QB 42 119.23 PRECEPT S, FORMULAS, TABLES, CHARTS, AND IMPROVEMENTS; amuel BY S DUN N, 4.74 Teacher of the Mathematical Sciences LONDON. Published according to Act of Parliament, September. 1° 1784. by S. DUNN. t Goth 85-35 Mathematica 5-25-1923 10-16 - 24. EHW LONGITUDE Instructions; By S. Dunn. 1. Gret the Altitude of the Sun's Centre cleared from Dip & Sanidiameter, the Altitude of the Moon's Center deared from Dip & Semidiameter, & the Sun. Moon's nearest Limbs, Add 32 to the- observed Distance of Limbs to get the Rough Central Distance, with this from Ephemeris……. page 8,9,10 or 11 for the Month, where the Day of the Month & Sun are together take out the nearest Hour; this is the rough Hour for... Greenwich. 2. The Ephemeris has the Sun's true Semidiameter Moon's true Semidiameter -- Moon's Horizontal Parallax - Three hourly Distances Sun's true Declination page. page...3. 7. 7. 8,9,10,11. 2. The Requisite Tables have the Seconds for Moon's Altitude --page-3 . Refraction in Altitude 2. Moon's Parallax in Altitude --- 3,4,5. Time & Degrees- 6. 3. Begin the Formula with the Rough Central Distance & Rough Hour for Greenwich, &go on as it directs until you come to the Number E in it. Then, in usual Cases, the nearer the.. Rough Central Distance in Degrees, comes to comes to 120, the greater it is; & the nearer it comes to 20", the less it is. A great Altitude of the Moon be that above 20°. When the-- may Rough Central Distance in Degrees is great, & especially, when the Moon's Altitude is .. also great; then Number E may for the true Distance of Centres. be written- 4. For small Distances, 4. For small Distances, or small Moon's Altitude; Take the Moon's Parallax in Altitude from Requisite Tables page 3,4,5; with this & the Distance take the Seconds from large Table IV. also with Number C & the Distance, take the Seconds from the same Table IV; & the Difference of these Seconds is F. 5. From amongst the three hourly Distances in Ephemeris page 8,9,10 or 11, take two such Distances following each other, so that the taue Distance of the Centres falls between them; then go on by the Formula till you have the Time at Greenwich; this is past noon for Greenwich. 6. From Ephemeris page 2. take the Suri's true Declination for the Hour at Greenwich; & when the Declination & Latitude are both North or both South, subtract the Declination from 90; but in other Cases, add the Declination to 90, to get the Blar distance. And subtract the Sun's Co-altitude from the Half sum to get a Remainder. Then go on by the Formula, 'till you have the Time at the Ship; this will be past Noon at the Ship in an Afternoon Observation, &short of noon in a Formoon Observation. 7. In an Afternoon Observation, subtract one Time from the other, the Remainder is the Longitude; & it is West Longitude when the Time at Greenwich is greatest, but otherwise Fast Longitude. In a Forenoon Observation, add the two Times together, the Sum is the Longitude West, & it's Remainder to either 24 Hours or 360, is East Longitude . NB. These general Recepts, in several Parts of the Operation, may be shortened, by attending to the following Direction's concerning each in particular. Published according to Act of Parliament May 29th, 1782 by Samuel Dunn, Fleetflreet LONDON. 8. Dum inv.& delin". 425944 Supplementary LONGITUDE Instructions; By S. Dunn. of Preparations. 1. When the Sun & Moon's nearest Limbs have been observed; add 32′ to get get the Rough Central Distance. Also, add the Sun & Moon's true Samidiameters, & Seconds for Moon's Altitude; to get I. 2. When the Star & Moon's nearest Limb have been observed; add 16' to get the Rough Central Distance. Also add the Moon's true Semidiameter, & Seconds for Moon's Altitude, ·to get L. get_L. 3. When the Star & Moon's farthest Limb have been observed; subtract 16 to get the Rough Central Distance. Also, subtract the Moon's true Semidiameter, & Seconds for Moon's Altitude, to get I. of Contractions. 