 85.217 32 5.585 79 34.037 126 86.585 33 5.939 80 34.904 127 87.967 34 6.305 81 35.782 128 89.356 35 6,681 82 36.671 129 90.758 36 7.069 3 37.571 130 92.168 37 7.467 84 38,482 131 93.591 3S 7.875 85 39.404 132 95.033 39 8.295 86 40.336 133 96.473 40 8.726 87 41.280 134 97.931 41 9,168 88 42.234 135 99.396 42 9,620 89 43.200 136 100.875 43 10,084 90 44.176 137 102.361 44 10.559 91 45.163 138 103.861 45 11,044 92 46.161 139 105.375 46 11.540 93 47.17() 140 106.896 47 12,047 94 48,189 141 108,431 48 12.566 95 49.220 142 109.972 49 13.09.4 96 50.266 143 111.528 50 13.634 97 51.315 144 113.098 51 14,185 98 52.379 145 114,666 52 14.847 90 53.453 146 116.256 53 15.320 100 54.538 147 117.854 54 15,904 101 55.635 148 119.458 55 16.498 102 56.739 149 121.083 56 17.1 ()3 103 57.857 150 122.714 (225) C I R C L E S AREAS OF CIRCULAR SECMENTS For Ratios of Rise and Chord ==<--------2, 2TS QD i ! º sº ~A. £ic ſº: Area=b x C x coefficient Nº A9 C © e ffi- #- A © Coeffi- |b_ A° Coeffi- b_ A9 Coeffi- _b. cient C cient C cient C .6667 .0022 || 46 .6722 || 1017 91 .6895 .2097 || 136 .7239 .3373 .6667 .0044 || 47 | .6724 . .1040 92 .6901 | .2122 || 137 .7249 .3404 .6667 | .0066 || 48 .6727 | .1063 93 | .6906 | .2148 || 138 .7260 .3436 .6667 .0087 || 49 .6729 .1086 94 | .6912 .2174 || 139 .7270 | .3469 .0109 || 50 | .6732 .1109 95 | .6918 .2200 || 140 | .7281 | .3501 .6667 .0131 || 51 .6734 . .1131 96 .6924 | .2226 || 141 .7292 .3534 .6668 .0153 || 52 | .6737 .1154 97 | .6930 | .2252 || 142 .7303 .3567 .6668 .0175 || 53 | .6740 | .1177 98 | .6936 | .2279 || 143 | .7314 | .3600 .6669 .0197 || 54 .6743 .1200 99 || .6942 | .2305 || 144 .7325 | .3633 10 .6670 .0218 || 55 .6746 -1224 || 100 .6948 .2332 || 145 | .7336 .3666 11 | .6670 .0240 || 56 .6749 .1247 || 101 | .6954 .2358 || 146 .7348 .3700 12 .6671 .0262 || 57 .6752 .1270 || 102 | .6961 .2385 || 147 | .7360 .3734 13 .6672 .0284 || 58 .6755 .1293 || 103 | .6967 .2412 || 148 .7372 .3768 i5 | #73 ºš || 3 || 7 || | #d tº jºb | 24; işū | 7336 || 3:37 16 .6674 .0350 || 61 .6764 .1363 || 106 | .6987 | .2493 || 151 .7408 .3871 17 | .6674 | .0372 || 62 | .6768 . .1387 || 107 | .6994 | .2520 || 152 .7421 .3906 18 .6675 ,0394 || 63 .6771 .1410 || 108 .7001 | .2548 || 153 .7434 .3942 19 .6676 .0416 || 64 .6775 | .1434 || 109 | .7008 .2575 || 154 .7447 | .3977 20 .6677 .0437 || 65 .6779 .1457 || 110 || 7015 .2603 || 155 .7460 | .4013 21 .6678 .0459 || 66 .6782 .1481 || 111 .7022 .2631 || 156 .7473 .4049 23 || 3:30 j4 || 3 | tº tº 113 ºf ºf | 153 || 7500 diº. 24 .6681 | .0526 || 69 .6794 | .1553 || 114 .7045 .2715 || 159 .7514 .4159 25 | 6682 .0548 || 70 .6797 .1577 || 115 .7052 .2743 || 160 .7528 .4196 26 .6684 .0570 || 71 | .6801 .1601 || 116 || 7060 | .2772 || 161 .7542 | .4233 27 .6685 .0592 || 72 . .6805 .1625 || 117 | 7068 .2800 || 162 | .7557 | .4270 28 .6687 .0614 || 73 .6809 .1649 || 118 .7076 | .2829 || 163 .7571 .4308 29 | .6688 .0636 || 74 .6814 | .1673 || 119 .7084 .2858 || 164 | .7586 .4346 30 | .6690 | .0658 || 75 .6818 .1697 || 120 | .7092 | .2887 || 165 .7601 | .4385 31 .6691 | .0681 || 76 | .6822 .1722 || 121 || 7100 | .2916 || 166 | .7616 .4424 32 .6693 .0703 || 77 .6826 .1746 || 122 .7109 | .2945 || 167 | .7632 .4463 33 .6694 | .0725 || 78 .6831 .1771 || 123 .7117 | .2975 || 168 .7648 .4502 34 .6696 | .0747 || 79 .6835 | .1795 || 124 .7126 .3004 || 169 .7664 .4542 35 | .6698 | .0770 || 80 .6840 .1820 || 125 | .7134 .3034 || 170 .7680 .4582 36 .6700 .0792 || 81 .6844 | .1845 || 126 .7143 .3064 || 171 .7696 .4622 37 .6702 | .0814 || 82 .6849 .1869 || 127 .7152 .3094 || 172 .7712 .4663 38 .6704 | .0837 || 83 .6854 .1894 || 128 .7161 | .3124 || 173 .7729 .4704 39 .6706 | .0859 || 84 .6859 . . .1919 || 129 .71.70 | .3155 || 174 .7746 .4745 40 .6708 || 0882 || 85 .6864 .1944 || 130 .7180 .3185 || 175 .7763 | .4787 41 .6710 .0904 || 86 .6869 .1970 || 131 i .7189 .3216 || 176 .7781 | .4828 42 .6712 .0927 || 87 | .6874 .1995 || 132 .7199 .3247 || 177 | .7799 | .4871 43 | .6714 | .0949 || 88 .6879 .2020 || 133 .7209 | .3278 || 178 .7817 | .4914 44 .6717 .0972 | 89 .6884 .2046 || 134 .7219 .3309 || 179 .7835 | .4957 45 .6719 .0995 || 90 | .6890 .2071 || 135 | .7229 .3341 || 180 .7854 .5000 6 6 6 7 B U F F A L O T A N K C O R P O R A T I O N AREAS OF CIRCULAR SECMENTS For Ratios of Rise and Diameter - y f * * * * * *Diameter, d----- \ | Area=d? x Coefficient # Coefficient # Coefficient # Coefficient # Coefficient + Coefficient .001 .000042 .051 .015119 .101 .041477 ..151 .074590 201 .112625 .002 .0001:19 .052 .015561 .102 .042081 .152 .075307 .202 .113427 2003 .000219 .053 .016008 .103 .042687 .153 .076026 .203 .114231 .004 | .000337 .054 .016458 .104 .043296 .154 .076747 .204 .115036 .005 .000471 .055 .016912 .105 .043908 .155 .077470 .205 -115842 ,006 .000619 .056 -017369 ..106 .044523 .156 .078.194 .206 .116651 .007 .000779 .057 .017831 .107 .045140 .157 .078921 .207 .117460 .008 .000952 .058 .018297 .108 .045759 .158 .079650 .208 .118271 .009 | .001135 .059 .018766 -109 .046381 .159 .080380 .209 .119084 .010 | .001.329 .060 2019239 -110 .047006 .160 .081112 .210 .119898 .011 .001533 .061 .019716 ..111 .047633 .161 .081847 .211 .120713 .012 .001746 .062 | .020197 .112 .048262 .162 .082582 .212 .121530 _013 -001969 .063 .020681 .113 .048894 .163 .083320 -213 .122348 .014 | .002199 .064 || 021168 .114 .049529 .164 .084060 .214 | .123167 .015 .002438 .065 -021660 .115 .050165 .165 .084801 .215 .123988 .016 .002685 .066 .022155 .116 .050805 .166 0.85545 .216 .124811 .017 | .002940 .067 .022653 .117 .051446 .167 086290 .217 ..125634 -018 .003202 .068 .023155 .118 .052090 .168 087037 .218 .126459 .019 .003472 .069 .023660 .119 .052737 .169 087785 .219 .127286 _020 .003749 .070 .024168 .120 .053385 .170 088536 .220 .128114 .021 .004032 .071 .024680 .121 .054037 .171 089288 .221 .128943 .022 | .004322 .072 .025196 -122 .054690 .172 090042 .222 129773 .023 2004619 .073 .02571.4 .123 .055.346 .173 090797 .223 130605 .024 .004922 .074 .026236 .124 .056004 .174 .091555 .224 .131438 .025 .005231 .075 .026761 .125 .056664 .175 .092314 .225 .132273 .026 005546 .078 .027290 .126 .057327 ..176 .093074 .226 .133109 .027 . .005867 .077 .027821 .127 .057991 .177 .093837 .227 .133946 _028 .006194 .078 .028356 .128 .058658 .178 .094601 .228 .134784 .029 . .006527 | .079 .028894 .129 | .059328 .179 | .095367 || .229 || -135624 .030 .006866 .080 .029435 -130 .0599.99 .180 .096135 .230 .136465 .031 .007209 .081 .029979 .131 .060673 -181 .096904 .231 .137307 .032 .007559 .082 .030526 .132 .061349 .182 .097675 -232 .1381.51 .033 || 007913 .083 .031077 .133 .062027 -183 .098447 .233 .138996 .034 .008273 .084 .031630 .134 .062707 .184 .099221 .234 .139842 .035 .008638 .085 .032186 .135 .063389 .185 .099997 .235 .140689 .036 .009008 || .086 .032746 || .136 .064074 || .186 .100774 || .236 .141538 .037 .009383 .087 .033308 .137 .064761 .187 .101553 .237 .142388 .038 .009764 .088 .033873 .138 .065449 .188 .102334 .238 -143239 .039 0.10148 .089 .034441 .139 .066140 .189 .103116 .239 .144091 .040 | .010538 .090 .035012 .140 .066833 .190 ,103900 240 .144945 .041 .010932 .091 .035586 .141 .067528 .191 .104686 .241 .145800 .042 .011331 .092 .036.162 .142 .068225 .192 .105472 _242 .146656 .943 01.1734 .093 .036742 .143 -068924 .193 ..106261 _243 .147513 .044 0.12142 .094 .037324 .144 .069626 .194 .107051 .244 .148371 .045 0.12555 .095 .037909 .145 .070329 .195 .107843 .245 .149231 -046 0.12971 .096 .038497 .146 .071,034 .196 .1086.36 _246 .1500.91 _047 .013393 .097 .039087 .147 .071741 ..197 .109431 .247 .150953 .048 .013818 .098 .039681 .1#8 .072450 .198 .110227 _248 ..151816 .049 .014248 .099 .040277 || 149 .073162 .199 ..111025 .249 .152681 _050 .014681 -100 .040875 .150 .073875 .200 ..111824 .250 .153546 (227) C I R C L E S AREAS OF CIRCULAR SECMENTS For Ratios of Rise and Diameter Area=d2 x Coefficient # Coefficient # Coefficient # Coefficient! # Coefficient # Coefficient .251 .154413 .301 .199085 | .351 .245935 .401 .294350 .451 .343778 .252 .155281 .302 .200003 .352 .246890 .402 .295330 ,452 .344773 .253 .156149 .303 .200922 .353 .247845 .403 .296311 ,453 .345768 .254 .157019 .304 .201841 .354 .248801 .404 .297.292 .454 .346764 .255 .157891 .305 .202762 .355 .249758 .405 .298274 .455 .347760 .256 .158763 .306 .203683 .356 .250715 .406 .299256 .456 .348756 .257 .159636 .307 .204605 .357 .251673 .407 .300.238 .457 .349752 .258 .160511 .308 .205528 .358 .252632 .408 .301.221 .458 .350749 .259 .161386 .309 .206452 .359 .253591 .409 .302204 .459 .351745 .260 .162263 _310 .207376 .360 .254551 .410 .303187 .460 .352742 .261 .163141 .311 .208302 .361 .255511 .411 .3041.71 .461 .353739 .262 .164020 _312 .209228 -362 .256472 .412 .3051.56 .462 .354,736 .263 .164900 _313 .210155 .363 .257433 .413 .3061.40 .463 355733 .264 .165781 .314 .211083 .364 .258395 .414 .307125 .464 356730 .265 .166663 _315 .21.2011 .365 .259358 .415 .308110 .465 357728 .266 .167546 .316 .212941 .366 .260321 .416 .309096 .466 .358725 .267 .168431 .317 .213871 .367 .261285 .417 .310082 .467 .359723 .268 .169316 .318 .214802 .368 .262249 .418 .311068 .468 -360721 .269 .170202 .319 .215734 .369 .263214 .419 .312055 .469 .361719 .270 .171090 .320 .216666 .370 .264179 .420 .313042 .470 .3627.17 .271 .171978 .321 .217600 .371 .265145 || “.421 .314029 .471 .363715 .272 .172868 .322 .218534 .372 .266111 4.422 .31501.7 .472 .3647 14 .273 .173758 .323 .219469 .373 .267078 .423 .316005 .473 .365712 .274 .174650 .324 .220404 .374 .268046 .424 .316993 .474 .3667.11 .275 .175542 .325 .221341 .375 .269014 .425 .317981 .475 .367710 .276 ..176436 .326 .222278 .376 .269982 .426 .318970 .476 .368708 .277 .177330 .327 .223216 .377 .270951 .427 .319959 .477 .369707 .278 .178226 .328 .224154 .378 .271921 .428 .320949 .478 .370706 .279 .179122 -329 .225094 .379 .272891 .429 .321938 .479 .371705 .280 .180020 .330 .226034 .380 .273861 .430 .322928 .480 .372704 .281 .180918 .331 .226974 .381 .274832 .431 .323919 .481 .373704 .282 .181818 .332 .227916 .382 .275804 .432 .324909 .482 .374,703 .283 .182718 .333 .228858 .383 .276776 .433 .325900 .483 .375702 .284 .183619 -334 .229801 .384 .277748 .434 .326891 .484 .376702 .285 .184522 .335 .230745 .385 .278721 .435 .327883 .485 .377.701 .286 .185.425 .336 .231689 .386 .279695 .436 .328874 .486 .378.701 .287 .186329 .337 .232634 .387 .280669 .437 .329866 .487 .379.701 .288 .187235 .338 .233580 .388 .281 643 .438 .330858 .488 .380700 .289 .188141 .339 .234526 .389 .282618 .439 .331851 .489 .381,700 .290 .1890.48 .340 .235473 .390 .283593 .440 .332843 .490 .382700. .291 .189956 .341 .236421 .391 .284569 .441 .333836 .491 .383700 .292 .190865 .342 .237369 .392 .285545 .442 .334829 .492 .384699 .293 .191774 .343 .238319 .393 .286521 .443 .335823 .493 .385699 .294 .192685 .344 .239268 .394 .287.499 .444 .336816 .494 .386699 .295 .193597 .345 .240219 .395 .288476 .445 .337810 .495 .387699 .296 .194509 .346 .241 170 .396 .289454 .446 .338804 .496 .388699 .297 .195423 .347 .24.2122 .397 .290432 .447 .339799 .497 .389699 .298 .196337 .348 .243074 .398 .291411 .448 .340793 .498 .390699 .299 .197252. .349 .244027 .399 .292390 .449 .341788 -499 .39.1699 .300 .198168 -350 .244980 .400 .293370 .450 .342783 .500 .392699 (228) B U F F A L O T A N K C O R P O R A T I O N TABLE OF CIRCULAR ARCS When the arc, A, is greater than a semi-circle, let rise H. let rise h. y le — arc, A 1I'C ference of ci (half-chord)? circumference of circle – arc, a. - Cl TCUl IO Now smaller arc, a Rise, h, of arc, a Find arc, a, by table. + H. Then arc, A 080/g' || || 00g" | 1121;" | | 09ţº | ZZ$$$" ] [ 00Þº || 16862'| | 09€" | G6þZZ" | | 00£" | 21691" | | 092" | 2,801"| || 00Z" | 96890"| | 091° 19,7920’l || 001" |99900"| | 090° 1889g" | | 66Þ" | 6311;" | | 6ţţº || 8; 199*| | 66€” | 6088Z" | | 6Þº' || wgCZZ" | | 66Zº || 18/glº1 | 6ÞZ" | 29201"| || 661" | 81890’l | 691" | €6920’l | 880" | 88900’l | 890' 1899g" | | 86Þº | ZOOZÞº || || 8ţţº | 9261çº į | 862" | 1898.Z" | | 8ţº" | €IZZZ" | | 86Z" | 02991'1 || 8ÞZ" | 29101"| || 861" | €Þ190’l | 8Þ1" | ZºgŻ0" | | 860° || Z.1900’l | 8Þ0" 18ț9g" | | 26Þº | g189t" | | Zţţº || 1031€” I || 169" | CZg6z" | | Zºº" | EZOZZ" | | 262" | 6ţgglº1 | ZÞZ" | 8ț001" | | 281" | 13990’l | Zº lº || 16°20' | | 160" | 18900" | | 290° Zgz9g" | | 96t" | 8299Þ’l | 9ţţº |gzglę· į | 969* | 9996z" | | 9ț¢" | 226 uzº1 | 96Zr || 8Zygı'1 | 9ÞZ" | 69660'I | 961' | 16930’l | 9ylº | OvtºZ0" | | 960 || 29900"| || 990' £809g" | | G6ț" | 1țiț9ţ" | | GÞt" | Ggb lºri | G69" | 60Z6z" | | Gwº | p6) lz' | | G6z" |80€gı’I | GÞZ" | 03860'l | 961' | 91990’l | Gºlº | 63820'l | 960° || 69900" | | Gººſ Þ88gg" | | Þ6Þº | gGZ9Þ· 1 | tºp" | 23219 · 1 | p6£º | zg06z" | | Þpº' [ pg.9lz" | | Þ6z" | 681g1" | | Þvz" | ZGZ60° || 961" | 19990'l | Pºlº | 68220 || 960" |91900’l | 990' G39gg" | | £6Þº || 6909t" | | £ţţº | ¡¡¡№ į | 862" | G688Zr || || ºpº" | Gıgız’ı | £6Z" |0.10glº | | £ÞZ" | 99960'l | £6lº || 19890’l | €ºlº | 88ZZ0’l | £60, |Z6º00' | | £90, 28ţgg" | | Z6Þ" | 283çţ" | | Zvyº | 6c8gºi | Z62" | 6€182 || || Zycº | ZZºlz" | | ZBZ" | 1989 l’I | ZÞZ" | 19960’I | Z61" | £6790’l | Zºlº |0țZZ0" | | Z80" | 69900" | | Zț0' 68Zggºl | 16t" | 269gț" | | |tºp" | 197ğ§-1 | 188" | 28982'1 | 198" | 68Z1Z" | | 16Z" | ZEBț1" | | 1țz" | 19Þ60'l | 161" | 02290’l | lºlº | Z81Z0'l | 160° | Zºº00’l | l°0' 150gg" | | 06t" | Ziggſ | | Ovt" | 95g9g-ſ1 | 068" | 8zbºzº | | Ovº | ZOıız" | | 06z" | 91/91’1 | 0ÞZ" |99860'1 | 081 || !w 190’l | Gº!" |9Þlz0" | | 080" |92900’ſ | Qyº: 968ţg" | | 68Þº | ZZºgbº | | 6ºpº | Ģž5ğš-i | 888" | €/zāzri | 6£º^ | $360Z" | | 68Z" | 269p1" | | 69Z" | 69Z60’l | 681, 194090’l | 621, 186020'l | 880 |90900" | | 680. 969țg" | | 88t" | Zbigņº į | 8ºp" | 5ğžğš-i | 888" | 8 ligžri | 888" | ZZ80z" | | 88Z" | 08vt:1:1 || 89Z" | 92160’ı | 881" | 20090 || 821 | 29020 || 889 || 98800" | | 820: 66ţţg" | | 28Þ" | 296Þț¢’i | Zºt" | $3ö𚺠į | 289" | Þ96) zri | Zºº" | 1690Z" | | 28Z" | £9$v1" | | Zºzº |61060'1 | 481" | 28690’l | {{!! | 90020'l | 180 || 99900" | | {{!}. ZOºpg" | | 98Þ" | 2,5° į | 999" | №iščğ· 1 | 988" | 01ēſzti | 999" | GGG0z" | | 98Zr || ZyzÞ1:1 || 99Z" | 98880'l | 981 | 298 90'l | 92 || || 19610 || 980 || 99900" | | 980. 901ţg" | || 98ff" | 69çbiri | Gºp" |##7çš-i | 988" | 9ç573° 1 | 999" | 61þ0Z" | | G8Z" | 19 ly 1:1 || GEZ" | 03380'| | G81) | Z6!!70’l | ޺ſ ||91610 || 980 | 12800 || || $80. 0169.g. I | V8t" | GOttºri | pºvº | §§§§-ſ | 982" |zOG0zri | Vººr | 98ZOZ'I | 98Z" | g10', lº | | ÞEZ" | 16.180’ı | 981 || ZZEWO" | | yº !... IZ 1810 || %80' | 20200 || || ??Q. v Izºg" | | £8ff" | Zzztt, i ſ ºſt" | 5õēgš-i | 888" | 6ț¢Zºri | €$£" | 6910Z" | | £8z" | 006£1' | | €ºz" | 90180"| || 88 || || Z99Þ0" | | £§! | 82810 || $80 | 68200 | | {{Q. 8 igºgºi | Z8;" | 6çõÞýſi | Zºt" | №żğč·i | Z80" | 56īīžri | zºº | p100z" | | Z8z" | G3&cı’I | Zºzº || 1980’l | 281 || 98990'l | 48 || ||984|10. || 480( |ZĽ200 || ???. zzººgºl | 18vº | 9ggeſ, į | 12p" | 5ğň5ğ· į | 188" | 550) žrí | 18€" | 08861-1 | 18z" | 149€1:1 | 122" | 61980'l | 181" | G1Gy0'l | 1€lº || 19110 || 180° || 99Z00’l | 180 9z1ęg" | | 08Þº | £199ły 1 | 02bº | Gºgwę: 1 | 080" |z6392 1 | 080" | 9Þ161" | | 08z" | Zggel’ı | 09Z" | 8ZW 30:1 | 08!" | 2ººººº ! | Qºſ |869!!0!! | 089 | 09200 || 980. 196zgri | 629" | 155€; 1 | 6zÞº | īğ#ği | 619" |Öğišžº į | 622 || Z.1961'1 | 62Z" | www21:1 | 6ZZ" | 28980'l | 64!} | 08290 || $44. || 999!!0!! | $49. 194300 || $39. 9€/zgri | 84t" | 6õęšį, į | 8zÞº | §§#ğri | 8.19" | 88gšžri | 8Z2" | 61961'1 | 82Z" | 12291’1 | 8ZZ" |9ÞZ80’l | 84!} | &lºw0 || 834. |y!9!!0!!! | 849 | 01400 || 839. 1țgzg· 1 | 129" | №zī£și | ZZºº | §§§ği || 1/2" | №gžri | ZZ$" |99861' || 1/Z" | 61Z21' | | ZZZ" | 99 180° 1 | {{!! | Zºzººſ į | !!! || 249 10 || 149 | 96400 || !39! 9Þºzgri | 92wº | §§žși | 9zÞº |ğžź#ğri | 949" | 3āžāží | 929" | 91Z61’1 | 92Zr || 801€1:1 | 9ZZ" |99080" | | 94!) || !8!!0!! | $4]] |{{$ 10. || 949. |43.100 || 940. zgızĞri | g2p || 59Ïžși | GzÞº | čğõýğri | Glº |ğšīğži | GZ2" | 28061 || GZZ" | 166Zl'1 || GZZ" | 12610 || $4 || ||91190 || $44. |$$y!Q!! | $4]] |{9!!0!!! | $30. 8.g6igºi | y1 wº | $ğğžși | Þzbº |ğššķğri | p12" |ğĒģēži | Þzº' || 1968 l'1 | 92Z" | 938 zı'1 | yzz" | 83840'l | 9 || || 19090" | | Ķķ |$$$ 10. || 249. || 89100 || $30. Þ9). Igri | €/$" | žūžși | Człº |ğčïčč-i | £12" |ğčğĢžri | £zº' | 02881'1 | EZZ" | Þlızı'ı | CZZ" |66110 | | {{!! || 8620 | | {{!}} |y!!!0!!! | {{!}} |0,109|| £20. izgiſi | ZZvº | iżżžiri i żżį, į šğĢčğri | ZZºº | 55ğĞži | ZZºº | 6898ı’i | ZZZ" | 999zırl | ZZZ" | 11110' L | 44 || || 82620 | | {{!! !9!!0!} | {{{}: |&\QQ || %39. 8Z$iği | izÞº | iſõžși | izbº | §ščğţi | 128" | 5ýšēži | Izºº || 69981 || 1/z' | ºggzırl | Izzº | vz910’1 | 14.1" | 09880'l | Izlº | 88810 || 120" | 21100’l | 120° gºlig" | | 01b" | 1981ły 1 || OzÞº ||bgzęç: 1 | 020" | 16egz. I | Ozº' || 6zygı" | | 02Z" | pºvzl’ı | Ozzº | lºg10' L | Q !! !!6!!0!! | 944] [308||9|||| 949. | 40409 || 949. zēšőği || 55;" |žğšíří | 6 ibº | §ğčği || 699" | čŕžēží | 612 | 66Z8ı'1 | 69Z" | 988Zr | | 612. ||gvl O'I | $3 || || 98/80 || $ļķ: || 99Z!Q! | $$$ | 46099 || $4% õõõõği | ğğiº | čğğişi | Šiš" |ğğšžği | 89€" | ĢģĞğží | 812" | 60131'1 || 89Zr || Gzzzi’l | 81Zr | 93210 || 89 || |24990 || 8 || |8&!Q!! | $$$ |48099 || 8ļģ: §õğõĞri | išš" | žģiſi | Žibº | išïžği || 1987 |ğššíži | itº |0,0ğı" | | 29Z" | 8 liziri | Zlz | 61Z10:1 | 49 || || 1980 || !!!... | {{!!}} | }}}| |84000 || !!9 ğīščğrí | 5ği, | Ģšīiſi | Giſº | ¡¡¡žğri | 95€ | Íöğ#žti į guº | zlºžiº 1 | 99Z" | 110zı’i | 91Zr || 96110 || 99!! ||19980 || ?!!! |89|| !g: || $$$ || $9000 || || 949. řżżğğrí ſ čğiº | §§§őſi | Ģibº | §ī£žğri | ĢēĚº | §§ğ#ži | Giºr | 58), i'l | g3z" | 90611’i | Glz" | 60110 || $9! 108º20 || $!!... | {{!!Q!! | $$$ || 19000 || ?!Q! $čõõği | №ši,' |ğğïõſi į šiſ |ğ#żžği || 595 || ŽŪğ#ži | biº | Zēģiiri | 99Z" |98, l'1 | yız" |92040 || 99}} |0,980 || ?!!! |839!!}} | }} | $3000 || ?!!! žğšři | $ğý |ğï5ăţi | $iſº |ğ§ğžği | $5$ |iğč#ži | $iº |0&gſiri | 89Z" | 069 11:1 | 91Zr || 19690:1 | {9!! |l|4220 || $ļķ| |#}}}}} | }} | || $4) íģğširi | žğir | žģščși | žiť" |ğžğiği | ž5$ |ģiž#ži | ziº | §tiri | z9z: | 98g1i'i | Zlz |89.890'l | 49 || |ź1880 || {{!}} |}}}}}} | }} |82|}}}} | {{!}. őğšğși | iğý" | Ščżğýri | īſſ, | Īģžiği | išč: |ğiğ#ži | iº | §tz) ir į | 19Z" | 6,9 || 1:1 | 112' | g4 290'ı | 191 || wgz€0" | | | | | ` | 68600'l | 190" | 28000'l | 110 69zºt" | | 09t" | 1200×1 | 01b" | 66Glºri | 099" | 9zgºz 1 | 019" |0çılırl | 03z" | p28 | 1:1 | 012. || $6990’ı | 094: |98|80|| 9!! |{3}}}} | }} |{{{ſ}}} | }}}. šïčširi | Šği, ļūōššći | Šóšº |ğčšiči | ŠēĚº | išïěži | 502 || №zói iri | & | 63zıſı:1 || 60Z: || 1990:1 | §§! | 6€120 | | }}}} |}}}}}} | }} |}}}}}} | §§ šğğýri | ğĞ;" | šžŽšč·i | ğõý" |ğŽžištį | ğĞĚ: |ğš5ğži | ēõē" | 655ği’i | №gž" | Gºiiiri | 80z" | 0£§90’i | 89 || || Z8080" | | 8Q || |$$800 || $$$ || !!QQQ || 899. ššğğýi | ŽĢ;" |ğšğğši | ŽĎ;" |ğīšiči | ŽĢēr | žšğěži | ŽŪº |ğžíširi | lgz, |z9011:1 | 102 || 6,990’ı || !gſ |92080 || {{!}} |#}}}}} | }} |}}}}}} | {{!}. šğšğýi || 55%" |žičšči| āği, | $3$öğri | Ģēr |ěšķğži | 50€ |ôē5ği’i | 93Zr |39601:1 | 90Zr || 89290 || 99 || |0,6ZQ || 99}} |#}}}}} | }} |}}}}}} | §§ ğžģýi | ğĞý |ğĞİğči į šňůr |#šïčč-i | ğĞĚ: |ğôžğži | Šūčº |ğžğšíri | §§z: |gg801:1 | 90Z" | 88Z30:1 || 99 || || 91620 | | }} |}}}}}} | }} |{{!}}}} | }} íšiğýi | #ffff;" |Īžőšči ſ šči, ļºšğči | ſgē: |ğğõěži | ±0$ |žōğiti | vºz: |ZGŁOĽl | 90Z: |50290 || || ??!! | 03840 || % || |3|4}} | }} |#}}}}} | ģ żšğýi | $ğý |ğğri | $ğ%" |#īšğči || $ēš: |ğžšžží | çõčº | Šižšíri | €gž" | 09301:1 || 202" | 02190'ı | £§! |90820 || 20| |39.400 || $$$ |{{!}}}} | {{!}. čģž7%’i | žģi, | iſăğči| žň: |śī£ğği | žēš: |ğïžží ſ žī£ |ğGīšíri | zgż: |8,901: || zoz: | 19090" | | }}}} |zgſzQ || {{!}} |}}}}}} | }} |}}}}}} | {{!!}. ğģĞği | İgºr | Ģēģči| ſõſ |ğģiğši | igĚ |ğĒĢžži | īņēt ļvējšíri | igžº į Lyſol'1 | 10z" | €1660’ı | 191 |868z0:1 | 101" | 26900'l | 150" |20000 || 100 pāõū,5|(5ī5ū,5|pī5ū,5|pīõūō15īēū,5|(555ūō] pāõūS|p-ſouſſol 5ī5ā5|prouo|puouo|puouo|puouo|pdouo|puouo||paou3||Pººl19|Pºº42|Pºº!!2|Pººº 2 ouvy9S1}-134v/es!!!ouvyĐs!!!o.lv/es!!!!o.lv/3$!!!!oluvy�S18||oJves!!!ouvyĐs!!!!34 yºsłºodvyºs!!!! (229) C I R C L E S LENCTH OF CIRCULAR ARCS FOR UNIT RADIUS By the use of this table, the length of any arc may be found if the length of the radius and the angle of the segment are known. Example:—Required the length of arc of segment of 32° 15' 27’’ with radius of 24 feet 3 inches. From table: Length of arc (Radius 1) for 32° = .5585054 1 5’ = .0043.633 27’’ = .0001309 .56299.96 .56299.96 × 24.25 (length of radius) = 13.65 feet. DEGREES MINUTES SECONDS 1o .017 4533 61 o 1.064 6508 121 o 2.111 8484 1. .000 2909 17, .000 004.8 2 .034 9066 62 1.08.2 1041 122 2.129 3017 2 ,000 5818 2 .000 0097 3 .0523599 63 1,099 5574 123 2.146 7550 3 .000 8727 3 .000 0145 4 .069 81.32 64 1.1 17 01.07 124 2.1 64 2083 4 .001 1636 4 .000 0194 5 .087 2665 65 1.1.34 4640 125 2.181 6616 5 .001 4544 5 .000 0242 6 .104 71.98 66 1.151 91.73 126 2.199 11 49 6 .001 7453 6 .000 0291 7 .122 1730 67 1.169 3706 127 2.216 5682 7 .0020362 7 .000 0339 8 .139 6263 68 1.186 8239 128 2.234 0214 8 .002 3271 8 .000 0388 9 .157 0796 69 1.204 2772 129 2.251 4747 9 .002 6180 9 .000 0436 10 .174 5329 70 1.221 7305 130 2.268 Q280 10 .002 9089 10 .000 0485 11 .191 9862 71 1.239 1838 131 2.286 3813 1 1 .003 1998 11 .000 0533 12 .209 4395 72 | 1.256 6371 132 2.303 8346 12 .003 4907 12 .000 0582 13 .226 89.28 73 || 1.274 0904 133 2.321 2879 13 .003 7815 13 ,000 0630 14 .244 3461 74 | 1.291 5436 134 2.338 7412 14 .004 O724 14 .000 0679 15 .261 7994 75 1 .308 9969 135 2.356 1945 15 .004 3633 15 ,000 07.27 16 .279 2527 76 1.326 4502 136 2.373 6478 16 .004 6542 16 .000 0776 17 .296 7060 77 | 1.343 9035 137 || 2.391 1011 17 .004 9451 17 .000 O824 18 .314 1593 78 1.361 3568 138 2,408 5544 18 .005 2360 18 .000 0873 19 .331 6126 79 | 1.378 81 01 139 2.426 0077 19 .005 5269 19 .000 0921 20 .349 0659 80 1.396 2634 1 40 2.443 4610 20 .005 8178 20 .000 0970 21 .366 5.191 81 1.4.13 7167 14? 2.460 91 42 21 .006 1087 21 .000 101.8 22 .383 9724 82 1.431 1700 142 2.478 3675 22 .006 3995 22 .000 1067 23 .401 4257 83 1.448 6233 143 2.495 8208 23 .006 6904 23 .000 1 115 24 .418 8790 84 1.466 0766 144 2.513 2741 24 .006 981 3 24 .000 1 164 25 .436 3323 85 | 1.483 5299 145 || 2.530 7274 25 .007 2722 25 .000 1212 26 ,453 7856 86 1.500 9832 146 2.548 1807 26 .007 5631 26 .000 1261 27 .471 2389 87 | 1.518 4364 147 || 2.565 6340 27 .007 8540 27 .000 1309 28 .488 6922 88 | 1.535 8897 148 2.583 0873 28 .008 1449 28 .000 1357 29 .506 || 455 89 | 1.553 3430 149 2,600 5406 29 .008 4358 29 .000 j406 30 .5235988 90 1.570 7963 150 2.617 99.39 30 .008 7266 30 .000 1454 31 .541 0521 91 1.588 2496 151 2.635 4472 31 .009 0175 31 .000 1503 32 .558 5054 92 1.605 7029 152 2.652 9005 32 .009 3084 32 .000 1551 33 .575 9587 93 1,623 1562 153 2.670 3538 33 .009 5993 33 .000 1600 34 .593 41 19 94 1.640 6095 154 2.687 8070 34 .009 8902 34 .000 1648 35 .610 8652 95 1.658 0628 155 2.705 2603 35 .010 1811 35 .000 1697 36 ,628 31.85 96 1.675 51.61 156 2.722 7136 36 .010 4720 36 .000 1745 37 ,645 7718 97 1.692 9694 157 2.740 1669 37 ,010 7629 37 .000 1794 38 .663 2251 98 1.71 O 4227 158 2.757 62O2 38 ,011 O538 38 .000 1842 39 .680 6784 99 1.727 8760 159 2.775 0735 39 .011 3446 39 .000 1891 40 ,698 1317 100 1.745 3293 160 2.792 5268 40 .011 6355 40 .000 1939 41 .715 5850 101 1.762 7825 161 2.809 9801 41 .011 9264 41 ,000 1988 42 .733 0383 102 1.780 2358 162 2.827 4334 42 .012 2173 42 ,000 2036 43 .750 4916 103 1.797 6891 163 2.844 8867 43 .012 5082 43 ,000 2085 44 .767 9449 104 1.815 1424 164 2.862 3400 44 .012 7991 44 ,000 21.33 45 .785 3982 105 1.832 5957 165 2.879 7.933 45 .013 0900 45 ,000 2182 46 .80285.15 106 1.850 0490 166 2.897 2466 46 .013 3809 46 .000 2230. 