. MP WWW . M ky 107 PL 7. a ! . AL w ' ... W V * UNCLASSIFIED ORNL * WAN NA . Drw ahl M .. . ... . .. 993 * " ... OfNi-P-993 ITIES اہم /3- لیکن S TILES THE RESPONSE OF SOME ORGANIC SCINTILLATORS TO PAST NEUTRONS* FEB 11 V. V. Verbinski, J. C. Courtney, ** W. R. Burrus, and T. A. Love Oak Ridge Narional laboratory Daik Ridge, Tennessee INTRODUCTION INTRODUCTION *** OR COP A program of calibrating organic scintillators was undertaken to make possible accurate fast-neutron spectroscopy at ORNL. Using these calibrations, neutron spectra have been measured both with time-of-flight techniques and by unfolding pulse-height distributions obtained from complex spectra. Examples of the latter method were given in the preceding paper of this session. An example of three detailed spectra obtained by time-of-flight spectrometry is shown in Fig. 1. These represent photo- neutron spectra from "ºo at three angles with respect to the photons. The energy resolution in time-of-flight spectroscopy is almost limitless as compared to the method of unfolding pulse-height spectra (assuming source strength is no limitation) but pulsed neutron sources are of course not always available, nor are they always best suited for studying nuclear reactions and neutror transport problems. For unfolding complex neutron spectra, a family of pulse-height dis- tributions is required for monoenergetic neutrons; each normalized to one incident neutron. The family of curves should extend beyond the range of *Research sponsored by U. S. Atomic Energy Commission under contract with the Union Carbide Corporation anä partially funded by U. S. Army Muclear Defense Laboratory under order of NDL-23-63. **Oak Ridge Graduate Fellow, Catholic University of America, Washington, D. C. LEGAL NOTICE --- Two moment we prepared i n a Govonum acord work. Meld er Uw hem, wer winehou, wer ww pornou kuhing on all of the Coun d : A. Mehere my nurrunty or operation, emprund or lapind, we respect to the mov- mcy, complemer, wenn Where tormation contained t o report, or that the way where then, yn w ah mowe akward in the man may wo wiring pinoly one reas of 1. Ano way liabilithe, ma raport w the weal, or for d e menuing tren the y ruction, want, wethod, or muren txcloud to his report. As med to the whore, porno meg a batall at the Councine" mcheda wy me. mogne u criter who wants tom, wwwporne a mh contentor, the one that more reployee or recher Me Caunluta, orophyte w mocle contractor poperos, dumatou, or morda kuuw, we wtoration purnu Mi nesteyran or net stud e na, M. emphytu wchodutor. w UNCLASSIFIED 2-C1-058-961 SE- -- 55 deo 93 deg! RELATIVE FLUX ( neutrons.steradion". Mevº, e tc.- 141 deg ° 2 4 6 8 10 12 NEUTRON ENERGY (meV) 14 16 Fig. 1. Photoneutron spectra from the 9017,n)'yo reaction produced by 34 MeV end-point bremsstrahlung. Time of flight spectrometry was used, with a gamma pulse width of li ns and a flight path of 55 meters. energies that is to be covered by the meusurements. One such curve for a neutron of energy E, when integrated from maxi- mum pulse height, Lmay down to a pulse height be the bius setting, yields the efficiency of the detector for neutron energy E. An efficiency curve developed from such monoenergetic neutron response functions is used di- rectly in time-of-flight work. This efficiency factor places ne of the greatest limitations on the accuracy of time-of-flight measurements. The encapsulated NE-2134 scintillator (factory deoxygenated) was chosen because it can be used very well with pulse shape discrimination circuitry to eliminate gamma counts. When gamınas are no problem, as in some time-of-flight applications, the NE-21l scintillator can be used if the slow component of light einission from NE-213 should prove undesirable (as in some LINAC time-of-flight applications). The total (fast plus sluw) light output of the two materials is nearly identical, as referenced to the light produced by "co, so that the response functions presented here are suitable also for NE-211. Stilbene is a superior scintillator in resolution rly a factor of two better at 14 MeV but only slightly better ut 3 MeV for scintillators about 1" in size), in pulse-shape discrimination properties (larger fruc- tion of slow-component of photoemission), and in light output (~20% higher). But stilbene has a slightly lower hydrogen density than NE-213, is easily damaged by mechanical or thermal shock, cannot be obtained in large sizes as a monocrystal, has too long a slow component for many LINAC type time-of-flight measurements, and it gives a recoil-proton light output, In, that varies with crystal orientation by perhaps 15% (this was observed several years ago and confirmed by one of us, vvv), while it does not do ho S for it gaina source used for calibrating the light scale. Îne would have to determine the crystal axes for the stilbene used in the calibrations, have all successive crystals cut accordingly, and subsequently irradiate along one particular axis before accepting, calibrating and utilizing stil- bene for precision measure.nents. Two sizes of NE-213 scintillutors were cullbrated; 2" x 2" diam and 5" x 5" dium. In time-of-flight work, these can be used directly or as stundurds to calibrate large tanks of scintillators. In pulse-height striping, one cannot in pructice use one scintillator type or size to cross calibrate a different size or type; only cross comparison of final spectral shape and intensity is practical. II. THE INITIAL MONTE CARLO CALCULATIONS The response of the scintillator to monoenergetic neutrons of energy E was obtained by a Monte Carlo calculation in which a plane parallel beam n of neutrons "irradiates" the scintillator uniformly. The 05R system of Coveyou et al.,' of ORNL was applied to this problem. Individual neutron histories are developed, and each neutron is followed until it escapes, is absorbed, or is reduced in energy below .020 MeV. The 05R program was run for each neutron energy E until 25,000 collisions were recorded (N = 25,000). This yielded a calculated pulse-height distribution containing 25,000 "counts" as produced by a total of N. incident neutrons. The re- sulting pulse-height distribution was divided by the total number of in- cident neutrons, Nm, which converts the pulse-height distribution to absolute efficiency. The "zero-bias efficiency" is then equal to N/N. The zero bias efficiency for each value of E agrees with an exact analytic . . t i _: -50 calculation [l-exp(-£2. T)] within the Monte Car. statistics. The cross sections for scattering of neutrons by the hydrogen was taken from BNL-325 and for the carbon of the scintillutor the NDA library of cross sections was used. This source provided both the elastic and inelastic [ 12c(n,n')2c] differential cross sections for carbon. These appear to be adequate up to an energy of about 10 MeV, above which (n,a), (n,p) and (r1, pn) cross sections (in order of increasing energy of "impor- tance") become important. These reaction cross