1. In taking out the Number from large Table 1, the nearest whole Degrees may be used in the most ufual Cases. 2. When the Number falls above or near the Crooked Line in large Table I, you need not find the Numbers A,B; but take from large Table III, the Seconds that are to be added to Number L, to give Number D. 3. When the Sun or Moon's Altitude is very small, the Refraction should be taken from the Altitude, before it is written in the Formula, next after the Horizontal Parallax. 4. In computing the Time at the Ship; the third Number or Sun's Co-altitude, is that of the Altitude lessened both by Dip Refraction. t of Operations. 7. The Observations should not be made wher the Sun or Moon are very near the Horizon. If the Moon is very near the Honzon, Proportional Parts should be used in large Table I. st 2. Four Places of Logarithms with Index, are used, till the last Cofine; then the fifth Figure is 5 when 1 remains, 0 whm 0 remains. 3. C must not be added to D, unleſs the 1 Are is least of the two Ares, & at the same time D is leſs than 90. In other Cases, subtract C from D. of Observations. 1. In observing for Longitude only, without use of a Watch, the Sun should not be very near the Meridian; then Observations will determine Latitude. Also, when the Moon is near the Meridian, Observations will determine Latitude. 2. When the Sun is far à Meridian & not near the Horizon, Observations are best for the Time & setting a Watch. 3. In the Night, the Watch shews Time at the Ship. When no Watch is used in the Night, the Right Afcension of Sun Star, compared with the Star's distance from the Meridian, either past or short of it, gives Time at the Ship. In this, the Chart of Zodiacal Stars is useful. 4. The Stars of first Magnitude out of the Zodiac, are useful for Time at the Ship; such as Capella, the principal in Orion, Canopus, Sirius, Procyon, Lyra. And so may Venus, Mars, Jupiter & Saturn. 5. The same Stars & Plands may be used for Latitude by Meridian Altitudes, Elapsed Time, & otherwise. 6. The principal Stars used in the Lunar Method are, Aldebaran, Polluxe, Regulus, Spica, Antares, Aquila, Fomalhaut. The others are, Capella, Orion's Sirius, Procyon, Canopus, Arcturus, Lyra; the Bears, Ship & Grofs. th Tublished according to dot of Parliament May 29. 1782 by Samuel Dunn, Fleetſteet LONDON -- &. Divin mer. So delin. A Short Formula for LONGITUDE, having the Linear Tables, &c By S. DUNN, Distance Limbs = Semidiam.. > Semidiam.. For Altitude.. Distance Centres L. = For&) Alt. Rough Hour at Greenw Altitude..= > Altitude._= Hor Par. Co-ar in Table 1-2. 15 1º Hours...- 2 Hours.. Diff.... f= " Ditto... P. Common Log. in Table I m A= Side of P.L.a 4. add = Bottom P.L... Minutes. B: " Diff...L= Prop. Log. S= Prop. Log.f= in Tate Prop Log- 1. Hours add in Degrees. Tune at Greenw past Noon. Altitude. add to Dist Centres. D.:: Altitude..... ) Hor Par.... — First Arc..--- D..= = Correction for Refrac".....- = Sine. Co-Secant. = Proper Log Proper Log = Tangent.... Co-secant... 6 sub. Co-latitude Polar-dist. Co-ar Co-ar Co-alt.. 2) Hor. Par.. ---- Proper Log- Half-sum- Remaind Sine. Sine " SolarTime 2 Second Arc... Proper Log at per Watch = Co-sine H Corr for Par...C.- D..: Add the Amos together if D.exceeds 95. Z Add C to D.only when the first Are is the least of the two &atsame time is less than go E.- F. P.. 3.- 45 6.= = yo 9.135 add "Eis under go. True Distance of Centres. In this Formula when riot to add, subtract. " sub. Time at Ship Longitude from Greenwich. 154. =223. 18.=270 21.-315 12.=180. Published according to Act of Parliament October 24, 1783 by Samuel Dunn Boar's head Court, Fleetstreet LONDON 24.=360 S. Dunn init et dolin A New Formula for LONGITUDE, having the Linear Tables, &c.By S.DUNN. N.B. Co. is Rem. to go. Supp.is Rem to 180. Co-ar is Co-secant less Indexx zo. Sine, Tangent Secant or Coar of Degrees more than go is that of Supp. Subtract if not to add Solar Time is used for the Longitude in Hours & Degrees. Mean Solar Time is that which Clocks & Watches are made to keep nearly at Sea&c on Land, Distance Limbs = Semidiam..... ɔ Semidiam... For Altitude. " Rough Hour at Greenw. Altitude > Altitude = 1. Hours..