47 .820 3047 107 1.867 5023 167 2.914 6999 47 .013 6717 47 .000 2279 48 .837 7580 108 1.884 9556 168 2.932 1531 48 .013 9626 48 ,000 2327 49 .855 21 13 109 1.902 4089 169 2,949 6064 49 ,014 2535 49 .000 2376 50 .872 6646 110 1.919 8622 170 2.967 0597 50 .014 5444 50 .000 2424 51 ,890 1 179 111 1.937 3155 171 2.984 5130 51 .014 8353 51 .000 2473 52 .907 5712 112 1.954 7688 172 3.001 9663 52 .015 1262 52 .000 2521 53 .925 0245 1 3 1.972 2221 173 3.019 41.96 53 .015 41.71 53 .000 2570 54 .942 4778 114 1.989 6753 174 3.036 8729 54 .015 7080 54 ,000 2618 55 .959 9311 115 2.007 1286 175 3.054 3262 55 .015 9989 55 .000 2666 56 .977 3844 116 2.024 5819 176 3.071 7795 56 .016 2897 56 ,000 2715 57 .994 8377 117 2.042 O352 177 3.089 2328 57 .016 5806 57 .000 2763 58 1,012 2910 118 2.059 4885 178 3.106 6861 58 .016 8715 58 .000 2812 59 1,029 7443 119 2.076 9418 179 3.124 1394 59 0.17 1624 59 .000 2860 60 1.047 1976 120 2.094 3951 180 3.141 5927 60 .017 4533 60 .000 2909 (230) B U F F A L O T A N K C O R P O R A T I O N PROFERTIES OF THE CIRCLE Circumference y = = 6.28318 r = 3.14159 d Diameter = 0.31831 circumference Area = 3.14159 r2 _ Tr A° 6. Arc a = -1555 - 0.017453 r A o Angle A" = ** - 57.29578 °. Trr r tº * 4 ba + c2 Radius r = Tā BT Chord c = 2 W.2 br—bz = 2 r sin + Rise b = r–4 V4 rºci - #tan + = 2 r sin” . = r + y— Vrº - X: b — r + Vira – X? x = Wra — (r-Hy—b)2 Diameter of circle of equal periphery as square Side of square of equal periphery as circle Diameter of circle circumscribed about square 1.27324 side of square 0.78540 diameter of circle 1.41421 side of square : Side of square inscribed in circle 0.70711 diameter of circle CI RCULAR SECTOR G CIRCULAR SEGMENT n r = radius of circle y = angle nop in degrees Area of Sector ncpo = % (length of arc nop X r) # y Area of Circle X 360 = 0.0087266 × r2 × y r = radius of circle x = chord b = rise Area of Segment nop=Area of Sector ncpo—Area of triangle nep (Length of arc nop X r) — x (r — b) - 2 Area of Segment nsp= Area of Circle — Area of Segment nop VALUES FOR FUNCTIONS OF T T = 3.14159265359, log = 0.4971499 T T Tr2 = 9.8696044, log = 0.994.2998 0.3183099, log = T.5028501 W =0.5641896, log+1.7514251 T 3 = syo062787, log = 1.4914497 Vir= 1.7724539, log = 0.2485749 = 0.1013212, log = 7.0057002 ſº : * - 57.295795, log-1.7581226 0.0174533, log =2.2418774 # = 0.0322515, log = 2.5085503 T (231) A R E A S AREA OF PLANE FICURES Triangle: Base x 9.6 perpendicular height. V so—a) (s—b) (s—c), s = }% sum of the three sides a, b and c. Trapezium: Sum of area of the two triangles. Trapezoid: % sum of parallel sides x perpendicular height. Parallelogram: Base x perpendicular height. Regular Polygon: }, sum of sides x inside radius. Circle: T r2 = 0.78540 x dia.2 = 0.07958 x circumference? •2 A O * Sector of Circle: " 'º-º = 0.0087266r2A* = arc x 13 radius. ,j () ſº r2 /T A* : - - A C Segment of Circle: - — sin A 2 \ 180 Circle of same area as square: diameter = side x 1.12838 Square of same area as circle: side = diameter x 0.88623 Ellipse: Long diameter x short diameter x 0.78540 Parabola: Base x 3% perpendicular height. Irregular plane surface T + wº- CN) cº sº uſ) C C d º -G -E -E -E .C. -G -E 3. w y *b Divide any plane surface A, B, C, D, along a line a-b into an even number, n, of parallel and sufficiently small strips, d, whose ordinates are hy, h9, ha, hī, h; . . . . hn–1, hn, hn +1, and considering contours between three ordinates as parabolic curves, then for section ABCD, Area -: |h. + hn-H +4(h9-H ha +ho . . . --hn) +2(ha +h; +h; . . . +h-0 or, approximately, Area = Sum of Ordinates X width, d. VOLUME OF A WEDCE This formula is useful in obtaining the contents of special, wedge-shaped, tank bottoms. Volume = wh (1 + m + n) 6 (232) B U F F A L O T A N K C O R P O R A T I O N TRICONOMETRIC FORMULAS Radius AF = 1 T R 1 G CD N O NM ET R I C = sin 2 A -- cos2 A = sin A cosec A FU NCT I O NS = cos A sec A = tan A cot A cos A 1 - H G * - --- = --- = > - 2 -> v* Si n e A cot A cosec A cos A tan A = V1-cos2 A = BC D cosine A = " $ = --- = sin A cot A = WiFsin*A = Ac tan A sec A L « sin A 1 * B Tangent A = cos A " cot A T sin A sec A = FD C, Cotangent A = cos A == -- = cos A cosec A = HG 2A sin A tan A tan A 1 A b C F Secant A T si n A - cos A = AD cot A 1 Cosecant A = cos A T sin A = AG a 2 = c 2 - b2 c2 = a 2 -- b2 Required - YKnown A B a b C Area - _a -> b 2 2 _ab a, b tan A = E tan B - 5 V a 2 -- b 2 a , C sin A = * cos B = * -V c2 - a2 a V cº - a2 C C 2 º - a a 2 cot A A, a 90 A a cot A si n A 2 b b2 tan A º - - - A, b 90 A b tan A cos A 2 2 e i A, c 90º - A c sin A c cos A es siga a O BL I QUE ANG LED T R l A N G LES a 2 = b2 -- c 2 - 2 bc cos A s - * E # tº b2 = a 2 -- c2 - 2 ac cos B c2 = a 2 -- b2 - 2 ab cos C Required Known A B C b C Area 1 A = 1 - 1 C = - a, b, c | Cos # * - COS 2 B = COS 3 o - v s (s-a) (s-b) (s-c) s (s - a) s (s - b) s (s - c) bc aC ab º- a si n B a sin C a, A, B 180º-(A -- B) si n A sin A * b sin A b sin C a, b, A si n B = ---- " sin B _ , a sin C = 2 Ln2_2 = P rsos r ab sin C a, b, C |tan A = b-a cos C Va -- b 2a b cos C 2 (233) S E C T I O N S PROPERTIES OF SECTIONS SQUARE Axis of noments through center A = d2 d A C = — { 2 d — ---------- | = d4 12 C; 3 s = + º d - d 288675 d r : — = º V12 SQUARE Axis of mornerits on base A = d2 | |C :=:- : 4. d C —Y-- l . SQUARE A = d2 Axis of moments on diagonal d C = = = .7071 W2 07107 d d4 i = Ha- d3 S = E = . 117851 d2 6 V 2 1 d r = TIT. = .288675 d V12 RECTA N G LE º - A = b(i. Axis of monnents through center d r f c = −a. C | b d2 d -------|-- 12 b d2 s = Hº- d r = TT = .288675 d k—b–- W12 (234) B U F F A L O T A N K C O R P O R A T I O N PROPERTIES OF SECTIONS RECT A N G LE Axis of monents on base = bo | —x- -: d bd 3 d C - 3 _ _bd? - 3 —1- - --- d 577350 d *. – — - 5 K—b–- V3 RECTA N G LE Axis of monents on diagonal = b d bd T V bººt d? b3d 3 T 6 (b2+ d2) b2d 2 T 6V53T da bd T V 6 (b2 + d2) RECTA N G LE Axis of moments any line through center of gravity = b Cl - b sin a + d cos a 2 bd (b2 sin 2a –– d 2 cos2a) 12 bd (b2 sin 2a -i- d 2 cos 2a) 6 (b sin a + d cos a) b2 sinza + d 2 cosza 12 HOLLOW RECTA N G LE Axis of nonments through center Hill bd — bid 1 d 2 bd 3 — bid 13 12 bd 3 — bid 13 6d bd 3 — bid 13 12 A S E C T I O N S PROFERTIES OF SECTIONS EQUAL RECTANGLES Axis of mornerits through A = b (d — di) center of gravity /N c = + | | | 2 - C | | 1 – b (d’ – d.1°) d d1 —--—-—Y- 12 | _ b (d8 – d.13) Y s = =EH = N r = dº — d.13 |< b —- - 12(d — d.1) U NEQUAL RECTA N G LES Axis of mornerits through center of gravity A = bt -- biti | K–5–- ſº, e * btº + bitt (d — $4 ti) t - - - →---- A ") —ſº - t3 3. * –----- | | ſ 3. --- — ! ſ C C 1 —Y——º' -- - --- Y - | <-b- 4- TRIANGLE Axis of mornerits through A = º center of gravity c = ** - 3 | _ ba? T T36 bd 2 S = 24 d r sc T_ = .235702 d V 18 TRIANGLE Axis of mornerits on base A = bd - T2 C - d bd 3 C I - 12 bd 2 S = 12 d r = −. = .408248 d V 6 (236) B U F F A L O T A N K C O R P O R A T 1 O N PROPERTIES OF SECTIONS TRAPEzoi D Axis of mornerits through center of gravity A d (b -- bi) :- bi – g- C d(2b + bi) - ſ 3(b Tba) C | d2 (b2 + 4 bb 1 + b 12) d 4. 36 (b -- bi) - - - -s-s-º- - S d2 (b2 + 4 bp 1 + bi 2) 12 (2b + b 1) d - 2 2 b r 6(b + b 1) W2 (b2+4 bbi H-biz) CI RCLE Axis of monents A # = -R2 = .785398 da = 3.141593 R- through center 4 d AS C — = R f 2 C # = Effº = .049087 d. 785398 R4 d 4. i = H = -ā- = . - e. ºrd 3 T:R3 - : = 3 = , 3. S 32 4 .0981.75 d 785398 R d = R. r TAT 2 HOLLOW CIRCLE (d 2 — d.12) _*\0” T 0.1 °). = -7 2 — 2 Axis of monents A 4 .785398 (d2 — d.12) through center d f C T2. C - (r. 4 — I *::: *** = .049087 (d. – d.") -->4– 64 +(d4 — d.14) d4 — d.14 S ==== = .098175– r v d2 + d 12 4 HALF CIRCLE R2 Tri- - 2 Axis of moments through A 2 1.570796 R center of gravity C R (1–4) = .575587 R 37: 7t 8 4 *m. - - – 4. - - | R ( 8 97: ) .109757 R Rs. (9:2–64) - 3. S 34 (3.T4). T .190687 R r R Nº a* = .264836 R (237) S E C T I O N S PROFERTIES OF SECTIONS A = +ab 2 nn = -5 a li == #aab 12 = +ab" 13 = #aab A = # ab F-n- m = # a A n = #b | 8 al I 1 = -- a 3b | ––––––– 175 19 | m 12 = + ab 3-Y-- f ---a 480 | 16 2 13 == 105* b Hº b >] 4. | 4 = # abº COM FLEMENT OF HALF FARABO LA 1 2 A = -ā-ab k n—- r 7 Trl = TO a ! —- - * = <= -º-º-º: smºs I 3 A n = -— b 3. | T 4. nn 37 t = — a 3 2 | li 2155 aºb 1 = — a h9 b 12 80 ab PARABO LI C F I LLET I N t RIGHT ANGLE a = TI- 2 2V 2 m— N | b - - - —t W2 A *E 1 tº t / 6 4. n = n > +t 11 li = 12 Zijöt (238) B U F F A L O T A N K C O R P O R AT I O N PROPERTIES OF SECTIONS 3% HALF ELL | FSE 1 A - + rab m = ** T 3. a T: 8 | 1 = a 3b (# - #) 1 3-Y-- ! 2 = a rabº 1 ! 3 - a rasb * QUARTER ELLl PSE A = +rab 2 4 4a k-n-> m = -a- X - _ 4b | n = + a | 7: 4 I -: 3 - - |-- --|---|---- | 1 a b (i. 97: I rn 7: 4 3–4–– ––––3 1. – abº († – #) 2 ! 3 1 a 3b b > = — 7: 4. 16 | 4 = * 1. - _ _ _abcdt { \TI- I - T T 4(b) Tc) 1 C l, - . (t(d–y)* + by -acy–9°) \ *303 is d | Y = # (t(b–9°4 dx2-c6–92) 3-0 3 23.0 X; - -}–++ - —— — — — X * º N +k !z = 1.x sin 26 + IY cos26 + K sin20 y \ 1 ||\ Y -v t (- I w = |x cos20 + IY sin 20 — K sin20 2– —- x -x \ | º | | 1. K is negative when heel of angle, with respect Y to c. g., is in 1st or 3rd quadrant, positive when in 2nd or 4th quadrant. Z-Z is axis of minimum ! BEAMS AND CHANNELS Transverse force oblique through center of gravity | 3 = |x sin 24 + IY cos24, | 4 | x cos24 + IY sin24, M (# sine + , cose) lx | Y where M is bending moment due to force F. Extreme fiber assumed same as for case q = 0. If not, locate extreme fiber and find f by usual method. (240) B U F F A L O T A N K C O R P O R AT I O N * THEORETICAL WEICHTS OF STEEL PLATES IN POUNDS PER SOUARE FOOT These tables are based on the average weight of steel of 489.6 pounds per cubic foot (.2833 pounds per cubic inch). Bir– Jnite Bir– nite Inches ming- º Pounds Inches ming- º Pounds - ham | Stand- S ºre ham | Stand- S ºre Decimal |* Wiro ard sº t Decimal Frac- || Wire ard #. t JCCIII tional Gauge | Gauge tional Gauge Gauge J .0613 * * 16 2,500 .2604 º 2| 10.625 .0625 % - - - - 2.550 .265625 | }} . . 10.8375 ,0650 * - 16 - - 2.652 .2757 * - 1| 11.25 ,0689 º 15 2.81.25 .281.25 #; 11.475 .07.20 º 15 - - 2.938 .2840 2 11.587 .()766 - * - 14 3.125 .300 1 . . . 12.240 .()781.25 * * - - - 3.1875 .3064 * - - - () 12.500 .0830 e - 14 3.386 .3125 % - . . . 12.750 .0919 - 13 3.750 .3370 - a 00|| 13.750 ,09375 #; * - - - 3.825 .340 - () 13.872 ,0950 # * 13 - - 3.876 .34375 # - - . . 14.025 , 1072 tº e 12 4.375 .3676 * 00() 15,000 . 1090 • * 12 4.447 ,375 % - - 15,300 .109375 * * - 4.4625 .380 • - 00 . . . 15.504 .1200 - 11 - - 4.896 .3983 - - - 0000| 16.250 .1225 • * 11 5.000 .40625 # . . | 16.575 .1250 % e - 5.100 .425 e ()00 . . . 17.340 .1340 * - 1() - - 5,467 .4289 * * * - 00000|| 17.500 , 1379 * * º 10 5.625 .4375 % - - . . 17,850 .140625 # - - 5.7375 .454 * - ()()00 18.523 .1480 Q - - 6.038 .4596 - 000000| 18.750 ,1532 - e. e - 9 6.250 .46875 # . . | 19.125 . 15625 *; e - - - 6.375 .484375 | }} . . . 19.762 .1650 * * S 6.732 .4902 e 0000000; 20.00 .1685 - 8 6,875 .500 J% | 00000 20.400 .171875 § c + * - 7.0125 .531.25 #; - - 21,675 .1800 * → 7 - - 7.344 .5625 % 22.950 , 1838 * * & 7 7.500 .59375 #} 24.225 . 1875 % - - 7.65 .6250 % 25.500 .1991 * * e - 6 8,125 .65625 # 26.775 .2030 e (5 - - S.282 .6875 % 28.050 .203125 # • 8,2875 .71875 # 29.325 .2145 - tº - 5 8,750 .750 % 30.600 .218.75 #3 e - - - S.925 .78125 # 31.875 .2200 - - 5 - - 8,976 .8125 % 33.15 .2298 g o 4 9.375 .84375 #; 34.425 .234375 # * * - - 9.5625 .8750 % 35.700 .2380 - - 4 - 4. 9.7.10 .90625 #} 36.975 .2451 - - 3 || 10.000 .9375 % 38.250 .2500 }4. - - 10.200 .96875 # 39.525 .2590 3 10.567 1.000 1 40.800 (241) C I R C U L A R P L A T E S THEORETICAL WEICHTS IN POUNDS OF CIRCULAR STEEL PLATES Diam- eter | }.6 || 3% | }4 9% | 3% Jó | }% 9% 5% 9% 94 | 9% 7% 9% | 1 Inches 10 3 4 6 7 8 10 11 13 14 15 17 18 19 21 22 11 3 5 7 8 10 12 13 15 17 19 20 22 24 25 27 12 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 13 5 7 9 12 14 16 19 21 24 26 28 31 33 35 38 14 5 8 11 14 16 19 22 25 27 30 33 35 38 41 44 15 6 9 13 16 19 22 25 28 31 34 38 41 44 47 50 16 7 || 11 14 18 21 25 28 32 36 39 43 46 50 53 57 17 8 || 12 16 20 24 28 32 36 40 44 48 52 56 60 64 18 9 || 14 18 23 27 32 36 41 45 50 54 59 63 68 72 19 10 || 15 20 25 30 35 40 45 50 55 60 65 7() 75 80 20 11 || 17 22 28 33 39 45 50 56 61 67 72 78 83 89 21 12 | 18 25 31 37 43 49 55 61 68 74 80 86 92 98 29 23 || 35 47 58 70 82 94 | 105 || 117 | 129 iłó 152 | 164 176 | 187 30 25 | 38 50 63 75 88 || 100 || 1 || 3 || 125 | 138 || 150 | 163 175 | 188 200 31 27 | 40 53 67 80 94 | 107 | 120 | 134 || 147 | 160 | 174 | 187 | 201 || 214 32 28 || 43 57 71 85 | 100 | 114 | 128 142 | 157 171 | 185 | 199 || 214 228 33 30 || 45 61 76 91 || 106 | 121 | 136 | 151 167 | 182 | 197 || 212 227 | 242 34 32 || 48 64 80 97 113 129 || 145 || 161 || 177 | 193 209 || 225 241 257 35 34 || 5 || 68 85 || 102 || 119 136 || 153 | 1.70 | 188 204 222 || 239 256 273 36 36 54 72 90 || 108 || 126 144 | 162 | 180 198 || 216 || 234 || 252 271 288 37 38 57 76 95 || 114 || 133 152 | 171 | 190 210 || 228 248 || 267 || 286 || 305 38 40 || 60 80 100 | 121 | 1.41 | 161 | 181 201 221 241 261 | 281 || 301 || 321 39 42 | 63 85 | 106 || 127 | 1.48 || 169 190 212 || 233 254 275 296 || 318 || 339 40 45 | 67 89 || || 11 || 134 || 156 || 178 || 200 223 245 || 267 || 289 || 312 334 || 356 41 47 || 70 94 || 117 | 1.40 164 | 187 | 210 || 234 257 || 281 304 || 327 | 351 || 374 42 49 || 74 98 || 123 | 1.47 172 | 196 || 221 || 245 270 294 || 319 344 || 368 || 393 43 51 77 || 103 || 129 || 154 180 206 || 231 || 257 283 || 309 || 335 | 360 | 386 || 411 44 54 || 81 || 108 || 135 | 162 188 215 242 269 || 296 || 323 || 350 377 | 404 || 431 45 56 | 84 || 113 || 141 | 169 || 197 225 || 254 || 282 310 || 338 || 366 394 || 423 || 451 46 59 88 || 118 147 177 | 206 235 | 265 294 || 324 353 || 383 || 412 || 442 471 47 61 | 92 || 123 154 | 184 || 215 246 || 277 || 307 || 338 || 369 | 400 430 || 461 || 492 48 64 96 || 128 || 160 192 || 224 256 288 || 320 || 353 385 | < 17 || 449 || 481 || 513 49 67 || 100 | 134 | 167 200 || 234 || 267 || 301 || 334 || 368 || 401 || 434 || 467 || 501 || 534 50 70 || 104 || 139 174 || 209 || 243 || 278 || 313 || 348 || 383 || 417 || 452 || 487 522 || 556 51 72 | 109 || 145 | 181 217 || 253 289 || 326|| 362 || 398 || 434 470 506 || 543 579 53 78 ii; 156 | 195 || 234 273 || 313 || 352 | 391 || 430 || 469 508 || 547 || 586 || 625 54 81 | 12 162 | 203 || 243 | 284 324 || 365 | 406 || 446 || 487 || 527 | 568 || 608 || 649 55 84 126 | 168 210 || 252 295 || 337 || 379 || 421 || 463 || 505 || 547 589 631 || 673 56 87 | 131 || 175 | 218 262 || 305 || 349 || 393 || 436 || 480 523 567 || 6 || 1 || 654 698 57 90 | 136 | 181 226 || 271 || 316 || 361 | 407 || 452 || 497 || 542 || 587 | 633 678 || 723 58 94 || 140 | 187 || 234 281 || 328 || 374 || 421 || 468 || 515 561 | 608 || 655 | 702 || 749 59 97 || 145 || 194 | 242 290 || 339 387 || 436 || 484 || 533 581 | 629 || 678 || 726 || 775 60 | 100 | 150 | 200 || 250 || 300 || 350 | 401 || 451 501 || 551 | 601 || 651 || 701 || 751 801 61 | 104 || 155 | 207 || 259 || 311 || 362 || 414 || 466 || 518 569 || 621 | 673 || 724 777 | 828 (242) B U F F A L O T A N K C O R P O R A T I O N THEORETICAL WEICHTS IN POUNDS OF CIRCULAR STEEL PLATES Diam- eter Inches 105 176 182 187 193 199 204 210 216 222 228 235 241 247 254 26() 267 274 281 287 294 301 309 316 323 330 338 346 353 361 369 377 385 393 401 409 417 426 434 443 451 460 106 107 108 109 110 111 112 113 469 478 487 496 505 514 J4 || 5% | 36 || 746 96 || 9% 5% | }{6 | 84 || 9% 78 9% I 214 || 267 || 321 374 || 428 || 481 535 | 588 || 642 | 696 || 748 i 802 || 855 221 276 || 331 || 386 442 || 497 || 552 | 607 | 662 718 || 773 || 828 883 228 285 342 399 || 456 || 513 570 627 | 684 || 741 798 || 855 911 235 | 294 || 353 || 411 || 470 529 588 || 646 || 705 || 764 823 || 882 | 940 242 303 || 363 || 424 || 485 545 606 | 666 | 727 | 788 | 848 || 909 969 250 || 312 || 375 || 437 || 499 || 562 | 624 | 687 749 || 812 || 874 937 999 257 || 322 || 386 || 450 || 514 || 579 || 643 || 707 || 772 | 836 900 965 | 1029 265 || 331 || 397 || 464 530 596 | 662 | 728 795 || 861 927 994 || 1059 273 || 341 | 409 || 477 545 613 | 681 || 750 818 || 886 954 || 1022 || 1090 280 || 351 || 421 || 491 || 561 | 631 || 701 || 771 | 841 911 || 982 | 1051 | 1121 288 || 360 433 505 || 577 649 721 || 793 || 865 | 937 1009 || 1081 || 1153 296 || 371 || 445 || 519 593 | 667 741 || 815 | 889 || 963 | 1037 1111 | 1.185 305 || 381 || 457 || 533 || 609 | 685 || 762 | 838 914 | 990 || 1066 || 1142 | 1218 313 || 391 || 469 || 548 || 626 || 704 || 782 | 861 | 939 || 1017 | 1095 || 1173 || 1251 321 | 402 || 482 562 643 | 723 803 || 884 964 || 1044 1125 | 1205 | 1285 3:30 4 12 495 577 66() || 742 S25 907 990 || 1072 1154 || 1237 1319 338 || 423 508 || 592 (577 || 762 | 846 | 931 || 1 ()15 | 1100 | 1185 | 1269 || 1354 347 || 4:34 521 608 || 694 || 781 | 868 955 | 1042 || 1 128 1215 1302 || 1389 356 || 445 534 623 7 || 2 | S() | 890 979 || 1068 || 1157 | 1246 || 1335 | 1424 365 456 54 639 || 730 821 | 912 || 1004 || 1095 || 1186 || 1278 || 1369 || 1460 374 || 468 || 561 655 | 748 | 842 | 935 | 1029 || 1122 | 1216 || 1309 | 1.403 || 1496 383 || 479 575 671 766 | 862 | 958 1054 | 1150 | 1246 1341 1437 | 1533 393 || 491 589 687 785 883 981 || 1079 || 1 || 78 || 1276 || 1374 || 1472 | 1570 402 || 502 || 603 703 || 804 || 904 || 1005 || || 105 | 1206 || 1306 || 1407 | 1507 | 1608 411 || 514 | 617 | 720 | 823 926 || 1029 1132 1234 || 1337 || 1440 || 1543 | 1646 421 | 526 632 | 737 | 842 | 947 | 1053 | 1158 | 1263 | 1369 || 1474 1579 | 1684 431 539 || 646 || 754 862 | 969 || 1077 | 1185 | 1292 || 1400 | 1508 || 1616 || 1723 44 551 | 661 || 771 | 881 || 991 || 1102 || 1212 || 1322 || 1432 | 1542 | 1652 | 1763 451 || 563 | 676 || 789 || 901 || 1014 || 1127 | 1239 || 1352 | 1.465 1577 | 1690 1802 461 || 576 || 691 || 806 || 921 | 1037 || 1152 | 1267 || 1382 || 1497 | 1612 || 1728 1843 471 || 589 || 706 || 824 942 | 1059 1177 | 1295 1413 | 1530 | 1648 || 1766 | 1883 481 601 722 || 842 962 | 1083 || 1203 || 1323 1443 | 1564 | 1684 1804 || 1925 492 || 614 | 737 || 860 | 983 || 1106 || 1229 || 1352 | 1.475 | 1598 || 1720 | 1843 | 1966 502 || 628 753 || 879 || 1004 || 1130 | 1255 || 1381 | 1506 || 1632 || 1757 | 1883 || 2008 513 | 641 || 769 | 897 || 1025 | 1154 || 1282 1410 | 1538 | 1666 || 1794 | 1923 || 2051 523 654 || 785 916 || 1047 | 1178 || 1309 || 1439 1570 1701 | 1832 || 1963 2094 534 | 668 801 935 | 1069 || 1202 || 1336|| 1469 | 1603 || 1736 1870 | 2004 || 21:37 545 | 682 | 818 954 || 1090 | 1227 | 1363 || 1499 || 1636 1772 | 1908 2045 2181 556 || 695 || 834 || 974 || 113 | 1252 || 1391 || 1530 | 1669 | 1808 || 1947 | 2086 2225 567 || 709 || 851 993 |1135 | 1277 1419 1561 1702 | 1844 || 1986 || 2128 2270 579 | 724 | 868 || 1013 || 1158 || 1302 || 1447 1592 || 1736 1881 2026 21.70 || 2315 590 | 738 || 885 | 1033 || 1180 | 1328 || 1476 | 1623 1771 | 1918 2066 2213 || 2361 602 || 752 | 903 || 1053 || 1203 || 1354 1504 || 1655 | 1805 || 1956 2106 || 2256 |2407 613 || 767 || 920 | 1073 || 1227 | 1380 | 1533 | 1687 | 1840 | 1993 || 2147 || 2300 2453 625 || 781 | 938 || 1094 | 1250 | 1406 || 1563 || 1719 | 1875 | 2032 2188 || 2344 2500 637 796 || 955 1115 | 1274 1433 1592 || 1752 | 1911 | 2070 2229 || 2388 || 2548 649 || 811 || 973 || 1136 | 1298 || 1460 | 1622 || 1784 1947 || 2109 2271 || 2433 2596 661 | 826 991 || 1157 | 1322 || 1487 | 1652 | 1818 1983 || 2148 || 2313 || 2479 || 2644 673 | 841 || 1010 || 1178 || 1346 || 1515 | 1683 | 1851 2019 2188 || 2356 || 2524 || 2693 685 | 857 | 1028 1200 | 1371 1542 1714 | 1885 | 2056 2228 2399 || 25.70 | 2742 698 || 872 | 1047 | 1221 1396 || 1570 1745 1919 || 2094 || 2268 2442 2617 | 2791 710 | 888 || 1066 | 1243 || 1421 1598 || 1776 1953 || 2131 || 2309 || 2486 || 2664 || 2841 (243) C I R C U L A R P L A T E S THEORETICAL WEICHTS IN POUNDS OF CIRCULAR STEEL PLATES Diam- eter Inches 133 134 135 136 137 138 140 141 142 143 144 145 146 147 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 % 3 $ % / % Z S 5. % % 5. ſ 904 920 936 952 968 985 1001 1018 1035 1052 1069 1087 1 104 1122 1139 1157 1175 I 193 1212 I230 1249 1267 1286 1305 1324 1344 1363 1383 1402 1422 1442 1462 1482 1503 1523 1544 1565 1586 1607 1628 1649 1671 I692 1714 1736 1758 1780 1803 1825 1848 1870 1893 1084 1104 1123 1142 1162 1182 1202 1222 1242 1262 1283 1304 1325 1346 1367 1389 1410 1432 1454 1476 1498 1521 1543 1566 1589 1612 1636 1659 1683 1706 1730 1754 1779 1803 1828 1853 1878 1903 1928 1953 1979 2005 2031 2057 2083 211() 2136 2163 2190 2217 2244 2272 1446 1471 1497 1523 1549 1576 1602 1629 1656 1683 1711 1738 1766 1795 1823 1852 1880 1909 1939 1968 1998 2028 2058 2088 21 19 2150 2181 2212 2244 2275 2307 2339 2372 2404 2437 2470 25()3 2537 257.1 2605 2639 2673 27.08 2743 2778 28 13 2848 2884 2920 2956 2993 30.29 1627 1655 1684 1713 1743 1773 1802 1833 1863 1894 1925 1956 1987 2019 2051 2083 2115 2148 2181 2214 2248 2281 2315 2349 2384 24.18 2453 2489 2524 2560 2596 2632 2668 2705 2742 2779 2816 2854 2892 2930 2969 3007 3046 3085 31.25 3164 3204 3.245 3285 3326 3367 3408 1807 1839 1871 1904 1937 1970 2003 2036 2070 2104 2138 217.3 2208 2243 2279 2314 2350 2387 2423 2460 2497 2535 2572 26.10 2648 2687 27.26 2765 2804 2844 2884 2924 2965 3005 3046 3088 3 129 3 || 7 | 32 13 3.256 3.298 334.1 3385 3428 3472 3516 3560 3605 3650 3695 3741 3786 1988 2023 2059 2094 21:30 2166 2203 2240 2277 2315 2352 2390 2429 2467 2507 2546 2586 2625 2666 | . 2706 2747 27SS 2830 2871 29.13 2956 2999 3042 3085 31.28 3172 32.17 3.261 3306 3351 3396 3442 3488 3535 3581 3628 3676 3723 3771 38.19 3868 3916 3966 4015 4065 4.1.15 4.165 2350 2391 2433 2475 25.18 2560 2604 2647 2691 2735 2780 2825 2870 2916 2962 3009 3056 31 ()3 3 150 31.98 3247 3.295 3344 3393 3443 3493 3544 3595 3646 3697 3749 3801 3854 3907 3960 4014 4068 4123 4.177 4232 4288 4344 4400 4457 4514 457 | 46.29 4687 4745 4804 4863 4922 25.30 2575 2620 2665 2711 2757 2804 285.1 2898 2.946 2994 3042 3091 3140 3190 3240 3.291 3341 3393 3444 3496 3549 3601 3655 3708 3762 3816 3871 3926 3982 4038 4094 4150 4208 4265 4323 4381 4440 4499 4558 4618 4678 4738 4799 4861 4923 4985 5047 5110 5 173 5237 5301 2711 2759 2807 2856 2905 2954 3004 3054 3105 31.56 3208 3260 3312 3365 3418 34.72 3526 3580 3635 3690 3746 3802 3859 3916 3973 4031 4089 4148 42O7 4266 4326 4386 4447 4508 4570 4632 4694 4757 4820 4.884 4948 5012 5077 5142 5208 5274 534.1 5408 5475 5543 56.11 5680 2892 2943 2994 3046 3098 31.51 3204 3258 3312 3367 3421 3477 3533 3589 3646 3703 3761 38.19 3877 3936 3996 4056 41 16 4.177 4238 4.299 4362 4424 4487 4550 4614 46.79 47.43 4809 4874 4940 5007 5074 5141 5209 5277 5346 5415 5485 5555 5626 5697 5768 5840 5912 5985 6058 (244) B U F F A L O T A N K C O R P O R AT I O N THEORETICAL WEICHTS IN POUNDS OF CIRCULAR STEEL PLATES Diam- eter | }.g. | 3% | }4 9% 3% Jó | }. 9% 5% 9% 34 9% 76 9% 1 Inches ----- 166 . . . . . . . . 1533 1916 2299 || 2683 3066 || 3449 3832 4216 || 4599 || 4982 5365 5749 6132 167 . . . . . . . 1552 | 1939 || 2327 | 2715 || 3103 || 3491 3879 || 4267 || 4655 5042 5430 || 5818 6206 168 . . . . . . . . 1570 1963 || 2355 2748 || 3140 3533 3925 4318 47 10 || 5103 || 5496 || 588S 6281 169 . . . . . . . . 1589 | 1986 || 2383 || 2781 || 3178 || 3575 | 3972 4370 4767 || 5164. || 5561 || 5958 || 6356 170 . . . . . . . 1608 || 2010 || 24.12 || 2814 || 3216 3617 | 4019 || 4421 || 4824 5225 | 5627 | 6029 || 6431 171 . . . . . . . 1627 | 2033 2440 || 2847 || 3253 3660 | 4067 || 4473 || 4880 || 5286 5694 || 6100 || 6507 172 . . . . . . . 1646 2057 2469 || 2880 || 3292 || 3703 || 4115 4526 4937 5349 5760 6172 || 6583 173 . . . . . . . 1665 2081 2498 || 2914 || 3330 3746 4163 || 4579 || 4995 || 5411 || 5828 6244 | 6660 174 . . . . . . . . 1684 || 2105 || 2526 2948 || 3369 || 3790 || 4211 || 4632 || 5053 || 5474 || 5895 || 6316 || 6737 175 . . . . . . . 1704 || 2130 2556 || 2982 |3407 ||3833 || 4259 |4685 || 5111 || 5537 || 5963 6389 | 6815 176 . . . . . . . 1723 2154 || 2585 3016 || 3446 || 3877 || 4308 || 4739 || 51.70 || 5601 || 6031 || 6462 | 6893 177 . . . . . . . 1743 || 2 || 79 2614 || 3050 || 3486 || 3921 || 4357 || 4793 || 52.29 || 5664 || 6100 || 6536 || 6972 178 . . . . . . . 1763 2203 || 2644 || 3085 3525 | 3966 || 4407 || 4847 5288 5729 6169 | 6610 || 7051 179 . . . . . . . 1782 2228 2674 || 3119 |3565 | 4011 4456 4902 || 5348 || 5793 6239 || 6684 || 7130 180 . . . . . . . 1802 2253 2704 || 3154 || 3605 | 4056 |4506 || 4957 5407 5858 6309 || 6759 | 7210 181 . . . . . . . 1823 2278 || 2734 || 3189 || 3645 || 4101 || 4556 || 5012 || 5468 || 5923 || 6379 | 6835 | 7290 182 . . . . . . . 1843 || 23()3 2764 3225 || 3685 || 41.46 || 4607 506S 5528 5989 || 6450 6910 | 73.71 183 . . . . . . . 1863 || 2329 || 2795 || 3260 | 3726 || 4 192 || 4658 || 5123 || 5589 || 6055 6521 | 6986 7452 184 . . . . . . . 1883 2354 2825 || 3:296 || 3767 4238 || 4709 || 5180 5650 6121 6592 || 7063 7534 185 . . . . . . . 1904 || 2380 |2856 || 3332 |3808 || 4284 |4760 5236 5712 ||6188 |6664 || 7140 || 7616 186 . . . . . . . 1925 | 2406 || 2887 || 3368 || 3849 4330 || 48.12 || 5293 || 5774 || 6255 | 6736 7217 | 7699 187 . . . . . . . 1945 2432 2918 || 3404 || 3891 || 4377 || 4863 || 5350 5836 6323 | 6809 || 7295 || 7782 188 . . . . . . . 1966 2458 2949 3441 3932 4424 4916 5407 || 5899 || 6390 | 6882 | 7373 || 7865 189 . . . . . . . 1987 2484 || 2981 3478 || 3974 4471 || 4968 5465 5962 64.58 || 6955 7452 || 7949 190 . . . . . . . 2008 ||25 || 0 || 3012 || 3515 4017 || 4519 || 5021 5522 || 6024 || 6527 | 7029 || 7531 8033 191 . . . . . . . . 2029 || 2537 || 3044 || 3552 | 4059 |4566 || 5074 || 5581 | 6088 || 6596 || 7 103 || 7611 | 8118 192 . . . . . . . . 2051 || 2564 3076 || 3589 || 4102 || 4614 || 5127 | 5640 || 6152 | 6665 71.78 7691 8203 193 . . . . . . . . .2072 2590 3.108 || 3626 4144 || 4663 || 5181 || 5699 || 6217 | 6735 | 7253 || 7771 | 8289 194 . . . . . . . . .2094 26 17 | 3141 3664 || 4188 4711 || 5234 5758 6281 | 6805 || 7328 || 7852 8375 195 . . . . . . . . 