sections and their con- tribution to the response functions are discussed in detail later in this communication. Hydrogen scattering and carbon inelastic scattering are assumed to be isotropic in the center of mass system. The differential elastic scattering cross-section from carbon was accurate to a P-8 angular approximation. A rumber of experimental measurements were made in order to provide additional inputs required for the Monte Cario calculations and to check the accuracy of these calculations. III. PULSE-HEIGHT DISTRIBUTIONS BELOW 10 MeV First, pulse-height distributions were obtained for a series of mono- energetic neutrons varying in energy from 0.2 MeV to 14.7 MeV. These were mostly reliable only at the upper end of the pulse-height spectrum. The ORNL 5.5 MeV Van de Graaff was used with the 'H(p,n) He reaction to obtain monoenergetic neutrons from 0.2 MeV to 4 MeV. The Ch(a,n) He reaction was used to obtain monoenergetic neutrons to about 8 MeV, and the 'H(d, n) He reaction to produce 12-15 MeV neutrons. A 300 keV electrostatic accel- erator was also used for additional measurements at 3.1 MeV and 14.7 MeV. -6- In all these measurements, T-Zr and D-Zr targets were used. Dummy (blank) Zr targets were also used to determine the background due to gammas and neutrons from contaminating reactions, such as c(a,n)?C (Q = +.29 MeV) due to carbon (from pump oil) contamination of the Zr target. Above 1.5 MeV, pulse-shape discrimination was used to reject gamma counts. În this first series of measurements, the detector was placed near the Zr target, the pulse-height distribution was measured, and the dumury target was then put in place and the background determined for the same integrated beam current. A sample of such measurements is shown in Fig. 2, along with the pulse-height distribution from £. 6°co source which is used as a stan- shown as the extrapolated end point of the Compton edge from the 1.17 MeV and 1.33 MeV gammas of co. For our arrangement of scintillators, (en- capsulated, deoxygenated NE-213 scintillators, vertical mounting, painted with a white reflector by Nuclear Enterprises Corporation of Canada and optically coupled to the photomultiplier tube with Dow Corning 100 cs grease.), photomultiplier, and amplifier, one "cobalt" is equal to the light produced by a 1.27 + 0.02 MeV electron, as determined by the relationship : between pulse-height distribution and Compton-edge energy given by Flynn et al.? These pulse-height distributions were used to cbtain a trial function for L (E), the light iroduced by a recoil proton. For the trial function, plotted against the maximum proton-recoil energy, E. (max) = En, for about fifteen values of E, from 0.3 to ~15 MeV. This curve was then fitted by 8 adjusting the parameters A and B of Birk's formula UNCLASSIFIED ORNL DWG 64-10761 2400 2000 oyoo.. INCIDENT E, -- 4.95 MeV INCIDENT En = 4.91 MeV COUNTS PER CHANNEL %- 6°CO CALIBRATION SPECTRUM wool como globoacide Poproszony 0 40 80 120 160 200 240 CHANNEL NUMBER 280 320 360 400 Fig. 2. Typical experimental pulse height distributions from a 2" x 2" diam NE-213 scintillator exposed to 1.91 MeV and 4.9 MeV neutrons and co gammas. App A dE p" Jo It B(AE/dx) with values 9-12 derived from the literature for the scintillator with values dE/dx derived from the literature 9-12 for the NE-213 !CH,). Fitting with Birk's formula was valuanle in extrapolating the L (E) function between measured points, and to both higher and lower energies. This function was then used in the initial set of Monte Carlo calculations. These initial calculations produced pulse-height distribu- tions that had a sharp dropoff at the right, so that these distributions had to be smeared to match the smearing due to photomultiplier statistics, nonuniformity of light collection, nonuniformity of the photocathode, and amplifier noise. Individual log-log plots of both the measured and cal- culated pulse-height distributions were made on tracirig paper to help check the proper smearing of the calculated response. Once the proper shape was obtained for the right-hand part of the curve (these early experimental data were, in general, reliable only at the right-hand half of the curve), the overlaid plots generally resulted in a mismatch of the abscissa for the measured and calculated plots. This mismatch provided a correction to the initial experimental light curve, a correction that arose from assuming the light produced by E (max) = E could be correctly obtained from the half-height of the recoil proton pulse-height distribution. This error is large for small values of neutron energy E. (Ref. 13). In Fig. 3 is shown an 'I (E) curve for NE-213 obtained with the pro- cedure outlined above. All curves in Fig. 3 are also correct for NE-211. As a result of this initial effort, we obtained pulse-height distri- butions that were reliable below 10 Mev, ignoring the smaller pulses UNCLASSIFIED ORNL-DWG 64-10753R PROTONS . LIGHT OUTPUT (COBALT UNITS) ALPHA PARTICLES 12C NUCLEI 0.01 0.4 10 ENERGY OF PARTICLE (MeV) Fig. 3. Light response of NE-213 lo proluns, alphus, and carton recoils. The light unit was taken as the 60Cu extrapolated end point of Fig. 2. -10- produced by carbon recoils. Therefore, the next task was to obtain the light r'unction for carbon recoils, L., so that the low pulse-height end of the spectrum could be accurately computed. For neutron energies above 10 MeV, production of alphas from -- becomes important. Therefore the L. (E) function also had to be determined. IV. RECOIL CARBON AND ALPHA LIGHT FUNCTIONS The L. (E) and L. (E) functions cunnot be obtained by use of Birk's formula with the constants A and B derived from the above curve-fitting for Ln, because of the large uncertainty in the electron excitation cross section (2E/dx) for a's and recoil carbon nuclei. Only the total dE/dx is accurately known. It also contains a part due to collisions with nuclei, (aE/ax)mune which does not contribute to the light producing process. 