= 2dHours Diff...-f= Hor. Par = "1 Distance Centres L Co-ar ForɔAlt in Table 1.-2. H Common Log A= in Table I B= K add to Dist Centres- = = Correction for Refrac Dz Sine. Altitude Hor. Par First Arc Altitude. D.z Hor. Par m Co-Secant. Proper Log Proper Log= Tangent...= Co-secant. m Ditto...= P... Diffe... £= Prop. Log⋅ S= Prop. Lof Co-latitude = Polar-dist.= Co-alt...= 2) Half-sum = Remaind." Solar Time abper Watch. in Tab Prop Log- 1.Hours add in Degrees or Hours. ...... Time at Greenw. past Noor. Co-ar Co-ar Sine.. Sine 2) = Co-sine =Time at Ship Proper Log = " "1 Second Arc Cory for Par...C... D... Add C.to Donly when the first Arc is the least of the two at same time Dis less than go, E..= EE This add it. It is undergo Dip, ` ` ` ` ` *g True Distanc Fiet 7=1 4.=2 14=4 Proper Log"= K Add the Ares together if Daxceeds go ཅུ སུཝ Alt. Re Ref. - Longitude from Greenwich. Alt. Ingmare Hows Degrees- 42 Book o che Dec. Nov Oct. ལ་་བམ། K Aing. 72= 15= 8 Sep. Eu F8 Jul.17 22- 15212.0 F8 Tron ལམགྲུས Mar. 17 -22- 1595 7 15= 222.12 Feb. 1z 82 & Hands. at Day. Published according to Act of Parliament October, 4, 1983 by Samuel Durn Boar's head Court Fleetsweet LONDON, Morid" & 15- 22. HP 4pr. 15-4 223 Qako Mar © or* à Limbs obsa © Semidiam! .P.3 D Semidiam! p.7 Parts for D Alt. A Formula for the LONGITUDE having the Ephemeris & Common Tables of Logarithms By SDunn Teacher of Mathematics LONDON. Nearest Limbs: ©or*a) 1. ά DAlt •I Farthest Limb * à D Limb D Semid!" · Ih Odlt. It ditto Hours o " = Rough Time I Lat first Hour & Distance in Ephem. second ditto. Log. Diff- sub. Parts for D Alt. Sum sub. Sum is D= Remain is D= E Altitude Dip & Semid."cleard. © or*Alt.. Dip & Semid, cleard. Diff Coalt co.ar. D Ⓒor* Coalt D co.ar. co.ar. co.ar. Oor *Coalt. D Coali i 3.4314 Log Sum Log 2 2 Add 12 Sum Sine] ½ Sum Sine first Hours in Degrees Time at Greenwich in Degrees. Remain Sine Remain. Sine Co.arch Sine Co.arch Sine 2 2 M= S Co. sine DCo.alt Refraction Sine add Co.latitude Polar dist Co. altitude 2 co.ar. ? co.ar. 2 Parin Alt DHor. Par *Log. Difference Log. ½ Sum Ramain Sine Sine DPar*Alt Log. B = Log. To. arch Sine Refraction sub. A = sub.if Mis under go B = add if S is under go! Aft noon Difference Log. С C = is M =A Co. fine Log. D= E = For Altitude. 30 60 70 75 2 S.Dunn inv,& delin allow © Par. in Alt. Long? 30 12 60 14 880 16 NB. 1th Rough central Distance sheros the rough Hour at Greenwich & thereby the 's Dedin.is had Ephem. p.2.(the Is Semid" 2. Co. ar. is Cosecant les 10 in the Index. is p.3.) the D's Semid & Hor. Par p.7. 3d Co. ar. or Sine &c. of more than go. is of 4th Refraction to be taken from the truest Tables. 5th When you do not add subtract. 6th Co. alt sub- the Remain to 180, -tracted from ½ Sum gives Remainder. Polar Dist. is Decl,"subtracted from 90. if Ded! & Lat. alike, else added to go.. 7th If Time at Greenwich & at the Ship are both before or afternoon, their Difference is the Longitude; else it is rohat they are 8th Observe for Time at the Ship when is not near the Meridian. 9 Reasons at large are in Aftronomy p.185 & Lon apart. -gitude at Sea p.go. 10th Latitude is found at any Time of the Day by the common Logarithms, as published by the Author, which fee. „Published according Act of Parliament, March 17*1779 By Samuel Dunn Maiden Lane Coventé LONDON, Bef. noon Time at the Ship For D'Alatude 10 15 Parts 34 א For D Altitude Parts " 4010. Change 1.2.4.5.6. 341.26. α Markab. 343 31. a Aldebaran.. α Capella B Rigel Y Orion. d Orion d. Canopus... d Sirius & Caftor.. 47.17. 65. 54. 75. 12. 76.3. 78.24, 85,54. 94. 48. 98.56. 110.12. 112. 1 . 113. 3 α· Procyon.. B. Pollux B Ship... 137. A2. & Hydra d. Regulus 162 2. α N.Pointer... B S. Pointer... & Cross.. & Spica a Arcturus... α Centaur.. & Antares.... & Lyra a Aquila.... -α· Fomalhaut. 2.3.5.6.8. 2.4.6.8.10. 