2115 2644 || 3173 || 3702 || 4231 |4760 5288 || 5817 | 6346 | 6875 || 7404 || 7933 || 8462 196 . . . . . . . . 2137 2671 || 3206 || 3740 || 4274 || 4809 || 5343 5877 | 6412 || 6946 7480 8014 || 8549 197 . . . . . . . . 2159 2699 || 3239 || 3778 || 4318 || 4858 53.98 || 5937 64.77 | 7017 | 7557 8096 || 86.36 198 . . . . . . . . .218.1 2726 || 3272 |3817 | 4362 |4907 || 5452 5998 || 6543 7088 || 7634 8179 |8724 199 . . . . . . . 2203 || 2754 || 3305 || 3855 || 4406 || 4957 5508 || 6059 | 6609 || 7160 | 7711 || 8262 | 8812 200 . . . . . . . . 2225 2782 || 3338 3894 4451 5007 || 5563 6120 | 6676 | 7232 7788 8345 | 8901 surface AND volume of solid circular Rincs CIRCULAR RING (TORUS) D and R = Mean Diameter and Mean Radius, respectively, of Ring d and r = Mean Diameter and Mean Radius, respectively, of Section Surface = Tr2 Dd = 4T2Rr Volume = 2+2Rr? - Dº (245) W E I G H T S WEICHTS of FLAT ROLLED STEEL POUNDS PER LINEAR FOOT Width, Thickness, Inches Inches. As | We 3As | V | she 3% 7/16 || M. 9/16 || 5% | 1 1/16 || 3% | 13/16 || 7/8 || 15/16 || 1 % ,053 ) . 106 | . 159 | .213 . 27 . 32 . 37 .43 . 48 . 53 .58 . 64 69 . 74 , 80 .85 ... 106 | .213 | .319 | .425 . 53 . 64 . 74 . 85 .96 || 1.06 || 1 , 17 || 1 , 28 || 1 , 38 || 1.49 || 1.59 || 1.70 4 | . 159 .319| .478 .638 .80 .96 || 1 , 12 || 1 , 28 || 1.43 || 1 , 59 | 1.75 | 1.91 || 2.07 || 2.23 2.39 || 2.55 1 . 21.] | .425 | . 638 | . 850 | 1.06 || 1.28 || 1.49 || 1.70 | 1.91 || 2. 13 || 2.34 || 2.55 2.76 2.98 || 3. 19 || 3.40 1% | .266 .531 | .797 | 1.063 | 1.33 | 1.59 | 1.86 || 2. 13 || 2.39 || 2.66 || 2.92 3, 19 || 3.45|| 3.72 3.98 || 4.25 # .319 | . 638 || .956 || 1 .275 || 1 , 59 || 1.91 || 2.23 || 2.55 || 2.87 || 3. 19 || 3.51 || 3.83 || 4.14 || 4.46 || 4.78 || 5.10 1% .372 | . 744 | 1.116 | 1.488 || 1.86 2.23 || 2.60 | 2.98 || 3.35 | 3.72 || 4.09 || 4.46 || 4.83 5.21 || 5.58 || 5.95 2 ,425 | . 850 | 1.275 | 1.700 || 2. 13 || 2.55 || 2.98 || 3.40 || 3.83 || 4.25 || 4.68 || 5.10 || 5.53 || 5.95 || 6.38 || 6.80 2% | .478 .956 | 1.434 || 1.913 || 2.39| 2.87 || 3.35 | 3.83 || 4.30 || 4.78 || 5.26 5.74 || 6.22 6.69 || 7.17 || 7.65 ; , 531 | 1.063 | 1.594 || 2. 1 25 || 2.66 || 3. 19 || 3, 72 || 4.25 4.78 || 5.31 5.84 6.38 || 6.91 || 7.44 || 7.97 || 8.50 2% | .584 |1. 169 | 1.753 |2.338|| 2.92 || 3.51 || 4.09 || 4.68 || 5.26 || 5.84 || 6.43 || 7.01 || 7.60 || 8, 18 || 8.77 9.35 3 .638 || 1.275 | 1.913 || 2.550 || 3. 19 || 3.83 || 4.46 || 5.10 || 5.74 || 6.38 || 7.01 || 7.65 || 8.29 || 8.93 9.56 || 10.20 3% .691 | 1.381 |2.072 |2.763 || 3.45|| 4.14 || 4.83 || 5.53 | 6.22 || 6.91 7.60 | 8.29 | 8.98 || 9.67 10.36 || 1 1.05 3% 744 || 1.488 |2. 231 || 2.975 || 3.72 4.46 || 5. 21 || 5.95 || 6.69 || 7.44 || 8. 18 || 8.93 || 9, 67 || 10. 41 || 1.16 || 11.90 3% .797 | 1.594 || 2.391 |3.188 3.98 || 4.78 || 5.58 || 6.38 || 7.17 || 7.97 || 8.77 9.56 10.36 11.16||11.95 || 12.75 4 , 850 | 1.700 || 2.550 || 3.400 || 4.25 5.10 || 5.95 || 6.80 || 7.65 || 8.50 | 9.35 | 10.20 || 11.05 || 11.90 || 12.75 || 13.60 4% .903 || 1.806 || 2.709 || 3.613 || 4.52 5.42 6.32 7.23 8.13 9.03 || 9.93 || 10.84 || 11.74 || 12.64 || 13.55 || 14.45 41 .956 | 1.913 || 2.869 || 3.825 || 4, 78 || 5.74 || 6.69 || 7.65 || 8.61 | 9.56 || 10.52 || 1 1.48 || 12.43 |13.39 || 14, 34 || 15.30 4% |1.009 || 2.019 || 3.028 |4.038|| 5.05 || 6.06 || 7.07 || 8.08 || 9.08 || 10.09 || 11.10 | 12.11 || 13, 12 || 14.13 |15. 14|16.15 5 1,063 || 2. 125 || 3.188 || 4.250 || 5.31 || 6.38 || 7.44 || 8.50 | 9.56 || 10.63 || 11.69 || 12.75 || 13.81 14.88 || 15.94 || 17.00 5%. 1.116 2.231 |3.347 |4.463 || 5.58|| 6.69 || 7.81 || 8.93| 10.04 || 11 16 || 12.27 | 13.39||14.50 | 15.62 | 16.73 || 17.85 51A |1. 169 |2, 338 || 3,506 |4.675 || 5.84 || 7.01 || 8.18 || 9.35 | 10.52 || 11 69 || 12.86 || 14.03 || 15. 19 | 16.36 || 17.53 | 18.70 5% |1.222 |2.444 |3.666 |4.888 || 6.11 || 7.33 || 8.55 || 9.78 || 11.00 | 12.22 || 13.44 || 14.66 || 15.88 || 17. 11 | 18.33 |19.55 6 1, 275 2.550 || 3.825 || 5. 100 || 6.38 || 7.65 || 8.93| 10, 20 ! 11.48 || 12.75 || 14.03 || 15.30 | 16.58 || 17.85 || 19. 13 || 20, 40 6% |1.328 || 2.656 || 3.984 || 5.313| 6.64 7.97 || 9.30 || 10.63 || 11.95 || 13.28 || 14 61 || 15.94 || 17.27 | 18.59 |19.92 |21.25 % 1. 381 2.763 4. 144 || 5.525 || 6.91 || 8. 29 || 9, 67 || 11.05 || 12.43 13.81 || 15. 19 || 16.58 || 17.96 || 19.34 || 20, 72 |22. 10 % |1,434 |2.869 |4.303 || 5.738 7.17 | 8.61 || 10.04 || 11 48 || 12.91 || 14.34 || 15.78 || 17.21 | 18.65 |20.08 |21.52 22.95 7 1. 488 || 2.975 || 4.463 || 5.950 || 7.44 || 8.93| 10.41 || 11.90 || 13.39 || 14.88 || 16.36 || 17.85 | 19.34 || 20.83 || 22.31 || 23.80 7%. 1,541 |3.081 |4.622 |6. 163| 7.70 || 9.24|10.78 || 12.33 || 13.87 | 15.41 | 16.95 || 18.49 |20.03 || 21.57 |23. 11 || 24.65 % 1.594 || 3. 188 || 4.781 || 6.375 || 7.97 || 9.56 || 1 1. 16 || 12.75 14.34 || 15.94 || 17.53 |19. 13 20.72 || 22.31 || 23.91 || 25.50 7% |1.647 ||3.294 |4.941 6.588 8.23 9.88 11.53 |13. 18 || 14.82 | 16.47 | 18.12 || 19.76 |21.41 || 23.06 |24.70 |26.35 8 1.700 || 3.400 || 5. 100 || 6.800 || 8.50 || 10.20 || 11.90 || 13. 60 | 15. 30 || 17.00 | 18.70 || 20.40 || 22. 10 || 23.80 |25.50 || 27.20 8% |1.753 |3.506 || 5.259 |7.013 || 8.77|| 10.52|12.27 | 14.03 || 15.78 || 17.53 |19.28|21.04 |22.79 |24.54|26.30|28.05 § 1.806 || 3.. 613 5.419 || 7.225 9.03 || 10.84 || 12.64 || 14.4S | 16. 26 || 18.06 || 19.87 || 21.68 || 23.48 || 25.29 || 27.09 || 28.90 4 |1,859 |3.719 || 5.578 || 7.438 || 9.30 11.16 || 13.02 || 14.88 || 16.73 || 18.59 |20.45 22.31 |24. 17 | 26.03 |27.89 |29.75 9 1,913 || 3.825 || 5. 738 || 7.650 || 9.56 || 1 1. 48 || 13.39 || 15.30 || 17.21 | 19. 13 || 21.04 || 22.95 || 24.86 || 26.78 || 28.69 || 30.60 % 1.966 || 3.931 || 5.897 || 7.863 9.83 || 1 1.79 || 13.76 || 15.73 17. 69 || 19.66 21.62 || 23.59 || 25.55 || 27.52 || 29.48 || 31.45 % 2,019 |4.038 || 6.056 || 8.075 || 10.09 || 12, 11 || 14, 13 || 16. 15 | 18. 17 | 20. 19 |22.21 || 24, 23 || 26.24 || 28, 26 || 30.28 || 32.30 % |2.072 |4. 144 6.216 |8.288 10.36||12.43 || 14.50 | 16.58 | 18.65 20.72|22.79 |24.86 |26.93 29.01 |31.08 || 33.15 10 2. 125 || 4.250 || 6. 375 || 8.500 || 10.63 || 12.75 14.88 || 17.00 || 19. 13 21.25 || 23.38 || 25.50 || 27.63 29.75 || 31.88 34.00 10% |2, 178||4.356 6.534 |8.713 || 10.89 || 13.07 || 15.25 || 17.43 |19.60 21.78 || 23.96 |26. 14|28.32 || 30.49 |32.67 || 34.85 10 2. 231 || 4.463 || 6.694 || 8.925 || || 1 , 16 || 13.39|| 15.62 || 17.85 || 20.08 || 22.31 || 24.54 || 26.78 || 29.01 || 31.24 33.47 || 35.70 10% [2.284 |4.569 || 6.853 |9. 138||11.42 | 13.71 || 15.99 || 18.28 20.56 22.84 || 25.13 || 27 41 29.70 || 31 98 |34.27 || 36.55 i i 2.338 |4.675 || 7,013 |9. 350 || 11.69 || 14.03 || 16.36 | 18.70 || 21 04 || 23.38 25.71 28.05 || 30.39 || 32.73 ||35.06 || 37.40 11% |2 391 |4.781 7. 172 |9.563 || 11.95 || 14.34 || 16.73 |19. 13 || 21.52 || 23.91 || 26.30 28.69 |31.08 || 33.47 |35.86|38.25 #% 2.444 || 4.888 || 7.331 |9. 775 || 12. 22 || 14.66 || 17. 11 || 19 55 || 21.99 || 24.44 || 26.88 29.33 || 31.77 34.21 || 36.66 || 39.10 11% (2,497 |4.994 |7.491 |9.988 || 12.48 14.98 || 17.48 || 19.98 |22.47 || 24.97 |27.47 |29.96 |32.46 34.96 ||37.45 || 39.95 12 2, 550 |S. 100 || 7.650 || 10.20 | 12.75 15. 30 || 17. 85 || 20.40 22.95 || 25.50 || 28.05 || 30.60 33.15 35.70 || 38.25 || 40.80 12% |2.66 |5.31 7.97 || 10 63 || 13.28 || 15.94 | 18.59 |21. 25 || 23.91 || 26.56 || 29, 2 || 31.9 || 34.5 || 37.2 |39.8 || 42.5 13 2.76 5.53 8.29 || 11.05 || 13.81 | 16.58 || 19.34 || 22.10 |24.86 || 27.63 || 30.4 || 33.2 |35.9 |38.7 141.4 || 44.2 13% |2.87 |5 74 8. 61 11. 48 || 14.34 17.21 || 20.08 || 22.95 || 25.82 28.69 || 31.6 || 34.4 |37.3 |40, 2 43 0 || 45.9 14 |2 98 || 5.95 8.93||11 90 || 14.88 17.85 20.83 || 23.80 || 26.78 29.75 || 32.7 || 35.7 ||38.7 || 41.7 |44.6 || 47.6 14% |3.08 |6. 16 9.24 12.33 || 15.41 | 18.49 |21.57 || 24.6S 27.73 || 30.81 || 33.9 || 37.0 |40. 1 |43. 1 |46 2 || 49.3 15 3, 19 || 6.38 9.56 || 12.75 || 15.94 | 19. 13 || 22.31 || 25.50 |28.69 || 31.88 || 35.1 38.3 |41.4 |44.6 |47. 8 || 51.0 15% 3.29 || 6.59 9.88 || 13. 18 || 16.47 | 19.76 || 23.06 || 26.35 | 29.64 || 32.94 || 36.2 || 39.5 |42.8 |46 1 49.4 || 52.7 fö 3.40 || 6.80 || 10.20 || 13.60 || 17.00 |20.40 || 23.80 || 27.20 |30.60 || 34.00 || 37.4 |40.8 |44.2 |47 6 || 51.0 || 54.4 16% |3.51 |7.01 || 10 52 14 03 || 17.53 |21.04 || 24.54|28.05 |31.56 |35.06 38.6 || 42.1 |45.6 || 49 1 |52.6 || 56.1 17 3.61 || 7, 23 || 10.84 || 14.45 | 18.06 || 21.68 || 25.29 |28.90 || 32.51 || 36. 13 || 39.7 |43.4 || 47 0 || 50.6 |54.2 || 57.8 17% |3.72 |7.44 || 11.16 || 14.88 || 18.59 |22.31 |26.03 |29.75 |33.47 ||37. 19 40.9 44 6 5 48.3 || 52 1 || 55.8 || 59.5 18 |3.83 || 7.65 || 11.48 || 15.30 || 19. 13 || 22.95 || 26.78 || 30.60 | 34.43 ||38.25 42.1 || 45.9 |49.7 || 53.6 |57 4 || 61.2 18% |3.93 |7.86 11.79 || 15.73 |19.66 |23.59 |27.52 |31.45 |35.38 |39.31 |43.2 47.2 || 51.1 || 55.0 |59 0 || 62.9 19 4.04 || 8.08 || 12, 11 | 16.15 20. 19 || 24.23 || 28 26 || 32. 30 || 36.34 |40. 38 |44.4 || 48.5 |52.5 || 56.5 |60.6 |64 6 19% 4. 14 |8. 29 || 12.43 | 16.58 || 20.72 |24.86 29.01 |33. 15 |37.29 |41.44 |45.6 |49.7 53.9 || 58.0 |62.2 | 66.3 20 4 25 |8.50 | 12.75 || 17.00 |21. 25 || 25.50 |29.75 |34.00 |38.25 || 42.50 |46.8 ſ 51.0 55.3 || 59.5 |63.8 || 68.0 20%. 4.36 |8. 71 || 13.07 || 17.43 |21.78 |26. 14 |30.49 |34.85 |39. 21 |43.56 |47 9 |52.3 |56.6 |61.0 |65.3 69.7 21 - 4.46 |8.93 |13.39 || 17.85 |22.31 |26.78 |31.24 |35.70 |40. 16 |44.63 |49. 1 || 53.6 ſ 58.0 || 62.5 |66.9 || 71.4 21% |4.57 |9. 14 || 13.71 | 18.28 22.84 27.41 |31.98 |36.55 |41.12 |45.69 |50.3 |54.8 |59.4 64.0 |68.5 || 73.1 22 4.68 |9. 35 | 14.03 |18.70 |23. 38 |28.05 |32.73 ||37.40 |42.08 |46.75 |51.4 |56. 1 |60.8 |65.5 |70. 1 || 74.8 B U F F A L O T A N K C O R P O R AT I O N WEICHTS of FLAT ROLLED STEEL POUNDS PER LINEAR FOOT Thickness, Inches Width, Inchesſ 1As | V | *Ás | V | she 3% | 7As | V | *Ás | *% | 11As | *4 || 13/is 7% | 1sheſ 1 22% 4.78 || 9.56 14.34 19. 13|23.91 || 28.69| 33.47 ||38.25 |43.03 |47.81 52.6 || 57.4 || 62.2 | 66.9 || 71.7 || 76.5 23 4.89 || 9.78 || 14.66 || 19.55 || 24.44 || 29.33 || 34.21 || 39.10 || 43.99 || 48.88 || 53.8 ſ 58.7 || 63.5 | 68.4 || 73.3 || 78.2 23% 4.99 || 9.99 || 14.98 || 19.98 |24.97.| 29.96||34.96 || 39.95 |44.94 |49.94 || 54.9 || 59.9 || 64.9 || 69.9 || 74.9 || 79.9 24 5. 10 || 10.20 | 15.30 | 20.40 || 25.50 || 30.60 || 35.70 | 40.80 || 45.90 || 51.00 || 56.1 || 61.2 : 66.3 || 71.4 || 76.5 || 81.6 25 5.31 || 10.63 | 15.94| 21.25 |26.56|| 31.88 |37. 19 |42.50 |47.81 | 53.13 || 58.4 || 63.8 || 69.1 | 74.4 || 79.7 | 85.0 26 5.53 || 11.05 || 16.58|22.10 |27.63 || 33.15 || 38.68||44. 20 || 49.73 || 55.25 || 60.8 | 66.3 71.8 || 77.4 || 82.9 || 88.4 27 5, 74 || 1 1.48 || 17.21 || 22.95 || 28.69 || 34.43 |40. 16 || 45.90 || 51.64 || 57.38 || 63. 1 | 68.9 || 74.6 80.3 || 86.1 || 91.8 28 5.95 || | 1.90 17.85 23.80 || 29.75|| 35.70 || 41.65 |47.60 || 53, 55 || 59.50 || 65.5 || 71.4 || 77.4 || 83.3 | 89.3 || 95.2 29 6.16 || 12.33 || 18.49 || 24.65 || 30.81 || 36.98 || 43.14 |49.30 || 55.46 || 61.63 || 67.8 || 74.0 | 80.1 || 86.3 92.4 || 98.6 30 6,38 || 12.75 || 19. 13 || 25.50 || 31.88 38.25 || 44.63 || 51.00 || 57. 38 63.75 || 70. 1 || 76.5 || 82.9 || 89.3 || 95.6 || 102.0 31 6.59 || 13.18 19, 76 || 26.35 | 32.94 || 39.53 |46. 1 1 || 52.70 || 59. 29 || 65.88 || 72.5 || 79.1 || 85.6 || 92.2 || 98.8 || 105.4 32 6.80 || 13.60 20.40 || 27.20 || 34.00 || 40.80 || 47.60 || 54.40 61.20 | 68.00 || 74.8 81.6 || 88.4 95.2 || 102.0 || 108.8 33 7.01 || 14.03 || 21.04 || 28.05 || 35.06| 42.08 || 49.09 || 56.10 || 63. 11 || 70. 13 || 77. 1 || 84.2 91.2 || 98.2 || 105.2 || 112.2 34 7. 23 || 14.45|21.68| 28.90 || 36. 13| 43.35|50.58||57.80 || 65.03 || 72.25 || 79.5 || 86.7 || 93.9 || 101.2 || 108.4 || 115.6 35 7.44 || 14.88 22.31 || 29.75 i 37. 19| 44.63 || 52.06 || 59.50 | 66.94 || 74.38 || 81.8 | 89.3 || 96.7 || 104.1 || 111.6 || 119.0 36 7.65 || 1 S. 30 22.95 || 30.60 || 38.25 || 45.90 53.55 61.20 | 68.85 || 76.50 | 84.2 || 91.8 || 99.5 || 107.1 || 1 14.8 || 122.4 37 7, 86 || 15.73 || 23.59 || 31.45 || 39.31 || 47.18 || 55.04 || 62.90 || 70.76 || 78.63 || 86.5 94.4 || 102.2 || 110, 1 || 117.9 || 125.8 38 8.08 || 16. 15 || 24, 23 || 32.30 |40.38|| 48.45 || 56.53 || 64.60 || 72.68|80. 75 || 88, 8 || 96.9 || 105.0 || 113. 1 || 121. 1 || 129.2 39 8.29 || 16.58 || 24.86 || 33. 15 |41.44|49.73 || 58.01 | 66.30 || 74.59 || 82.88 || 91.2 || 99.5 || 107.7 || 116.0 | 124.3 || 132.6 40 8.50 || 17.00 || 25.50 || 34.00 |42.50 || 51.00|59.50 | 68.00 || 76.50 || 85.00 || 93.5 || 102.0 110.5 || 119.0 | 127.5 || 136.0 41 8. 71 || 17.43 || 26, 14 || 34.85 || 43.56; 52.28 || 60.99 || 69.70 || 78.41 || 87.13 || 95.8 || 104.6 || 113.3| 122.0 || 130.7 || 139.4 42 8.93||17.85 || 26.78 || 35.70 || 44.63| 53.55| 62.48 || 71.40 || 80.33 | 89.25 || 98.2 || 107.1 | | 16.0 || 1:25.0 || 133.9 || 142.8 43 9. 14 || 18.28 || 27.41 || 36.55 || 45.69|| 54.83| 63.96 || 73. 10 || 82.24 || 91.38 || 100.5 || 109.7 118.8 || 127.9 || 137.1 || 146.2 44 9. 35 | 18.70 || 28.05 || 37.40 || 46.75 || 56. 10 || 65.45 || 74.80 | 84.15 || 93.50 || 102.9 || 1 12.2 | 121.6 || 130.9 || 140.3 || 149.6 45 9.56 || 19. 13 || 28.69 || 38.25 || 47.81 || 57.38; 66.94 || 76.50 | 86.06 || 95.63 || 105.2 || 1 14.8 i 124.3 || 133.9 || 143.4 || 153.0 46 9.78 || 19.55 29.33 || 39.10 || 48.88, 58.65 | 68.43 || 78.20 | 87.98 || 97.75 || 107.5 || 1 17.3 || 127. 1 || 136.9 || 146.6 156.4 47 9.99 || 19.98 || 29.96 39.95 || 49.94 || 59.93| 69.91 || 79.90 | 89.89 || 99.88 || 109.9 || 1 19.9 || 129.8 || 139.8 || 149.8 || 159.8 48 ||10.20 |20.40 || 30.60 | 40.80 || 51.00 || 61.20 || 71.40 || 81.60 | 91.80 || 102.0 || 1 12.2 122.4 || 132.6 || 142.8 || 153.0 | 163.2 49 |10.4 || 20.8 || 31.2 || 41.7 52.1 || 62.5|| 72.9 || 83.3 || 93.7 || 104.1 || 114.5 || 1:25.0 || 135.4 || 145.8 || 156.2 | 166.6 50 |10.6 || 21.3 || 31.9 || 42.5 || 53. 1 || 63.8| 74.4 || 85.0 | 95.6 || 106.3 || 1 16.9 || 127.5 || 138. 1 || 148.8 || 159.4|170.0 51 10.8 || 21.7 || 32.5 |43.4 || 54.2 || 65.0. 75.9 || 86.7 97.5 || 108.4 || 119.2 | 130. 1 || 140.9 || 151.7 | 162.6 || 173.4 52 |11.1 |22. 1 || 33.2 |44.2 || 55.3| 66.3| 77.4 || 88.4 || 99.5 | 110.5 | 121.6 || 132.6 || 143.7 || 154.7 | 165.8 || 176.8 S3 iſ 1.3 22.5 || 33.8 || 45.1 56.3| 67.6|| 78.8 || 90.1 || 101.4 || 1 12.6 || 123.9 || 135.2 | 1.46.4 157.7 || 168.9 || 180.2 54 || 1.5 23.0 || 34.4 |45.9 || 57.4 | 68.9| 80.3 91.8 || 103.3 || 1 14.8 || 126.2 || 137.7 || 149.2 | 160.7 || 172.1 | 183.6 55 |11.7 || 23.4 || 35. 1 || 46.8 || 58.4 || 70. 1 || 81.8 || 93.5 || 105.2 || 116.9 || 128.6 || 140.3 || 151.9 || 163.6 175.3 || 187.0 56 |11.9 || 23.8 || 35.7 || 47.6 || 59.5| 71.4 || 83.3 || 95.2 || 107.1 || 1 19.0 || 130.9 || 142.8 || 154.7 | 166.6 || 178.5 | 190.4 57 (12.1 || 24.2 || 36.3 || 48.5 || 60.6 || 72.7 | 84.8 || 96.9 || 109.0 121. 1 || 133.2 || 145.4 || 157.5 | 169.6 || 181.7 || 193.8 58 || 2.3 || 24.7 || 37.0 || 49.3 || 61.6 || 74.0|| 86.3 || 98.6 || 110.9 || 123.3 || 135.6 || 147.9 || 160.2 || 172.6 || 184.9 || 197.2 59 |12.5 || 25.1 || 37.6 || 50.2 || 62.7 75.2 87.8 || 100.3 || 1 12.8 || 125.4 || 137.9 || 150.5 163.0 175.5 || 188.1 || 200.6 60 (12.8 25.5 || 38.3 || 51.0 || 63.8| 76.5 | 89.3 || 102.0 || 114.8 || 127.5 || 140.3 || 153.0 | 165.8 || 178.5 191.3 204.0 61 13.0 || 25.9 || 38.9 || 51.9 || 64.8 || 77.8 90.7 | 103.7 || 1 16.7 | 129.6 || 142.6 | f 55.6 168.5 | 181.5 194.4 207.4 62 13.2 26.4 || 39.5 || 52.7 || 65.9| 79.1 || 92.2 || 105.4 || 1 18.6 || 131.8 || 144.9 || 158. 1 || 171.3 184.5 197.6 || 210.8 63 |13.4 || 26.8 || 40.2 || 53.6 | 66.9| 80.3 || 93.7 || 107.1 || 120.5 || 133.9 || 147.3 | 160.7 || 174.0 | 187.4 || 200.8 || 214.2 64 13.6 || 27.2 | 40.8 || 54.4 | 68.0|| 81.6 95.2 108.8 || 122.4 || 136.0|| 149.6 | 163.2 || 176.8 || 190.4 204.0 || 217.6 65 || 13.8 || 27.6 41.4 55.3 || 69. 1 || 82.9 || 96.7 || 1 10.5 | 124.3 | 1.38.1 i 151.9 || 165.8 || 179.6 || 193.4 207.2 221.0 66 || 14.0 |28. 1 || 42. 1 || 56.1 70. 1 84.2| 98.2 || 12.2 || 126.2 || 140.3 || 154.3 || 168.3 || 182. 3 || 196.4 210.4 224.4 67 14.2 || 28.5 || 42.7 57.0 || 71.2| 85.4 || 99.7 || 1 13.9 || 128. 1 || 142.4 || 156.6 || 170.9 || 185. 1 || 199.3 || 213.6 227.8 68 ||14.5 || 28.9 |43. 4 || 57.8 || 72.3| 86.7 || 101.2 || 1 15.6 || 130. 1 || 144.5 | 159.0 || 173.4 187.9 || 202.3 |216.8 || 231.2 69 |14. 7 || 29, 3 || 44.0 58.7 | 73.3| 88.0 || 102.6 || 117.3 || 132.0 || 146.6 | 161.3 || 176.0 | 190.6 205.3 219.9 || 234.6 70 ||14.9 || 29.8 |44.6 59.5 || 74.4 || 89.3 || 104.1 || 119.0 || 133.9 || 148.8 163.6 || 178.5 | 193.4 || 208.3 || 223. 1 || 238.0 71 15. 1 || 30.2 || 45.3 || 60.4 || 75.4 90.5 || 105.6 || 120.7 || 135.8 || 1 50.9 || 166.0 | 181.1 196. 1 || 21 1.2 226.3 || 241.4 72 |15.3 || 30.6 |45.9 |61.2 || 76.5| 91.8 || 107.1 | 122.4 || 137.7 || 153.0 | 168.3 | 183.6 || 198.9| 214.2 |229.5|244.8 73 |15.5 |31.0 |46.5 |62. 1 || 77.6, 93.1 || 108.6 | 124.1 | 139.6 155.1 || 170.6 | 186.2 | 201.7 217.2 232.7 248.2 74 |15. 7 || 31.5 |47.2 62.9 || 78.6 || 94.4 110. 1 || 125.8 || 141.5 || 157.3 || 173.0 | 188.7 || 204.4 || 220.2 || 235.9 |251.6 75 |15.9 || 31.9 |47.8 63.8 79.7 || 95.6 || 1 | 1.6 || 127.5 || 143.4 159.4 || 175.3 |191.3 || 207.2 223. 1 || 239. 1 || 255.0 76 |16.2 || 32.3 || 48.5 || 64.6 || 80.8 || 96.9 || 1 13.1 || 129.2 || 145.4 | 161.5 177.7 || 193.8 210.0 226. 1 || 242.3 || 258.4 78 |16.6 || 33.2 |49.7 | 66.3 || 82.9| 99.5 116.0||132.6 || 149.2 | 165.8 || 182.3 || 198.9 || 215.5 232. 1 || 248.6 265.2 80 |17.0 || 34.0 || 51.0 | 68.0 | 85.0 | 102.0 | 119.0 || 136.0 | 153.0 || 170.0 | 187.0 |204.0 |221.0 || 238.0 |255 0 || 272.0 82 |17.4 |34.9 || 52.3 || 69.7 || 87.1 || 104.6 || 122.0 || 139.4|| 156.8 174.3 | 191.7 || 209.1 226.5 244. 0 || 261.4 || 278.8 84 |17.9 || 35.7 || 53.6 || 71.4 || 89.3 || 107.1 125.0 || 142.8 || 160.7 || 178.5 || 196.4 || 214.2 || 232.1 || 249.9 |267.8 || 285.6 86 || 18.3 || 36.6 || 54.8 || 73. I 91.4|| 109.7 | 127.9 || 146.2 | 164.5 | 182.8 |201.0 |219.3 ||237.6 || 255.9 274.1 | 292.4 88 18.7 ||37.4 |56. 1 || 74.8 || 93.5 || 1 12.2 || 130.9 149.6 | 168.3 | 187.0 |205.7 |224.4 || 243. 1 || 261.8 |280.5 299.2 90 |19. 1 ||38. 3 || 57.4 || 76.5 || 95.6 || 1 14.8 133.9 || 153,0 || 172. 1 || 191.3 |210.4 |229.5 248.6 |267.8 286.9 || 306.0 92 |19.6 |39. 1 || 58.7 || 78.2 || 97.8 117.3||136.9 || 156.4 || 176,0|195.5 |215. 1 |234.6|254.2 273.7 |293.3 || 312.8 94 ||20.0 |40.0 |59.9 |79.9 || 99.9 || 119.9||139.8 159.8 179.8 || 199.8 |219.7 |239.7 || 259.7 |279.7 |299.6 |319.6 96 ||20.4 |40 8 ||61.2 |81.6 || 102 0 || 122.4 142.8 || 163.2 | 183.6 |204.0 |224.4 |244.8 |265.2 |285.6 |306.0 326.4 98 |20.8 |41.7 |62.5 |83.3 || 104 1 || 125.0|| 145.8 || 166.6 187.4 |208.3 |229. 1 |249.9 |270.7 |291.6 |312.4 || 333.2 100 |21.3 |42.5 |63.8 |85.0 |106.3 || 127.5 || 148.8 |170.0 | 191.3 |212.5 |233.8 |255.0 |276.3 |297.5 |318.8 |340.0 W E I G H T S WEIGHTS, AREAS AND CIRCUMFERENCE SQUARE and ROUND BARS 1/16 to 15/16 Thickness Weight in Pounds Area in Sq. Inches Or Square Round O § O Diameterſ one inchTone Foot Tone inch T One Foot Square Round Circum- in Inches Long Long Long Long Q ference 1/16 .001 .013 .001 .010 .0039 .0031 . 1964 */44 .002 .021 .001 .016 .0061 .0048 . 24.54 3/32 .002 .030 .002 .023 .0088 .0069 .2945 7/44 .003 .041 .003 .032 . 0120 .0094 . 3436 % .004 .053 .004 .042 .0156 .01.23 . 3927 964 .006 .067 .004 .053 .0198 .0155 .4418 5/42 .007 .083 .005 .065 .0244 .0192 . 4909 11/44 .008 . 100 .007 .079 .0295 .0232 . 5400 3/16 .010 . 120 .008 ,094 .0352 .0276 . 5891 1364 .012 . 140 .009 . 110 . 0413 .0324 . 6381 742 .014 . 163 .011 128 .0479 .0376 . 6872 1564 .016 . 187 .012 . 147 .0549 .0431 . 7363 1/. .018 . 212 .014 . 167 .0625 .0491 . 7854 17/34 .020 . 240 .016 . 188 .0706 .0554 . 8345 9/32 .022 . 269 .018 . 211 .0791 .0621 .8836 1964 .025 .300 .020 . 235 .0881 .0692 .9327 */16 .028 .332 .022 .261 .0977 .0767 .98.18 21/64 .031 . 366 .024 .288 ... 1077 .0846 | 1.0308 11/32 .033 .402 ,026 . 316 . 1182 .0928 1.0799 23/64 .037 .439 .029 , 345 . 1292 . 1014 | 1.1290 3% .040 .478 .031 . 376 . 1406 . 1104 1. 1781 25%4 .043 . 519 .034 .407 . 1526 . 1198 1.2272 13/32 .047 . 561 .037 .441 . 1650 . . 1296 1.2763 27/64 .050 . 605 .040 .475 . 1780 . 1398 1. 3254 §: .054 , 651 .043 . 511 . 1914 . 1503 || 1.3745 29/64 .058 . 698 .046 . 548 . 2053 . 1613 | 1.4235 15/32 .062 . 747 .049 . 587 . 2197 . 1726 1.4726 3.1/54 .066 ... 798 .052 . 627 . 2346 . 1843 1. 521.7 % .071 . 850 ,056 . 668 . 2500 . 1963 1.5708 3 i. .075 . 904 .060 . 710 . 2659 . 2088 1.6199 17/32 ,080 ,960 .063 754 . 2822 . 2217 1.6690 35/44 ,085 1.017 .067 . 799 . 2991 . 2349 1, 7181 9/16 . 090 1.076 ,070 .845 . 3164 . 2485 | 1.7672 37/54 ,095 1. 136 .074 . 893 . 3342 , 2625 || 1 , 8162 19/32 ... 100 1. 199 .078 .941 . 3525 . 2769 1, 8653 39/64 ... 105 1.263 .083 992 . 3713 . 2916 1.9144 5% . 111 1. 328 .087 1.043 . 3906 . 3068 1.9635 4!/54 . 116 1.395 .091 1.096 .4104 .3223 2.01.26 21/32 . 122 1.464 .096 1. 150 . 4307 .3382 2,0617 43/54 . 128 1.535 ... 100 1,205 .4514 . 3545 2, 1108 11/16 134 1. 607 ..105 1.262 .4727 . 3712 || 2. 1599 45/44 . 140 1, 681 . 110 1. 320 .4944 . 3883 || 2. 2089 23/32 . 146 1. 756 . 115 1. 380 . 5166 .4057 2.2580 47/64 . 153 1. 834 . 120 1.440 . 5393 .4236 2. 3071 3/4 . 159 1.913 . 125 1.502 . 5625 .4418 2.3562 18/16 . 187 2.245 . 147 1.763 . 6602 . 518.5 2,5526 % . 217 2.603 , 170 2.044 . 7656 . 6013 2.7489 1és .34% | 3.; , 196 || 2.347 .8789 .6903 || 2.9453 (248) B U F F A L O T A N K C O R P O R A T | O N SQUARE and ROUND BARS PP 1” to 315/16 WEIGHTS, AREAS AND CIRCUMFERENCE Thickness Weight in Pounds Area in Sq. Inches O e Or Square Round O § e Diameter One Inch || One Foot | One Inch l One Foot Square Round Circum- in Inches Long Long Long Long ference 1 v .28 3.400 .22 2.670 1.0000 . 7854 3.1416 1/16 .32 3.838 .25 3.015 1. 1289 . 8866 3.3380 % . 36 4.303 .28 3. 380 1. 2656 .9940 3.5343 Å. .40 4.795 .31 3.766 1. 4102 1. 1075 3.7306 % .44 5.313 . 35 4. 172 1.5625 1.2272 3.9270 6 .49 5.857 . 38 4. 600 1. 7227 1. 3530 4. 1234 3 .54 6.428 .42 5.049 1. 8906 1.4849 4.3197 7/16 .58 7.026 .46 5. 518 2.0664 1.6230 4.516.1 % .64 7.650 .50 6.008 2. 2500 1.7671 4. 7124 9/16 .69 8. 301 .54 6.519 2.4414 1.9175 4.9088 5% .75 8.978 .59 7.051 2.6406 2,0739 5. 1051 11/16 .81 9.682 .63 7. 604 2.8477 2. 2365 5.3015 34 .87 10.41 .68 8. 178 3.0625 2.4053 5. 4978 13/16 .94 11.17 . 73 8.773 3.2852 2.5802 5.6942 74 1.00 11.95 .78 9.388 3. 51.56 2. 7612 5.8905 15/16 1.06 12.76 .84 10.02 3.7539 2.94.83 6.0869 2* 1.13 13. 60 . 89 10.68 4.0000 3.1416 6.2832 */ie 1.21 14.46 .95 11.36 4. 2539 3.34.10 6.4796 M. 1.28 15. 35 1.01 12.06 4.51.56 3.5466 6.6759 3. 1.36 16, 27 1.07 12,78 4. 7852 3. 7583 6.8723 M4 1.43 17.21 1.13 13.52 5.0625 3.9761 7.0686 5/16 1.52 18. 18 1. 19 14, 28 5. 3477 4. 2000 7.2650 3% 1.60 19. 18 1.26 15.06 5.6406 4.4301 7.4613 7/16 1.68 20, 20 1. 32 15.87 5.9414 4. 6664 7.6577 1 1.77 21.25 1. 39 16. 69 6.2500 4. 9087 7.8540 Åe 1.86 22. 33 1.46 17.53 6. 5664 5. 1573 8.0504 5% 1.95 23.43 1.54 18.40 6. 8906 5.4119 8.2467 11/16 2.05 24.56 1.61 19. 29 7.2227 5. 6727 8.4431 34 2. 14 25.71 1.69 20. 19 7.5625 5.9396 8. 6394 13/16 2.24 26.90 1.76 21. 12 7.9102 6.2126 8. 8358 74 2. 34 28.10 1.84 22. 07 8. 2656 6. 4918 9.0321 15/16 2.44 29.34 1.92 23.04 8.6289 6. 7771 9.2285 3 * 2.55 30.60 2.01 24.03 9.0000 7.0686 9. 4248 1/16 2.66 31.89 2.09 25.05 9. 3789 7.3662 9. 6212 % 2.77 33.20 2. 18 26,08 9. 7656 7.6699 9.8175 (S 2.88 34. 55 2.26 27. 13 10. 160 7.9798 10,014 l/ 2.99 35.92 2.35 28.21 10.563 8.2958 10.210 5/16 3.11 37.31 2.44 29.30 10.973 8. 6179 10.407 3% 3, 23 || 38.73 2.53 30.42 11. 391 8.94.62 10. 603 7/16 3.35 40.18 2.63 31.55 11.816 9.2806 10. 799 M. 3.47 41.65 2.73 32.71 12. 250 9.6211 10.996 9/16 3. 60 43. 15 2.82 33.89 12. 691 9.9678 11.192 5% 3. 72 44.68 2.92 35.09 13. 141 10.321 11. 388 1 1/16 3.85 46.23 3.03 36. 31 13.598 10. 680 11.585 34 3.98 47.82 3.13 37.55 14.063 11.045 11. 781 13/16 4. 12 49.42 3.23 38. 81 14. 535 11 .416 11.977 74 4.25 51.05 3.34 40. 10 15.016 11, 793 12. 174 15/16 4. 39 52.71 3.45 41.40 15.504 12.177 12.370 (249) W E L G H T S WEIGHTS, AREAS AND CIRCUMFERENCE SQUARE and ROUND BARS 4” to 6 15/16 Thickness Weight in Pounds Area in Sq. Inches O Di Or Square Round O § º * | One Inch | One Foot! One Inch! One Foot S Round Circum- in Inches Long Long Long Long quare oun ference 4” 4. 53 54.40 3.57 42.73 16,000 12.566 12. 566 1/16 4.68 56.11 3.67 44.07 16.504 12.962 12.763 % 4.82 57.85 3.79 45.44 17,016 13. 364 12.959 As 4.97 59.62 3.90 46.83 17.535 13.772 13. 155 !/4 5. 12 61.41 4.02 48. 24 18.063 14. 186 13.352 5/16 S. 27 63.23 4. 14 49.66 18.598 14.607 13. 548 3% 5.42 65.08 4.26 51. 11 19. 141 15.033 13. 745 7/16 5.58 66.95 4.38 52.58 19.691 15.466 13.941 1/2 5. 74 68.85 4.51 54.07 20. 250 15.904 14. 137 9/16 5.90 70.78 4.63 55.59 20.816 16. 349 14.334 5% 6.06 72.73 4.76 S7. 12 21 .391 16.800 14. 