14 The carbon light function was derived from three sources. First some preliminary information was available on work by Steuer und Wenzel" who reported that for carbon recoils from about 1-5 MeV, the light produced in NE-213 was 0.006 + 0.002 of that produced by electrons of the same energy, and for the NE-102 plastic scintillator, the corresponding figure was 0.016 + 0.002. This, incidentally, suggests that NE-213 is the more de- sirable for many applications, because one can bias down to say 1/3 the pulse height without interference from carbon recoils which are difficult to calculate accurately. We obtained a pulse-height distribution for carbon recoils by 110" scattering of 14.4 MeV neutrons off carbon. The experimental arrangement, shown in Fig. 4, utilizes a deuteron beam from a 0 keV to 300 keV positive UNCLASSIFIED ORNL - OWG 64-10719 AMP DYNODE 10 PRE AMP ANTICOINCIDENCE CIRCUIT OYNODE 14 2-in. DIAM * 2-in. HIGH NE-213- L.L. DISC IN VACUO U.L. DISC U.L. DISC] DEUTERON BEAM T TARGET ~90cm HE VIMET SHADOW SHIELD FAST AMPLIFIER COLLIMATOR ABSORBER FOIL 5-in. DIAM 2/2-in HIGH NE -213 ON 58 AVP INPUT -TT- DYNODE 14 OYNODE 14 ON TRIGGER RIDI 400-CHANNEL ANALYZER LL DISC U.L. DISC L.L. DISC ANODE U....DISC ANTICONCIDENCE ANTICOINCIDENCE CIRCUIT ANTICOINCIDENCE CIRCUIT COINCIDENCE CIRCUIT Fig. 4. Block diagram of apparatus for measurement of pulse-height spectrum of recoil carbon nuclei. -1.2- ion accelerator, a thin tritium target and an alpha detector (with colli- mator and absorner foil) chat detects the alpha particle associated with the 14.4 MeV neutron in the 'H(d, n) *He reaction. A 2" x 2" NE-213 detector is placed in the cone of neutrons associated with the detected alphas, and a large (2" x 5" dian) NE-21% scintillator is placed so üs to detect neutrons scattered at 110° from the thin neutron detector. The ulphu counter is biased (:1pper and lower bias) to accept only alphas from the He(a,n)*He reaction, the thin neutron counter is biased to a very low level, and the thick neutron counter is biased ut ubout y MeV so as to count mostly neutrons singly scattered off curbor. at 110°. A triple coincidence between alpha, thin neutron-detector und lurge neutron-detector allows a pulse from the thin detector to be stored in an analyzer running in the coincidence mode, The resulting pulse-height distribution is shown in Fig. 5. The spread in pulse height is, of course, large due to the poor photomultiplier statistics at a light output of 0.018 "cobalts". This is equal to 0.008 + 0.002 of the light produced by an electron with energy equal to the 2.85 MeV carbon recoil (assuming I "cobalt" = 1.27 MeV- electron light output), which is in agreement with the work of Steuer und Wenzel.15 The third check on L. (E), the carbon-recoil light function, was ob- tained by matching the measured pulse-height distribution, in the pre- cision experiments described below, with a Monte Carlo calculation in which the L. (E) curve and the smearing width were adjustable constants. The response of the NE-213 scintillator to ulpha particles was ob- tained at energies of 6.1 MeV and 4.76 MeV by measuring the pulse height from <*cm and <34U alphas plated on a platinuin foil placed inside in UNCLASSIFIED ORNL DWG 64-10762 0.018 COBALTS COUNTS PER CHANNEL -13- 1 10 20 50 60 70 30 40 CHANNEL NUMBER Fig. 5. Carbon-12 recoil pulse height spectrum from 14.43 Me V neutrons scattered at 110°. -3.4 - NE-213 scintillator and calibrating the light scale of these scintillators with gammas or known energies. This yielded the two corresponding points (with error bars) on the L, curve of Fig. 3. The square points shown on the same curve of F. 3 were inferred from the precision 14.43 MeV pulse- height distribution obtained with the ?ssociated particle technique as described below. V. PRECISION EXPERIMENTS It was possible for us to obtain accurate pulse-height distributions for two neutron energies, 2.66 MeV and 14.43 MeV by means of the associated particle technique. The experimental arrangement is shown in Fig. 6. A 2" x 2" NE-213 scintillator and 56 AVP photomultiplier tube were used at 14.43 MeV, and I" x 5" diam NE-213 and 58 AVP at 2.66 MeV. The 14.43 MeV distribution was obtained by demanding coincidences between the 14.43 MeV neutron and the associated alpha particle in the 'h(a, n)*He reaction, and the 2.66 MeV distribution by demanding coincidences between the 2.66 MeV neutron and the associated 'He particle from the ?h(a, n ) He reaction. A coincidence gates on the analyzer, which then scores a pulse from the neutron detector. In this way, photomultiplier noise pulses and back- grcund counts are almost completely eliminated. In Fig. 7 are shown two pulse-height distributions, one for 2.66 MeV neutrons and one for 14.43 MeV neutrons. The one at 2.66 MeV fits the calculated curve quite well. The pulse height distribution for the 14.43 MeV neutrons covered a range of light output from 14.43 MeV recoil protons down to <0.01 "cobalt". The lowest bump in the 14.43 MeV pulse-height distribution (.01-.04 cobalts UNCLASSIFIED ORNL - DWG 64- 10720R TO INPUT DYNODE 10 PRE - AMP AMP - - - OYNODE 14 ANTICOINCIDENCE ANTICOINCIDENCE DYNODE 14 L.L. DISC 58 AVP COINCI- DENCE CIRCUIT ANODE U.L. -15- DISC NE- 213 INPUT NEUTRON CONE – ?H OR 3H TARGET RIDL DEUTERON BEAM TRIGGER COLLIMATOR TARGET - DETECTOR HOLDER (IN VACUO) 400- CHANNEL ANALYZER ABSORBER FOIL - 3HE OR “HE DETECTOR U.L. DISC FAST AMP L.L. DISC -ANTICOINCIDENCE Fig. 6. Block diagram for measurements of absolute efficiency and low-bias pulse-height distributions. UNCLASSIFIED ORNL-DWG 64-10755R A 6°CO CALIBRATION SPECTRUM لن ننيئا bococco - - " Somo V . . . . . r . 1.- - . . poco conos.com PROBABILITY OF EVENT PER LIGHT UNIT "! . HO T- - = 14.45-MeV NEUTRONS INCI- E DENT ON CURVED SURFACE O 2-in-diam x 2-in. NE-213-- ..... - - - - - - - - - - - .- - - 0.01 .. . : .: : : 2.66-MeV NEUTRONS INCIDENT E ON CENTER OF FLAT SURFACE OF 5-in.-diam x 1-in. NE-213- ...... ----..... ..... . . 0.001 0.01 0.1 PULSE HEIGHT (LIGHT UNITS) Fig. 7. Comparison of measured and calculated pulse height distributions. in Fig. 7) arises from carbon recuils alich is l'epruced iirly *:11 by the Munte Carlo Calculati.". Cae rexi tai bus 'il'e cientifici C(:.,:.'; e) 14 reactions proceeding by way uf 12 cin, nit? 22 ct 8 Be The lower of these twj burnps is nos ciaüed with alpha missi:!! via excit:i- tion of towu the 12.73 MeV level by neutrud elastic sca:tering, and the higher of the two buips is assziated with excitatiit. if to the 9.63 !!@V level. The Monte Carlo calculation fits these bumps rather well, except trat it indicutes that an additional 5% alpha decay via +2C+(~11.1 tev) is of 257 mb with a 40%, branching 12cm 19.63 kev) und 60% for 12C+(12.75 MeV). The two prwiinient bumps helped extrupulate the L, (E) curve i luw energies, in that small adjustments of L, (E) nud to be made to properly locate ine 170 (n, n'ou) bumps. The shoulder at about 0.9 "cobalts" which is due to the cín, c) BE (ground state reaction) was reproduced in the Monte Carlo calculation by using the angular distribution measured by Chatterjee and Ser for id:14: particles emitted by 24.5 MeV neutrons. The calculation reproduced this measured detail rather well, and this verifies the extrapolation f the L (E) curve of Fig. 3 from the 6.). MeV point (directly measured with the 24-Cm alphas ) to about 9 MeV alpha energy. -18. VI. OUTPUT The plotted values , Lo, , and L. f Fig. 3 are also given in Table I t: eliminate the error associated with making, and reading the plot. dis result of the experimental inerisurements of L (E), L (E), und L. (E), f btaining the pr per smearing as a functiun ut light output (or pulse height), und f btaining the prper (n,u) kinematics for ?.eutrons un tec, we obtained response functions for values of E up to 11.43 MeV. These üre shown in Figs. 8 und for the glass-encapsulated 2" x 2" dian NE-213 scintillator, vertical mounting und with the white reflector paint :: 5 t?plied by the ranuructurer, ünü atticheù tu un RCA 6810-A phot:multi- vlier with Dow Corning 10° centistokes silicone compound. In Figs. 10 and ll re shuwn the response functions of u 5" x 5" diaineter gliss-encapsu- lated liquid scintillutor. The encapsulation was for horizontal mounting, and was painted ith white reflector paint by the manufacturer. The tube was coupled in a Phillips XP-10149 flat-faced photomultiplier tube with General Electric LTV 602 potting compound. The initial Gaussian smearing widths applied to the Monte Carlo re- sults were plutted ind fitte with the following functions. Fir the 5" scintillátor, AL./L = 0.253 10.for 1 2 0.15 "cobalts", and 0 L/L = 2.374 L-0.25 for 1 <0.15. For the 2" scintillator, AL/L = 0.180 1-0.5 für L = 0.12 und AL/L = 0.35 L-Oots für < 0.12. Here AL is the full width at half maximum of the Gaussian sinearing function. As was indicated several times above, the efficiency of either the 2" or 5" detectors for an arbitrary bius setting Lg und for an energy En can be obtained by simply integrating the curves of Figs. 8 and 9 (for the 2" detector) »r Figs. 10 and 11 (5" detector) from Lay down to Lg. Such Table 1. Light Output in "Cobalts" us in Functio. f Particle Energy for Protons, Alphas, and Carbon-12 Recoils. Energy (MeV) Pritons Alphus Cirbon 20.Co 17.80 15.80 ll.10 12.60 11.20 10.0 6.4000 5.0000 3.96000 3.0500 2.3000 1.8000 1,3800 1.0300 .8000 .5900 1500 .1900 .1620 .1380 .1170 .1010 .0900 .0780 .0670 .0570 .0500 10.55380 4.06570 7.74480 6.65230 5.71570 4.86900 4.16520 3.54600 3.08000 2.65000 2.25000 1.92000 1.61000 1.40000 1.18000 .98000 .82000 .70000 :5000 .48500 .40000 .33400 .01130 .34650 .2780 .2220 .1850 5.62 5.01 4.47 3.98 3.55 3.16 2.82 2.51 .0390 .0312 .0310 .02744 .02443 .0223 .019 .11175 .1200 .1000 .0820 .001:0 .0180 2.24 1.78 .0162 .0148 .0134 .0120 .0108 .0100 .0480 .0103 .0340 .0290 .0248 1.58 1.41 1.26 1.12 1.00 0.891 0.794 0.708 0.631 0.562 0.501 .0181 .0156 .01344 .0115 .0101 .23080 .19000 .15900 .19000 .10820 .09070 .07650 .06460 .051470 .014660 .03970 .03390 .02920 .02520 .02190 .01910 .01680 .01475 .01301 .01148 .01022 0.355 0.316 0.282 0.251 0.224 0.200 0.178 0.158 0.141 UNCLASSIFIED ORNL-DWG 64-10756R - 60CO CALIBRATION SPECTRUM 0.2 MeV - w : 0.6 MeV 1.56 MeV PROBABILITY OF EVENT PER LIGHT UNIT . -20- | 3.96 MeV - - 14.43 Mev 0.01 0.01 0.1 PULSE HEIGHT (LIGHT UNITS) Fig. 8. Absolute differential efficiency for a 2" x 2" diam NE-213 scintillator for neutron energies shown. UNCLASSIFIED ORNL-OWG 64-10757R 100 0.335 MeV 60CO CALIBRATION SPECTRUM 0.946 MeV 1.94 MeV PROBABILITY OF EVENT PER LIGHT UNIT -21- 58.12 MeV | 0.01 0.04 0.02 0.05 0.1 1 0.2 . 5 0. PULSE HEIGHT (LIGHT UNITS) Fig. 9. Absolute differential efficiency for a 2" x 2" diam NE-213 scintillator for neutron energies shown. UNCLASSIFIED ORNL-DWG 64-10759R -0.2 Mp!! - 0.6 MeV - 60 CO CALIBRATION SPECTRUM 1 A 4.0 MeV 2.0 MeV PROBABILITY OF EVENT PER LIGHT UNIT -22- 4.0 MeV 7.0 MeV : - - - - - . MW 0.01 0.04 0.02 0.05 0.1 0.2 0.5 PULSE HEIGHT (LIGHT UNITS) Fig. 10. Absolute differential efficiency for a 5" x 5" diam NE-213 scintillator for neutron energies showri. UNCLASSIFIED ORNL. DWG 64- 10758R 100 0.4 Mev. 60CO CALIBRATION SPECTRUM - - 0.8 MeV. . - 1.5 MeV - M . - - - - - - 3.0 MeV i - - PROBABILITY OF EVENT PER LIGHT UNIT *** - . . . einidhi * II 1. " 11 O MeV ---. . 4 we . erence - - - - - II 0.01 0.04 0.02 0.05 0.1 0.2 0.5 PULSE HEIGHT (LIGHT UNITS) Fig. ll. Absolute differential efficiency for a 5" x 5" diam NE-213 scintillator for neutron energies shoitia -21- integration has been done, and the running sum is given for many values of E in Tables II (2" detector) and III (5" detector). Fron this can be constructed efficiency curves such as those shown in Fig. 12 for both the 2" and 5" detectors (2 bias levels for each). These curves are used di- rectly in our time-of-flight data handling code, and they yield total abs ,- lute tiine integrated flux incident on the detector during a time-of-flight spectral measurement. For use in unfolding pulse-height distributions, the response func- tions (the differential efficiencies) ure given for 12 energies for the 2" detector ir. Table IV, and for 15 energies fi:r the 5" detector in Tuble V. VII. SCINTILLATOR RESOLUTION For unfolding pulse-height spectra to obtain energy spectra, it is important to select a scintillator with reasonably good resolution. The resolution has been measured for a number of scintillators and was found to be a sensitive function of scintillator size, the optics of the scin- tillator photomultiplier combination, and scintillator material. For 144 MeV neutrons, the 5" x 5" diam NE-213 scintillatiir with white- paint reflector gave a resolution of about 15%. The 2" x 2" diam scintil- lator with white-paint reflector yielded 11%. Replacing the paint with a loose aluni num-foil reflector reduced this figure to 6.5%. This is further reduced to about 5.5% for a 15 x 15 dian or a l" x 1" diam NE-213 scin- tillator covered with a 2" x 2" diam tent of aluminum foil. A 1" x 1" diam stilbene crystal, packed in Mgo reflecting powder yielded about 3.6% and it l-cm x 2-cm diam stilbene with close fitting aluminum reflector yielded about 3.2%. The resolution was obtained from the straight line portion of -25,- Tuble II. Detector Erficiency as a function of Blus (in "Cubalt" Units) for Plane Purullel Mulutnerrullo Neut l'ulls Petipendicular tv Axes ut 2" x 2" dian Cylinder ut' NE-21., Scintillutur. NEUTRON EFFICIFICY vs HIASMR 2 IN HIlim. 2 IN DIAM. NE-215 * NEUTH ON ENERGY IN MEVE .335 .00 .946 1.25 1.50 1.91 2.98 3.96 5.47 8.12llon 14,4 DIAS .in .612 P13 11:15 012 .1! 21 . .575 554 .546 541 .512 526 74697509 . 416 .350 .272 441 . 169 113 371 323 .n24 262 143 124 .001 ono on31 0012 003 001 0 ,023 . C26 .l30 ..35 .(40 .646 .C.32 (60 ,057 .008 .N02 .505 454 442 .403 497 45.3437 399 489 447 432 .394 . 479 .4411 .426 ,391 .468 43.3 .420 387 .456 .425 .414 382 442 415 .4U0 .377 .427 405 .349371 410 .394 3911 .304 .342 .381 .38 1 ..357 .367 .310 350 345 351 .359 341 316 334 346 332 280 314 352 ,322 236 291 1647263.290 29A ,128 231 279 284 078 192 .256 269 039 14M 229 251 .016 102.196 231 .005 060 158 208 .001028 116 1181 0 000 014 149 002 036 112 011 074 0 .002 034 012 ,00? ņ .669 .679 ma ;91 . 105 . 120 . 138 .159 414,5 • 182 .609 .240 275 316 .363 .350 ,312 .205 226 .214 191 .343,305 .257 .214 .20A 18H .339 .294 ?49 .? .?Q1. 335 29.3 .24.3 .204,195 .181 .331 .289 239 200 189 177 328 .200 .235 196 .183173 183 .325 283 23.3 194 179 170 321 .281 231 192 176 167 ,31? .27A .?29 419 .124 2165 .313.270 227 19 172 164 309 .273 225 ,189 171 163 304 .270 .223 IBA 170 162 .299 267 221 18A 169 16 293 26.3 .219 185 16A lon .287 .259 .210 18.3 : 165 159 .281 255 214 182 el 157 .250 21 180 159 154 266 .245 20R 17A 155 152 258 .240 205 177 152 149 .249 .234 20 173 148 149 .239 .228 . !9A 121 .145 228 221 .19416A 142 142 215 213190 165 139 JA 2011 204 166 162 136 134 185 . 