1 3.5.7.9. 2A7911 1.3.A.6.7 2.3.5.6.8. 2.3.5.6.8. 1.1.2.3.3. 1.2.4.5.7. 2.4.6.8.10. 2.3.5.6.8. 7 2.4.6.8.9. The Change for Years, added to R.Afc. gives the R. Afc. required. 0.1.1.1.2. 139.16.2.3.4.6.7. 149.14.2.3.5.6.8. 162 3A. 183. 43. 198,29, 211, 29. 216.21. 244 A. 277.25. 295. 5. 3.14 .N. 49. 5 N. 16. A ‚N. 45 46.N. 8.27.S. 6. 8.N. 7.21 .N. 52.35.S. 16.25.S. 32.21 N. 5.46 N. 28.32 N. 68.50.S. 7.45.8. 13. 0 .N. 57.32.N. 62.54 N. 61.55.8. 59.57.8. 25.56.8. 38.36 N. 8.19 N. 30.45.S. 14. 4 N. The Right Afcensions and Declinations of Fixed Stars, By S.Dunn. 1785. R.Aſc. d. Eridanus.... 22.25. a. Whale's Faw. 42. 46. α. Perfeus.. 2.4.6.8.10 Years. Declination. 58.19 .S. 2.4.6.8.10 Years. change 1.1.2.2.3. rub. 2.4.6.7.9. 2.4.6.8.10. 2.3.5.6.8. 2.3.5.6.8. 1.3.4.6.7. 2.4.7.9.11. 2.4.5.7.9. 1.2.3.4.5. 1.3.4.6.7. 10. 2.S. 20. 22. N. The Change for Years, applied to Decl" give the Decl" required. 1.1.1.2.2:add. 0.1.1.2. 2. add. 0.1.1.1.1. add. 0.0.1.1.1. add. 0.0.1.1.1.sub. 0.0.0.0.1.add. 0.0.0.0.0. 0.0.0.0.0¡ 0.0 • 0.0.1.add. 0.0.1.1.1.sub. 0.1.1, 1, 1, sub. 0.1 1,1,1 .sub. • 0.1.1.2,3; add. 1.1.2.2.3.add. 1.1.2.2.3.sub. 1.1.2.3.3.sub. 1.1.2.3.3.sub. 1.1.2.3.3. add. 1.1.2.3.3. add. 1.1.2.2.3.sub. 1.1.2.2.3. add. 0.1.1.1.2.add. 0.0.0.0.0. 2.3.5.7.8. 1.3.4.6.7. Y Rigafus 0.33 2.3.5.6, 8. a Bole Star... 12.14. 6.11.17 23.29. 0.1.1 1.1.add. 1.1.2.3.3.sub. 1.1.2.3.3.add. 13.59 N. 1.1.2.2.3. add. 88.10 .N. 1.1.2.3.3.add. Note, The Change in R.Afc" is additive. The Change in Declination is as it is written. A Mmiature Sketch of the Isines in the Chart of Zodiacal Stars. Frquater atering sliptic: Fauster Ridiphic 90 th Published according to Act of Parliament June 29*. 1782 by Samuel Dunn, Fleetſtreet -LONDON. S.Dum úrv: delin'? A New Formula for Latitude, having Two Altitudes &Elaps'd Time, between Nine in the Morning & Three Afternoon. By S.DUNN. First Operation: Second Operation: Greatest Alt. ; · Least Alt. Sum...... 1/2 Sum...... Diff..... Co-sine. :/½ Diff..... Sine... % El Time Co-ar... :Ded" Sec.-R.. : Lat. Aco. Sec-R.. Mid Time Sine..... El.Time • Rem..... .301030 ::½ Rem Sine... Ditto.... Sine.... Decl Co-sine - Lat Acc Co-sine With Indo-6 is Log... Nodd -Greatest Alt. Sine... No • Merid" Alt. Sine... N Dedh Co-lat.... Latitude N.B. 1th The Altitudes are deared from Semidiameter, Dip & Refraction. 2 Allow 6 less, - than the Index in Log-sines,& you have the Natural Sines in Numbers opposite to the Commun Logarithms. 3 Mid-time, is the Distance of the Middle-time between the Observations from Noon. Published according to Act of Parliament September 4. 1784, by S. Dunn A Formula for Latitude, having affumed Latitudes, & Elaps'd Time, By S. Dunn. 1"Lat 1. Lat. L. 2. Lat./. Co.lat. 91 7. Bolard. .lo.alt. Co.ar. Co.ar. Co.lat. Co.ar. Blard. Co.ar. 1.Co.alt. 2 Sum Sine áSum Sine Rem". Sipe Ran. Sine 2 2 Cofine Cofine 2 B= E- st- 1. Lat L.. Co.lat. Polard. 2. Lat.l. Co.ar. Co.lat. lo.ar. lo ar. Blard. Co.ar. d 2. Co.alt. 2.Co.alt. 24 Sum Rom" Sine Sum Sine Sine Rem". Sine 2) Cofine Sine 2 Cofine D= A = B add or fub. AFB te give C, E nearest to Q LC = LE C = for 1. Lat. F- for 2" List G-= Diff H-Diff. H: G=: H :: I : K. st t Supp to 180". Q-Elapsed Time. I = Diff. Q&C or Q&F. K=Comec for Lorl add or fub. D&E to give F. nearest to Q . 1. The assumed Co-latitudes, Polar-distances, & Co-altitudes, must be such, that any two of them together, must be more than the third. 2. Co.ar. is Cofecant, lefs Index 10. &Log. of more than 90. is Log. of 3" When the true Lat. is between those affumed, the Correction converges fast to Truth 4th When Is is true, Bis trueTime of 1°. Alt. A true Time of 2. Alt. from Noon. The like for E&D. For Azimuth, work as above, with Co-lat, la alt. &lar dist. this gives Azimuth from North in N.Lat. & from South in S.Lat 6. When the same Lat. repetes, the Lat. Times &Azimuths are correct. H S. Pum inv. delin. th th Published according to Act of Parliament June 29. 