530 11/16 6.23 74.71 4.89 58.67 21,973 17.257 14. 726 34 6. 39 76. 71 5.02 60. 25 22.563 17.721 14.923 13/16 6. 56 78. 74 5.15 61.85 23. 160 18. 190 15. 119 7% 6.73 80.80 5. 29 63.46 23.766 18. 665 15. 315 15/16 6.91 82.89 5.42 65. 10 24. 379 19. 147 15. 512 5* 7.08 85.00 5.56 66.76 25.000 19. 635 15. 708 1/16 7.26 87.14 5. 70 68.44 25. 629 20. 129 15.904 % 7.44 89.30 5.84 70. 14 26.266 20. 629 16. 101 */16 7.62 91.49 5.99 71.86 26.910 21. 135 16.297 # 7.81 93.71 6.13 73. 60 27.563 21.648 16.493 Å. 8.00 95.96 6. 28 75.37 28, 223 22. 166 16. 690 3% 8. 19 98.23 6.43 77. 15 28. 891 22. 691 16, 886 7/16 8. 38 100.5 6.58 78.95 29. 566 23. 221 17.082 1/2 8.57 102.9 6.73 80. 78 30.250 23. 758 17.279 9/16 8.77 105.2 6.88 82.62 30.941 24 .301 17. 475 5% 8.96 107.6 7.04 84.49 31.641 24.851 17.672 11/16 9. 16 110.0 7.20 86. 38 32.348 25.406 17.868 34 9. 37 112.4 7.36 88. 29 33,063 25.967 18.064 13/16 9. 57 114.9 7.52 90. 22 33. 785 26, 535 18.261 7/8 9.78 117.4 7.68 92.17 34. 516 27. 109 18, 457 15/16 9.99 119.9 7.84 94. 14 35. 254 27. 688 18. 653 6* 10. 20 122.4 8.01 96.13 36.000 28.274 18. 850 1/16 10.41 125.0 8. 18 98.15 36.754 28. 867 19.046 % 10.63 127.6 8.35 100. 2 37. 516 29.465 19. 242 3/16 10.85 130.2 8.52 102.2 38.285 30.069 19. 439 1/4 11.07 132.8 8.69 104.3 39.063 30, 680 19. 635 5/16 11.29 135.5 8.87 106.4 39.848 31.296 19. 831 3% 11.51 138.2 9.04 108.5 40.641 31. 919 20.028 7/16 11.74 140.9 9. 22 110.7 41.441 32.548 20. 224 !/? 11.97 143.7 9.40 112.8 42.250 33. 183 20.420 9/16 12. 20 146.5 9.58 115.0 43.066 33.824 20.617 5% 12.43 149.2 9. 77 117.2 43.891 34.472 20.813 1 1/16 12.67 152.1 9.95 119.4 44. 723 35. 125 21.009 34 12.91 154.9 10. 14 121.7 45.563 35. 785 21. 206 13/16 13. 15 157.8 10.33 123.9 46.410 36.451 21.402 74 13. 39 || 160.7 10. 52 || 126.2 47. 266 || 37. 122 || 21.599 15/16 13.64 163.6 10. 71 128.5 48. 129 37.800 21.795 B U F F A L O T A N K C O R P O R A T I O N SQUARE and ROUND BARS PP 7” to 9 15/ 16 WEIGHTS, AREAS AND CIRCUMFERENCE Thickness Weight in Pounds Area in Sq. Inches O Or Square Round O § § Diameter - Circum- One Inch | One Foot | One Inch One Foot S Round in Inches Long Long Long Long quare OU! In ference 7 * 13.88 166.6 10.90 130.8 49.000 38.485 21.991 1/16 14. 13 169. 6 11 : 10 133.2 49.879 39. 175 22. 188 % 14.38 172.6 11.30 135.6 50.766 39.871 22.384 3/16 14.64 175. 6 11 : 50 138.0 51. 660 40. 574 22. 580 !/4 14.89 178.7 11.70 140.4 52.563 41.283 22. 777 5/16 15.15 181 .. 8 11.90 142.8 53. 473 41.997 22.973 % 15.41 184. 9 12. 10 145.2 54.391 42.718 23. 169 7/16 15. 67 188.1 12. 31 147.7 55.316 43.446 23. 366 !/? 15.94 191 .. 3 12. 52 150.2 56. 250 44. 179 23. 562 9/16 16. 20 194.5 12.73 152.7 57.191 44.918 23. 758 5/3 16.47 197.7 12.94 155.3 58. 141 45. 664 23.955 1 1/16 16. 74 200. 9 13. 15 157.8 59.098 46.415 24. 151 3% 17.02 204.2 13. 36 160.4 60.063 47. 1 73 24, 347 13/16 17.29 207.5 13.58 163.0 61.035 47.937 24. 544 % 17. 57 210.9 13.80 165.6 62. 016 48. 707 24. 740 15/16 17.85 214.2 14.02 168.2 63.004 49.483 24.936 8” 18. 11 217.6 14.24 170.9 64,000 50.266 25. 133 */16 18.42 221 . 0 14.46 173. 6 65. 004 51.054 25. 329 % 18. 70 224.5 14.69 176.3 66.016 51. 849 25.526 3/16 18.99 227. 9 14.92 179.0 67.035 5.2. 649 25.722 1/4 19.28 231.4 15. 14 181.8 68.063 53.456 25.918 5/16 19.58 234.9 15. 38 184.5 69. 098 54. 269 26. 115 3% 19.87 238.5 15. 61 187.3 70. 141 55.088 26. 311 7/16 20. 17 242. 1 15.84 190.1 71.191 55.914 26. 507 1/2 20. 47 245.7 16.08 192.9 72. 250 56. 745 26.704 9/16 20.77 249.3 16. 31 195.8 73. 316 57. 583 26.900 5% 21.08 252.9 16. 55 198.6 74.391 58.426 27.096 11/16 21.38 256.6 16. 79 201.5 75.473 59.276 27.293 3% 21.69 260. 3 17.04 204.4 76. 563 60. 132 27. 489 1 3/16 22.00 264.0 17, 28 207.4 77. 660 60.994 27. 685 7/8 22.31 267.8 17.53 210.3 78. 766 61. 863 27.882 15/16 22.63 271 .. 6 17.77 213.3 79.879 62.737 28.078 9” 22.95 275.4 18.02 216.3 81.000 63. 617 28.274 1/16 23. 27 279.2 18. 27 219.3 82. 129 64. 504 28.471 % 23.59 283. 1 18. S3 222.3 83. 266 65. 397 28.667 3/16 23.91 287.0 18.78 225.4 84.410 66. 296 28.863 !/4 24.24 290.9 19.04 228.5 85.563 67. 20.1 29.060 5/16 24, S7, 294.9 19. 30 231.6 86. 723 68. 112 29.256 3% 24.90 298.8 19.56 234.7 87.891 69.029 29.453 7/16 25.23 302.8 19.82 237.8 89.066 69.953 29. 649 !/? 25. S7 306.9 20.08 241.0 90. 250 70. 882 29.845 9/16 25.91 310.9 20.35 244.2 91.441 71 .. 818 30,042 5% 26.25 315.0 20, 61 247.4 92.641 72.760 30.238 1 1/16 26.59 3.19.1 20.88 250.6 93. 848 73. 708 30.434 34 26.93 323.2 21.15 253.8 95.063 74.662 30. 631 13/16 27.28 327.4 21.42 257.1 96.285 75. 622 30. 827 % 27. 63 331 .. 6 21 - 70 260.4 97. 516 76. 589 31.023 15/16 27.98 335.8 21.97 263.7 98.754 77.561 31.220 (251) W E I G H T S SQUARE and ROUND BARS WEIGHTS, AREAS AND CIRCUMFERENCE 10” to 153/4 Thickness Weight in Pounds Area in Sq. Inches Or Square Round N O p...] ºr a O. § * | One Inch | One Foot | One Inch | One Foot Squar Round Circum- in Inches Long Long Long Long quare OU! In ference 10" 28.33 340.0 22.25 267.0 100.00 78. S40 31.416 1/16 28.69 344.3 22. 53 270. 4 101 25 79.525 31 . 612 % 29.04 348.6 22.81 273.8 102. 52 80. 516 31.809 3/16 29.41 352.9 23.09 277.1 103.79 81.513 32.005 !/4 29.77 357.2 23. 38 280.6 105.06 82. 516 32. 201 5/16 30, 13 361. 6 23.66 284.0 106.35 83. 525 32. 398 3% 30.50 366.0 23.95 287.4 107.64 84. 541 32. 594 7/16 30.87 370.4 24.24 290.9 108.94 85. S63 32. 790 1/2 31 . 24 374. 9 24. 53 294.4 110.25 86. 590 32.987 9/16 31.61 379.3 24.82 297. 9 111.57 87.624 33. 183 5% 31.98 383.8 25. 12 301 .. 5 112. 89 88.664 33. 380 1 1/16 32. 36 388.4 25. 42 305.0 114. 22 89.7 10 33. 576 34 32.74 392.9 25.71 308.6 115.56 90.763 33.772 13/16 33. 12 397.5 26.01 3.12.2 116.91 91 . 821 33.969 % 33.51 402. 1 26. 32 3.15.8 118. 27 92.886 34. 165 15/16 33. 89 406.7 26.62 3.19.5 119.63 93.957 34.361 11" 34. 28 411.4 26.92 323. 1 121.00 95.033 34. 558 1/16 34.67 416. 1 27. 23 326, 8 122. 38 96. 116 34.754 % 35.06 420, 8 27.54 330.5 123.77 97. 206 34, 950 3/16 35.46 425.5 27.85 334.3 125. 16 98.301 35. 147 !/4 35.86 430.3 28. 16 338.0 126. 56 99.402 35. 343 5/16 36. 26 435. 1 28.48 341 .. 7 127.97 100. 51 35. 539 3% 36.66 439.9 28. 79 345. 5 129, 39 101 . 62 35. 736 7/16 37.06 444.8 29. 11 349. 3 130.82 102.74 35.932 !/. 37.47 449.7 29.43 353.2 132.25 103.87 36. 128 9/16 37.88 454 6 29, 75 357.0 133. 69 105.00 36. 325 5% 38. 29 459.5 30. 07 360. 9 135. 14 106. 14 36. 521 1 1/16 38. 70 464.4 30.39 364.8 136, 60 107.28 36.717 34 39. 12 469.4 30. 72 368. 7 138.06 108.43 36.914 13/16 39.53 474.4 31.04 37.2. 6 139.54 109.59 37. 110 7/8 39.95 || 479.5 31. 38 || 376 . 6 141 02 || 1 10. 75 37. 307 15/16 40. 37 484.5 31.71 380. 5 142. 50 1 11.92 37. 503 12" 40.80 489. S 32.04 384.5 144.00 113. 10 37,699 !/4 42. 52 510. 1 33. 39 400. 7 150.06 117. S6 38.485 !/2 44.27 531.2 34.77 417.2 156.25 122. 72 39. 27() % 46.05 S52.6 36. 17 434.1 162.56 127.68 40.055 13." 47, 88 574.5 37. 60 451.2 169.00 132.73 40. 841 % 49. 74 596.8 39.06 468.8 175, S6 137.89 41. 626 1/2 51.63 619, 6 40. 55 486.6 182. 25 143. 14 42.412 34 53.56 642.7 42.07 504.8 189 .06 148.49 43. 197 14” 55.53 666.3 43.62 523.3 196.00 153.94 43,982 !/4 S7.53 690.3 45. 18 542. 2 203,06 159.48 44. 768 % 59. 57 714.8 46.78 561.4 210. 25 165. 13 45. 553 3/4 61.64 739.6 48. 41 S80.9 217. 56 170.87 46. 339 15" 63. 75 764. 9 S0.06 600. 7 225.00 176.71 47. 124 % 65.89 790.6 51. 75 620. 9 232.56 182. 65 47.909 M2 68. 07 816.8 53.46 641.5 240.25 188, 69 48.695 % 70. 28 843. 3 55.20 662. 3 248.06 194.83 49.480 B U F F A L O T A N K C O R P O R AT I O N SEAMLESS FORCED AND ROLLED STEEL RINGS Weights in pounds of rings from 6 inches to 110 inches in diameter may be figured from the table: Example: Required weight of a ring 48 inches O. D. 36% inches I. D. 2% inches thick. 48 inch diameter disc 1 inch thick weighs . . . . . . . . . 512.66 lbs. 36% inch diameter disc 1 inch thick weighs . . . . . . . . .296.42 lbs. Ring 48 x 36% x 1 inch weighs . . . . . . . . . . . . . . . . . . 216.24 lbs. Ring 48 x 36% x 2% inches weighs . . . . . . . . . . . . . . . . 540.60 lbs. Weights of Steel Discs from 6 Inches to 110 Inches in Diameter 1 Inch Thick ic Weight & Weight tº Weight & Weight i. Weight P.º per inch Pº per inch P. per inch Pº per inch Pº per inch thickness thickness ” thickness thickness thickness 6 8.01 12 32.04 18 72.09 24 128.16 30 200.25 % 8.35 }% 32.71 % 73.10 }% 129.50 }% | 201.93 % 8.69 }% 33.39 % 74.11 J4 || 130.85 J4 203.61 % 9.04 % 34.08 % 75.13 3% 132.20 3% 205.29 }% 9.40 }% 34.77 % 76.15 }% 133.57 }% 206.99 % 9.77 % 35.47 % 77.19 % 134.93 5% 208.69 % 10.14 34 || 36.17 % 78.22 34 || 136.30 34 210.39 % 10.52 % 36.88 % 79.27 % | 137.68 % 212.11 7 10.90 13 37.60 19 80.32 25 139.07 31 213.83 }% 11.30 }% 38.33 % 81.39 % 140.46 }% 215.56 % 11.70 }% 39.06 % 82.45 }% 141.86 14 || 217.29 % 12.10 % 39.80 % 83.53 % 143.27 3% 219.03 }% 12.52 % | 40.55 % 84.61 }% 144.68 }% 220.78 % 12.94 % 41.31 % 85.70 % 146.11 5% 222.54 % 13.36 % 42.07 34 86.79 34 || 147.54 34 224.30 % 13.80 % 42.84 % 87.89 7% 148.97 % 226.07 8 14.24 14 43.62 20 89.00 26 150.41 32 227.85 }% 14.69 % 44.39 % 90.12 }% 151.86 }% 229.63 % 15.14 % 45.18 % 91.24 94 | 153.32 }4 || 231.42 % 15.61 % 45.98 % 92.37 % 154.78 % 233.22 % 16.08 }% 46.78 % 93.51 }% 156.25 J% 235.02 % 16.55 % 47.59 % 94.65 5% 157.73 5% 236.83 % 17.04 % || 48.41 % 95.80 % | 159.22 34 || 238.65 % 17.53 % 49.23 % 96.96 % | 160.71 % 240.48 9 18.02 15 50.06 21 98.13 27 162.21 33 242.31 }% | 18.53 }% 50.90 % 99.30 }% | 163.71 % 244.15 % 19.04 % 51.75 }% 100.48 }% | 165.22 % 245.99 % 19.56 % 52.60 % | 101.66 3% 166.74 % 247.85 }% 20.08 % 53.46 }% 102.85 }% | 168.27 }% 249.71 % 20.61 % 54.32 % | 104.05 5% 169.80 % 251.57 34 21.15 % 55.20 % 105.26 % 171.34 % 253.45 % 21.70 % 56.08 % 106.47 7% 172.89 % 255.33 10 22.25 16, , , 56.96 22 107.69 28 174.44 34 257.22 }% 22.81 }% 57.86 }% 108.92 }% 176.01 }% 259.11 }% 23.38 }% 58.76 % | 110.15 34 177.57 % 261.01 % 23.95 % 59.66 % 111.40 % 179.15 % 262.92 % 24.53 % 60.58 }% | 112.64 }% | 180.73 }% 264.84 % 25.12 % 61.50 % 113.90 % 182.32 % 266.76 34 25.71 34 || 62.43 34 115.16 % | 183.91 % 268.69 % 26.32 % 63.36 % 116.43 % 185.52 % 270.63 11 26.92 17 64.30 23 117.71 29 187.13 35 272.57 }% 27.54 % 65.25 }% 118.99 }% 188.74 }% 274.52 }4 28.16 % | 66.21 % | 120.28 % 190.37 }4 276.48 % 28.79 % 67.17 % | 121.58 % 192.00 % 278.44 }% 29.43 }% | 68.14 }% | 122.88 }% 193.64 }% 280.41 % 30.07 % 69.12 % | 124.19 % 195.28 5% 282.39 % 30.72 34 || 70.10 % | 125.51 34 196.93 34 284.38 % 31.38 % 71.09 % 126.83 % 198.59 % 286.37 (253) W E I G H T S SEAMLESS FORGED AND ROLLED STEEL RINGS (Continued) Diam. Wººl Diam. Inches lº, Inches 36 288,37 43 }% 290.38 % }% 292.39 % % 294.41 % }% 296.42 }% % 298.46 % 34 || 300.50 34 % 302.56 % 37 304.60 44 % 306.67 % % 308.74 % % 310.81 % }% 312.90 % % 314.97 % 34 || 317,07 34 % 319.19 % 38 321.29 45 }% | 323.42 % % 325.54 % % 327.66 % J% 329.82 % % 331.94 % 34 || 334.10 34 % 336.25 % 39 338.43 46 }% | 340.61 % }4 || 342.79 % % 344.97 % }% 347.16 }% % 349,37 % 34 || 351.58 34 % 353.79 % 40 355.99 47 }% 358.23 }% }4 || 360.47 % % 362.71 % }% 364.95 % % 367.21 % 34 || 369.48 34 7% | 371.75 % 41 374.04 48 }% | 376.31 }% J4 || 378.60 % 3% 380.90 % Jº 383.22 }% 5% 385.51 % 34 || 387.84 % % 390.16 % 42 392.48 49 }% 394.84 }% J4 || 397.19 % % 399.54 % }% | 401.89 % % 404.27 % 34 || 406.65 % % | 409.03 % Weight Diam. Weigh ! I Diam. Weight Diam Weight per inch Inches | }." inch Inches | }}" inch Inches | Pº" inch thickness ” thickness .# thickness A thickness 411.41 5() 556.26 57 722.92 64 911.38 413.82 }% 559.04 J% | 726.10 }% | 914.95 416.20 }% 561.84 J.A. | 729.27 }4 918.52 418.60 3% 564.65 % | 732.44 3% 922.08 421.04 }% 567.45 }% | 735.65 }% 925.68 423.45 % 570.25 % | 738.85 % 929.25 425.88 34 573.06 34 || 742.08 34 || 932.85 428.32 % 575.89 % 745.28 % 936.48 430.76 51 578.73 58 748.51 65 940.07 433.22 }% 581.56 }% 751.74 J% 943.70 435.69 % 584.42 J4 || 754.97 }4 947.33 438.15 3% 587.28 % 758.22 % 950.95 440.62 J% 590.14 }% 761.45 }% 954.61 443.08 % 593.00 % 764.71 % 958.23 445.57 34 595.86 34 || 768.00 34 || 961.89 448.07 % 598.75 % 771.26 % 965.54 450.56 52 601.64 59 774.54 66 969.23 453.08 }% 604.53 J% | 777.83 J% 972.91 455.60 }% 607.45 JA 781.11 J4 976.59 458.1() 3% 610.37 3% 784.40 3% 980.27 460.65 }% 613.29 }% 787.72 }% 983.96 463.17 % | 616.21 5% 791.03 5% 987.67 465.72 34 || 619.12 34 || 794.34 34 991.38 468.27 % 622.07 % 797.69 % 995.09 470.82 53 625.02 60 801.00 67 998.83 473.37 }% 627.96 }% | 804.35 }% 1002.54 475.94 }4 || 630.91 J4 || 807.69 }4 || 1006.28 478.52 % 633.88 % | 811.06 % | 1010.02 481.10 }% 636.86 }% | 814.43 14 | 1013.79 483.71 % 639.83 % 817.77 5% | 1017.53 486.28 34 642.84 34 || 821.17 34 1021.30 488.89 % 645.81 % 824.54 % | 1025.06 491.50 54 648.81 61 827.94 68 1028.86 494.13 }% 651.82 }% | 831.34 }% | 1032.63 496.76 J4 || 654.85 }% 834.74 }4 || 1036.42 499.37 3% 657.85 % | 838.14 % | 1040.22 502.04 }% | 660.88 }% | 841.57 }% | 1044.05 504.67 % | 663.91 % | 845.00 % | 1047.84 507.33 34 | 666.97 34 | 848.43 34 || 1051.67 509.97 % | 670.00 % 851.85 % 1055.49 512.66 55 673.06 62 855.31 69 1059.34 515.32 J% 676.12 }% | 858.77 }% 1063.17 518.01 J4 || 679.21 }4 862.22 94 | 1067.02 520.68 % | 682.27 38 865.68 3% 1070.87 523.40 % | 685.36 }% 869.16 }% | 1074.75 526.09 5% | 688.45 % | 872.65 % 1078.61 528.78 34 || 691.56 34 || 876.13 % 1082.49 531.50 % 694.65 % 879.62 % | 1086.37 534.22 56 697.77 63 883.1() 7() 1090.28 536.97 J% | 700.88 }% | 886.62 }% | 1094.16 539.69 J4 || 704.00 }4 | 890.13 % | 1098.07 542.43 3% | 707.15 3% | 893.67 % 1101.98 545.18 J% 710.29 }% | 897.18 }% | 1105.89 547.96 % 713.43 5% 900.72 5% 1109.83 550.71 34 || 716.58 34 904.27 34 || 1113.77 553.48 7% | 719.75 % 907.81 % | 1117.70 (254) B U F F A L O T A N K C O R P O R AT I O N SEAMLESS FORGED AND ROLLED STEEL RINGS (Continued) i. Weight * Weight ; : Weight - Weight º Weight Fº s per inch ºº per inch P.. per inch P. per inch Pº: per inch thickness * thickness|*|thickness “” thickness ””” thickness 71 1121.64 || 78 1353.72 || 85 1607.59 || 92 1883.27 || 09 2180.76 % | 1125.58 J% 1358.06 }% | 1612.32 }% | 1888.39 % 2186.25 }% 1129.55 J4 || 1362.39 J4 | 1617.05 94 | 1893.52 94 | 2191.78 % 1133.51 % 1366.75 % 1621.81 % | 1898.65 % 2197.30 }% 1137.51 % | 1371.12 }% 1626.57 J% 1903.80 J% 2202.83 % 1141.47 % | 1375.48 % 1631.33 5% 1908.93 5% 2208.38 % | 1145.47 34 || 1379.87 34 1639.09 34 || 1914.09 34 2213.93 % 1149.46 % 1384.26 % 1640.85 % | 1919.27 7% 2219.49 72 1153,46 || 79 1388.65 || 86 1645.63 || 93 1924.43 || 100 2225.04 % 1157.48 }% 1393.04 }% | 1650.42 }% 1929.61 }% 2230.84 }4 1161.47 % 1397.43 % 1655.21 }% 1934.80 JA 2236.41 % 1165.50 % 1401.85 % | 1660.02 % 1939.98 3% 2242.00 }% 1169.52 }% 1406.27 % 1664.81 }% 1945.17 }% 2247.58 % | 1173.57 % 1410.69 % | 1669.63 5% 1950.38 5% 2253.18 34 || 1177.62 % 1415.14 34 1674.47 34 1955.59 34 2258.77 % 1181.67 % 1419.59 % 1679.29 % 1960.80 % 2264.38 73 1185.72 || SO 1424.01 || 87 1684. 13 || 94 1966.05 || 101 2270.01 }% | 1189.78 % 1428.48 % | 1688.98 J% 1971.26 J% 2275.61 % 1193.85 % 1432.93 }% | 1693.82 J4 || 1976.50 J4 2281.25 % 1197.93 % 1437.41 % | 1698.67 % 1981.77 % 2286.89 }% | 1202.01 }% 1441.88 }% 1703.54 }% 1987.01 }% 2292.54 % 1206. 12 % 1446.36 % 1708.41 5% | 1992.28 5% 2298.18 34 1210.20 % 1450.84 34 1713.29 34 || 1997.55 34 || 2303.84 % | 1214.31 % 1455.34 % 1718.19 % 2002.82 % 2309.50 74 1218.42 || 81 1459.84 || 88 1723.06 || 95 2008.09 || 102 2315.18 }% 1222.55 % 1464.35 }% 1727.96 J% | 2013.38 J% 2320.86 % | 1226.66 }% 1468.88 }% 1732.86 }4 2018.68 % 2326.54 % | 1230.80 3% 1473.39 % 1737.79 % 2023.98 % 2332.23 }% | 1234.96 }% 1477.92 % 1742.69 }% 2029.28 }% 2337.93 % | 1239.10 % 1482.45 % 1747.62 % 2034.60 % 2343.63 34 1243.26 34 1487.01 34 1752.55 34 2039.93 34 || 2349.35 % | 1247.40 % 1491.55 % 1757.51 % 2045.26 7% 2355.07 75 1251.59 || 82 1496.11 || 89 1762.44 || 96 2050.58 || 103 2360.80 % | 1255.76 % 1500.67 }% 1767.40 J% 2055.94 }% 2366.53 }% | 1259.95 }% 1505.26 J% 1772.35 }% 2061.29 J4 || 2372.27 % 1264.14 % 1509,82 % 1777.34 % 2066.65 3 & 2378,02 }% | 1268.33 % | 1514.41 % | 1782.30 J% 2072.00 16 || 2383.77 % | 1272.53 % | 1519.00 % | 1787.28 5% 2077.38 5% 2389.53 34 1276.75 % 1523.62 34 1792.27 34 2082.76 34 || 2395.29 % 1280.94 % 1528.21 % 1797.28 % 2088.15 7% 2401.07 76 1285.19 || 83 1532.82 || 90 1802.27 || 97 2093.53 || 104 2406.85 !g | 1289.41 % | 1537.44 % 1807.28 J% 2098.94 }% 24.12.63 % 1293.66 % 1542.09 }% | 1812.30 J4 2104.35 }% 2418.44 % | 1297.88 % 1546.70 % | 1817.34 % 2109.76 % 2424.24 }% | 1302.13 }% 1551.35 }% 1822.36 }% 2115.17 }% 2430.05 % | 1306.41 % 1556.00 % | 1827.40 5% 2120.59 % 2435.87 34 1310.66 % 1560.64 % | 1832.44 34 2126.02 34 2441.69 % 1314.94 % 1565.32 % | 1837.48 % 2131.46 7% 2447.53 77 1319.21 || 84 1569.99 || 91 1842.55 || 98 2136.93 || 105 2453.37 % | 1323.52 }% 1574.67 }% 1847.63 J% 2142.37 }% 2459.21 }% 1327.80 }4 || 1579.34 % 1852.70 % 2147.84 % 2465.06 % 1332.10 % | 1584.04 % | 1857.77 % 2153.31 3% 2470.92 % | 1336.41 }% | 1588.72 }% | 1862.84 J% 2158.77 J% 2476.78 % 1340.72 % 1593.42 % 1867.94 5% 2164.27 5% 2482.65 34 || 1345.05 34 1598.15 34 1873.04 34 2169.77 34 2488.53 % 1349.39 % 1602.85 % 1878.17 % 2175.26 % 2494.42 (255) W E I G H T S SEAMLESS FORGED AND ROLLED STEEL RINGS (Continued) e Weight º Weight * Weight ge Weight - Weight Pº per inch P. per inch P. per inch Pº per inch º. per inch - thickness ” thickness ” thickness "' thickness “” thickness 1()6 2500.32 || 107 2547.71 || 108 2595.56 || 109 2643.84 || 110 2692.58 }% 2506.22 }% 2553.67 }% 2601.57 }% 2649.91 J% 2698.41 }4 || 2512.13 J4 2559.64 J% 2607.59 J4 2655.99 J4 2704.03 % 2518.04 % 2565.61 % 2613.62 % 2662.07 % 27 10.68 }% 2523.96 J% 2571.58 }% 2619.65 }% 2668.16 J% 2716.82 5% 2529.89 % 2577.57 % 2625.69 % 2674.26 5% 2722.97 34 2535.83 34 || 2583.56 34 2631.74 34 2680.36 34 2729.13 % 2541.77 % 2589.56 % 2637.79 % 2686.47 % 2735.29 COMPARATIVE WEICHTS OF NON-FERROUS SHEET METALS BY FRACTIONAL INCH THICKNESSES In Pounds Per Square Foot Thickness METALS in Inches 2–S Com- 18% * Alumi- || Brass mercial Copper | Nickel | Monel | Lead Zinc Frac. Decimal num Bronze Silver % .0625 .880 2.754 2.862 2.898 || 2.844 || 2.88 4.0 2.35 % .125 1.760 5.508 5.724 5.796 5,688 5.76 8.0 4.70 % . 1875 2.641 8.262 8.586 8,694 | 8.532 8.64 12.0 7.05 % .250 3.521 11.02 || 11.45 11.59 || 11.38 || 11.52 16.0 9.40 % .3125 4.401 13.77 14.31 14.49 | 1.4.22 || 14.35 20.0 | 11.75 % .375 5.282 16.52 17.17 17.39 || 17,06 || 17.25 24.0 | 1.4.10 Jſ, .4375 6.162 19.28 19.94 20.29 | 19.91 | 20.09 28.0 | 16.45 % .500 7.043 22.03 22.90 23.18 22.75 22.98 32.0 | 18.80 % .5625 7.923 24.79 25.76 26.08 25,60 25.83 36.0 | 21.15 % .625 8.803 27.54 28.62 28.98 || 28,44 || 28.75 40.0 || 23.50 % .6875 9.684 30.29 31.48 31.88 || 31.28 31.57 44.0 || 25.85 34 .75() 10.564 33.05 34.35 34.78 || 34.13 || 34.47 48.0 28.80 % .8125 | 11.444 35.80 37.21 37.67 || 36.97 || 37.31 52.0 || 30.55 % .875 12.325 38.56 4(),07 40.57 || 39.82 | 40.25 56.0 || 32.90 % .9375 | 13,205 41.31 42.93 43.47 || 42.66 || 42.95 60.0 | 35.25 1. 1.000 14.086 44.06 45.80 46.37 || 45.50 46.08 64.0 | 37.60 1% 1.0625 || 14.966 46.82 48.66 49.27 || 48.35 | 48.83 68.0 | 39.95 1% 1.125 15.846 49.57 51.52 52.16 || 51.19 || 51.71 72.0 || 42.30 1% 1.1875 16.727 52.33 54.27 55.06 || 54.04 54.58 76.0 || 44.65 1% 1.250 17.607 55.08 57.25 57.96 || 56.88 || 57.45 80.0 47.00 1% 1,315 18.487 57.83 60.11 60.86 59.72 | 60.31 84.0 49.25 1% 1.375 19.368 60.59 62.87 63.76 62.57 | 63.03 88.0 || 51.70 1% 1.4375 | 20.248 63.34 65.74 66.65 65.41 | 66.05 92.0 | 54.05 1% 1.500 21. 129 66.10 67.70 69.55 | 68.26 | 68.94 96.0 56.40 1% 1.5625 22.009 68.85 71.56 72.45 71.10 || 71.79 || 100.0 58.75 1% 1.625 22.889 71.60 74.42 75.35 | 73.94 74.71 || 104.0 61.10 1% 1.6875 23.770 74.36 77.28 78.25 || 76.79 || 77.58 || 108.0 | 63.45 134 1.750 24.650 77.11 8(). 15 81,14 || 79.63 | 80.43 || 112.0 || 65.80 1% 1.8125 || 25.530 79.87 83.01 84,04 || 82.48 || 83.27 | 116.0 | 68.15 1% 1,875 26,411 82.62 85.87 86.94 | 85.32 86.71 | 120.0 | 70.50 1% 1.9375 27.291 85.37 88.73 89.84 || 88.16 || 89.05 || 124.0 | 72.85 2 2,000 28, 172 88.13 91.60 92.74 91.01 || 91.92 || 128.0 75.20 Variations from these weights must be expected in practice. (256) B U F F A L O T A N K C O R P O R A T I O N COMPARATIVE WEICHTS OF NON-FERROUS SHEET METALS BY GAUGE NUMBERS In Pounds per Square Foot Thickness Metals B. & S i. I º 2–S B *i. C Niš a *-*-* *. .” - Traction | Equivalent !'... I’8,SS II].62]” (: 13, opper icke Gauge No. of Inch | Inches Aluminum Bronze Silver 40 - e º sº , ()()31 .0442 .1366 . 1420 .1437 .1411 39 • ‘s s a .0035 .0497 .1542 . 1603 .1623 .1593 38 - * * * .0()40 .0558 . 1763 .1833 . 1855 .1820 37 - - - - .()()45 .0627 .1983 .2062 .2087 .2048 36 - * * * .0().50 ,0704 .22()3 .2291 .23.18 .2275 35 * * * * .0().56 ,0790 .2468 .2566 .2597 .2548 34 * * * * .0()63 .0888 .2776 .2887 .2921 .2867 33 - 4 º' 4 .0()74 .1()() .3129 .3254 .3292 .3231 32 a • * * .00.80 .113 .3525 .3666 .3709 .364() 31 • * * * .0089 .126 .3922 .4()78 .4127 .405() 30 - - - - .01.00 .141 .4406 .4582 .4637 .4550 29 • * * * .0113 .159 ,4979 .5178 .5240 .5142 28 • * * * .01.26 . 178 .5552 .5774 .5842 .5734 27 * * * * .0142 .200 .6257 .6517 .6584 .6462 26 & .01.59 .225 .7006 .7286 .7373 .7235 25 - - - - .0179 .252 ,7887 .8202 .8300 .8145 24 e - e 4 .020.1 .283 .8857 .92.11 .9320 .9146 23 - - - - .0226 .318 .9958 1.035 1.048 1.028 22 • * * * .0254 .357 1.1.19 1.163 1.178 1.156 21 * * * * .0285 .401 1.256 1.306 1.321 1.297 20 # .0320 .450 1.4.1() 1,466 1.484 1.456 19 • * * * .0359 .506 1.582 1.645 1.665 1.634 18 a « a s .0403 .568 1,776 1.847 1.869 1.834 17 * .0453 .638 1.996 2,075 2.100 2,061 16 - - - - .0508 .716 2.238 2.327 2.355 2.312 15 * * * * .0571 .804 2.516 2.616 2.648 2.598 14 }%+ .0641 .903 2.825 2.938 2.972 2.917 13 • * * * .07.20 1.01 3.17.3 3.299 3.338 3.276 12 # + .0808 1.14 3.56() 3.702 3.747 3.677 11 * — ,0907 1.28 3.997 4.156 4.206 4.127 1() - e s - ... 1019 1.44 4,490 4,669 4.725 4,637 9 #4 + .1144 1.61 5,041 5.242 5.304 5,206 8 }% + .1285 1.81 5.662 5.888 5.958 5.847 7 # + .1443 2.03 6.358 6.612 6.691 6.566 6 #; + .1620 2.28 7.138 7.423 7.5.12 7.372 5 %– . 1819 2.56 8.015 8.335 8.434 8.277 4 # .2043 2.88 9.002 9.362 9,473 9.297 3 • e s - .2294 3.23 10.11 10.51 10.64 10.44 2 }4 + .2576 3.63 11.35 11.80 11.94 11.72 1 *, + .2893 4.08 12.75 13.30 13.41 13.16 () }%+ .3249 4.58 14.32 14.89 15.06 14.78 . 2/0 * * * * .3648 5.14 16.07 16.71 16.92 16.60 3/0 * * * * .4096 5.77 18.05 18.77 18.99 18.64 4/0 # + .4600 6.48 20.27 21.08 21.33 20.93 Variations from these weights must be expected in practice. (257) W E L G H T S WEICHTS AND SPECIFIC CRAVITIES Weight e Weight - Substance Lb. per 㺠Substance Lb. per sº Cu. Ft. y Gu. ft. Gravity Metals, Alloys, Ores Timber, U. S. Seasoned Aluminum, cast, Moisture Content by hammered . . . . . . . . . . . . 165 2.55–2.75 Weight: Aluminum, bronze . . . . . . . 481 7.7 Seasoned timber 15 to 20% Brass, cast, rolled. . . . . . . . 534 8.4–8.7 || Green timber up to 50% Bronze, 7.9 to 14% Sn . . . 509 7.4–8.9 Ash, white, red. . . . . . . . . 40 0.62—0.65 Copper, cast, rolled . . . . . . 556 8.8–9.0 Cedar, white, red. . . . . . . 22 0.32–0.38 Copper ore, pyrites . . . . . . 262 4.1-4.3 Chestnut. . . . . . . . . . . . . . 41 0.66 Gold, cast, hammered . . . . . 1205 19.25-19.3| Cypress. . . . . . . . . . . . . . . 30 0.48 Iron, cast, pig. . . . . . . . . . . 450 7.2 Fir, Douglas spruce. . . . . 32 0.51 Iron, wrought . . . . . . . . . . . 485 7.6–7.9 Fir, eastern. . . . . . . . . . . . 25 0.40 Iron, steel . . . . . . . . . . . . . . 490 7.8–7.9 Elm, white . . . . . . . . . . . . 45 0.72 Iron, Spiegel-eisen. . . . . . . . 468 7.5 Hemlock . . . . . . . . . . . . . . 29 0.42—0.52 Iron, ferro-silicon . . . . . . . . 437 6.7–7.3 Hickory. . . . . . . . . . . . . . . 49 0.74–0.84 Iron ore, hematite . . . . . . . 325 5.2 Locust. . . . . . . . . . . . . . . . 46 0.73 Iron ore, hematite in bank. 160–180 - - - - Maple, hard . . . . . . . . . . . 43 0.68 Iron ore, hematite loose . . . 130–160 - - - - Maple, white . . . . . . . . . . 33 0.53 Iron ore, limonite. . . . . . . . 237 3.6–4.0 Oak, chestnut. . . . . . . . . . 54 ().86 Iron ore, magnetite . . . . . . 315 4.9–5.2 Oak, live. . . . . . . . . . . . . . 59 ().95 Iron slag . . . . . . . . . . . . . . . 172 2.5–3.0 Oak, red, black. - 41 ().65 Lead. . . . . . . . . . . . . . . . . . . 710 11.37 Oak, white . . . . . . . . . . . . 46 0.74 Lead ore, galena. . . . . . . . . 465 7.3–7.6 Pine, Oregon . . . . . . . . . . 32 0.51 Manganese . . . . . . . . . . . . . 475 7.2–8.0 Pine, red. . . . . . . . . . . . . . 30 ().48 Manganese ore, pyrolusite. 259 3.7–4.6 Pine, white. . . . . . . . . . . . 26 0.41 Mercury. . . . . . . . . . . . . . . . 849 13.6 Pine, yellow, long-leaf. . . 44 ().70 Nickel. . . . . . . . . . . . . . . . . . 565 8.9–9.2 Pine, yellow, short-leaf. . 