195 181 15A 132 12A 107 185 186 154 129 123 .147 173 171 149 127 LA 122 159 165 145 1125 114 196 .14.3 158 139 122 olin NOA ,125 151 134 100 104 142 12A a116 10? 079 133 122 112 097 053 121 Il 15 !A 2093 on27 109 TUA 104 189 005 395 101 099 066 0 079 on93 094 083 O non 083 087 080 0 037 072 081 076 015 .059 073-ler? 0 001 044 066 067 0 02 057 062 Din 047 056 .036 050 n23 043 10.9.2034 .025 .479 . 549 .631 .224 .832 .655 1.096 1.259 1,445 1.660 1.905 2.108 2.512 2.884 3.311 3.202 4.365 5.712 5.754 6.607 7.586 8.710) OOOO cccccccccccococcoccicccoo csocoooooooooooooooooo осоlc cocccic ccocccccc Oo соо eccocccic cocc oooooooco IC ссс! ccccc 003 o Jo ccc EFFICIENCY AS A FUNCTION OF BIAS FOR A SIN DIAM BY 5 IN HIGH NE-213 BTS п, 20 о.40 0.00 0.00 1.00 1,25 NEUTRON ENERGY IN MEV 1,50 2.00 ,00 4,00 5,00 1,00 9.00 1,0 14,4 СТО «С12 С 13 .T5 • 2 (27 (23 . 26 .C30 • 035 ост .619 ,866 873 860 .855 03: 540 ,846 ,863 848 846,825 .45, в 19 ,852 835 837 , 19 366 779 839 ,821 826 R13 282 722 822 806 „205 646 ,ВОО ,789 ,803 ,297 140 552 ,770 770 ,789 788 п39 445 730 ,748 774 277 .053 336 ,673 722 757 765 029 235 593 089 оп14 15 503 645 ,2 12 736 „По? ОВА 395 „566 681 ,2 17 047 ,285 ,508 ,640 о „п 22 186 4) 505 665 o oo o ,ТО9 30 32 628 004 OST 21п „ПОТ 025 126 322 512 одно.О66 22 1 4 29 ООЗ030 ,134 334 ООт о т о70 237 o ОО: 030 .147 .00 .009 (76 п ОО2 ,п31 ороо C52 ) ,419 ос69 1 • 105 . 12, 134 . 159 вул. „279 23 685 ,622 806 775 764 678 t 12 801,271755 ,671 ,11 795 ,67 745 665 ,610 762 735 659 .602 78 757 725 653 603 273 751 715 647 600 ,765 744 705 ,641 597 255 ,737 495 63. 59 ,744 ,128 685 630 591 73 ,219 625 62, 587 ,2 17 709 665 ,61A 583 20 697 654 612 579 ,682 684 64, 60, 57, 659 670 631 ,599 569 65, 6 в 592 563 59 634 605 583 557 546,612 591 57. 55, 483 585 575 565 541 404 55 559 554 ,535 31. 502 540 527 .219 451 520 52, 512 . 131 495 5 4 502 .o6. 296 466 492 49 207 , 433 479 483 по 5 .124 392 457 0 ,059 340 432 , .019 277 ,402 „Поз ,2C5 365 ,413 г . 1 32 32 г 388 п ,007 ,264 357 поп21 ,19A 521 пO3 13 27 , 267 217 ,П2 п .151 ПО? Св. п .п3 пO4 на I „209 24) 275 316 163 564 539 52А, 492 ,556 527 517 , 483 549,515 505 474 341 .50 ,493 466 53а 49, 481,450 533 ,486 ,469 ,45) 529 480 459 526 474 450 438 52 5 470 412 4 ? 52 1 407 436 423 51а 464 431 424 5 15 46 427 422 512 459 422 50А 456 414 416 50. 453 414 41 501 450 409 409 495 405 49, 443 399 4 yo 405 439 394 395 479 434 ,39c 17. 429 381 , а 464 424 377 378 ,455 ,418 372 37 р 446 4 1 367 359 ,436 4 0 4 36 347 395 355 334 415 386 34a , 321 404 374 ,34) 309 392 361 332 29А 38 347 123 ,237 36, 332 313 216 , 35, 36, 3 ( 2 ,205 331 300 291 253 Зоо 284 279 243 ,283 267 265 235 251 252 25г 227 2 IT 232 234 219 ,161 211 21A ,2 10 , С .185 гог , 199 , 154 , 152, 18 17 отп . .159 124 „Пое 132 158 ,П26 09A ,142 ООГ .059 124 с . 123 101 „ПОТ 072 -2С- 5" x 5" diam Cylinder uľ NE-213 Scintillator. for Plane Parallel Mülluchergetic Neutrons Parallel tu Axes of Tuble III. Detector Efficiency as a Function or Bias (in "Cobalt" Units) •435 • 479 49 3. • • • • с. сссссссссссссссссссссс. с сос с • 224 „E32 555 1,096 250 1,445 1.6п 1.02 a, 2..12 2,984 3.30 3,EO2 4,165 1.c12 5.754 6,07 7,86 • cc cccocc ccccoic coococoocc oc cccc. cocccccccccc mic cccccc Coocole oocc. с сссссссссссс MN - CCC clc cccccccccc cccccccccc се сосе „Оy9 cccc UNCLASSIFIED ORNL-DWG 64-10754 - CYLINDRICAL NE 213 SCINTILLATORS - - - 5-in.-diam x 5-in.; BIAS=0.04 COBALTS - - -- - - - - - - -- - - EFFICIENCY -2;- - . 5-in.-diam x 5-in.; BIAS=0.08 COBALTS ............. ..... ...... -- 0.2 W - 2-in.-diam x 2-in.; BIAS=0.04 COBALTS 42-in-diam x 2-in.; - ill BIAS=0.08 COBALTS : ----------------------............. .... co 1 2 3 4 11 12 13 14 15 5 6 7 8 9 10 NEUTRON ENERGY (MeV) Fig. 12. Typical neutron-detection efficiency functions as used for analysis of time-of-flight data. PUI SE HEIGHT 0.335 MEV 0.6 MEv0.945 पEv 25 NEVISO MEV 1,91 MEV 371 19.089036 10.371890 .716326 20.145219 20.663601 21.258274 21.902369 22.567061 23.224800 23.859646 24.463748 2531565 25.550417 25.90642 26.300581 26.410219 26.239548 75.71706 24.785360 23.43619 21.693169 19.625241 17.331893 .319968 .249904 5,1769.. ७.109389 ,,052390 5,00701 4,97004 4,9390.8 4,906604 48700.0 4.2786. T720 4,730870 4.630609 4,631749 4,34743 4.39353 कारबाण 4.450709 4,40712 4,364405 4.323515 4.235357 .0105 .010 .015 .0120 .0126 .017 .013. .0145 .0151 .015 .0166 017 .0102 .0101 .0200 .0200 .0210 . .0240 .0251 .0263 .0275 .0288 र .0316 .0331 .0347 .0363 .03a0 .0390 .0417 .0437 .0457 .0419 .0501 .02 .0550 .0575 .0603 .0631 .0661 .०० .0724 .0759 .0794 .0832 .0871 पर .0955 परक 8.884234 3,825534 8.767020 8,722230 ..698753 1607AN 8.710398 8.730377 .,741823 8.757074 8.751195 ..ाहा 8.747964 ..753667 ..776755 8.824010 ..901140 .013055 9,163935 9.356706 9.592261 9.868701 10.180451 TOगर67 10.860835 11.214167 ।।.530656 1788567 11.952865 ।।.901937 11-852747 11,527284 10,998336 TO.273585 9.3801।। ठा 7.270679 6.164701 5.005549 4,105717 3.225002 वहा67 1.844221 1.342898 .953606 660380 .445991 720 188627 उ.967 3.869446 3,772750 3.602205 3.602102 3.534875 3.400430 3.436410 3.3.9116 3.364775 3.330501 3,295247 3.2.37 3.222745 3,137873 3.155005 3.124129 3.094618 3.065575 3,036274 3.006325 2.975672 2.944456 2.012755 का 2.847843 2.814524 2.790738 2.746000 2.713220 2.600668 2.619891 2.621718 2.59.6976 2.576475 2.560979 म्हारब 2.685975 2.535228 2.408003 2.303191 2.219034 2.152693 2.100448 2.0582।। 2.022195 1.989496 1.958371 T155 1.898913 1.870019 1.844238 1.010595 1.793399 1767975 1.741803 ।.714680 1.686720 ।.658349 1.630013 Tooरा 1.575274 ।.549555 1.525103 1.502145 1.48031। 1.459406 1.439084 ।.419025 1.398988 1.378863 1.358698 TIJ००० ।.318970 ।.299837 1.201395 1.263677 1246634 T20 ।.214213 1.198762 1.103914 1.169893 1.156978 4,220647 4,15725 4,17700 4.155614 1,162010 4.17064 4,199556 4,222163 4,269736 4.333522 4.414017 उपर563 3.311890 3.204320 3.105990 3.010674 2.946667 2,086210 १.835757 2.791682 2,750312 2.708013 2.665692 2.620763 2.574850 2.32894 2.483877 2.439928 2.396956 2.3458 2.312571 2.270968 2.23015 2.190897 2.153873 सामा16 2.089195 2.062310 2.039032 2.010054 2.000917 ।.984056 ।.967016 1.948700 1.928399 1.905742 1.881135 TOSमरण ।.829161 i.803782 ।.179984 1.758328 ।.739110 मरा ।.708264 1.696758 1.688130 1.682086 ।.661222 TOPउपका 1.691313. 12.539998 10.266278 ..192492 6.373177 4.834271 उ.376646 2.501951 I.019378 1.251041 .841530 .552999 .उमरण .223297 .137344 .082707 .048782 .028193 .015072 .008874 .004837 .002588 .001359 ,000701 1001 .000177 to Axts of 2" x 2" diam Cylinder ut NE-21% Scintillatur. "Cubalt" Units) for Plane Pirallel l-klenergetic Neutras perpendicular Table IV. Absolute Differentiul Erriciency is i Function of Light Output (in 4.620362 4.138449 4,8569.9 4.955066 5.050426 कारणाप .100289 3.041630 4.916975 4,723403 4.452692 कार 3.753244 2.547575 2.550580 2.560354 2.576849 2.599884 2.हर 2.663686 2.702888 2.745131 2.788239 2.829131 उठा 2.0.7833 ।.135643 PULSE HEIGHT 0.335 MEV 0.6 MEV 0.945 MEV 1.25 MEV 1.56 MEV 1,91 MEV 100 .1047 . 1094 114, .1252 1259 TUTT . 