1782 by Samwel Dunn, Fleetfreet LONDON,` 5 1 A New FORMULA for LATITUDE, having, Sights of the Sun, Elaps'd Time and Equal Dedination. By S. Dunn, 1 = Latitude by Reckoning -- d-Destination 11=Altd• far a Meridian... B= Co-declination N= Altḍnear Meridian Q = Elapsed Time... Farther Calculations. 0=Co-latitude.. p-Polar dist..... a= Co Alt lo.ar. Co.ar. Co-latitude Sum Sine Rem". Sine Cofine 2 t= Q= T: Sine d= Coline G Sine d= Sine G- Secant A= Coline N= Sine G= Secant D- Coline A- B- C= add ifp is under 90: dfo zub. D= E= Zenith dist. d: Dedination. Latitude. Published according to Act of Parliament July 27th 1782 by Samuel Dunn Fleetfreet LONDON S.Diam invt & delinª. 1 S.Dunn A New FORMULA for LATITUDE, having, Sights of the sun, laps'd Time; By 8.Durm. 1=Latitude by Reckoning d=Dect" far à Meridian O=Co-latitude p-Blar dist..... a=Co-alt.. Co.ar.... Co.ar..... d n = Alt"Ⓡ far à Meridian. F-Deal near Meridian. B = Compt. Declination, P-Polar dist. near Merid?. N=Alt. near Meridian b = Co-alt. near Merid Q-Elaps'd Time st n 1. Obs" 2¢ d 4th 5th 6th th H Sub Rem". Sum Sines Sine Cofine 2 n t=..... 1 Q=... T:.... F= ... G= F-.... • G=.... 7: NB! The Observation far à Meridian may be at any time of the Day; the other should be as near the- Meridian as it can be judged of & taken. 2ª Co-ar is Cofecant lef's Index 10. & Log. of more than 90 is Log, of Supplement to 180°.-- 3. When d&F are equal, then p & Pare equal. 4th If Decl". & Lat. are both North - or both South, fubtract Decl. from 9o.. but if otherwise, add Deal". to 90 to get_- Polar distance . Az.... Nz... • G=... D=.. Sine.... Cofine.. Sine.... Sine.... Secant Cofine Sine Secant afine A=... B.. l=... add if P is undergo. efe sub D=... E=... Zenith dist.for F. F-... Dedination. Latitude. L =... Co-latitude. Ref. Height Dip Height Dip Alt. Ref. Alt. Ref. Alt. Ref Alt. Ref. Alt. Ref. Alt. Ft F = 1 34 22 IP IPTV I 7=33 12=32 43-30 27 1.33-21 2.50-15 5:20-0 17.03 40=26743-20 3.7:746.75=8 24.0=2 歹 ​18=31 50=251.54-10 3.27=137.15-747.0 24-307.4-24 2.7-18 3.50-728.35-6 90.0 30=207.13=23|2.10=17 4.20=77|10.15=5 ·.50:10 13.0 =4 36=287. 7.23-29 33-184.20=-11 Published according to Act of Parliament May 20.1782 by Samuel Dunn Fleetflreet, LONDON . S.Dunn ine↑ & delin' A New FORMULA for LATITUDE having Sights of STARS, BY S.Durn. * L = Latitude by Reckoning. d=Decl" far à Meridian •n_Alt. far à Meridian ---- F-Decl near Meridian__. B= Compl. & Declination-- P: Polar-distance of N-Alt. near Meridian · b = Complement of Alt. *'s Right Afcension 's Right Afcension O=Co-latitude... p-Polar dist a= Co-alt. sub 2 Rem". 0 Co-ar... Coar... Suan Sine Sine Cofine 2 t = ..... Q=..... T……….. Sine... F- ..... Cofine Q=* & Equator, distance... 2 G Sine.. F..... Sine.. NB./. should be observed as near the Meridian as - Ge..... Secant d th possible. 2. The Altitudes of& should be dear'd_ from Dip & Refraction. 3.C is the Difference of A&B. 4th When I is the true Latitude,t is the true Distance - of from Meridian &T that of. 5. When tu.. less than Q the Altitudes were on different Sides of the - Meridian. 6." When t is greater than the Altitudes A=.... Cofine N=.... Sine... G=.... Secant th Da.... Cofine Az.... th th were on the same Side of the Meridian. 7. As 0, p, a, are used to find t; so use I, p, a, to find t correct - & then I correct. 8. So use 1, a,p, or rather use I,a,p, I, a,p, to find 's true Azimuth; & l, b, P, or. - B.... rather L, b, P, to finds tave Azimuth. 9th Co-ar is Co-fecant lefs Index 10. Log. of more * than go. is Log, of Supplement to 180° add if Pis under go affe sub. Zenith distance. Dedination. Latitude. Co latitude. Height Dip. Height Dip. Alt. Ref. Alt. Ref. Alt. Rg: Alt. Ref. Alt. Ref. Alt. Ref. Bet... st Feet 143 = 57 8 72. 14472 22 89 O Q • 7=33 • 12=32 .18=31 O 7 •42=277.33=21 2.50=155.20=9 17.0=3 .49=26 1·43=20 3.7-146.15=8 24.0=2. .15=7 47.0 = 1 .56=25 1.54 19 3.27=13 24-30.4-24 2. 7-18 3.50-128.35-6 96.0= .30=291.13=23 2. 19-17 4.20-11 10 . 15 =5 36=281.23=22 2.33-164.50=10 |13.. 