38 0.61 Nickel, monel metal. . . . . . 556 8.8–9.0 Poplar . . . . . . . . . . . . . . . . 30 0.48 Platinum, cast, hammered. 1330 21.1—21.5 Redwood, California. . . . 26 0.42 Silver, cast, hammered . . . 656 10.4–10.6 || Spruce, white, black . . . . 27 0.40—0.46 Tin, cast, hammered . . . . . 459 7.2–7.5 Walnut, black . . . . . . . . . 38 0.61 Tin ore, cassiterite. . . . . . . 4.18 6.4–7.0 Walnut, white . . . . . . . . . 26 0.41 Zinc, cast, rolled. . . . . . . . . 440 6.9—7.2 Zinc ore, blende . . . . . . . . . 253 3.9–4.2 Various Liquids Alcohol 100% . . 49 ().79 A: muriatic 40% * - § 1.20 - tº Acids, nitric 91% . . 9 1.50 Various Solids Acids, sulphuric 87% . . 112 1.80 Cereals, oats . . . . . . . . bulk 32 - - - - Lye, soda 66% . . 106 1.70 Cereals, barley . . . . . . bulk 39 - - - - Oils, vegetable . . . . . . . . . 58 0.91—0.94 Cereals, corn, rye . . . . bulk 48 - - - - Oils, mineral, lubricants. 57 0.90–0.93 Cereals, wheat. . . . . . . bulk 48 - - - - Water, 4° C. maximum Hay and Straw. . . . . . bales 20 - - - - density. . . . . . . . . . . . . . 62.428 1.0 Cotton, Flax, Hemp . . . . . 93 1.47–1.50 || Water, 100° C. . . . . . . . . . 59.830 0.9584 Fats . . . . . . . . . . . . . . . . . . . 58 0.90–0.97 || Water, ice. . . . . . . . . . . . . 56 0.88–0.92 Flour, loose . . . . . . . . . . . . . 28 0.40—0.50 Water, snow, fresh fallen. 8 .125 Flour, pressed. . . . . . . . . . . 47 0.70–0.80 || Water, sea water. . . . . . . 64 1.02–1.03 Glass, common . . . . . . . . . . 156 2.40–2.60 Glass, plate or crown. . . . . 161 2.45–2.72 Glass, crystal . . . . . . . . . . . 184 2.90—3.00 i.e.” . . . . . . . . . . .';|Gases Paper . . . . . . . . . . . . . . . . . . 58 0.70–1.15 || Air, 0° C. 760 mm. . . . . . . .08071 1.0 Potatoes piled. . . . . . . . . . . 42 - - - - Ammonia . . . . . . . . . . . . . . .0478 0.5920 Rubber, caoutchouc. . . . . . 59 0.92–0.96 || Carbon dioxide . . . . . . . . . . 1234 1.5291 Rubber goods . . . . . . . . . . . 94 1.0–2.0 Carbon monoxide . . . . . . . .0781 0.9673 Salt, granulated, piled. . . . 48 - - - - Gas, illuminating. . . . . . . . .028–.036 || 0.35–0.45 Saltpeter . . . . . . . . . . . . . . . 67 - - - - Gas, natural . . . . . . . . . . . . .038–.039 || 0.47–0.48 Starch. . . . . . . . . . . . . . . . . . 96 1.53 Hydrogen . . . . . . . . . . . . . . .00559 0.0693 Sulphur . . . . . . . . . . . . . . . . 125 1.93–2.07 || Nitrogen . . . . . . . . . . . . . . . .0784 0.9714 Wool. . . . . . . . . . . . . . . . . . . 82 1.32 Oxygen . . . . . . . . . . . . . . . . .0892 1.1056 The specific gravities of solids and liquids refer to water at 4°C., those of gases to air at 0°C. and 760 mm. pres- sure. The weights per cubic foot are derived from average specific gravities, except where stated that weights are for bulk, heaped or loose material, etc. (258) B U F F A L O T A N K C O R P O R AT I O N WEICHTS AND SPECIFIC CRAVITIES Weight Speci Weight e t * pecific o Specific Substance Fº º Gravity Substance H. º Gravity Ashlar Masonry Minerals Granite, syenite, gneiss. . . 165 2.3—3.0 Asbestos . . . . . . . . . . . . . . 153 2.1–2.8 Limestone, marble . . . . . . . 160 2.3–2.8 Barytes . . . . . . . . . . . . . . . 281 4.50 Sandstone, bluestone. . . . . 140 2.1–2.4 #. - - - - - - - - - - - - - - - 184 2.7–3.2 auxite . . . . . . . . . . . . . . . 1.59 2.55 Mortar Rubble Masonry ë. * - - - * * * * * * * * * * * * 109 1.7–1.8 Granite, syenite, gneiss. . . 155 2.2–2.8 alk . . . . . . . . . . . . . . . . . 137 1.8–2.6 Limestone, marble . . . . . . . 150 2.2–2.6 º * * * * * * - - - 9 - - # 1;" Sandstone, bluestone. . . . . 130 2.0–2.2 11 UC. . . . . . . . . . . . . . g all ClSt.OI) e., |)|lleSUOIlê Fº orthoclase . . . . 1.59 2.5–2.6 Dry Rubbie Masonry neiss, serpentine . . . . . . 1.59 2.4—2.7 - - . c. Granite, syenite. . . . . . . . 175 2.5–3.1 Granite, syenite, gneiss. . . 130 1.9—2.3 Greenstone, trap . . . . . . . 187 2.8–3.2 Limestone, marble . . . . . . . 125 1.9—2.1 Gvpsum, alabaster 1.59 2.3–2.8 Sandstone, bluestone. . . . . 110 1.8–1.9 Hºjj . 187 3.0. ºt Limestone, marble. . . . . . 165 2.5–2.8 Brick Masonry - 3...’ Pressed brick. . . . . . . . . . . . 140 2.2–2.3 Hººk, apatite. § 3% Common brick . . . . . . . . . . 120 1.8–2.0 Porphyry . . . . . . . . . . . . . 172 2.6–2.9 Soft brick. . . . . . . . . . . . . . . 100 1.5–1.7 Pumice, natural. . . . . . . . 40 0.37–0.90 Quartz, flint . . . . . . . . . . . 165 2.5–2.8 Concrete Masonry Sandstone, bluest ne . . . 147 2.2–2.5 Cement, stone, sand . . . . . 144 2.2–2.4 Shale, slate. . . . . . . . . . . . 175 2.7–2.9 Cement, slag, etc. . . . . . . . . 130 1.9—2.3 Soapstone, talc. . . . . . . . . 169 2.6–2.8 Cement, cinder, etc. . . . . . . 100 1.5–1.7 variº: ºins Stone, Quarried, Piled atter Ian S & - Ashes, cinders. . . . . . . . . . . . 40–45 - * * - Basalt, granite, gneiss. . . 96 tº e º e Cement, portland, loose. . . 90 - - - - Limestone, marble, Cement, portland, Set . . . . 183 2.7–3.2 QuartZ. . . . . . . . . . . . . . . 95 Lime, gypsum, loose . . . . . 53–64 - - - - Sandstone. . . . . . . . . . . . . 82 Mortar, set . . . . . . . . . . . . . 103 1.4–1.9 Shale . . . . . . . . . . . . . . . . . 92 Slags, bank slag . . . . . . . . . 67-72 - a a - Greenstone, hornblende. 107 Slags, bank screenings. . . . . 98–117 Slags, machine slag . . . . . . 96 - * * * - -> Slags, slag sand. . . . . . . . . . . 49-55 - - - - Bituminous Substances hal * - - - - - - - a 4 - - . LT l . Earth, Etc., Excavated à. * - - - ; | H ; Clay, dry. . . . . . . .. . . . . . . . 63 - * - - Coal, bituminous. . . . . . . 84 i.2–1.5 Clay, damp, plastic . . . . . . . 110 - sº e - Coal, lignite . . . . . . . . . . . 78 1.1–1.4 gº gº dry . . . . . 1% - - - - Coal, peat, turf, dry . . . . 47 0.65–0.85 larth, C1ry, 10OSG . . . . . . . . . - - - - • I) 2.]" * - Earth, dry, packed. . . . . . . 95 - - - - 8. ; .* * - - : }}}}}} Earth, moist, loose. . . . . . . 78 - - - - Čoai coke. . . . . . . 75 i.0—1.4 Earth, moist, packed. . . . . 96 • * * - Graphi * * * * * * * * * * * * o 5’ Earth, mud, flowing 108 É. - * * * - - - - - - - - - - 131 1.9—2.3 ‘lal’Ull, * 71I] g . . . . . . - - - - a Taſſl Ile . . . . . . . . . . . . . . 56 0.87–0.91 Earth, mud, packed. . . . . . 115 * * * * - #º sº | | | #ºn lºss Riprap, . Stone . . . . . . . 1. - - - - Petroleum, benzine . . . . . 46 0.73–0.75 Riprap, shale. . . . . . . . . . . . a * * - Petroleum, gasoline. . . . . 42 0.66–0.69 sº º º º: d §§ Pitch 69 1.07–1.15 Sand, gravel, dry, packed. 100–120 * * * - º, - & Sand, gravel, dry, wet. . . . 118–120 - - - - Tar, bituminous. . . . . . . . 75 1.20 Excavations in Water Coal and Coke. Piled Sand or gravel. . . . . . . . . . . 60 - - - - y Sand or gravel and clay.. . 65 - - - - Coal, anthracite. . . . . . . . . 47–58 Clay . . . . . . . . . . . . . . . . . . . 80 - - - - Coal, bituminous, lignite 40–54 River mud. . . . . . . . . . . . . . 90 - - - - Coal, peat, turf . . . . . . . . 20–26 Soil . . . . . . . . . . . . . . . . . . . . 70 - - - - Coal, charcoal . . . . . . . . . 10–14 Stone riprap . . . . . . . . . . . . 65 - - - - Coal, coke. . . . . . . . . . . . . . 23–32 The specific gravities of solids and liquids refer to water at 4°C., those of gases to air at 0°C. and 760 mm. pressure. The weights per cubic foot are derived from average specific gravities, except where stated that weights are for bulk, heaped or loose material, etc. (259) L O A D S O N F L A T P L A T E S SAFE LOADS ON SQUARE PLATES DIAGRAM FOR STRESSES IN SQUARE PLATES. 2000 : |500 |000 900 800 700 600 500 400 300 2OO |00 90 8O 7O 60 5O | 2 3 4. 5 6 7 8 9 TO |5 2O Side of Sauare in Feet. Safe Loads on Square Plates.—The safe loads on square plates for a fiber stress of 10,000 pounds per square inch may be obtained from the diagram. As an example, required the safe load for a 34-in, plate 3 feet square. Begin at 3 on the bottom of the diagram, follow upward to the line marked 4-in. plate, from the intersection follow to the left edge and find 280 lbs. per sq. ft. For any other fiber stress multiply the safe load found from the diagram by the ratio of the fiber stresses. To use the diagram for a rectangular plate take a square plate having the same area. USE OF FLAT STEEL PLATES It is important to remember that a flat plate is a peculiarly weak member. Hence the theoretical thicknesses will often seem excessive. In such cases, a very material increase in strength will be secured by slightly crowning or dishing the plate, permitting of considerable reductions in plate thickness. Moreover, in the case of thin and large plates approximating to membranes, a relatively slight dishing very materially reduces the stresses for a given load- ing. It is also possible to use ribs cast or welded to the plate. Such a form of stiffening produces a structure difficult to analyze. It is recommended that both unduly thin ribs and small fillets at the junction of plate and rib be avoided. In general such reinforced plates are designed by experience rather than analysis. (260) B U F F A L O T A N K C O R P O R AT I O N FLAT PLATES The analysis of the stresses in flat plates supported or fixed at their edges is extremely difficult. The following formulae by Grashof may be used: 1. Circular plate of radius r and thickness t, supported around its perimeter and loaded with w per square inch-Let f = maximum fiber stress, v = maximum deflection and E = modulus of elasticity. - _ 117 w x r2 T T23 Ti2 189 W X rº 256 Ex tº 2. Circular plate built in or fixed at the perimeter. __45 w x rº T64 Tº 45 W X rq 256 Ex tº 3. Rectangular plate of length a, breadth b, and thickness t, built in or fixed at the edges and carrying a uniform load w per square inch.-Let fa be the unit stress parallel to a, fb be the unit stress parallel to b, and a > b. fa = b4 X w. X a2 . fb = a 4 x w x b? £. 2(as E bº) tº ' 2(a4 + bi)t? a 4 x b% x w (a4 + b%)32E x tº For a square plate a = b, f W X 3.2 4t2 --- _ W X a” 64E x tº The strength of plates simply supported on the edges is about 3% the strength of plates fixed. Plates welded or bolted around the edges may be considered as fixed. SPECIFIC CRAVITY The specific gravity of a substance is its weight as compared with the weight of an equal bulk of pure water. In the metric system it is the weight in grams per cubic centimeter. TO FIND THE SPECIFIC GRAVITY OF A SUBSTANCE W = weight of body in air; w = weight of body submerged in water. W —W If the substance be lighter than the water, sink it by means of a heavier substance, and deduct the weight of the heavier substance. Specific gravity determinations are usually referred to the standard of the weight of water at 62°F., 62.355 pounds per cubic foot. Some experimenters have used 60°F. as the standard, and others 32° and 39.1°F. There is no general agreement. Given the specific gravity referred to water at 39.1°F., to reduce it to the standard of 62°F. multiply it by 1.00112. Given the specific gravity referred to water at 62°F., to find weight per cubic foot multiply by 62.355. Given weight per cubic foot, to find specific gravity multiply by 0.016037. Given the specific gravity, to find weight per cubic inch multiply by 0.036085. SPECIFIC GRAVITY, LIMITS OF CARBON AND PROPERTIES OF STEEL AND IRON Specific gravity = Per Cent of Carbon|Specific Gravity Properties Cast Iron . . . . . . . . . . . . . 5 to 1.50 7.2 Not malleable, not temperable Steel . . . . . . . . . . . . . . . . - 1.50 to 0.07 7.8 Malleable and temperable Wrought Iron . . . . . . . . . ().30 to 0.05 7.7 Malleable, not temperable (261) U N I T S DEFINITIONS OF UNITS Activity. Power or rate of doing work; unit: the watt. Ampere. Unit of electrical current. The international ampere, “which is one-tenth of the unit of current of the C. G. S. system of electro-magnetic units, and which is represented sufficiently well for practical use by the unvarying current which, when passed through a solution of nitrate of silver in water, and in accordance with accompanying specifica- tions, deposits silver at the rate of 0.001118 of a gram per second.” The ampere = 1 coulomb per second = 1 volt through 1 ohm = 101 E. M. U. = 3 x 109 E.S.U. (E. M.U. = C. G.S. electromagnetic units. E.S.U. = C. G. S. electrostatic units.) Amperes = volts/ohms = watts/volts = (watts/ohms) }}. Amperes x volts = amperes” x ohms = watts. Angstrom. Unit of wave-length = 10−10 meter. Atmosphere. Unit of pressure. English normal = 14.7 pounds per sq. in. = 29.929 in. = 760.18 mm. Hg. 32° E. French normal = 14.70 pounds per sq. in. = 29.922 in. = 760 mm. of Hg. 0°C. Bougie Decimale. Photometric standard. British Thermal Unit. Heat required to raise one pound of water at its temperature of maximum density 1° E. = 252 gram-calories. Calory. Small calory = gram-calory = therm = quantity of heat required to raise one gram of water at its maximum density, one degree Centigrade. * Large calory = kilogram-calory = 1000 small calories = one kilogram of water raised one degree Centigrade at the temperature of maximum density. Candle. Photometric standard. carat. The diamond carat standard in U. S. = 200 milligrams. Old standard = 205.3 milligrams = 3.168 grains. The gold carat: pure gold is 24 carats; a carat is 1/24 part. Carcel. Photometric standard. Circular Area. The square of the diameter = 1.2733 x true area. True area = 0.785398 x circular area. Coulomb. Unit of quantity. The international coulomb is the quantity of electricity trans- ferred by a current of one international ampere in one second = 10−1 E. M. U. = 3 x 10° E. S. U. Coulombs = (volts-seconds) /ohms = amperes X Seconds. Cubit. = 18 inches. Day. Mean solar day = 1440 minutes = 86,400 seconds = 1.0027.379 sidereal days. Sidereal day = 86164.10 mean Solar seconds. Digit. 34 inch; 1/12 the apparent diameter of the sun or moon. Diopter. Unit of “power” of a lens. The number of diopters = the reciprocal of the focal length in meters. Dyne. C. G. S. unit of force = that force which acting for one second ºn one gram produces a velocity of one centimeter per second = weight in grams divided by the acceleration of gravity in centimeters per second. Electrochemical Equivalent is the ratio of the mass in grams deposited in an electrolytic cell by an electrical current to the quantity of electricity. Energy. See Erg. t Erg. C. G. S. unit of work and energy = one dyne acting through one contimeter. Farad. Unit of electrical capacity. The international farad is the capacity of a condenser charged to a potential of one international volt by one international coulomb of electricity = 10–9 E. M. U. = 9 x 1011 E. S. U. The one-millionth part of a farad (microfarad) is more commonly used. Farads = coulombs/volts. Foot-pound. The work which will raise one pound one foot high. Foot-poundals. The English unit of work = foot-pounds/g. g. = the acceleration produced by gravity. Gauss. A unit of intensity of magnetic field = 1 E. M. U. = % x 10−" E. S. U. Gram-centimeter. The gravitation unit of work = g. Crgs. (262) B U F F A L O T A N K C O R P O R AT I O N DEFINITIONS OF UNITS (Continued) Gram-molecule = a grams where a = molecular weight of substance. Gravitation Constant = G in formula G ºf 666.07 x 10–10 cm.8/gr. sec.” r2 Heat of the Electric Current generated in a metallic circuit without self-induction is pro- portional to the quantity of electricity which has passed in coulombs multiplied by the fall of potential in volts, or is equal to (coulombs x volts) /4.181 in small calories, The heat in small or gram-calories per second = (amperes? x ohms)/ 4.181 = volts?/ (ohms x 4.181) = (volts x amperes) /4.181 = watts/4.181. Heat. Absolute zero of heat = –273.13° Centigrade, –459.6°Fahrenheit, 218.5° Reaumur. Hefner Unit. Photometric standard. Henry. Unit of induction. It is “the induction in a circuit when the electromotive force induced in this circuit is one international volt, while the inducing current varies at the rate of one ampere per second” = 109 E. M. U. = 1/9 x 10–11 E. S. U. Horse-power. The practical unit of power = 33,000 pounds raised one foot per minute = 550 foot pounds per second = 0.746 kilowatt = 746 watts. Joule. Unit of work = 107 ergs. Joules = (volts? x seconds) /ohms = watts x seconds = amperes? x ohms x seconds. Joule’s Equivalent. The mechanical equivalent of heat = 4.185 x 107 ergs. Kilodyne. 1000 dynes. About 1 gram. Lumen. Unit of flux of light-candles divided by solid angles. Megabar. Unit of pressure = 0.987 atmospheres. Megadyne. One million dynes. About one kilogram. Meter Candle. The intensity lumination due to standard candle distant one meter. Mho. The unit of electrical conductivity. It is the reciprocal of the ohm. Micrp. A prefix indicating the millionth part. Microfarad. One millionth of a farad, the ordinary measure of electrostatic capacity. Micron. (u) = one millionth of a meter. Mil. One thousandth of an inch. Milli-. A prefix denoting the thousandth part. Month. The anomalistic month = time of revolution of the moon from one perigee to another = 27.55460 days. The nodical month = draconitic month = time of revolution from a node to the same node again = 27.21222 days. The sidereal month = the time of revolution referred to the stars = 27.32166 days (mean value), but varies by about three hours on account of the eccentricity of the orbit and “perturbations.” The synodic month = the revolution from one new moon to another = 29.5306 days (mean value) = the ordinary month. It varies by about 13 hours. Ohm. Unit of electrical resistance. The international ohm is based upon the ohm equal to 109 units of resistance of the C. G. S. system of electromagnetic units, and “is represented by the resistance offered to an unvarying electric current by a column of mercury, at the temperature of melting ice, 14.4521 grams in mass, of a constant cross section and of the length of 106.3 centimeters” = 109 E. M. U. = 1/9 x 10–11 E. S. U. International ohm = 1.01367 B. A. ohms = 1.06292 Siemens' ohms. B. A. ohm = 0.98651 international ohms. Siemens' ohm = 0.94080 international ohms. Pentane Candle. Photometric standard. Pi = Tr = ratio of the circumference of a circle to the diameter = 3.14159265359. Poundal. The British unit of force. The force which will in one second impart a velocity of One foot per second to a mass of one pound. Radian = 180°/T = 57.29578° = 57° 17' 45" = 206625". Secohm. A unit of self-induction = 1 second x 1 ohm. Therm = small calory = quantity of heat required to warm one gram of water at its tem- perature of maximum density one degree Centigrade. (263) U N | T S – U S E F U L I N F O R M AT I O N DEFINITIONS OF UNITS (Continued) Thermal Unit, British = the quantity of heat required to warm one pound of water at its temperature of maximum density one degree Fahrenheit = 252 gram-calories. Volt. The unit of electromotive force (E. M. F.). The international volt is “the electromotive force that, steadily applied to a conductor whose resistance is one international ohm, will produce a current of one international ampere, and which is represented sufficiently well for practical use by 1000/1434 of the electromotive force between the poles or electrodes of the voltaic cell known as Clark’s cell, at a temperature of 15° C. and pre- pared in the manner described in the accompanying specification” = 108 E. M. U. = 1/300 E. S. U. Volt-ampere. Equivalent to watt/power factor. Watt. The unit of electrical power = 107 units of power in the C. G. S. system. It is repre- sented sufficiently well for practical use by the work done at the rate of one Joule per second. Watts = volts x amperes = amperes? x ohms = volts?/ohms (direct current or alternat- ing current with no phase difference). Watts x seconds = Joules. Weber. A name formerly given to the coulomb. USEFUL INFORMATION TO FIND : The circumference of a circle multiply diameter by 3.1416. The diameter of a circle multiply circumference by .31831. The area of a circle multiply square of diameter by .7854. Doubling the diameter of a circle increases its area four times. The side of an equal square multiply diameter by .8862. A gallon of water (U. S. Standard) weighs 8% lbs. and contains 231 cubic inches. A cubic foot of water contains 7.48 gallons, 1,728 cubic inches, and weighs 62.4 lbs. Surface of sphere = circumference x diameter. Surface of sphere = diameter” x 3.1416. Surface of sphere = circumference” x .3183. Volume of sphere = surface x 9% diameter. Volume of sphere = diameter* x .5236. Volume of sphere = radius' x 4.1888. Volume of sphere = circumference” x .016887. - To find the pressure in pounds per square inch of a column of water multiply the height of the column in feet by .434. Steam rising from water at its boiling point (212 degrees) has a pressure equal to the at- mosphere (14.7 lbs. to the square inch). A standard horse-power: The evaporation of 30 lbs. of water per hour from a feed water temperature of 100 degrees F. into steam at 70 lbs. gauge pressure. (Equivalent to 34% lbs. from and at 212 degrees Fahr.) : RULES TO FIND AREAS To find the area of a triangle, multiply the base by one-half of the perpendicular height. To find the area of a trapezoid, add the two parallel sides together and multiply the sum by one-half of the perpendicular distance between them. To find the area of a regular octagon, multiply the square of the diameter of the inscribed circle by the decimal .828. e To find the area of a regular hexagon, multiply the square of the diameter of the inscribed circle by the decimal .866. & To find the area of the section of a flat bar, or the area of a rectangle, multiply the width by the thickness. e To find the area of a sector of a circle, multiply the length of the arc by one-half of the radius. To find the area of a segment of a circle, first find the area of a sector of equal radius and when the segment is less than the semi-circle, subtract the area of the triangle; and when the segment is greater than the semi-circle, add the area of the triangle. * To find the area of a circular ring, multiply the sum of the diameters of the two circles by the difference of diameters and that product by .7854. (264) B U F F A L O T A N K co R P o RAT I o N DOMESTIC WEICHTS AND MEASURES Apothecaries’ Weight 20 grains. . . . . . . . . . . . . . . . . . . . . . . . 1 scruple 3 Scruples. . . . . . . . . . . . . . . . . . . . . . . . 1 dram 8 drams. . . . . . . . . . . . . . . . . . . . . . . . . 1 Ounce 12 ounces. . . . . . . . . . . . . . . . . . . . . . . . 1 pound Avoirdupois Weight (short ton) 27# grains. . . . . . . . . . . . . . . . . . . . . . . . 1 dram 16 drams. . . . . . . . . . . . . . . . . . . . . . . . . 1 ounce 16 ounces. . . . . . . . . . . . . . . . . . . . . . . . 1 pound 14 pounds. . . . . . . . . . . . . . . . . . . . . . . . . 1 stone 25 pounds. . . . . . . . . . . . . . . . . . . . . . . 1 quarter 4 quarters. . . . . . . . . . 1 hundredweight (cwt) 20 hundredweights. . . . . . . . . . . . . . . . . . . 1 ton Avoirdupois Weight (long ton) 27# grains. . . . . . . . . . . . . . . . . . . . . . . . 1 dram 16 drams. . . . . . . . . . . . . . . . . . . . . . . . 1 ounce 16 ounces. . . . . . . . . . . . . . . . . . . . . . . 1 pound 112 pounds . . . . . . . . . . . . . . . 1 hundredweight 20 hundredweights. . . . . . . . . . . . . . . . . . 1 ton Circular Measure 60 seconds. . . . . . . . . . . . . . . . . . . . . . . 1 minute 60 minutes. . . . . . . . . . . . . . . . . . . . . . . 1 degree 30 degrees. . . . . . . . . . . . . . . . . . . . . . . . . . 1 sign 12 signs. . . . . . . . . . . . 1 circle or circumference Cubic Measure 1728 cubic inches . . . . . . . . . . . . . . 1 cubic foot 27 cubic feet . . . . . . . . . . . . . . . . 1 cubic yard Dry Measure 2 pints. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 quart 8 quarts. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 peck 4 pecks. . . . . . . . . . . . . . . . . . . . . . . . . . 1 bushel Liquid Measure 4 gills. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 pint 2 pints. . . . . . . . . . . . . . . . . . . . . . . . . . 1 quart 4 quarts. . . . . . . . . . . . . . . . . . . . . . . . . 1 gallon 31% gallons. . . . . . . . . . . . . . . . . . . . . . 1 barrel 2 barrels. . . . . . . . . . . . . . . . . . . . . . 1 hogshead CHEMICAL RELATIONS OF Long Measure 12 inches. . . . . . . . . . . . . . . . . . . . . . . . . 1 foot 3 feet . . . . . . . . . . . . . . . . . . . . . . . . . . 1 yard 5% yards. . . . . . . . . . . . . . . . . . . 1 rod or pole 40 rods. . . . . . . . . . . . . . . . . . . . . . . . 1 furlong 8 furlongs. . . . . . . . . . . . . . . . 1 statute mile 5280 feet. . . . . . . . . . . . . . . . . . . . 1 statute mile 1760 yards. . . . . . . . . . . . . . . . . . 1 statute mile 3 miles. . . . . . . . . . . . . . . . . . . . . . . . 