13 An 00017 ,00n042 ,000020 ,00nong 000014 Oonon2 UULUT Bonono J30072 1926012 2,469009 2,063607 1,665329 1. 305661 T1276717 1.121541 To! 17303 TIT03375 1.720396 1.141418 1.765517 1.791066 1,815792 ... TITUT20 072124 042941 024930 016114 007793 TUUTT97 002205 001200 000657 000252 000099 1000030 000009 000003 000001 .000000 1000000 ,73306 537305 39049, .257323 .137113 09023 ,040456 024215 0111.6 004769 ,00 1041 TUUSTU ,000205 0000,0 1000015 ,0000913 ,000011 ,000000 .1314 . 15.5 . 1669 131 . 1821 . 1905 . 1995 . 2009 .216 .220T .2399 .2512 .2631 .2754 .2814 .3070 .3162 .33 11 .3467 .3631 .3802 39. . 4169 .4365 .4571 .47.6 .5012 .370 .5495 .5754 .6026 .6310 .6607 .691 .7244 .7566 .7943 .6316 ..7in 9121 .955 2.606776 2.6:4310 2.640354 2.715422 2.693655 2.72166 साया 2.241606 2.750043 1.59666 1.639770 T307517 To 5204T 0913930 694004 301612 . 343086 4220726 on 2139 074127 038172 017992 007701 002966 .001021 000311 0000.3 .000019 000004 000001 UUUUU 000000 1.851211 1.852392 1.840009 1,826123 1.796034 1,750415 1,585757 1.602101 1,498660 1.374545 1.229295 1.77T26 .883568 .696489 .315449 354067 .223174 ,127629 ,065494 029811 011930 004144 ,001237 Tol14307 Tol15665 TOMTOTTU 1125100 1.130858 Tol331 88 T.145141 T.156965 TiT 13650 T.167479 To198227 1. 203364 1.200439 1.167546 To T73667 T120719 T.083333 10:20 100 9.62332 .804474 .791730 .682367 556214 , 426525 .299316 169666 No109 052563 022275 008006 ,002 405 000595 00012 000019 000002 .000000 .000000 Table IV (continued) N00067 ,000012 000002 ,000000 ,000000 ooooooooooooooooobooooobo oooo poooooooooo po PUI SE HEIGHT 2.98 ५EV 3.96 MEV 5 .91 v .12 MEV ||.O MEV 14,4 MEV - - •0100 AAM .0105 .0110 .0115 .0120 .0126 उर .0139 .0145 .0151 .015. .0166 .017 .0182 .0191 .0200 .0209 .0219 .0220 .0240 .0251 .0263 .0275 .028A .0307 .0316 .0331 .0347 .0363 .0380 उपा .0417 .0437 .0457 5.05496 4.379364 3.808562 3.325225 2.916396 2.573126 2.रहमा 2.044095 1.843677 ।.677127 1.539189 1.425319 T.31843 1255718 I.194271 1145007 I.105559 1.073710 TU7502 1.025378 I.005963 .988508 .072324 .956879 741730 .926405 .91863 .894513 .877529 .859992 3.216060 4.963168 4.636828 4.271771 3.882246 3.483846 Jणयह 2.717697 2.372215 2.061361 ।.780447 ।.5542।। T.357360 1.195171 1.063856 .959089 876335 1811202 175079 .718519 .681931 .656959 .633193 .612675 .594769 .577066 .565286 .553210 .542634 .533332 1570वण .517498 .510391 1503454 406452 .489201 हामाश .731702 5,403548 4,973373 4.1149 4,036611 उ737017 3.1177.3 2.100368 2.322592 1988278 1698231 1,5ाण 1,243446 1.071576 93081 .8165.6 .१24581 6505 91400 ,343984 .595773 47495 449829 429097 11690 .396758 .39369 37| .351103 : 2.667461 2.528069 2.398176 2.278579 2.170081 2.072741 TOP852 ।.905149 ।.828820 ।.752593 1.673262 1.586686 व0019 1.401019 1.301383 1.198585 1.095358 .993368 83917 .717962 .706238 .619398 .530।।। .463071 .394073 .334426 .281870 .237510 .201285 172887 रागा .137301 .128608 .124825 •125028 .128301 133778 .140691 - 6. 9076 5.712537 5.345988 4.032101 4.487733 4,030640 3.5773 3,143207 2.737316 2.366639 2.034263 1.740604 ।.434205 1.262502 1.072405 .010662 .714109 .659766 .564076 486902 .423524 .372607 .332203 .300532 215995 .2,784 ,242881 .232055 .223846 .217550 •7259 .200513 .204958 .201666 198458 195223 1907 108431 104952 181313 ।77563 173706 •69750 155719 .61660 17646 153772 .150137 16630 .14391। - 4.47613 4.335658 4.176313 4.005106 3.829138 3.653869 उपहार 3.312592 3.142867 2.968260 2.784460 2.588600 2.380061 2,160802 1.934960 ।.708150 ।.486576 1.276121 1081685 .906751 .753272 .621769 .511575 .421156 .340453 .29।।77 .247038 .213914 .।89948 173585 Ti567 158879 158718 • 162395 .169288 178798 190328 .203273 .217026 .230987 .244570 .251214 .26 .277612 .284462 .280609 .289846 .288116 .263527 .276338 -10- (Pari:: :'! '.) 1 - - 1431587 1473559 .465135 .456380 .0501 .0525 .0550 .0575 .0603 .0631 .0661 .0697 .0724 .0750 .0794 .0832 .0871 पार .0955 .822404 .802012 .783177 .763435 .743950 725012 .706930 .689535 .673536 .658570 .644714 सामम .619983 .608897 .5985।। .538700 .570319 15711 .56।।47 .341995 1333292 ,325000 .31719 '.309742 1302649 .205852 .299300 .232958 276738 .290715 रा15 .256800 253056 .247282 .241450 .235615 17TT 2237.5 .438433 राग .420762 412260 .403992 .305908 .3,7915 13793 .371885 .156463 .164509 .172312 17660 186305 .191912 .196066 .198313. .198250 1963 190372 PUL SE HEIGHT 2.94 MEV 3.96 MEV 5,97 MEV 0.12 MEV I 100 MEV 14,4 MEV 100 .1047 .1096 3I .542780 .533448 .524224 .515409 .507332 .5002741 .494379 .489074 .483452 .479974 .476990 A .1202 .1250 . IN .13an 1445 .1510 .1585 .1660 .T7W .1820 .1905 .1995 .2089 .2188 .2201 .2399 .2512 .2630 .2754 .2884 . .3162 .33।। .3467 .3631 .3802 .30 .4169 .4365 .4571 .4786 .5012 बर .5495 .5750 .6026 .63in .6607 . .7244 .7584 .7943 8318 .870 .470857 .467075 .462703 .457939 .453163 48818 .445320 .442051 .441792 .441703 .442349 पटक .444320 .445263 .446292 .447494 .448531 .440387 -51- उस .355621 .347539 .339654 .332117 .325055 5700 .312715 .307339 -302098 .297007 .294044 1290701 .287635 .284601 .281705 .278552 .275170 1271570 .267827 .264049 .260336 .256801 .233606 .25ाण .249391 .249051 .250140 .252470 1255491 •256371 .260217 .260414 .258990 .256722 .254792 गा 1255390 .258302 .262226 .265759 .266994 1261266 .256943 ,245772 .2327 ।। .220072 209046 267 183126 गण 211403 .205211 129122 103296 137707 2523 177605 173136 150848 164539 160299 पण 151500 147013 142715 138706 135348 T 130539 129125 128096 .127181 ,125869 रासाय 12107 ।।9456 ।।1104 115198 ।।3635 112466 ।।।।।।। .109224 ,106724 .103813 101149 .09 079044 .100293 102371 104441 105839 139241 .137360 .135625 133892 132030 .2947 127596 125009 .122320 .।19655 17068 . IN00 ..।।2935 11738 .।।।192 .।।।151 .।।1288 •ITTET .| 10348 .108574 15851 102471 .098901 . 01 .092946 .070998 .089681 .088768 .088001 .087157 .006088 .094721 .083040 .091064 .078038 . 00 .074020 .071762 .069779 .068052 .066445 बाण .062779 .060642 .098739 .057527 .056528 75200 .03484 .266 .255723 .243178 .229706 .215613 .201412 .187242 173489 161169 .150827 139531 129632 •ा2737 .।।4727 .109716 106043 • 103294 .100953 098459 .095289 .091046 1185552 078933 .071630 .060 .057678 .052265 .048310 .045769 .044417 .043940 .043982 .044180 .044222 .043925 .043264 वराज .041168 .039935 .038734 .037753 .036946 उ6226 .035509 .034858 .034427 .034283 ,034331 कम .034564 गा 173207 .162430 .15:194 -140305 •130504 •122406 •।16463 .112934 110992 ।।। 052 .113539 .13205 124624 .132195 .140150 .147502 .153517 15707 .157470 .154562 .148512 140000 129964 साह .109113 .099744 .091645 .084960 .079640 .075455 .072014 .068854 .065594 .062105 .058539 10ाण .052115 .049373 .046880 .044738 • 043154 बर723 .041719 .041020 .039262 .035885 •031274 .026715 .023401 Ta',le IV (.walimuta) 900 0Nm 438210 .425635 .400002 .387336 उ666 .340392 .335759 .325524 .3।1440 .29017 मारण 187183 .।।9220 .061445 .024586 .007424 .001565 .000265 10681 106438 104029 102410 ,099507 100 0327 300 C पाशा .9550 PULSE HEIGHT MEV 3,96 MEV 5.09 MBV 6.12 MEV .11.0 MEV ...14.4 MEV . IN __ WOUJU .000002 .000000 051166 : 01 Iulia 151736 oli 5950 .061606 030322 1009375 .001 925 0002, .000020 00000 1 ,000000 702TUU 020472 019729 ** 019120 010677 010176 05136. 