0 =4 th Published according to Act of Parliament May 20, 1782 by Samuel Dunn, Fleetfreet LONDON. C=.... D.... E=.... F..... L..... S.Dunn inve” & delin ' Samid. Dip Rep? is MULA for LATITUDE having Sights of Sun & Moon; By S. Dunn. A New FORMULA 'મ 1 = Latitude by Reckoning- d=Deal" or> far à Merid" N=Alt. • or> far à Merid".. F-Ded or near Maid"..... B= Comp") or Declination. P-Polar dist. > or ● near Merid”. . N-Altitude ) or near Merid" b. Co- alt.) or near Merid" or R*Afe".• or> far à Merid". R*Afo > or • near Merid". Q=&) Equator? distance. Preparations. d Obs & Alt. Lower Limb……. 0 • • · O = Co-latitude p= Blar dist... a=Co-alt. Sub Co ar. Co ar. Sine Ram". Sine Cofine t...... Q..... T=... Sine F.... Cofine G =.. Sine F= Sine True Alt. Centre G =.... Secant Obs Alt. lower or upper Limb. Semid" 'Dip 'Ref" is Cofine Hor For A .... Cofine N... Sine M G.. Secant " D = Ꭰ -... Cofine d Obs Alt.) Centre. True Alt.) Centre. I true Dedination.- > true Blar dist.- ● true Right Afoension Par Alt M= add A =.. B C =... D E or > true Right Afcension . • &) Equator. distance. •Declination... F... add if P is under 90' dfe sub Zenith dist. ) or @ Declination. Latitude. I-.... Co-latitude. NB. When a zodiacal Star or any other is used instead of the Sun, the Star's R.Afcension must be compared with the Sun's R. Afcension at the time of Observation, to get the Solar Time of Observation. Either or) may be nearest to the Meridian, but the Time is best computed from the Sun when is farthest from Meridian. Coar. is Co-faunt lefs Index 10. & Log. of more than 90 is Log. of Supplement to 180°. lower Limb is taken add Semid. & sub. Dip & Ref" sub. Semid. Dip & Ref. When When upper Limb is taken, Published according to Act of Parliament May 20. 1782 by Samuel Dunn, Hotplnost S.Dunn og delm". A New FORMULA for Latitude, Time &Azimuth; having Sights of Sun, & Elapsed Time; By S. Dunn · ་ For Alt. fur à Merid. a. Account By Latitude Correct For Alt fur à Merid. For Alt. far à Merid. Co.ar. Co.ar. Colat. Polar dist. a-lo-alt Co.ar. Co-lat. Co.ar. Co.ar. Co-alt Co.ar. Sum Sine 2 $2 2) Rem! Sine [Sine 2/ Sine Cofine 2 Sum Rem Sind 2 2 r Sine Cofine Cofine Azimuth far a Merid For Alt.near Maid. t t = } Sine Cofire - Q -T बक्ष Q= T: Colat. lo.ar. Sine Co-alt. Co.ar. Sine Sine F F =GG= =F Cefine Sum Sine Sine Rem". Sine F= Sine 2 Secant GG= Secant Cofine Cofine =▲ ▲= Cefine 2 Sine -N N= Sine Secant =G G= Cofine D D= ~A ; A = =B ¦ B= add ifP is undergo, elſe sub. = C C = =D ¦ D= Zenith dist. -E Declination E- FF= Latitude Secant Cofine Azimuth near Merid. 1. Q is the Elaps'd Time meas" by Watch. d 2. Com, or Comp. is Rem to go. 3". When Lat. & Ded" alike, fub. Ded". th n add if Pis under 90, elfe sub. from 90. Elje, add Dec. to 90, to get Bolar dist. 4" Log. of more than 90, is Log. of Supp. to 180. 5. Co-ar is Cofecant lefs Index 10. 6F is Ded &N Alt. near Merid. B is Co-decl" 7th t &T,correct; are Times from Merid", & on one Side when t exceeds Q; elfe not. NB. If two Stars are used; Q is the Diff. of their R.Afcen". or Equatorial Distance · 8 Dunn inr': & delin th Tublished according to Act of Parliament May 29.1782 by Samuel Dunn, Fleetfreet LowDON· Zenith dist. Dedination Latitude A New Formula for Latitude & Longitude, having Sights of Sun & Moon, or Moon & Stars ; By S Dunn · 0 " Altitudes Distances. For Alt. far à Merid. Co.ar. F Co.ar. Co.lat. Dist-Lambs. Hours Polar dist. a=Co alt. Rough Central dist. Rough Hour Hours 1.Diff. fPLog. d • &Limbs obs. LSine. 2) Sine Sum Rem. ♦ true Semidiameter. Hours Р > true Semidiameter. 2.Diff. 2. P.Log. Cofine For Altitude d L= Obs.dist. Cautres, t Least Alt= =Q Great Alt = 1. Hours TableI. 2. 1. P. Log Rom. add Time at Greenwich. Sine =T I = Cofine F A= Sme = G B lo.ar ComunonLog. Tablett Co-lat. Blar dist. Co.ar. lo.av. Sme = F Secant = G -L- add Cofine =A D= 20 Sine =N DHor.Par.