1 league Mariners’ Measure 6 feet. . . . . . . . . . . . . . . . . . . . . . . . 1 fathom 120 fathoms. . . . . . . . . . . . . . . . 1 cable length 7% cable lengths . . . . . . . . . . . . . . . . . . 1 mile 5280 feet. . . . . . . . . . . . . . . . . . . . 1 statute mile 6085 feet. . . . . . . . . . . . . . . . . . . 1 nautical mile 24 sheets. . . . . . . . . . . . . . . . . . . . . . . . . 1 quire 20 quires. . . . . . . . . . . . . . . . . . . . 1 short ream 500 sheets. . . . . . . . . . . . . . . . . . . . . 1 long ream 2 reams. . . . . . . . . . . . . . . . . . . . . . . 1 bundle 5 bundles. . . . . . . . . . . . . . . . . . . . . . . . 1 bale Square Measure 144 square inches. . . . . . . . . . . . 1 square foot 9 square feet . . . . . . . . . . . . . . 1 Square yard 30% square yards. . . . . 1 square rod or perch 40 Square rods. . . . . . . . . . . . . . . . . . . . 1 rood 4 roods. . . . . . . . . . . . . . . . . . . . . . . . . 1 acre 640 acres. . . . . . . . . . . . . . . . . . . 1 square mile 36 square miles. . . . . . . . . . . . . . . 1 township Troy Weight 24 grains. . . . . . . . . . . . . . . . . . . 1 pennyweight 20 pennyweights. . . . . . . . . . . . . . . . . . . 1 ounce 12 ounces. . . . . . . . . . . . . . . . . . . . . . . . 1 pound PIC IRON, WROUGHT IRON AND PLAIN STEEL Per Cent of Name Iron Carbon Manganese Sulphur |Phosphorus Silicon Pig Iron . . . . . . . . . . . 91 —94 || 3.50—4.50 | .50—2.50 | .018—. 100 | .030—1.00 | .25 —3.50 Plain Steel . . . . . . . . . 98.1—99.5 | .07—1.50 | .30—1.00 .020–.060 | .002—.100 | .005— .50 (.03—.10 (. 120) as cast) Wrought Iron . . . . . . 99.0—99.8 .05— .30 | .01— .10 | .02()—.100 .050— .20 | .02 — .20 (265) D E C I M A L S DECIMALS OF AN INCH FOR EACH 1%4th - WITH MILLIMETER EOUIVALENTS Fraction ºrths Decimal | Millimeters || Fraction ºrths Decimal | Millimeters I .015625 0.397 - - 33 .515625 13.097 a's 2 .03125 0.794 #; 34 .531.25 13,494 3 .0468.75 1.191 8 tº 35 .546875 13.891 % 4 .0625 1.588 % 36 .5625 14.288 * * 5 ,078.125 1,984 * 4 37 .578.125 14,684 # 6 .09375 2,381 }} 38 .59375 15,081 e tº 7 , 109375 2.778 & & 39 .609375 15.478 % 8 .125 3, 175 % 40 .625 15.875 e tº 9 .140625 3.572 * * 41 .640625 16.272 # 1() .15625 3.969 # 42 .656.25 16.669 * * 11 . 171875 4,366 * * 43 .67 1875 17.066 % 12 .1875 4,763 % 44 .6875 17.463 • * 13 .203125 5.159 e g 45 .703125 17.859 à 14 .21875 5,556 # 46 .71875 18.256 • * 15 .234.375 5.953 & a 47 .734375 18.653 % 16 .25 6.350 34 48 .75 19.050 * * 17 .2656.25 6.747 • & 49 .7656.25 19.447 #; 18 .281.25 7.144 #; 5() .78125 19.844 tº $ 19 .296875 7.541 * * 51 .796875 20.241 % 20 .3125 7.938 % 52 .8125 20.638 gº º 21 .3281.25 8.334 s & 53 .828.125 21.034 # 22 .34375 8.731 #; 54 .84375 21,431 * & 23 .359375 9.128 tº tº 55 .859.375 21.828 % 24 .375 9.525 % 56 .875 22,225 is * 25 .3906.25 9,922 * * 57 .890625 22.622 # 26 ,40625 10.319 # 58 .90625 23.019 e & 27 .421875 10.716 * & 59 .921875 23.416 J% 28 .4375 11.113 % 60 .9375 23.813 * & 29 .453125 11.509 * * 61 .953125 24.209 # 30 ,46875 11,906 # 62 .96875 24.606 & tº 31 ,484.375 12.303 63 .984.375 25.003 % 32 .5 12.700 64 25.400 B U F F A L O T A N K C O R P O R A T L O N DECIMALS of a FOOT For EACH M OF AN INCH FROM ſº TO 12 INCHES Fraction | Decimal || Fraction | Decimal || Fraction | Decimal || Fraction | Decimal % ().0052 3% ().255.2 6% ().5052 9% ().7552 % 0.0104 3% 0.2604 6% ().5104 9% ().7604 % ().0156 3% ().2656 6% 0.51.56 9% ().7656 }4 0.0208 3% 0.2708 6% 0.5208 9% ().7708 % 0.0260 3% ().2760 6% 0.5260 9% 0.7760 3 & 0.0313 3% ().281.3 6% 0.5313 9% ().7813 % 0.0365 3% ().2865 6% 0.5365. 9% ().7865 % 0.04.17 3% 0.2917 6% 0.5417 9% ().7917 % 0.0469 3% ().2969 6% 0.5469 9% ().7969 % 0.0521 3% ().3021 6% 0.5521 95% ().8021 !!!6 0.0573 3% ().3073 6% 0.5573 9% ().8073 34 0.0625 334 ().3125 6% 0.5625 934 ().81.25 % 0.0677 3% ().3177 6% 0.5677 9% ().8177 % 0.0729 3% 0.3229 6% 0.5729 9% (). S229 % 0.0781 3% ().3281 6% 0.5781 9% 0.8281 1. 0.0833 0.3333 7 0.583.3 10 ().8333 1% (),0885 4% ().3385 7% 0.5885 10% (). S385 1% 0.0938 4% ().3438 7% 0.5938 10% 0.84.38 1% 0.0990 4% ().3490 7% 0.599() 10% ().8490 1% 0.1042 4% ().3542 7% 0.6042 10% ().S542 1% 0.1094 4% ().3594 7% 0.6094 10% (). S594 1% 0.1146 4% ().3646 7% 0.6146 10% 0.8646 1% 0.1198 4% ().3698 7% 0.6198 10% 0.8698 1% 0.1250 4% ().3750 7% 0.625() 10% 0.8750 1% 0.1302 4% 0.3802 7% 0.6302 10% ().8802 1% 0.1354 4% ().3854 7% 0.6354 10% (),8854 1% 0.1406 4% (),3906 7% 0.6406 10% 0.8906 134 0.1458 4% 0.3958 7% 0.6458 1034 0.8958 1% 0.1510 4% 0.401() 7% 0.651() 10% ().901() 1% 0.1563 4% (), 4063 7% 0.6563 10% 0.9063 1% 0.1615 4% (). 4115 7% 0.6615 10% ().9115 2 0.1667 5 (),4167 S 0.6667 11 ().9167 2% (). 1719 5% (). 42.19 8% 0.6719 11% ().92.19 2% (). 1771 5% (),4271 8% 0.6771 11% ().9271 2% (). 1823 5% (),4323 8% 0.6823 11% ().93.23 2}4 0.1875 5% (). 4375 8% 0.6875 11% ().9375 2% (). 1927 5% (),4427 8% 0.6927 11% ().9427 23; (). 1979 5% 0.4479 8% 0.6979 11% ().94.79 2% 0.2031 5% ().4531 8% 0.7031 11% ().9531 2% 0.2083 5% 0.4583 8% 0.7083 11% 0.95.83 2% 0.2135 5% 0.4635 8% 0.7135 11% ().9635 2% 0.218.8 5% 0.4688 8% 0.7188 11% ().9688 2% 0.2240 5% 0.4740 8% 0.724() 11% ().9740 234 0.2292 5% 0.4792 8% 0.7292 1134 ().9792 2% 0.2344 5% 0.4844 8% 0.7344 11% ().984.4 2% 0.2396 5% (). 4896 8% 0.7396 1.1% 0.9896 2% 0.2448 5% 0.4948 8% 0.7448 11% 0.9948 3 0.2500 6 ().5000 9 0.7500 12 1.0000 (267) E Q U I V A L E N T S MECHANICAL, ELECTRICAL AND HEAT EQUIVALENTS Unit, Equivalent Value in Other Units 1 Kilowatt. Hour. 1 Horse-Power. Hour. 1 Kilowatt. 1. Horse-Power. I Joule. 1 Ft.-Lb. 1,000 watt hours. 1.341 horse-power hours. 2,655,200 ft.-lbs. 3,600,000 joules. 3.415 heat-units. (B. t. u.) 367,100 kilogram meters. 0.234 lb. carbon oxidized with perfect efficiency. 3.52 lbs. water evaporated from and at 212° F. 22.77 lbs. Of water raised from 62° to 212° F. 0.74565 k. W. hour. 1,980,000 ft.-lbs. 2,546.5 heat-units. (B. t. u.) 273,740 k. g. m. 0.174 lb. carbon oxidized with perfect efficiency. 2.62 lbs. water evaporated from and at 212° F. 17.00 lbs. water raised from 62°F. to 212° F. 1,000 watts. 1.341 horse-power. 2,655,200 ft.-lbs. per hour. 44,254 ft.-lbs. per minute. 737.56 ft.-lbs. per second. 3,415 heat-units per hour. (B. t. u. per hr.) 56.92 heat-units per minute. (B. t. u. per min.) 0.9486 heat-units per second. (B. t. u. per sec.) 0.234 lb. carbon oxidized per hour. 3.52 lbs. water evaporated per hour from and at 212° F. 745.7 watts. 0.7457 k. W. 33,000 ft.-lbs. per minute. 550 ft.-lbs. per second. 2,546.5 heat-units per hour. (B. t. u, per hr.) 42.44 heat-units per minute. (B. t. u. per min.) 0.707 heat-units per second. (B. t. u. per sec.) 0.174 lb. carbon oxidized per hour. 2.62 lbs. water evaporated per hour from and at 212°F. 1 watt second. 0.000000278 k. W. hour. 0.10197 k. g. m. 0.00094.869 heat-unit. (B. t. u.) 0.73756 ft.-lb. 1.3558 joules. 0.13826 k. g. m. 0.0000003766 k. W. hour. 0.0012861 heat-unit. (B. t. u.) 0.0000005 h. p. hour. (268) B U F F A L O T A N K C O R P O R A T I O N MECHANICAL, ELECTRICAL AND HEAT EQUIVALENTS Unit Equivalent Value in Other Units 1 joule per second. 0.001341 h. p. 1 3.415 heat-units per hour. (B. t. u. per hr.) Watt. 0.73756 ft.-lb. per second. 0.0035 lb. water evaporated per hour. 44.254 ft.-lbs. per minute. 1 Watt 8.20 heat-units per square foot per minute. per Sq. 6,373 ft.-lbs. per square foot per minute. In. 0.1931 h. p. per square foot. 1,054.2 watt seconds. 777.54 ft.—lbs. 1 107.5 kilogram meters. Heat-unit. 0.0002928 k. w. hour. B. t. u. 0.0003927 h. p. hour. 1 Heat-unit per Sq. Ft. per Min. 1 Kilogram Meter. 1 lb. Carbon Oxidized with Perfect Efficiency. 1 lb). Water Evaporated from and at 212° F. 0.0000685 lb. carbon oxidized. 0.001030 lb. water evaporated from and at 212° F. 0.1220 watt per square inch. 0.01757 k. w. per square foot. 0.02356 h. p. per square foot. 7.233 ft.-lbs. 0.000003653 h. p. hour. 0.000002724 k. W. hour. 0.009302 heat-unit. 14,600 heat-units. 1.11 lbs. anthracite coal oxidized. 2.5 lbs. dry wood oxidized. 22 cubic feet illuminating gas. 4.275 k. w. hours. 5.733 h. p. hours. 11,352,000 ft.-lbs. 15.05 lbs. of water evaporated from and at 212° F. 0.2841 k. W. hour. 0.3811 h. p. hour. 970.4 heat-units. 104,320 k. g. m. 1,023,000 joules. 754,525 ft.-lbs. 0.066466 lb. of carbon oxidized. (269) c o N v E R S I o N FA C T O RS SHORT CUT ENCINEERINC CONVERSION FACTORS Multiply by to obtain tl CreS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .404687 hectares tlCTêS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.04687 x 10-8 square kilometers &lreS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1076.39 square feet board feet . . . . . . . . . . . . . . . . . . . . . . . . 144 sq. in. x 1 in. cubic inches board feet . . . . . . . . . . . . . . . . . . . . . . . . .0833 cubic feet centimeters . . . . . . . . . . . . . . . . . . . . . . . 3.28083 x 10^* feet centimeters . . . . . . . . . . . . . . . . . . . . . . . .3937 inches cubic centimeters . . . . . . . . . . . . . . . . . . 3.5314.5 x 10-5 cubic feet cubic centimeters . . . . . . . . . . . . . . . . . . 6. 102 x 10"? cubic inches cubic feet. . . . . . . . . . . . . . . . . . . . . . . . . 2.8317 x 104 cubic centimeters cubic feet. . . . . . . . . . . . . . . . . . . . . . . . . 2.8317 x 10-? cubic meters cubic feet. . . . . . . . . . . . . . . . . . . . . . . . . 6.22905 gallons, British Imperial cubic feet. . . . . . . . . . . . . . . . . . . . . . . . . 28.3170 liters cubic feet. . . . . . . . . . . . . . . . . . . . . . . . . 2.38095 x 10^2 tons, British Shipping cubic feet. . . . . . . . . . . . . . . . . . . . . . . . . .025 tons, U. S. Shipping cubic inches. . . . . . . . . . . . . . . . . . . . . . . 16.38716 cubic centimeters cubic meters . . . . . . . . . . . . . . . . . . . . . . 35.3145 cubic feet cubic meters . . . . . . . . . . . . . . . . . . . . . . 1.30794. cubic yards cubic yards. . . . . . . . . . . . . . . . . . . . . . . .764559 cubic meters degrees, angular . . . . . . . . . . . . . . . . . . . .0174533 radians degrees, Fahrenheit (less 32°F.) . . . . . .5556 degrees Centigrade degrees, Centigrade . . . . . . . . . . . . . . . . 1.8 degrees Fahrenheit (less 32°F.) foot pounds . . . . . . . . . . . . . . . . . . . . . . . .13826 kilogram meters feet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30.4801 centimeters feet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .304801 meters feet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304.801 millimeters feet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.64468 x 1074 miles, nautical gallons, British Imperial . . . . . . . . . . . . . 160538 cubic feet gallons, British Imperial . . . . . . . . . . . . 1.20091 gallons, U. S. gallons, British Imperial. . . . . . . . . . . . 4.54596 liters gallons, U. S. . . . . . . . . . . . . . . . . . . . . . . .832702 gallons, British Imperial gallons, U. S. . . . . . . . . . . . . . . . . . . . . . . 3,78543 liters grams, metric . . . . . . . . . . . . . . . . . . . . . 2.20462 x 10−3 pounds, avoirdupois hectares . . . . . . . . . . . . . . . . . . . . . . . . . . 2.47 104 8,OTGS hectares . . . . . . . . . . . . . . . . . . . . . . . . . . 1,076387 x 105 square feet hectares . . . . . . . . . . . . . . . . . . . . . . . . . . 3.86.101 X 10-8 square miles horse-power, metric . . . . . . . . . . . . . . . . .98632 horse-power, U. S. horse-power, U. S. . . . . . . . . . . . . . . . . . 1.0.1387 horse-power, metric inches. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.54001 centimeters inches. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.54001 x 107% meters inches. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25.4001 millimeters kilograms. . . . . . . . . . . . . . . . . . . . . . . . . 2.20462 pounds kilograms. . . . . . . . . . . . . . . . . . . . . . . . . 9.84206 x 10" long tons kilograms. . . . . . . . . . . . . . . . . . . . . . . . . 1.10231 x 10-8 short tons kilogram meters . . . . . . . . . . . . . . . . . . . 7,233 foot pounds kilograms per meter . . . . . . . . . . . . . . . . .671972 pounds per foot kilograms per square centimeter . . . . . 14.2234 pounds per square inch kilograms per square meter . . . . . . . . . .204817 pounds per square foot kilograms per square meter . . . . . . . . . 9.14362 X 10-5 long tons per square foot kilograms per square millimeter. . . . . . . 1422.34 pounds per square inch kilograms per square millimeter . . . . . . .634973 long tons per square inch kilograms per cubic meter . . . . . . . . . . . 6.24283 x 107% pounds per cubic foot kilometers . . . . . . . . . . . . . . . . . . . . . . . . .62137 miles, statute kilometers. . . . . . . . . . . . . . . . . . . . . . . . .53959 miles, nautical (270) B U F F A Lo T A N K c or Po R AT I o N SHORT CUT ENCINEERINC CONVERSION FACTORS Multiply by to obtain liters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21997.5 gallons, British Imperial liters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26417 gallons, U. S. liters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5314.5 x 10° cubic feet meters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.28.083 feet meters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39.37 inches meters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.09361 yards miles, statute . . . . . . . . . . . . . . . . . . . . . . 1.60935 kilometers miles, statute . . . . . . . . . . . . . . . . . . . . . . .8684 miles, nautical miles, nautical . . . . . . . . . . . . . . . . . . . . . 6080.204 feet miles, nautical. . . . . . . . . . . . . . . . . . . . . 1.853.25 kilometers miles, nautical . . . . . . . . . . . . . . . . . . . . . 1.1516 miles, statute millimeters. . . . . . . . . . . . . . . . . . . . . . . . 3.28.083 x 10^* feet millimeters. . . . . . . . . . . . . . . . . . . . . . . . 3,937 x 10-2 inches pounds, avoirdupois. . . . . . . . . . . . . . . . 453.592 grams, metric pounds, avoirdupois. . . . . . . . . . . . . . . . .45.3592 kilograms pounds, avoirdupois. . . . . . . . . . . . . . . . 4,464 X 10.7% tons, long pounds, avoirdupois. . . . . . . . . . . . . . . . 4.53592 x 10^* tons, metric pounds per foot. . . . . . . . . . . . . . . . . . . . 1,48816 kilograms per meter pounds per square foot . . . . . . . . . . . . . 4.88241 kilograms per square meter pounds per square inch . . . . . . . . . . . . . 7,031 x 10^* kilograms per square centimeter pounds per square inch . . . . . . . . . . . . . 7,031 x 1074 kilograms per square millimeter pounds per cubic foot . . . . . . . . . . . . . . 16.0184 kilograms per cubic meter radians. . . . . . . . . . . . . . . . . . . . . . . . . . . 57.29578 degrees, angular square centimeters . . . . . . . . . . . . . . . . . .1550 square inches square feet. . . . . . . . . . . . . . . . . . . . . . . . square feet. . . . . . . . . . . . . . . . . . . . . . . . square feet. . . . . . . . . . . . . . . . . . . . . . . . square inches. . . . . . . . . . . . . . . . . . . . . . square inches. . . . . . . . . . . . . . . . . . . . . . square kilometers. . . . . . . . . . . . . . . . . . square kilometers. . . . . . . . . . . . . . . . . . square meters . . . . . . . . . . . . . . . . . . . . . Square meters . . . . . . . . . . . . . . . . . . . . . Square miles. . . . . . . . . . . . . . . . . . . . . . . Square miles. . . . . . . . . . . . . . . . . . . . . . . square millimeters . . . . . . . . . . . . . . . . . Square yards. . . . . . . . . . . . . . . . . . . . . . tons, long. . . . . . . . . . . . . . . . . . . . . . . . . tons, long. . . . . . . . . . . . . . . . . . . . . . . . . tons, long. . . . . . . . . . . . . . . . . . . . . . . . . tons, long. . . . . . . . . . . . . . . . . . . . . . . . . tons, long, per square foot. . . . . . . . . . tons, long, per square inch . . . . . . . . . . tons, metric. . . . . . . . . . . . . . . . . . . . . . . tons, metric. . . . . . . . . . . . . . . . . . . . . . . tons, metric . . . . . . . . . . . . . . . . . . . . . . . tons, short. . . . . . . . . . . . . . . . . . . . . . . . tons, short . . . . . . . . . . . . . . . . . . . . . . . . tons, short. . . . . . . . . . . . . . . . . . . . . . . . tons, British Shipping . . . . . . . . . . . . . . tons, British Shipping . . . . . . . . . . . . . . tons, U. S. Shipping. . . . . . . . . . . . . . . . tons, U. S. Shipping. . . . . . . . . . . . . . . . 9,29034 x 10-4 9.29034 x 10" .09.29034 6.45163 645. 163 247. 104 .3861 10,7639 1.19599 259.0 2,590 1.550 x 10^* .83613 1016.05 2240, 1.01605 1.120 1,09366 x 10 1,57494 2204.62 .98421 1.10231 907.185 .89.2857 .907.185 42.00 ,952381 40.00 1.050 .914402 a,TeS hectares square meters square centimeters square millimeters a CrêS square miles square feet square yards hectares square kilometers square inches square meters kilograms pounds tons, metric tons, short kilograms per square meter kilograms per square millimeter pounds tons, long tons, short kilograms tons, long tons, metric cubic feet tons, U. S. Shipping cubic feet tons, British Shipping meters (271) S T E E L P L A T E S CARBON STEEL PLATES MANUFACTURERS’ STANDARD PRACTICE Tolerances for Dimensions and Workmanship PERMISSIBLE VARIATIONS IN THICKNESS OR WEIGHT The cross-sectional area or weight of each universal mill plate 36" or under in width and 2" or under in thickness shall not vary more than 2.5% from the theoretical amounts, e The weight of each lot in each shipment of rectangular universal mill plates over 36" wide and all rectangular sheared mill plates 2" or under in thickness shall be governed by the following permissible variations: * is When ordered to thickness in inches: By the amounts given in Table I: tº gº Each plate ordered to thickness shall not vary more than 0.01" under the thickness specified. When ordered to weight per sq. ft.: By the amounts given in Table II. º The term “lot” applied to Tables I and II means all of the plates of each group width and each group thickness or weight. One cubic inch of rolled steel is assumed to weigh 0.2833 lb. Plates over 2" thick shall not vary from the specified thickness more than the amounts given in Table VII. PERMISSIBLE VARIATIONS IN WIDTH AND LENGTH Sheared Mill Plates 2" or under in thickness, shall not vary from the width or length Ordered more than the amounts given in Table III, g Universal Mill Plates 2" or under in thickness, shall not vary from the width or length ordered more than the amounts given in Tables IV and V. . Flame Cut Plates, over 2" thick shall not vary from the width or length ordered more than the amounts given in Table VIII. e Rolled Edge Plates (Universal Mill) over 2" thick shall not vary from the width ordered more than the amounts given in Table IX. PERMISSIBLE VARIATIONS IN FLATNESS Plates 2" or under in thickness, shall not vary from a flat surface more than the amºunts given in Table VI. This table applies to plates having a tensile strength not over 72,000 lbs. €I SOI. II). e e p Fº over 2" thick shall not vary from a flat surface more than the amounts given in Table X. - gº is * * * The shorter dimension specified shall be considered the width and the permissible Variation in flatness across the width shall not exceed the tabular amount for that dimension. * . Lº The longer dimension specified shall be considered the length and the permissible variation in flatness along the length shall not exceed the tabular amount for that dimension: When the length is over 144 inches the tolerances shown for 120 to 144 inches apply for any 12 ft.-0 in. of the specified length. In no case shall the total deviation from a flat surface exceed the tabular tolerance for the longer dimension specified. PERMISSIBLE CAMBER Camber for Plates 2" or under in thickness, shall not exceed $6" in 5 ft. Camber for Universal Mill Plates over 2" thick shall not exceed the amounts given in Table XI. PLATE DATA THICKNESS The thickness of plates may be specified to (1) any fraction of an inch or (2) any decimal, or (3) any number gauge, sometimes called wire gauges, or (4) to pounds per square foot. The number gauges are known as Birmingham Wire, United States Standard, American Wire or Browne & Sharpe, American Steel & Wire, British Imperial and several otheºlº so often used. These number gauges vary considerably and are somewhat confusing: When number gauges are used, unless otherwise specified, the Mills consider that Birmingham Wire Gauge applies to plates. United States Standard gauge is considered the standard gauge for sheets, but is occasionally applied to plates. (For weights of steel plates by gauge see Page 241.) (27.2) B U F F A L O T A N K C O R P O R A T I O N CARBON STEEL PLATES (Two Inches or Under in Thickness) MANUFACTURERs' STANDARD PRACTICE (continued) PERMISSIBLE VARIATIONS FROM SPECIFIED THICKNESS When ordered to thickness in inches. No plate shall vary more than 0.01 inch under the thickness specified, the overweight of each lot in each shipment shall not exceed the amounts given in Table I. Table I Permissible Excess in Average Weights per Square Foot of Plates for Widths Given , Expressed in Percentages of Nominal Weights speciſiºns is in lºº, tº 7%. sºn. ºn |lºn |lºn |lºn. U.ier | 60 in 72 in. 84 in. 96 in. 108 in. 120 in. 132 in. 144 in. excl. excl. excl. excl. excl. excl. excl. excl. % to 34, excl. . . . . . . . . . . . . . S 9 10 12 * * * - - & © • tº % to 9%, excl. . . . . . . . . . . . . . 6 7 8 9 1() 12 14 16 19 % to 36, excl. . . . . . . . . . . . . . 5 6 7 8 9 10 12 14 17 % to Jº, excl. . . . . . . . . . . . . . 4.5 5 6 7 8 9 10 12 15 % to 3%, excl. . . . . . . . . . . . . . 4 4.5 5 6 7 8 9 || 10 || 13 % to 3%, excl. . . . . . . . . . . . . 3.5 4 4.5 5 6 7 8 9 11 % to 34, excl. . . . . . . . . . . . . . 3 3.5 4 4.5 5 6 7 8 9 % to 1 , excl. . . . . . . . . . . . . . 2.5 3 3.5 4 4.5 5 6 7 8 1 to 2 , incl. . . . . . . . . . . . . 2.5 2.5 3 3.5 4 4.5 5 6 7 The weight of individual plates ordered to thickness shall not exceed the nominal weight by more than one and one-third the amount given in Table I. - Permissible overweight for circular and sketch plates shall be 25 per cent greater than that provided for rectangular plates. PERMISSIBLE VARIATIONS FROM SPECIFIED WEIGHT When ordered to weight per square foot. No lot in any shipment shall vary from the weight ordered more than the amounts given in Table II. Table II shall not be used when a minimum edge thickness is required. In such cases Table I shall apply. Table II Permissible Variations in Average Weights per Square Foot of Plates for Widths Given, Expressed in Percentages of Ordered Weights 48 in. 48 in. 60 in. to | 72 in. to 84 in. to 96 in. to 108 in. to 120 in. to 132 in. to Specified Weight, or excl. to || 72 in. '84 in. 96 in. 108 in || 120 in. 132 in 144 in. Pounds per Under 6() in. excl. excl. excl. excl. excl. excl. excl. Square Foot excl. * | * | * | * | * | * | * | * | f | #| 3 || 5 || 3 || 3 || 5 || 3 || 5 | # - || 3 || > || 3 || > || 3 || > || C | > || C | > || 3 || > | F | > || 3 || > || C. C - || C. — C. — O — | C |- O — C - || C. P | C - 7.65 to 10, excl. . . . . . . . . . . . 4.5|3.0 5.03.0 5.53.0 6.03.0 7.03.0 | 8.03.0 | . . . . . . . . . . . . . . . 10 to 12.5, excl. . . 3.52.5 4.03.0 || 4.5.3.0 5.03.0 5.53.0 | 6.03.0 7.03.0 | 8.03.0 |9.03.0 12.5 to 15, excl. . . 3.02.5 || 3.52.5 4.03.0 || 4.5.3.0 5.03.0 | 5.53.0 | 6.03.0 || 7.03.0 | 8.03.0 15 to 17.5, excl. . . 2.5|2.5 3.02.5 3.52.5 4.03.0 4.5|3.0 5.03.0 5.53.0 | 6.03.0 7.03.0 17.5 to 20, excl. . . . 2.52.0 2.5|2.5 3.02.5 || 3.52.5 4.03.0 || 4.5|3.0 5.03.0 5.53.0 6.03.0 20 to 25, excl. . . . 2,02.0 2.52.0 2.52.5 3.02.5 3.52.5 4.03.0 4.5|3.0 5.03.0 5.53.0 25 to 30, excl. . . . 2.0.2.0 2.0.2.0 2.52.0 2.5|2.5 3.02.5 || 3.53.0 4.03.0 4.5.3.0 5.03.0 30 to 40, excl. . . 2.0.2.0 2.0.2.0 2.0.2.0 2.52.0 2.52.5 3.02.5 || 3.53.0 4.03.0 4.53.0 40 to 81.6, incl. . . . 2.0.2.0 2.0.2.0 2.0.2.0 2.0.2.0 2.52.0 2.52.5 3.02.5 3.53.0 || 4.03.0 The weight per square foot of individual plates shall not vary from the ordered weight by more than one and one-third the amount given in Table II. Permissible overweight for circular and sketch plates shall be 25 per cent greater than that provided for rectangular plates. he term “lot” applied to Tables I and II means all of the plates of each group width and each group thickness or weight. (273) S T E E L P L A T E S CARBON STEEL PLATES (Two Inches or Under in Thickness) MANUFACTURERS’ STANDARD PRACTICE (Continued) PERMISSIBLE VARIATIONS FROM SPECIFIED WIDTH AND LENGTH SHEARED MILL PLATES Table || || Specified Dimensions Variations over Specified Widths and Lengths for Thicknesses (Inches) Given (Inches) To 9% excl. % to 5% excl. % to 1 excl. 1 to 2 incl. Width Length Width Length. Width Length] Width | Length] Width | Length To 60, excl. . . . . . . . . . . . . . . . . . To 3% % % % % % % | 1 60 to 84, excl. . . . . . . . . . . . . . 