031614 051610 UT116 005071 098573 090376 100232 102444 mur 10.716 112052 . 109917 102663 098976 TUW030 ,090446 073275 ,034300 027399 ,000237 TUOT379 000112 ,000004 000010 ,000000 050394 030037 052007 5052913 052006 052362 051944 6031960 032292 032148 031440 020779 030040 TOVOU 1.0471 1.0965 . 1462 1.2023 1.25.9 T.JUS 1.3804 1.4454 1.5136 13649 1.6596 TN70 1.8197 1.9055 1.9953 2.0893 2.1871 2.2009 2.396. 2.5119 2.6303 2.7542 2.0040 3.0200 3.1623 3.3113 3.4674 3.6316 3.8019 J, YUTT A.1607 4.3632 4.5709 4.7003 5.0119 5.2701 5.4954 1.7544 6.0296 6.3096 6.6069 . TOS 7.2444 7.5656 1.9433 8.3176 8.7096 On 9.5499 TU39763 034926 ,034660 ,034522 ..034036 033502 TUNUCU ,032685 032270 031520 030665 03005. ,029635 029055 ,026134 027366 ,026921 , 026 486 1025093 ,026049 ,026546 026307 025799 026047 026973 ,027651 027149 026439 ,025951 . 025835 023905 ,024219 1021 104 014496 ,004910 ,000506 1000011 ,000000 -32- 047610 045640 039193 024551 008470 .001238 000063 .000001 .000000 017321 017444 017392 017299 017396 017132 010036 017906 017134 016140 013641 015767 015653 015394 015327 015584 015669 015165 .014512 014237 .014107 014303 01 4561 UT1992 015249 014926 014699 015365 014969 101439A 014036 013176 012389 .01 1938 007941 01900 000102 000001 .000000 Taile IV (continued) Oo OoopooOoop ooooo oo OO PULSE HEIGHT 0.2 MEV 0.4 MEV 0.6 MEY 0.8 MEY 1.0 MEY 1.25 MEY 1.5 MEV 2.0 MEV 3,300103 3.237159 3,180504 3, 129392 3.082861 3.040052 3,000212 2.962682 2,926921 2,892491 2.859038 2,826318 2,79710 2.762549 2,731 436 2,700872 2,670964 2,641837 2.613653 2.586569 2.560749 2.536361 0100 .0105 .0110 . 0115 0120 .0126 01322 .0136 .0145 0151 .0158 .0166 0171 . 0182 0191 .0200 .0209 0219 0229 .0240 .0251 .0263 .0275 .0200 0302 0316 0331 .0347 .0363 .0360 . 0390 .0417 .0437 0457 0479 .0501 .0-25 0550 .0575 .0303 0631 .0661 . 0692 .0724 .0759 0794 .0832 .0871 0012 .0955 2, 2017 53,628049 52,838442 51,777779 50.453273 46.876949 77,065410 45,0383 n 1 42.820428 40, 439375 37,925822 35, 313031 32,636076 29.930433 27.231926 24.574574 21.990343 19.508140 TT,153076 14,9455 28 12.901474 11.0312.2 9,340957 7.831403 1.799975 3.339444 4,340432 3.490 9n5 2.777301 2.1855n1 T, 100015 1,308356 ,995025 .7479,8 .555532 .407610 •295513 ,211547 149514 . 104473 .071926 0489n1 7032073 .021708 .014186 .009118 005713 00368 1002230 .001354 12.104256 12.979660 13.902951 14.950671 16.146694 17.461860 10.89 1220 20.414 888 22.005336 23.627295 25.238617 26.792794 28.230527 29.524598 30.60 1097 31,422592 31.950967 32.157479 32.024695 31.547649 30.734206 29.604518 26.190774 20.533772 24.681639 22.687205 20.604923 18.486301 16.387436 14.347 195 12.405549 10.592659 8.930649 7.433477 6.107634 4.952928 3.963611 3.129608 2.437710 1.872781 1.418799 1.059732 1700225 .566! Us 404696 .284978 . 197625 . 134930 .090679 .059967 6.396291 6.430176 6.473751 6.530133 6.600913 6.688289 6,795040 6.924573 7.080892 7.268637 7.492901 7.759201 8.073224 8.440613 0.866596 9.355478 9.910236 10.531834 11.218557 11.965339 12.763212 13.598625 14.453366 15.304424 16.124379 16.882432 17.545551 16.080482 18.455635 18.643653 10.623315 18.381714 17.915420 17.231497 16,3471 48 15.286962 14.091298 12.793430 11.437734 10.066396 8.718906 7.429969 6.227877 5.133517 4.160179 3.313836 2.594042 1.995046 1,507173 1118170 6.284911 0.103115 7.927306 7.750 103 1.595A06 1.440601 7.292929 7.1531 45 7.021647 6.898455 6.785330 6.661747 6,380962 6.508062 6.440506 6.367943 6.352519 6.336873 6.344100 6.377A31 6.442 152 6.541525 6.680639 6.86401 7.095863 7.378567 7.71407* 8. in 1175 8,535913 9.010793 9.514413 10.031272 10.542073 11.024401 11.453626 11.804402 12.052441 12.176066 12. i 58246 11.9A7980 11.661650 11. 183612 10.503912 9,827929 8.994893 8.096004 7.162852 6.226170 5.TROT 4.453465 6.065440 5.97 A640 5.872797 5.767797 5.663684 5.560630 5.451936 5.358954 5.261117 5.165912 5.073831 4.985386 1.90 1097 4,821509 4.747161 4.678558 4.816236 4.560779 4.512609 4.473053 4.442352 4.421736 4,412544 4.416335 4, 435045 4.470993 4.526859 0.605651 4.710543 4.844802 5.0 I 1365 5.212619 5.449861 5.723030 6.029992 6.36357 6.725150 7.096660 7.468597 7,626453 A. 154137 R. 434726 8.657312 8.760930 8.033709 6,776149 8.610314 R.335236 7.955015 7.47A636 3,650575 3.60 376 3.558828 3.515264 3,475 114 3.437914 3,403259 3,370154 3.340450 3.311860 3.204952 3,25962A 3.235A25 3,213527 3.192729 3.173416 3,155601 3.139323 3.124604 3.11 1494 3.100066 3.090431 3.0A2783 3.077344 3.074440 3.074511 3.078130 3.0A5986 3.008946 3.11 6071 5. i 2612 3. 179963 3.225769 3.283885 3.336209 3.444AON 3,551649 3,678570 3.826900 3.997625 4,190347 4,403713 7,634747 4.678665 5. 128815 5.376727 5.612315 5,824317 6,000991 6.130812 2.492516 2.473330 2.456134 2.441035 2.428108 2.417447 2.409134 2.403272 2.399971 2.399413 2.4U 1862 2.407676 2.417369 2.431633 2.451331 2.477559 2,511597 2,554918 2.609126 2,67587 2.756519 2.852 483 2.964490 3.092659 3.236130 3.392923 3.559746 2.622515 2.543560 2.473500 2.411565 2.356563 2.307741 2.27337 2.225671 2. ISI 104 2.160076 2.132063 2. 106565 2.003210 2.061589 2.041343 2.072181 2.0038 40 1.966109 1.968 IT 1.95 1 200 1.934991 1.918264 1.901661 1.8e5n81 1.868534 1.852021 1.8:5553 1.819123 1.802744 1.726434 1.71021T 1.75 4095 1.7:8137 1.722396 1.706955 1.681521 1,677432 1.663646 1.650745 1.638932 1,628430 1.619498 1,612382 1.6C7305 1,684@37 1.66.5111 1.608459 1.616002 7,627770 1.644690 -33- to Axes of 5" x 5" diam Cylinder of NE-213 Scintillator. "Cobalt" Units) for Plane Parallel Monuenergetic Neutrons Parallel to Table v. Absolute Differential Efficiency as a Function of Light Output (in V PULSE HEIGHT 0.2 MEV 0.4 MEV 0.6 MEV 0.8 MEV I.O MEV 1.25 MEY 1.5 MEY 2.0 NEV - .1000 1041 .1096. 1202 1259 . . . .000010 .000477 .000277 .00018 .000089 .000049 .000027 .000014 .000008 .000005 .000002 .000001 .000000 .039014 .024966 .015706 .009713 .005903 .003525 .002067 .001190 .000729 .000439 .000194 .000081 .000032 .000012 .000004 .000002 .000000 .000000 .814496 .582374 .408642 .201320 189961 .125781 .001646 .051940 .034360 .022778 .012076 .006116 .002952 .001354 .000539 ,000242 .000094 .000034 .000012 .000004 .000001 .000000 .000000 3.661660 2.952963 2.334909 1.819473 1.373874 I.021645 .743805 .529996 .385372 .282786 .178293 .107916 .062552 .034632 .010265 .009150 .004342 .001946 .0001 .000325 .000120 .000042 .000013 .000001 - 1380 1445 1514 .1585 .1660 TI .1020 1905 .1995 .2009 .2188 .2291 .2399 .2512 .2630 .2754 .2884 .9020 .3162 .33।। .3467 .3631 .3802 .3981 4169 .4365 .4571 .4786 .5012 .5240 .5495 .5754 .6026 .6310 .6607 .6918 .7244 .7586 .7943 ..310 ..710 .120 .9:50 6.920716 6.298556 5.633172 4.946978 4.262477 3.600601 2.979530 2.113576 1.961386 1.605004 1.190566 .865907 .602031 .401976 .256960 .156746 ..90928 .040981 .125033 .012651 .005770 .002461 .000973 .000356 .00120 .000037 .000010 .000003 .000001 6.203417 6.210235 6.145285 6.005671 5.791953 5.507988 5.160978 4.761000 4.359473 3.990010 3.520846 3.039296 2.561360 2. 