= Serant Cofine = G Alt D D st Arc.... Hop. Log. Cofecant Sine 1 Co-Alt Sum Rem • • 1 Sine Sine 2 Cofine =B HorPar= add if Pis undergo, elfe sub. = C DAI Prep Leg Prop Log Cofecant 15) =D DD Tangent Tune at the Ship d Zenith dist. Delination Latitude Q=El.Time E2 Are Prep Log FC. D. E F• Ded. N=Alt.near Maid. B= Co-Deel" S. Dunn inr. & dein*. P add Ares if D cxreds go. add Cto D, only when 1*Arc in lecat, &27) is under 90- elfe sub. _add ifD) is undergo°. True distance Centres. -th. Published according to Act of Parliament May 29.1782 by Samuel Dunn, Flestflrest Landow Time at Greenwich, past noon + Longitude The Points & Degrees of the Compass Card, to Halfquarter Points; By S Dunn. Points D. MD. M. Points D. MD. M North South 0 0 010 0 North South N. E. S. EA 45, 0 N. WS W 0 0 0 0 0 Yoo Yd rexo Yes Papa ett yo 1 24 4 ㅎ ​2.49 4.13 5.37 8.26 7 2 . 51 N.by E. S.by E 1 11 15 N.by W. S.by W. NEBE. SEBE, 1 12.40 1 A 14. A 1 품 ​15.28 1 16, 52 1 %/ 18.17 1 19. 41 ગગગગગગG+++ 1 21 6 N.N.E. S. S.EĮ 2 aaaaaaa 22.30 N.N.W. S.S.W. H.N.E. H.S.E 2 ㅎ ​2 3 N.EbN. S.Eb S 3 3 3 3 too te mbo y'ap roko raft sto ♡ ng ng ng mg mo m 3 3 t too you rato yep 30,00 mot yo 23, 55 25. 19 26.43 28. 7 29.32 30. 56 too te coloo molt too too the rope toy RD mit 100 too ++ roko tog Roko natt He 46.25 47. 49 Ag. 13 50. 37 52, 2 53, 20 54.51 56. 15 N.WbW. S.wbw. 57.40 59. A 00.28 61 52 64. A1 67, 30 63.17 66.6 W.N.W. W.S.W. 68.55 70, 19 71.43 73, 7 32, 20 33. 45 N.WIN.SWb S. E by N E. by S 35,10 36. 3+4 39, 22 37.59 N. E.S. EA 40.47 42. 11 43.36 7 45. 0 N. W. S. W. Bast. East. 8 too the cabo ter saba matt #100 75. 56 78. 45 81. 34 74.30 77.21 80.10 82.58 W. by N. W.by S. 84, 22 85.47 87. 11 88.36 90 0 West. West. S. Dum in! & delint. Published according to Act of Parliament July 27th 1782 by Samuel Dunn Fleetſtreet LoND or N. 哭 ​Month Day A TABLE OF EQUATION OF TIME; Shewing the SUN's Southing, in MEAN SOLAR TIME.. JANUARY h 1776 77 78 79 1780 81 82 83 FEBRUARY MARCH 79.17776 1776 77 78 79 1780 BYS.Dunn. APRI L 7777 78 79 8 79 1776 77 78 79 81 82 83 81 82 83 83 1780 81 82 83 1780 // "/ h !! // // h "/ 86 4 1 12.4.1 21 14 7 12.14.3 | 12 212.4.28 49 42 35 12.14.10 15 14 412.5.24 44 38 31 12.14.23 26 25 24 6 12. 24 | | 6.17 37 31 812.7.9 28 22 10 12.7.59 1711 12 12.8.46 458 14 12.9.31 28 42 16 12.10.14 29 24 1812.10.53 7 12.14.32 34 33 32 16 12.14.37 39 38 12.12.31 34 12.12.18 21 12.11.51 54 // "/ h " "1 37 40 12.3.45 47 52 577 24 27 12.3.25 29 34 38. 58 112. 12.2.49 5358 2 12.11.23 26 29 33 12. 2.14 18 22 27 16 12.14.37 39 38 38 12.10.52 5659 3 12.1.39 43 48 52 12.10.20| 24 | 28 | 32 | 12. 1 . 6 | 10 512.14.40 40 40 40 22 2012.0.3 6 14 18 10 14 | | 40 44 11 1511.59.5 8 1215 3539 | 35 39 11.58.39 42 45 48 58 2 | 11.58.14| 147 | 20 | 23 52 12.14.40 39 39 39 12.9.48 52 | 55 | 59, 12.0.34 38 5559 41 45 37 12.14.36 34 35 35 12.9.13 18 19 12.14.30 27 28 29 12.8.38 42 47 51 11.59.33 37 | 358 12.14.21 16 17 19 12. 8. 2 7 2012.11.30 43 38 34 12.14.9 3 5 6 12.7.26 30 22 12.72. 3| 15 11 12.13.54 47 49 51 12.6.49 53 24 12.12.34 44 41 37 12.13.36 29 31 34 12.6.12 16. 26 12.13.1 10 7 4 12.13.17 911 1412.5.3439 33|30 28 12.13.25 33 30 27 12.12.55 46 49 52 12.4.57 30|12.13.45| 52 | 50 525048 MAY JUN E 212511.57.51 54 57 | 59 4348 43 48 11.57.30 33 35 38 13 11 11 11.57. 11 14 16 18 12.4.20 24 29 33 11.56.55|56|58 2. JULY AUGUST О 111.56.474951 53 11.57.27 25 23 21 12.3.26 23 21 18 12.5.50 51 52 53 35|32|29 211.56.40 42 43 45 11.57.36 34 32 30 12.3.37 35 32 29 12.5.46 47 48 50 4850 411.56.27 29 30 32 11.57.56 54 52 49 12.3.59 57 54 52 12.5 36 37 39 40 611.56.17|18|20 21 11.58.17 15 12 10 12.4.19 17 15 13 12.5.24 25 27 29 12 11.58.40 37 34 32 12.4.38 36 34 32 12.5. 911 1315 611.59.3 1 58 55 12.4.56 54 52 50 12.4.52 54 56 58 2 11.59.27|25|22|19|12.5.119 8 6 12.4.32 35 37 40 0 11.59.52 49 46 44 12.5.25 23 | 22 | 22 20 12.4.10 13 16 19 9 12.5-37 35 34 33 12.3.47 50 53 56 811.50. 9 10 li 10 11.56.44 5 12 11.56.0 14 11.55-59 1 16 11.56. 1 1 1 4 3 0 12.0.18 15 12 18 11.56.4 312.0.44 41 38 2011.56.109 9. 812.1.9 6 3 2211.56.18 17 16 15 12.1.35 32 24 11.56.28 27 25 24 12.2. 