120, ſº % % % % % 34 || 1 84 to 108, excl. . . . . . . . . . . . . . excl. | }.9 34 % % 34 || 1 1 1% 108 to 144, excl. . . . . . . . . . . . . . % % 34 || 1 % 1% 1% 1% To 60, excl. . . . . . . . . . . . . . . . . . 120 % 34 % % % 1 34 1% 60 to 84, excl. . . . . . . . . . . . . . to % % % % % 1 % 1% 84 to 108, excl 240, % % % % % 1% | 1 1% 108 to 144, excl. . . . . . . . . . . . . . excl. % | 34 1% % 194 1% 1% To 60, excl. . . . . . . . . . . . . . . . . . 240 | 3% | 1 }% 1% % 1% 34 || 1% 60 to 84, excl. . . . . . . . . . . . . . to }% 1 % 1% 34 194 % | 1% 84 to 108, excl. . . . . . . . . . . . . . 360, % 1 % 1% % 1% 1. 1% 108 to 144, excl. . . . . . . . . . . . . . excl. || || 1% % | 194 || 1 1% 194 || 134 To 60, excl. . . . . . . . . . . . . . . . . . 360 | 74% 1% }% 1% 9% 1% 34 1% 60 to 84, excl. . . . . . . . . . . . . . to % 1% % 1% 34 1% % 1% 84 to 108, excl. . . . . . . . . . . . . . 480, % 1% 34 1% % 1% | 1 1% 108 to 144, excl. . . . . . . . . . . . . . excl. 34 1% % 1% | 1 1% 1% 1% To 60, excl. . . . . . . . . . . . . . . . . . 480 % 1% % 1% % 1% 34 1% 60 to 84, excl. . . . . . . . . . . . . . to }% 1% % 1% 34 1% % 1% 84 to 108, excl. . . . . . . . . . . . . . 600, 5% | 1.3% 34 || 1 J/3 % 15% | 1 1% 108 to 144, excl. . . . . . . . . . . . . . excl. 34 1% % 1% 1 134 1% 1% To 60, excl. . . . . . . . . . . . . . . . . . 600 J% 134 % 1% % 1% % 2% 60 to 84, excl. . . . . . . . . . . . . . ()!’ % 134 34 1% % 1% | 1 2% 84 to 108, excl. . . . . . . . . . . . . . OVCI' % 134 }{ 1% % 1% 1% 2% 108 to 144, excl. . . . . . . . . . . . . . % 134 I 2 1% 2}4 1% 2% Permissible variations under specified widths and lengths, 94 inch. PERMISSIBLEVARIATIONS FROM SPECIFIED WIDTH UNIVERSAL MILL PLATES Table IV Specified Widths (Inches) Variations over Specified Widths for Thicknesses Given (Inches) To 3% excl. % to 9% excl. % to 1 excl. 1 to 2 incl. Over 6 to 20, excl. . . . . . . . . . . . . }% % % % 20 to 36, incl. . . . . . . . . . . . . . % 34 % % Over 36 to 60, incl. . . . . . . . . . . . . . % % % % Permissible variations under specified widths, 9% inch. (274) B U F F A L O T A N K C O R P O R A T I O N CARBON STEEL PLATES (Two inches or Under in Thickness) MANUFACTURERS’ STANDARD PRACTICE (Continued) PERMISSIBLE VARIATIONS FROM SPECIFIED LENGTH UNIVERSAL MILL PLATES Table V Variations over Specified Lengths for Thicknesses Given (Inches) Specified Length (Inches) To 9% excl. % to 9% excl. % to 1 excl. 1 to 2 incl. To 120, excl....... . . . . . . . . . . . . . % % % 1 120 to 240, excl. . . . . . . . . . . . . . . . . 34 % 1 1% 240 to 360, excl. . . . . . . . . . . . . . . . . 1 1% 1% 1% 360 to 480, excl. . . . . . . . . . . . . . . . . 1% 1% 1% 1% 480 to 600, excl. . . . . . . . . . . . . . . . . 1% 1% 1% 1% 600 to 720, excl. . . . . . . . . . . . . . . . . 1% 1% 1% 2% 720 or Over . . . . . . . . . . . . . . . . . . . . 2 2}% 2% 2% Permissible variations under specified lengths, JA inch. PERMISSIBLE CAMBER 1/3 INCH IN 5 FEET PERMISSIBLE VARIATIONS FROM A FLAT SURFACE UNIVERSAL MILL AND SHEARED MILL PLATES - For steel having a Tensile Strength of 72,000 Pounds per Square Inch or Under. Table VI Variations from a Flat Surface for Thicknesses and Widths Given (Inches) Thickness (Inches) 48 or 48 excl. to 60 to 72 | 72 to 84 | 84 to 96 || 96 to 108 || 108 to 120 120 to 144 Under 60 excl. excl. excl. excl. excl. excl. excl. % to 34, excl. . . . . . . . . . . 1% 1% 1% 1% 1% * * * & a # }4 to %, excl. . . . . . . . % % % 1% 1% 1% 1% 1% % to 3%, excl. . . . . . . . }% % % 34 % 1% 1% 1% % to 34, excl. . . % % % % % 1% 1% 1% % to 1, excl. . . . . . . . Ø % % % % % % 1 1 to 2, incl. . . . . . . . . % % % % % % % % Permissible variations in Table VI apply to plates up to 15 feet in length, or to any 15 feet of longer plates. UNIVERSAL PLATES Universal Plates are rolled on a Universal Mill to the ordered width. The edges of this product are straight and almost perfectly parallel. By this method of rolling, the slab or ingot does not receive cross rolling, but is merely elongated in the various passes and it is, therefore, evident that this product cannot be expected to have the ductility comparable to sheared plates. For this reason, Universal Mill Plates are sometimes objectionable where the higher physical properties are required. Universal Mill Plates are satisfactory for structural work and for many uses where a finished edge is desired. There are many instances where certain sizes cannot be practicably produced on a Sheared Mill, i. e., say a plate %" x 8" x 500". This plate from a Universal Mill could be held to any reasonable tolerance, but would be in- clined to camber, bow and twist in shearing if furnished as a sheared plate. (275) S T E E L P L A T E S CARBON STEEL PLATES (Over Two Inches in Thickness) MANUFACTURERS’ STANDARD PRACTICE (Continued) PERMISSIBLE VARIATIONS FROM SPECIFIED THICKNESS Table VII Variations over Specified Thickness for Widths Given (Inches) speciſiº lººkness - (Inches) To 36 excl. 36 incl. to 60 to 84 to 120 to 132 to - 60 excl. 84 excl. 120 excl. 132 excl. 144 excl. Over 2 to 3, excl. . . . . % # ift % % * 3 to 4, excl. . . . . . . . . * 37 º % % # 4 to 6, excl. . . . . . . . . 3. % º º # 6 4. 6 to 8, excl. . . . . . . . . 6 4. % 37 32. 6 4. 8 to 10, excl. . . . . . . . . - # % % - - 10 to 12, excl. . . . . . . . . % 6 4. 6 4. 12 to 15, excl. . . . . . . 37 % No plate shall vary more than 0.01 inch under the specified thickness. PERMISSIBLE VARIATIONS OVER SPECIFIED WIDTH AND LENGTH FLAME- CUT PLATES Table VIII • Variations Over for All Specified Thickness Widths and Lengths (Inches) (Inches) Over 2 to 3, excl. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . % 3 to 4, excl. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . % 4 to 6, excl. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . % 6 to 8, excl. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . % 8 to 10, excl. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 10 to 12, excl. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1% 12 to 15, excl. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1% No permissible variations under. Plates with universal rolled edges will be flame cut to length only. PERMISSIBLEVARIATIONS FROM SPECIFIED WIDTH UNIVERSAL MILL PLATES (ROLLED EDGE) Table IX Dimensions (Inches) Variations from Specified Widths Inches) Width Thickness Over |Under To 60, incl. . . . . . . . . . . . . . . . . . Over 2 to 10, incl. . . . . . . . . . . % % To 30, incl. . . . . . . . . . . . . . . . . . Over 10 to 15, incl. . . . . . . . . . . % % Over 30 to 60, incl. . . . . . . . . . . . Over 10 to 15, incl. . . . % % (276) B U F F A L O T A N K C O R P O R AT I O N CARBON STEEL PLATES (Over Two Inches in Thickness) MANUFACTURERS’ STANDARD PRACTICE (Continued) PERMISSIBLE VARIATIONS FROM A FLAT SURFACE FLAME-CUT UNIVERSAL AND SHEARED MILL PLATES Table X Variations from a Flat Surface for Thicknesses and Widths Given (Inches) Up to 36 to 48 to 60 to 72 to 84 to º lºo tºo 36 excl. 48 excl. 60 excl. | 72 excl. | 84 excl. 96 excl. Thickness (Inches) excl. excl. excl. Over 2 to 4, excl. . . . . . . . . . . . . % % % % % % % % 34 4 to 6, excl. . . . . . . . . . . . . . . . % % % % % % 34 % | 1 6 to 8, excl. . . . . . . . . . . . . . . . % % % % 34 % % | 1 1 8 to 10, excl. . . . . . . . . . . . . . . . 38 % % % % 1 1 10 to 12, excl. . . . . . . . . . . . . . . . % % % 1 1 1 1 1 1 12 to 15, excl. . . . . . . . . . . . . . . . % % % 1 1 1 1 1 1 PERMISSIBLE CAMBER FOR UNIVERSAL MILL PLATES Table XI Di º Inches - - imensions (Inches) Permissible, Camber for Thickness Width Thickness and Widths Given To 30, incl. . . . . . . . . . . . . . . . . Over 2 to 15, incl. . . . . . . . . . . sº in Totallength feet) *D Over 30 to 60, incl. . . . . . . . . . . Over 2 to 15, incl. . . . . . . . . . . J4 in. x Total length (feet) * *) NOTES ON ORDERING MILL PLATES Carbon Steels can be furnished with tensile strengths from approximately 45,000 pounds to 85,000 pounds per square inch with corresponding elasticity, reduction of area, elongation etc., and to chemical analyses which are within reason and which will enable the mills to meet the required physical properties. A standard tensile range is considered to be 10,000 pounds that is, if the ultimate tensile strength of a plate is to be 55,000 pounds, the specifications should call for 50,000 pounds to 60,000 pounds tensile strength, in which case the mill would aim at 55,000 pounds and any plate or test coming within the 50,000 pounds to 60,000 pounds range would be acceptable. Closer tensile ranges down to 8,000 pounds are sometimes acceptable, but in this instance, because of a more careful selection of stock and the higher percentage of rejections, an extra charge is applicable. When both physical and chemical requirements are specified, consideration should be given to the necessity of naming physical properties which are consistent with the chemical analysis. In other words, a plate specification written to cover plates from 3%" thick to 2" thick should cover a wide carbon range or should eliminate the carbon requirement entirely, because in order to obtain 55,000 pounds ultimate strength in ordinary carbon steel on a plate %" thick approximately .14% of carbon would be considered necessary, while on the same grade plate 2' thick it would probably be necessary to apply steel containing carbon up to approximately 30%. This is due to the greater rolling reduction in thickness and the lower finishing tempera- ture of the 36" plates. It is suggested that a specification might name the range of manganese sulphur, phosphorus, silicon, etc., together with the physical properties and leave eithe. the carbon range or the ultimate tensile strength to the discretion of the steel maker. (See page 10 for influence of carbon, manganese, etc. on steel.) (277) S T A N L E S S S T E E L STAINLESS STEEL PLATES Standard Rolling Tolerances PERMISSIBLE VARIATIONS IN WEIGHT AND THICKNESS OF RECTANGULAR STAINLESS STEEL PLATES All plates must be ordered to thickness and not to weight per square foot. No plates shall vary more than 0.01 inch under the thickness ordered, and the overweight of each lot” in each shipment shall not exceed the amount given in the following table. Spot grinding is permitted to remove surface imperfections. Not to exceed 0.01 inch under the specified thickness. Permissible Excess in Average. Weight per Square Foot of Plates for Widths Given Expressed in Percentage of Nominal Weight orderºnes 60 in. | 72 in. | 84 in. 96 in. 108 in. 120 in. 132 in. Under incl. to incl. to incl. to incl. to incl. to incl. to incl. to incl. to 48 in. * 72 in. | 84 in. 96 in. 108 in. | 120 in. 132 in. 144 in. excl. excl. excl. excl. excl. excl. excl. % incl. to $4 excl. . . . . . . . . . . . 10.5 2.0 | 13.5 | 15.0 | 18.0 - - - * * * * * * * * * % incl. to 9% excl. . . . . . . . . . . . 9.0 0.5 | 12.0 | 13.5 | 15.0 | 18.0 | 21.0 24.0 | 28.5 % incl. to 3% excl. . . . . . . . . . . . 7.5 9.0 | 10.5 | 12.0 | 13.5 | 15.0 | 18.0 | 21.0 || 25.5 % incl. to Jº excl. . . . . . . . . . . . 7.0 7.5 9.0 | 10.5 | 12.0 | 13.5 | 15.0 | 18.0 22.5 J% incl. to ¥3 excl. . . . . . . . . . . . 6.0 7.0 7.5 9.0 | 10.5 | 12.0 | 13.5 | 15.0 | 19.5 % incl. to 9% excl. . . . . . . . . . . . 5.5 6.0 7.0 7.5 9.0 | 10.5 | 12.0 | 13.5 | 16.5 % incl. to 34 excl. . . . . . . . . . . 4.5 5.5 6.0 7.0 7.5 9.0 | 10.5 | 12.0 | 13.5 % incl. to 1 excl. . . . . . . . . . . . 4.0 4.5 5.5 6.0 7.0 7.5 9.0 | 10.5 | 12.0 1 Or Over . . . . . . . . . . . . . . . . . . 4.0 4.0 4.5 5.5 6.0 7.0 7.5 9.0 | 10.5 . . The weight of individual plates shall not exceed the nominal weight by more than 1% times the amount given in the above table. * *The term “lot” means all of the plates of each group width and each group thickness. ESTIMATED WEIGHTS For determining the estimated weights, the following factors are to be used: Chrome Nickel Stainless Steel Plates . . . . . . . . . . . . . . . .287.1 lbs. per cu. in. Straight Chromium Stainless Steel Plates . . . . . . . . . . . .2811 lbs. per cu. in. Approximate roxim roxima igh Approximate Weight Nº. of É. #s * ºgº; º º §§ I’t. in Lbs...for of an Inch of an Inch Straight Chrome Alloys | Chrome Nickel Alloys 1.0000 40.478 41.342 .9375 % 37,949 38.759 .8750 % 35.419 36.175 .8125 % 32.889 33.591 .7500 % 30.359 31.007 .6875 % 27.829 28.423 .6250 % 25.299 25.839 .5625 % 22,769 23.255 .5000 % 20,239 20.671 .46875 # 18.974 19.379 .4375 % 17,709 18.087 .40625 # 16.444 16.795 .3750 % 15.179 15.503 .34375 # 13.914 14.211 0 .3125 % 12.650 12.920 1 .281.25 #; 11.385 11.628 2 .26562 # 10.752 10.981 3 .2500 % 10.120 10.336 4 .234375 # 9.487 9,690 5 .21875 * 8.855 9.044 6 .203125 # 8.222 8.398 7 .1875 % 7.590 7.752 ( 2 7 8 ) B U F F A L O T A N K C O R P O R A T I O N LONC MEASURE–U. S. AND BRITISH A nautical mile, geographical mile, sea mile, or knot, is variously defined as being = the length of Meters Feet Statute Miles 1855.345 6087.15 1.15287 1842.787 6045.95 1.14507 1861.655 6107.85 1.15679 1852, 181 6076.76 1.15090 value adopted by U. S. Coast -- | and Geodetic Survey equal to that of the earth 1853.248 6080.27 1.15157 British Admiralty knot 1853.169 6080.00 1.1515.2 A point = 1/72 inch. A line = 6 points = #3 inch. A palm = 3 ins. A hand = 4 ins. A span = 9 ins. A fathom = 6 feet. A cable’s length = 120 fathoms = 720 feet. A Gun- ter’s surveying chain is 66 feet, or 4 rods long. It has 100 links, 7.92 inches long. 80 Gunter's chains = 1 mile. 1 min. of longitude at the equator 1 min. of latitude at the equator 1 min. of latitude at the pole 1 min. of latitude at lat. 45° 1 min. of a great circle of a º : sphere whose surface area is METRIC EQUIVALENTS Approximate Exact 1 acre. . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.40 hectare. . . . . . . . . . . . . . . . . . . . . . . . . . . 0.4047 1 bushel. . . . . . . . . . . . . . . . . . . . . . . . . . 35. liters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35.24 1 centimeter . . . . . . . . . . . . . . . . . . . . . . ().39 inch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3937 1 cubic centimeter . . . . . . . . . . . . . . . . . ().061 cubic inch . . . . . . . . . . . . . . . . . . . . . . . . 0.0610 1 cubic foot. . . . . . . . . . . . . . . . . . . . . . . (),028 cubic meter . . . . . . . . . . . . . . . . . . . . . . . 0.0283 1 cubic inch. . . . . . . . . . . . . . . . . . . . . . . 16. cubic centimeters. . . . . . . . . . . . . . . . . . 16.39 1 cubic meter . . . . . . . . . . . . . . . . . . . . . 35. cubic feet. . . . . . . . . . . . . . . . . . . . . . . . . 35.31 1 cubic meter . . . . . . . . . . . . . . . . . . . . . 1.3 cubic yards. . . . . . . . . . . . . . . . . . . . . . . 1.308 1 cubic yard . . . . . . . . . . . . . . . . . . . . . . ().76 cubic meter . . . . . . . . . . . . . . . . . . . . . . . 0.7646 1 foot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30. Centimeters . . . . . . . . . . . . . . . . . . . . . . . 30.48 1 gallon (U. S.). . . . . . . . . . . . . . . . . . . . 3.8 liters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.785 1 gallon (Imperial). . . . . . . . . . . . . . . . . 4.5 liters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.546 1 grain . . . . . . . . . . . . . . . . . . . . . . . . . . . ().065 9Taºn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ().0648 1 gram . . . . . . . . . . . . . . . . . . . . . . . . . . . 15. gralns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.43 1 hectare . . . . . . . . . . . . . . . . . . . . . . . . . 2.5 8 CTCS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.471 1 inch. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25. millimeters. . . . . . . . . . . . . . . . . . . . . . . . 25.40 1 kilogram (kilo). . . . . . . . . . . . . . . . . . . 2.2 pounds. . . . . . . . . . . . . . . . . . . . . . . . . . . 2.205 1 kilometer . . . . . . . . . . . . . . . . . . . . . . . (),62 mile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6214 1 liter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.91 quart (dry) . . . . . . . . . . . . . . . . . . . . . . . ().9081 1 liter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 quarts (liquid) (U. S.). . . . . . . . . . . . . . 1.057 1 liter. . . . . . . . . . . . . . . . . . . . . . . . . . . . ().88 quart (liquid) (Imperial). . . . . . . . . . . . 0.8799 1 meter. . . . . . . . . . . . . . . . . . . . . . . . . . . .3.3 feet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.281 1 mile. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6 kilometers. . . . . . . . . . . . . . . . . . . . . . . . 1.609 1 millimeter. . . . . . . . . . . . . . . . . . . . . . . (),039 inch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0394 1 ounce (avoirdupois) . . . . . . . . . . . . . . 28. £Taſms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.35 1 ounce (Troy). . . . . . . . . . . . . . . . . . . . 31. grams. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.10 1 peck. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.8 liters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.810 1 pint (liquid). . . . . . . . . . . . . . . . . . . . 0.47 liter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.4732 . 1 pound . . . . . . . . . . . . . . . . . . . . . . . . . . ().45 kilogram. . . . . . . . . . . . . . . . . . . . . . . . . . 0.4536 1 quart (dry). . . . . . . . . . . . . . . . . . . . . . 1.1 liters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.101 1 quart (liquid). . . . . . . . . . . . . . . . . . . . 0.95 liter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.9463 1 square centimeter. . . . . . . . . . . . . . . . (). 15 Square inch . . . . . . . . . . . . . . . . . . . . . . . 0.1550 1 square foot. . . . . . . . . . . . . . . . . . . . . . 0.093 square meter. . . . . . . . . . . . . . . . . . . . . . 0.0929 1 square inch. . . . . . . . . . . . . . . . . . . . . . 6.5 Square centimeters. . . . . . . . . . . . . . . . . 6.452 1 Square meter . . . . . . . . . . . . . . . . . . . . 1.2 square yards. . . . . . . . . . . . . . . . . . . . . . 1.196 1 square meter . . . . . . . . . . . . . . . . . . . . 11. Square feet. . . . . . . . . . . . . . . . . . . . . . . . 10.76 1 Square yard . . . . . . . . . . . . . . . . . . . . . 0.84 square meter. . . . . . . . . . . . . . . . . . . . . . 0.8361 1 ton (2,000 lbs.) . . . . . . . . . . . . . . . . . . ().91 metric ton . . . . . . . . . . . . . . . . . . . . . . . . 0.9072 1 ton (2,240 lbs.) . . . . . . . . . . . . . . . . . . 1. metric ton . . . . . . . . . . . . . . . . . . . . . . . . 1.016 1 ton (metric) . . . . . . . . . . . . . . . . . . . . . 1.1 ton (2,000 lbs.) . . . . . . . . . . . . . . . . . . . . 1.102 1 ton (metric). . . . . . . . . . . . . . . . . . . . . ().98 ton (2,240 lbs.) . . . . . . . . . . . . . . . . . . . . 0.9842 1 yard. . . . . . . . . . . . . . . . . . . . . . . . . . . . ().91 meter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.9144 (279) B U F F A LO. T A N K C D R P 0 RAT I O N BUFFALO BUILT STEEL AND ALLOY PLATE construction (280) B U F F A L O T A N K C O R P O R A T I O N List of Buffalo Products ABSORPTION TANKS AND TOWERS ACCUMULATORS ACID TANKS AFTERCOOLERS AGITATORS, CHEMICAL, OIL, ETC. AIR DUCTS AIR RECEIVERS ALCOHOL TANKS ALLOY STEEL TANKS AND PLATE WORK ALUMINUM TANKS AMMONIA RECEIVERS ANNEALING BOXES ASPHALT TANKS AND STILLS AUTOCLAVES BAROMETRIC CONDENSERS BEER TANKS, STORAGE, FER- MENTING, ETC. sºphy OR LI OUID STOR- BLAST PIPING BLEACHING TANKS BLOW-OFF TANKS BOAT TANKS BREECHINGS BRINE TANKS BUBBLE TOWERS BULK PLANT TANKS BUNKERS BUTANE STORAGE TANKS STORAGE CAISSON CYLINDERS CALANDRIAS CAUSTIC TANKS CEMENT BINS CEREAL COOKERS CHEMICAL PLANT TANKS CHLORINATORS CHUTES CLAD STEEL TANKS COAL BUNKERS COLD WATER TANKS COLLECTING MAINS COLUMNS COMPARTMENT TANKS COMPRESSED AIR TANKS CONDENSERS CONVERTERS COOKERS COOLERS COPPER TANKS CO2 TANKS C OR R O S I O N RESISTANT TANKS COTTON-SEED OIL TANKS CREOSOTING RETORTS CRUDE OLL STILLS CRYSTALLIZERS CYLINDERS DAIRY TANKS DEBUTANIZERS DECANTERS DEPHLEGMATORS DEPROPANIZERS DEVULCANIZERS ERS DISTILLERY TANKS, DRY- , ETC. DREDGE PIPE DRUMS DRYERS DUCTS DUST COLLECTORS ELEVATOR TANKS EVAPORATORS EXCHANGER SHELLS EXPANSION TANKS EXTRACTORS FEED WATER TANKS FERMENTERS FIELD STORAGE TANKS FILLING STATION TANKS FILTER TANKS FLASH CHAMBERS FLUES FLUMES FRACTIONATING TOWERS FREEZING TANKS FUEL OIL TANKS GALVANIZED TANKS GALVANIZERS GASOLINE TANKS GRAPHITE TANKS GRAVITY TANKS GREASE TANKS HEAT EXCHANGERS HOP JACKS HOPPERS H. O. R. ZO N T A L S TO R A G E TANKS HOT WATER TANKS HOUSE TANKS HYDRO-PNEUMATIC TANKS ICE TANKS AND PANS INTERCOOLERS ISO-PROPANE TOWERS JACKETED PIPE JACKETED TANKS KETTLES, BREW, chemicAL, ETC kiERs KILNS LARD TANKS LEACH ING TANKS LEAD LINED TANKS LIME TANKS AND BINS LINSEED OIL TANKS Li QUEFIED GAS TANKS MALT STORAGE BINS MASH COOKERS MIXING TANKS MOLASSES TANKS MONEL METAL TANKS NAPHTHA STORAGE TANKS NICKEL CLAD STEEL TANKS NICKEL TANKS Ol L. REFINERY TANKS Ol L STORAGE TANKS PACKING HOUSE TANKS PAINT STORAGE AND MIX- |NG TANKS PARAFFINE TANKS PENSTOCKS PHENOL STILLS PICKLING TANKS PIPE, INDUSTRIAL, STEEL M.ILL., ETC. PLASTIC PRODUCTS TANK AND PLATE WORK PNEUMATIC TANKS PONTOON CYLINDERS PONTOON PIPE POTS PREHEATERS PRESSURE TANKS PROCESSING TANKS PROPANE STORAGE TANKS PURIFIER BOXES QUENCHING COOLERS RECTANGULAR TANKS REFINERY TANKS RENDERING TANKS RETORTS ROTARY KILNS AND DRYERS RUBBER-LINED TANKS SCRUBBERS SEDIMENTATION TANKS SEPARATOR TANKS SETTLING TANKS SHORE PIPE SLUDGE TANKS SOAP-MAKING TANKS SOLVENT EXTRACTORS SPRINKLER TANKS STABILIZERS STACKS, GUYED STACKS, SELF-SUPPORTING STAINLESS CLAD STEEL TANKS STAINLESS STEEL TANKS AND PLATE WORK STANDPIPES STILLS, ASPHALT, KERO- SENE, ETC. STORAGE TANKS SUCTION HEATERS SYRUP TANKS TANNERY TANKS TAR STORAGE TANKS TOWERS, BUBBLE, ETC. TROUGHS TURPENTINE TANKS UNDERGROUND TANKS VACUUM PANS VARNISH TANKS VATS VEGETABLE OL TANKS VINEGAR TANKS VULCANIZERS WATER PIPE WATER STORAGE OR PRES- SURE TANKS WELDED TANKS AND PLATE WORK WELL CASING WORT TANKS (281) B U F F A L O T A N K C O R P O R A T I O N Index A Pages Pages Bevel of tank roofs. . . . . . . . . . . . . . . . . . . . 205 Aboveground horizontal storage tanks. . . . 23 Bevels, table of . . . . . . . . . . . . . . . . . . . . . . . 205 Aboveground vertical storage tanks. . . . . . 27 Bins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Acid tanks . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 Birmingham gauge . . . . . . . . . . . . . . . . . . . . 241 Air. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Boat tanks . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Allowable overweights in carbon steel Boiler breechings. . . . . . . . . . . . . . . . . . . . . . 113 plates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 Boiler tubes . . . . . . . . . . . . . . . . . . . . . . . . . . 192 Alloy metals. . . . . . . . . . . . . . . . . . . . . . . . . . 13 Boiling points of water. . . . . . . . . . . . . . . . . 160 Aluminum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Bolts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 Aluminum plates and sheets, weights of . .256 Bolts, safe loads on . . . . . . . . . . . . . . . . . . . . 173 American Bureau of Shipping tank specifi- Bolts, strength of . . . . . . . . . . . . . . . . . . . . . 172 cations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Bolts, thread lengths of . . . . . . . . . . . . . . . . 176 American Society for Testing Materials. , 11 Bolts, weight of . . . . . . . . . . . . . . . . . . . . . . . 174 A. S. T. M. specifications . . . . . . . . . . . . . . 11 Bottom plates for gravity tanks. . . . . . . . . 42 A. S. M. E. Code . . . . . . . . . . . . . . . . . . . . . 58 Bottom plating plan for gravity tanks . . . 44 A. S. M. E. Code heads. . . . . . . . . . . . . . . 79 Brass pipe. . . . . . . . . . . . . . . . . . . . . . . . . . . 189 A. S. M. E. Code heads, allowable work- Brass plates and sheets, weights of . . . . . . 256 ing pressures for . . . . . . . . . . . . . . . . . . . . 99 Breechings, boiler . . . . . . . . . . . . . . . . . . . . . 113 A. P. I.-A. S. M. E. Code . . . . . . . . . . . . . . 65 Brewery tanks. . . . . . . . . . . . . . . . . . . . . . . . 124 A. P. I. production tanks. . . . . . . . . . . . . . . 28 Bronze plates and sheets, weights of . . . . . 256 A. P. I. standard vertical storage tanks . . 27 B tu content of fuels. . . . . . . . . . . . . . . . . . 36 American standard drilling templates . . . .204 Buffalo products, list of . . . . . . . . . . . . . . . . 281 Ampere. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 Bursting pressure of pipes. . . . . . . . . . . . . . 187 Amperes for welding. . . . . . . . . . . . . . . . . . . 150 Bursting pressure of steel shells . . . . . . . . . 72 Angles of repose. . . . . . . . . . . . . . . . . . . 120, 208 Angles or bevels, table of . . . . . . . . . . . . . . . 205 C Angle of tank roofs. . . . . . . . . . . . . . . . . . . . 205 Arc welding . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Calory.• * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 262 Arcs, circular, length of . . . . . . . . . . . . . . . . 230 Capacities Of beer tanks. . . . . . . . . . . . . . . . 125 Arcs, circular, table of . . . . . . . . . . . . . . . . . 229 Capacities of bins * * * * * * * * * * * * * * * * * * * * . 118 Area of plane figures. . . . . . . . . . . . . . . . . . . 232 Capacities of cylinders and spheres . . . . . . 196 Areas of circles. . . . . . . . . . . . . . . . . . . . . . . . 213 Cap acities of rectangular tanks . . . . . . . . .212 Areas of circles in square feet from diam- Cap acities of tank heads. • * * * * * * * * * * * * * 82 eters in inches . . . . . . . . . . . . . . . . . . . . . . 225 Capacity chart for fuel oil tanks . . . . . . . . 21 Areas of circular segments. . . . . . . . . . . . . . 226 Carbon-are welding * * * * * * * * * * * * * * * * * * * . 131 Areas of round steel bars. . . . . . . . . . . . . . . 248 Carbon influence in steel. . . . . . . . . . . . . . . 10 Areas, rules to find . . . . . . . . . . . . . . . . . . . . 264 Carbon steel plate, A. P. I.-A. S. M. E. Assoc. Fact. Mutual Fire Ins. Co. water Code . . . . . . . . . . . . . . . . . . . . . . . . . ... 66 tank specifications. . . . . . . . . . . . . . . . . . . 40 Carbon steel plates, manufacturers’ stan- Atomic hydrogen. . . . . . . . . . . . . . . . . . . . . . 130 dard practice . . . . . . . . . . . . . . . . . . . . .272 Carbon steel plates, permissible variations in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 B CO2 tanks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Bars, flat steel, weights of . . . . . . . . . . . . . . 246 Catamarans, steel . . . . . . . . . . . . . . . . . . . . 70 Bars, round, weights and areas of . . . . . . . 248 Causes of corrosion . . . . . . . . . . . . . . . . . . . 14 Bars, square, weights and areas of . . . . . . . 248 Centigrade temperature . . . . . . . . . . . . . . . 164 Bearing loads on foundations. . . . . . . . . . . 208 Charcoal iron boiler tubes. . . . . . . . . . . . . . 193 Bearing power of soils . . . . . . . . . . . . . . . . . 208 Chemical relations of iron and steel. . . . . .265 Beer storage tanks . . . . . . . . . . . . . . . . . . . . 124 Chromium, influence on steel . . . . . . . . . . 10 (283) rººfs - I N D E X wº- Pages Pages Circle, properties of . . . . . . . . . . . . . . . . . . . 231 Electrical formulas for welding. . . . . . . . . . 150 Circle sizes for tank heads. . . . . . . . . . . . . . 78 Electrodes, type, size, etc. . . . . . . . . . . 132, 148 Circles, areas in square feet from diam- Electrodes, weight of . . . . . . . . . . . . . . . . . . 151 eters in inches. . . . . . . . . . . . . . . . . . . . . . 225 Electrolysis. . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Circles, areas of . . . . . . . . . . . . . . . . . . . . . . . 213 Ellipse, properties of . . . . . . . . . . . . . . . . . . . 239 Circles, circumferences of . . . . . . . . . . . . . . . 213 Elliptical heads, A. S. M. E. Code, Circular arcs, length of . . . . . . . . . . . . . . . . . 230 dimensions of . . . . . . . . . . . . . . . . . . . . . . . 90 Circular arcs, table of . . . . . . . . . . . . . . . . . . 229 Elliptical heads, capacities of . . . . . . . . . . 82 Circular rings, surface and volume of . . . .245 Elongation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Circular segments, areas of . . . . . . . . . . . . . 226 Enamel tank coatings. . . . . . . . . . . . . . . . . 17 Circular steel plates, weight of . . . . . . . . . . 242 Engineering tables. . . . . . . . . . . . . . . . . . . . . 195 Circumferences of circles. . . . . . . . . . . . . . . 213 Equation of pipes. . . . . . . . . . . . . . . . . . . . . 186 Climatic conditions of cities . . . . . . . . . . . . 169 Equilibrium of liquids . . . . . . . . . . . . . . . . . 203 Coal and oil comparison. . . . . . . . . . . . . . . . 37 Equivalents, Mechanical, Electrical and Coated tanks. . . . . . . . . . . . . . . . . . . . . . . . . 17 Heat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 Coating for beer tanks. . . . . . . . . . . . . . . . . 126 Expansion joints for breechings . . . . . . . . . 113 Coefficients of expansion . . . . . . . . . . . . . . . 168 Expansion of metals. . . . . . . . . . . . . . . . . . . 167 Collapsing pressure on boiler tubes. . . . . . 193 Expansion of steel. . . . . . . . . . . . . . . . . . . . . 167 Collapsing pressure on steel tanks. . . . . . . 60 Expansion of steel pipes. . . . . . . * * * * * * * * * 191 Column footings. . . . . . . . . . . . . . . . . . . . . . 207 Expansion of water. . . . . . . . . . . . . . . . . . . . 168 Concrete foundations for tanks. . . . . . 207 External pressure on boiler tubes. . . . . . . . 193 Concrete materials, weights of . . . . . . . . . . 206 External pressure on tanks. . . . . . . . . . . . 60 Conversion factors, engineering . . . . . . . . . 270 Conversion table of temperatures. . . . . . . . 164 Cookers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 F Copper pipe . . . . . . . . . . . . . . . . . . . . . . . . . . * Fahrenheit temperature. . . . . . . . . . . . . . . . 164 Copp er plates and sheets, weights of . . . . .256 Fermenting tanks. . . . . . . . . . . . . . . . . 124, 127 Corrosion effects on steel. . . . . . . . . . . . . . . 13 Field storage tanks, A. P. I. specifications. 26 Cubic feet in gallons. . . . . . . . . . . . . . . . . . . * Flammable li quids in tanks, Underwriters Cylinders and spheres, capacities of . . . . . . 196 requirements for . . . . . . . . . . . . . . . . . . . 32 F. & D. head capacities. . . . . . . . . . . . . . . . 82 D F. & D. heads, A. S. M. E. Code dimen- Decimals of a foot for each Jº". . . . . . . . . . 267 Sions for . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Decimals of an inch with millimeter F. & D. heads, shallow type, dimensions equivalents. . . . . . . . . . . . . . . . . . . . . . . . . 266 for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Definitions of units. . . . . . . . . . . . . . . . . . . . 262 F. & D. heads, standard type, dimen- Discs, flat steel, weights of . . . . . . . . . . . . . 253 sions for . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Dished heads, A. S. M. E. Code . . . . . . . . . 79 Flanges, drilling templates for . . . . . . . . . .204 Dished heads, see Tank Heads. . . . . . . . . . 77 Flat flanged heads, dimensions for . . . . . . . 85 Dredge pipe . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Flat heads, design of . . . . . . . . . . . . . . . . . . . 83 Drilling templates, American standard . . .204 Flat rolled steel, weights of . . . . . . . . . . . . . 246 Ducts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Flat steel plates, loads on . . . . . . . . . . 103, 261 Floats, steel . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Flues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 E Forged steel rings, weights of . . . . . . . . . . . 253 Efficiency of welded joints, A. P. I.- Foundations, concrete . . . . . . . . . . . . . . . . . 207 A. S. M. E. Code . . . . . . . . . . . . . . . . . . . 69 Foundations for smokestacks. . . . . . . . . . . . 109 Efficiency of welded joints, A. S. M. E. Fuel oil tanks, Underwriters require- Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 ments. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21, 29 Elastic limit. . . . . . . . . . . . . . . . . . . . . . . . . . 12 Fusion welding symbols. . . . . . . . . . . . . . . . 133 (284) B U F F A L O T A N K C O R P O R A T | O N C Pages Gallons and cubic feet, comparison of . . .203 Galvanized iron, preparation for paint- IIlg. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Galvanized tanks. . . . . . . . . . . . . . . . . . . . . . 17 Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Gases, expansion of . . . . . . . . . . . . . . . . . . . . 161 Gases, liquefied petroleum. . . . . . . . . . . . . . 161 Gases, weights and specific gravities of . . .258 Gauges of steel plates, Birmingham and U. S. Standard. . . . . . . . . . . . . . . . . . . . . . 241 Grain bins. . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Gravities, specific . . . . . . . . . . . . . . . . . . . . . 258 Gravity tanks. . . . . . . . . . . . . . . . . . . . . . . . 40 Guyed steel stacks. . . . . . . . . . . . . . . . . . . . 106 H Head design, A. P. I.-A. S. M. E. Code . . 68 Heads, A. S. M. E. Code allowable work- ing pressures. . . . . . . . . . . . . . . . . . . . . . . . 99 Heads and pressures of water. . . . . . . . . . . 157 Heads, capacities of A. S. M. E. Code . . . 82 Heads, capacities of standard F. & D. . . . 82 Heads, capacities of elliptical type . . . . . . . 82 Heads, capacities for beer tanks. . . . . . . . . 125 Heads, dimensions of standard F. & D. . . 86 Heads, dimensions of A. S. M. E. Code F. & D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Heads, dimensions of shallow type . . . . . . . 91 Heads, dimensions of elliptical type. . . . . . 90 Heads, dished, A. S. M. E. Code. . . . . . . . 79 Heads, volumes and dimensions of stan- dard type . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Heads, volumes and dimensions of shallow dish type. . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Heat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Heat emission from pipes. . . . . . . . . . . . . . . 51 Heating surface in steel pipe. . . . . . . . . . . . 185 Heat unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 Hop Jacks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Hoppers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Horse-power. . . . . . . . . . . . . . . . . . . . . . 263,268 Horse-power for welding . . . . . . . . . . . . . . . 150 Hot water supply required for various conditions. . . . . . . . . . . . . . . . . . . . . . . . . . 50 Hot water tanks. . . . . . . . . . . . . . . . . . . . . . 49 Hot wort tanks. . . . . . . . . . . . . . . . . . . . . . 127 Hydro-pneumatic tanks. . . . . . . . . . . . . . . . 47 I Pages Intermittent welds. . . . . . . . . . . . . . . . . . . . 131 Iron and steel, chemical relations of . . . . . 265 Iron, galvanized, preparation for painting 16 J Joint efficiency, A. P. I.-A. S. M. E. Code. 69 Joint efficiency, A. S. M. E. Code . . . . . . . 58 K Kilowatt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 Kilowatt hour. . . . . . . . . . . . . . . . . . . . . . . . 268 L Lead-lined tanks. . . . . . . . . . . . . . . . . . . . . . 17 Lined tanks. . . . . . . . . . . . . . . . . . . . . . . . . . 17 Liquefied petroleum gas. . . . . . . . . . . . . . . . 161 Liquids, equilibrium of . . . . . . . . . . . . . . . . . 203 Liquids, pressure of on surfaces. . . . . . . . . 203 Loads, Bureau of Standard minimum . . . . 206 Loads on floors, minimum live . . . . . . . . . . 206 M Malt hoppers. . . . . . . . . . . . . . . . . . . . . . . . . 127 Mammut tank coating. . . . . . . . . . . . . . . . . 126 Manganese, influence of on steel . . . . . . . . 10 Mash tubs. . . . . . . . . . . . . . . . . . . . . . . . . . 124 Materials, expansion of . . . . . . . . . . . . . . . . 168 Materials, weights of . . . . . . . . . . . . . . . . . . 258 Measures and weights, domestic. . . . . . . . . 265 Mechanical, Electrical and Heat equiva- lents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 Mechanical properties of metals. . . . . . . . . 210 Metallic-arc welding. . . . . . . . . . . . . . . . . . . 132 Metals, expansion of . . . . . . . . . . . . . . . . . . . 167 Metals, non-ferrous, weights of by gauge .257 Metals, non-ferrous, weights of by thick- TheSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 Metals, properties of . . . . . . . . . . . . . . . . . . . 210 Metals, weights and specific gravities of . .258 Metric equivalents. . . . . . . . . . . . . . . . . . . . 279 N Nickel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Nickel, influence of on steel. . . . . . . . . . . . . 10 Nickel-clad steel . . . . . . . . . . . . . . . . . . . . . . 16 (285) I N D E X Pages Non-code tank construction. . . . . . . . . . . . . 57 Non-ferrous metals, weights of by gauge .257 Non-ferrous metals, weights of by thick- DCSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 Non-ferrous pipe. . . . . . . . . . . . . . . . . . . . . . 189 O Ohm: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 Oil and coal comparison. . . . . . . . . . . . . . . . 37 Oil consumption, formula for estimating. 36 Oil fuel specifications. . . . . . . . . . . . . . . . . . 35 Oil storage tanks, horizontal. . . . . . . . . . . 20 Oil storage tanks, vertical . . . . . . . . . . . . . . 20 Overweights in carbon steel plates. . . . . . . 273 Overweights in stainless steel plates. . . . . 278 P Paint as a corrosion preventive . . . . . . . . . 14 Paint as evaporation protection. . . . . . . . . 15 Parabola, properties of . . . . . . . . . . . . . . . . . 238 Paragraph U-69, A. S. M. E. Code . . Paragraph U-70, A. S. M. E. Code . . . . 58,62 Petroleum refining equipment. . . . . . . . . . . 65 Piers, loads on concrete . . . . . . . . . . . . . . . . 208 Pipe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 Pipe coils for hot water tanks. . . . . . . . . . . 49 Pipe columns, safe loads on. . . . . . . . . . . . . 183 Pipe, dimensions and properties of . . . . . . . 182 Pipe, dredge. . . . . . . . . . . . . . . . . . . . . . . . . . 70 Pipe, non-ferrous. . . . . . . . . . . . . . . . . . . . . . 189 Pipe, pontoon. . . . . . . . . . . . . . . . . . . . . . . . . 70 Pipe, shore . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Pipe, water content of . . . . . . . . . . . . . . . . 188 Pipe, working and bursting pressures of . , 187 Pipes, equation of . . . . . . . . . . . . . . . . . . . . . 186 Pipes, expansion of . . . . . . . . . . . . . . . . . . . . 191 Pipes, heating surface in steel . . . . . . . . . . . 185 Plane figures, area of . . . . . . . . . . . . . . . . . . 232 Plastic tank linings. . . . . . . . . . . . . . . . . . . . 17 Plates, weight of steel. . . . . . . . . . . . . . . . . . 241 Polarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Polygon, properties of . . . . . . . . . . . . . . . . . 240 Pontoon pipe . . . . . . . . . . . . . . . . . . . . . . . . . 70 Pontoons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Positions of welds . . . . . . . . . . . . . . . . . . . . . 141 Preparation of metal surfaces for painting 15 Pressure and heads of water . . . . . . . . . . . . 157 Pressure sprinkler tanks. . . . . . . . . . . . . . . . 45 Pressure vessel design (non-code). . . . . . . . 57 Pages Pressure vessels. . . . . . . . . . . . . . . . . . . . . . . 56 Products, list of Puffalo. . . . . . . . . . . . . . . . 281 Properties of metals. . . . . . . . . . . . . . . . . . . 210 Properties of sections . . . . . . . . . . . . . . . . . 234 Properties of the circle. . . . . . . . . . . . . . . . . 231 Pump suction tanks, typical foundation for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 R Radiographing. . . . . . . . . . . . . . . . . . . . . . . 68 Reciprocals, useful . . . . . . . . . . . . . . . . . . . . 206 Rectangles, properties of . . . . . . . . . . . . . . . 234 Rectangular flat plates, loads on . . . . 103, 261 Rectangular oil storage tanks. . . . . . . . . . . 37 Rectangular tanks, capacity of . . . . . . . . . . 212 Reduction of area . . . . . . . . . . . . . . . . . . . . . 13 Refinery tanks, large . . . . . . . . . . . . . . . . . . 27 Refinery tanks, small . . . . . . . . . . . . . . . . . , 26 Retaining walls, pressure on . . . . . . . . . . . . 120 Rings, circular, surface and volume of . . .245 Rings, flat steel, weights of . . . . . . . . . . . . . 253 Rolled steel rings, weights of . . . . . . . . . . . . 253 Round steel bars, weights and areas of . . .248 Rubber-lined tanks. . . . . . . . . . . . . . . . . . . . 17 S Safe loads on square steel plates. . . . . . . . 260 Saturated air. . . . . . . . . . . . . . . . . . . . . . . . . 155 Saturated steam . . . . . . . . . . . . . . . . . . . . . . 165 Sections, properties of . . . . . . . . . . . . . . . . . 234 Segments, circular, areas of . . . . . . . . . . . . . 226 Self-supporting steel stacks. . . . . . . . . . . . . 107 Shallow type F. & D. heads, dimensions of . 91 Ship tanks. . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Shore pipe. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Size of smokestacks for various horse- DOWel" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Slope of tank roofs. . . . . . . . . . . . . . . . . . . . 205 Smoke breechings. . . . . . . . . . . . . . . . . . . . . 113 Smokestacks, steel. . . . . . . . . . . . . . . . . . . . , 106 Soils, bearing power of . . . . . . . . . . . . . . . . . 208 Specifications of oil fuels. . . . . . . . . . . . . . . 35 Spheres and cylinders, table of capacities of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 Sprinkler tanks, Underwriters require- ments. . . . . . . . . . . . . . . . . . . . * * * * * * * * * * * 45 Sprinkler tanks, openings for . . . . . . . . . . . 46 Square steel bars, weights and areas of . . 248 Square steel plates, safe loads on . . . . . . . . 260 (286) f Zºo TANIKS C- Pages Stacks, guyed steel . . . . . . . . . . . . . . . . . . . . 106 Stacks, self-supporting steel . . . . . . 107 Stainless-clad steel . . . . . . . . . . . . . . . . . . . . 16 Stainless steel. . . . . . . . . . . . . . . . . . . . . . . . . 16 Stainless steel plates, allowable over- weights in . . . . . . . . . . . . . . . . . . . . . . . . . . 278 Stainless steel plates, estimated weights of .278 Stainless steel plates, standard rolling tolerances. . . . . . . . . . . . . . . . . . . . . . . . . . 278 Standard horizontal storage tanks. . . . . . . 25 Standard vertical storage tanks, small. . . 26 Standard vertical storage tanks, large. . . 27 Standpipes, steel . . . . . . . . . . . . . . . . . . . . . . 40 Staybolts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 Staybolts, loads on . . . . . . . . . . . . . . . . . . . . 178 Staybolts, maximum pitch . . . . . . . . . . . . . . 177 Stay-rods, loads on . . . . . . . . . . . . . . . . . . . . 179 Steam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Steam, flow of in pipes. . . . . . . . . . . . . . . . 165 Steel and iron, chemical relations of . . . . . 265 Steel boiler tubes. . . . . . . . . . . . . . . . . . . . . . 192 Steel, expansion of . . . . . . . . . . . . . . . . . . . . 167 Steel, flat rolled, weights of . . . . . . . . . . . . . 246 Steel pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 Steel plate construction . . . . . . . . . . . . . . . . 10 Steel plates. . . . . . . . . . . . . . . . . . . . . . . . . . 10 Steel plate specifications, various. . . . . . . . 11 Steel plates, manufacturers’ standard prac- tice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 Steel plates, weights of . . . . . . . . . . . . . . . . . 241 Storage tanks. . . . . . . . . . . . . . . . . . . . . . . . . 20 Storage tanks, horizontal. . . . . . . . . . . . . . . 24 Storage tanks, vertical. . . . . . . . . . . . . . . . , 26 Stresses in bins. . . . . . . . . . . . . . . . . . . . . . . 114 Stress relieving. . . . . . . . . . . . . . . . . . . 56, 58, 68 Suction tanks, typical foundation for . . . .207 Sulphuric acid tanks. . . . . . . . . . . . . . . . . . . 209 Sulphur, influence of in steel . . . . . . . . . . . . 10 Superheated steam . . . . . . . . . . . . . . . . . . . . 165 Supports for aboveground tanks. . . . . . . . . 24 T Tack welds. . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Tank design, A. P. I.-A. S. M. E. Code . . 67 Tank design, A. S. M. E. Code . . . . . . . . . 58 Tank design, non-code. . . . . . . . . . . . . . . . . 57 Tank heads. . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Tanks, quick rules for capacity of . . . . . . . 206 Temperature conversion table . . . . . . . 164 Temperatures of U. S. cities. . . . . . . . . . . . 169 Pages Tensile range of carbon steel plates. . . . . . 277 Tensile strength. . . . . . . . . . . . . . . . . . . . . . . 12 Trapezoid, properties of . . . . . . . . . . . . . . . . 236 Triangles, properties of . . . . . . . . . . . . . . . . 236 Triangles, trigonometric formulas of . . . . . 233 Trigonometric formulas . . . . . . . . . . . . . . . . 233 Tubes, allowable external pressure on . . . . 193 Tubes, boiler (steel) . . . . . . . . . . . . . . . . . . . 192 Tubes, boiler (charcoal iron). . . . . . . . . . . . 193 Tubes, charcoal iron, allowable working pressures in . . . . . . . . . . . . . . . . . . . . . . . . . 193 Tubes, standard weights of . . . . . . . . . . . . 192 Tubes, steel, allowable working pres– sures in . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 U Underground storage tanks. . . . . . . . . . . . . 22 Underweights in carbon steel plates, allowable. . . . . . . . . . . . . . . . . . . . . . . . . . . 273 Underwriters specifications for fuel oil tanks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22, 29 Units, definitions of . . . . . . . . . . . . . . . . . . . 262 Universal mill plates, manufacturers’ stan- dard practice . . . . . . . . . . . . . . . . . . . . . . . 274 U. S. Standard gauge for steel plates . . . . 241 Useful information . . . . . . . . . . . . . . . . . . . .264 U-68–U-69—U-70, A. S. M. E. Code. . . . 58 V Vanadium, influence of on steel . . . . . . . . . 10 Vats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Velocities of winds . . . . . . . . . . . . . . . . . . . . 112 Vertical storage tanks. . . . . . . . . . . . . . . . . . 26 Volt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .263 Volume of a wedge . . . . . . . . . . . . . . . . . . . . 232 Volumes and capacities of cylinders and spheres. . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 Volumes and dimensions of tank heads. . 92 W Water. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Water flow in house service pipes. . . . . . . . 52 Water, heads and pressures of . . . . . 157 Water requirements for homes. . . . . . . . . . 53 Water storage tanks. . . . . . . . . . . . . . . . . . 40 Watt . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263,269 Wedge, volume of . . . . . . . . . . . . . . . . . . . . 232 Weight of circular steel plates. . . . . . . . . . .242 Weight of welding electrodes. . . . . . . . . . . . 151 (287) I N D E X Pages Pages Weights and measures. . . . . . . . . . . . . . . . . 265 Welded pressure tanks. . . . . . . . . . . . . . . . . 56 Weights and specific gravities. . . . . . . . . . . 258 Welding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Weights of concrete materials. . . . . . . . . . . 206 Welding positions. . . . . . . . . . . . . . . . . . . . . 141 Weights of flat steel rings. . . . . . . . . . . . . . 253 Welding symbols. . . . . . . . . . . . . . . . . . . . . . 133 Weights of materials. . . . . . . . . . . . . . . . . . . 258 Welding terms, definitions of . . . . . . . . . . . 133 Weights of non-ferrous metals. . . . . . . . . . 256 Well casings. . . . . . . . . . . . . . . . . . . . . . . . . . 48 Weights of round steel bars. . . . . . . . . . . . . 248 Wind pressures and velocities. . . . . . . . . . . 112 Weights of steel plates per square foot. . .241 Working stresses, A. S. M. E. Code allow- Weights, steel pipe and tubes. . . . . . . 182, 192 able. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Welded joints, Amer. Welding Society Wort tanks. . . . . . . . . . . . . . . . . . . . . . . . . . . 124 specifications. . . . . . . . . . . . . . . . . . . . . . . 142 Welded joints in tank plates, A. F. M. F. I. Y Co. specifications. . . . . . . . . . . . . . . . . . . . 43 Yield point. . . . . . . . . . . . . . . . . . . . . . . . . . . 13 (288) ſilii ſaeessº *********** .ae ae; ** i * * №včaeae, ſå ſae ! ·,§=،88 : × 3) 8ºſ∞ √°.,،ſºſ -،*:- º ; , , , , , º. º., … § (-, º x:∞* ,... ….. !№·∞ ſº----·§.|- *· ~|- •º ,, * &<!-- - - - ----x^~~, , , , , º:→ ~ ،d>·×·::●~·* º * *.·º £3.·* * * * * * * * * · * * * * * * * * * * * • • • • • • • • • • • • • • • • • • • • • • • • • •|- * ~(~~~~ ~ ~ !,s-*----, , , , , , , , , Z •~∞ - )،º : **, * *- 5.,- ■■■■ ■ ■ ■ ■<!-- * * „ „ … ► ► ► ► ► ► ► ► ► ► ► ► ► ► * * *t. |-·-: -º,§¶√∞ √° √∂ º . . . • • • • • ** * * * * * * * * ſ **** • • • • • • • • • • • • • • • • •wae