158 26 11.56.40 39 37 36 12.2.26 23 28 11.56.54 52 51 49 12.2.51 48 29 2 2 31 35 12.5.46 45 44 43 12.3.21 24 28 37 0 12.5.54 53 52 52 12.2.53 57 0 4 | 26 12.5.59 59 58 58 12.2.24 27 31 35 55 52 12.6.2 20 17 12.6.3 3 3 45 42 12.6.1 1 2 212.1.5256 0 4 9242832 312.1.1924 28 32 2 12.0.45 49 54 58 30 11.57.9 86 4 12.3.14 12 9 6 12.5.57 58 58 59 12.0.9 14 18 22 SEPTEMBER OCTOBER 496 NOVEMBER DECEMBER 111.59.32 36 41 46 11.49.24 29.33 38 11.43.46 46 47 47 11.49e 47 47 11.49.43 37 | 34 | 25 18|22|247 2 11.59.13 18 22 277 44 49 6 10 19.11.43.46 15 19 11 43.40 46 46 46 11.50. b 0 55 49 4 11.58.34 39 44 49 11.48.30 34 38 43 11.43.49 48 48 47 11.50.55 49 43 37 6 11.57-55 59 4 9 11.47.5559 3 8 11.43.54 53 52 51 11.51.47 40 34 27 811.57.14 19 24 29 11.47.22 26 30 34 11.44. 3 2 159 10 11.56.33 38 43 48 11.46.51 55 58 59|11.52.40|33|27| 20 211.44.10 14 12 11 11.53.35 28|21|14 | 1211.55.52 57 27 11.46.22 25 29 22 11.44.31 29 27 25 11.54.31 24 17 10 14 11.55.10 15 20 25 11.45.55 58 45|43|11.55.29||22 4 11.44.50 48 45 43 11.55.29 22 15 7 33|36 1611.54.29 33 38 43 11.45.30 33 36 39.45.13 10 7 4 11.56.28 20 13 6 15 11.45.39 35 32 29 11:57.27 2012 57 11.58.27 20 12 28 11.59.27 20 12 18 11.53.46 51 56 111.45.7 10 12 20 11.53.49 14 19 11.44.47 49 52 54 11 46.84 1 22 11.52.23 28 33 38 11.44.30 32 34 36 11.46.40 36 32 56 11.44.15 17 18 20 11 47.16 11 20 11.51. 1 0 11 16 11.44. 35 6 711.47.5449 44 40 12.1.27 20 12 28 11.50.22 26 31 36 11 43.55 56 56 57 11.48.36 30 24 11.51.42 47 51 7 2 12.0.27|20|12 5 G/G G 5 5 25 20 12.2.26 19 12 4 3 9 3 12.3.24 177 10 85 86 87 1784 8586.87 89|90|91| 17788 89 89 90 91 939495 30 11.49.43 48 52 57 11.43.49 49 50 50 11.49.2014 1784 85 86 87 1784 85 86 87 1784 1788 89 90 91 17788 89 90 91 1788 1792 93 94 94 95 1796 97 98 99 99 1796 1792 1796 93 94 95 1792 97 98 93 94 95 97 98 99 1796 9798.99 1796 The Hours & Minutes read with the Seconds which do not beling to Bissextile Year. th 1792 17.92 93 94 1796 97 98 99 Published according to Act of Parliament January 24, 1777 By Samuel Dunn Maiden Lane, Covent Garden, L ONDON. A VARIATION CHART of the ATLANTE ETHIOPICK INDIAN OCEANS for the Year 1770 Delineated according to MERCATORS or WRIGHT'S PROJECTION agreeable with the LATEST & BEST OBSERVATIONS BY S. Dunn. I Teacher of Mathematics LONDON N 80 NORTH AMERI CA 40 J 30 20 10 RSt Lawrence Jamaica 10 HISI I I N.B. This is the First Variation Chart of those eas that has ever been drawn by a Theory and found to agree nearly with Observations. 4 1 1 1 + Loud! ENDL 10 DEGREE S 10 I 1 } 60 50 40 30 20 Nfd 10 20 I 1 20 RHUMB S J 1 1. 310 2 30 land FRICE 3 40 EXEL. THE HE BEAST THE TERRA FIRMA SOUTH Equinoctial Line J AMERICA PERU : 1 GUTANA : 20 Tropic of Capricom 30 40 7 CHILI Į 19 1 1 BRZIL " 80 PATAGONIA 60 50 7: Falkland I. 1 Terra Fuego 15 DEGRES of EAST 1 + ་ 1 VARIATION 310 1 PORTUGAL 1 SPAIN MOROCCO 08 60 40 7/0 12 So 19 19 FOL ** 3- | 1 เ 1 • I I F I 510 60 70 T6 | 17 17 8lo 08 9 09 3 40 15 50. 60 40 3 30 2 20 10 1 10 2 20 30 GUINEA 18 72. [ 20 10 No Variation LONDON Merialia of J 20 13 4 ↓ AFRI 16 15 1 CA " 1 ZANGUEBAR NATAL SOFALA MOZAMBIQUE 19 18 17 200 - -- h 24 NVL V 20 70 MADAGASCAR ARABIA 28 1 USE 1 At Sea, having the Latitude & Variation, find_ the Longitude in both Charts D & E and the Medium: is the Longitude of the Ship. S.D. inv† PERSIA H 26 1 J INDIA I MALABAR O MANDÉL COR to Ceylon I ކ BASE THE. THE OPENED I DEGREES of WEST VARIATION 10 20 30 40 5/0 60 + 70 810 r 4 | Tropic of Cancer PEGU + This ART is designed for finding the LONGITUD by the FTTON and LATITUDE, within a Degree and half or go Miles, in many of the Seas that are much frented where the Lines run agreeably for that Pose The Annual Change of the Variation is delivered in the general Description of these CHARTS. . JAPAN WINE TOUT + 4 | Pished according to Act of Parliament November 6.1776 amuel Dunn, the Author, Maiden Tame Covent Garden toxvox; where his other Publications Lane forDon; may be had. 1 IVA PATHO COCHIN MAZAYA UNATRÁ 12 13 1 78 19 20 CHIN A 15 14 20 Ainah. I BORNHO 10 CEZNBE * 10 1 1 20 NEW } 30 南 ​HOLLAND 40 100 110 320 5.9 } 6.45