102640 1.677131 1.296221 .96780 .695788 .479970 .316499 .1987।। 110288 .066467 .035001 .017322 .007954 .003379 .001321 .000472 .000154 .000045 .000012 .000003 .000000 .000000 .000000 3.36 3.903408 4.066998 4.214616 4,337875 4,428504 क.479030 4,483312 4,432482 4,349096 4.235084 4.067195 उ7070 3,579002 3.269746 2.928215 2,565104 2,192461 T.823071 ।,469718 1,144311 .826766 .613967 418986 127063 104893 .094004 .049874 .024470 .011029 .004536 .001690 .000566 .000169 .000045 .000011 .000002 .000000 .000000 .000000 1.667600 1.657403 I.715010 1.78812 I.836957 '.962304 1.07700 2.06080 2.115605 2.194046 2.200042 2.388438 2. 46 2.569660 2.642512 2.665634 2.723460 2.731410 २.एक 2.617500 2.515643 2.383642 2.235512 2.045634 1.840128 1.636670 1.414888 1.107350 .960499 .742925 .544502 .374787 .239851 .14150 .075977 .036879 .016007 .006151 .002072 .000605 .000152 .000032 .000000 .00000 .000000 .000000 Tubie V (continued) -34- -००००००००००००००००००००००००००००० ०००००००००००००० ०० PULSE WEIGHT 3,OMEv 4.0 MEY 5.O MEV 7.0 MEV 9.0 MEV 11.O MEV 14, MEV .... -35- .0100 .0105 .0110 .0115 .0120 .0126 .0132 .0138 .0145 .0151 .0150 .0166 017 .0182 .0191 .0200 .0209 .0210 .0220 .0240 .0251 .0263 .0275 .0288 .0302 .0316 .0331 .0347 .0363 ,0380 .0398 .0417 .0437 .0457 0479 .0501 .0525 .0550 .0575 .0603 .0631 .0661 .0692 .0724 .0759 .0794 .0832 .0871 1.5206 6.287138 6,059294 5,837004 5,620022 5,408128 5.2010K2 4.998619 4,800605 4,606934 4,417566 4,232569 ब,052000 3.876332 3.705505 3,540153 3,380321 3,226413 उ,078712 2.937433 2.802754 2,674720 2.553571 2,439102 2,331315 2,230038 2,135266 2.046666 ।.964057 1,887192 ।.815000 1.749567 1688142 1.631108 1.5783.9 ।.529118 ।.4832।।. 1,44017 ।,399671 ।.361326 ।.324045 ।.289902 1.256574 1.224450 1.193548 ।।63831 1.13534 I108034 5.276792 4.930137 4.606351 4.305068 4.025585 3.766995 3.528158 3.307836 3.104717 2.917447 2.744713 2.505253 2.437873 2.3015।। 2.175179 2.057994 1.949180 1.848064 1.754038 1.666572 ।.585185 ।.509454 1.439004 1.373488 ।.312584 1.256007 1.203491 1.154790 I.109668 I.067913 1.0293ाव .993663 .960762 .930418 .902433 .876623 .852813 .830826 .810506 .791708 .774298 .758158 .743170 .729222 .716204 .704002 .692510 .601609 3.362100 3.075785 2.812717 2.572575 2.354637 2.157958 ।.981306 1.823631 1.683298 1.558931 1.449072 1.352259 1.267100 1.192260 1.126505 1.068686 1.017773 .972848 .933102 .897832 .866435 .838396 .813287 .790744 .770462 .752175 .735660 .720707 .707126 .694730 .683332 .672746 .662778 .653243 .643957 .634750 .625475 .616009 .605267 .596206 .585820 .575155 .564284 .553314 .542369 .531583 .521087 .510986 उ.रा857 2.953371 2.708688 2.480819 2.269610 2.074818 1.896025 1.132734 I.584353 1.450197 I.329523 1.221530 I.12534 I.040193 .965099 .899195 .641597 .701420 .747841 .710024 .617195 .648636 .623686 .601747 .582291 .564864 .549087 .534647 .521302 .508869 .407220 .486267 .475956 .466262 .457173 .448692 .440819 .433556 .426900 .420840 .415356 .410423 .405909 .402039 .398484 .395277 .392355 .389645 8.770049 8.343783 7.195670 7.437466 6.973054 6.506583 6.042143 5.583763 5.135231 4.700056 4.281353 3.881852 3.503709) 3,148937 2.818584 2.513506 2.234056 1.980140 ।.751206 1.546678 1.365215 1.205566 !.066225 .945564 .041662 .753454 .678569 .615571 .562876 .519013 .482622 .452479 .427493 .406712 .389318 .374623 .362062 .35।।72 .341591 .333043 .325314 .318254 .311748 .305710 .300077 .294792 .289806 .205062 7.633716 7.491297 7.334204 7.160890 6.970036 6.760799 6.532764 6.286052 6.021407 5.740160 5.444237 5.136142 4.616868 4.4958।। 4.170633 3.847060 3.528857 3.219601 2.922591 2.640687 2.376266 2.13|150 1.906575 1.703186 1.521069 I.359812 1.218557 1.096095 .990941 .901440 .825844 .762374 .70930 .665020 .528008 .596931 .570613 .548036 .528347 .510819 .194886 .480083 .466067 .452513 439290 .426256 .413350 .400548 1,270735 5.892850 5.590427 5.3022।। 5.026839 4.763016 ब,50947 4,264951 4,028404 3.798857 3.575518 3.357763 उकाठण 2,937520 2.734809 2.537155 2.344882 2.158455 19761 1.805540 1.640420 1.463812 ।.336432 1,198914 1.0701 .955547 .850415 756540 673874 1602205 .547152 490185 .448646 415766 .390692 .372517 360208 .393076 .349898 .349829 .351965 .355447 .35972 .363310 .366321 .367982 .367897 .365820 Table V (culitinued) . 11 : : 20F2 993 P ORNL UNCLASSIFIED . . . .. . ... in.c... ... ***.,***** LL . 1 + 1."',"19 PULSE HEIGHT 3.0 MEV 4.0 MEY 5.0 MEY 7.0 MEV 9.0 MEV 11.0 MEY 14,4 MEV .651412 .64 1002 T.034372 T0128; ,99296 .9749 na .958718 7932277 , 922123 19125n9 ,902410 .897237 89lio , 1000 ,1047 in96 . 1148 . 1202 •1259 1318 . 1380 1445 151 : 1585 . 1660 . 1730 1820 1905 . 1995 .2089 .2188 .2291 .2399 .2512 .2630 .2754 .2884 .3020 . 3162 .3311 .3467 .623413 .614420 .605620 .597059 .588 ANO 580261 .571385 .564278 .557712 .551771 .546522 .542017 .538 264 .535242 .532906 .531200 . 530082 .529561 .529688 .530556 .532250 .534816 .538233 .542439 .547398 .553155 .559901 .567932 .577576 .5A 9073 .602489 .617683 .634 330 .651915 .669681 .686434 .700348 .706905 .709202 .696667 .676036 .642225 .600400 .554844 .508664 . 461130 . 400530 ,463711 , 475641 .467979 . 400612 . 453409 . 446236 ,038991 .43 1602 ,423612 . 415765 .406239 .400710 393340 .386292 .379755 .373871 . 368706 .364240 .360369 .356927 .353749 .350691 .347691 .344771 .34 2046 ,339711 .338011 . 337211 . 337450 .33A921 .341426 .344723 . 348450 .352278 . 356038 .359779 .363719 . 368119 .373 148 .376978 .385700 .393656 1403323 .415070 .428744 .443357 .457156 .468107 . 474400 .474452 ,892978 .893725 396239 ,9004nl 9C6125 .913415 922448 ,933477 946974 ,983447 1983773 1.007959 Ti036070 1,067284 T.100019 Til31931 1,100U3 T. 180921 1.191316 T, 188393 T170178 1,1362-7 1,087875 1027427 7958321 883042 802055 ,713174 ,613043 ,500913 ,381351 ,205051 164923 090273 042050 .017148 005771 0016 no . 382102 .379555 ,376883 .374025 .370931 .367548 .363836 .359763 .354895 .349419 .344539 .339245 .333541 .327440 ,320968 .314156 .307036 .29964 .292007 .284148 .2760?1 .267861 .259502 .251087 .242739 .234591 .226874 .219798 .213553 .218236 . 203806 .200046 .196637 193257 . TA9 703 .18597 .182247 , 178779 .175792 .173430 . 171797 .171037 .171333 .172771 .175119 . 177759 .179904 .181035 .181193 .TA0921 .221770 . 267512 .?63275 .259057 .254870 250736 .246690 .242769 .238806 .234759 .231324 .22A009 .225101 .222335 .219808 .217530 .215517 .213796 .212392 .211320 .217566 ,210090 .209817 .209667 1209573 .200515 .209470 .209505 .200645 .209877 .210102 .210114 .209599 .2012 18 .205845 .201795 . 196793 191034 , 185058 . 17937! 174216 . 169446 .1045AO ,159089 152728 . 145701 .138543 . 131858 126069 ,121218 ,362959 350797 33081 327069 315440 33886 .292338 .280734 269662 .259338 .247691 236020 .224437 ,213115 ,202279 . 192174 .183030 .!75026 168246 • 162670 . 158171 . 154552 .151587 149077 .146884 ,144 943 . 143236 .141762 , 140490 139354 138269 .137163 .. , 13598R .1347 in 133264 131526 .129336 . 126577 . 123281 119677 . 116125 112961 ill0321 . 108097 . 106647 103986 C1920 10001 .088415 .097096 377567 334221 327949 .317302 306883 .297292 7209097 282301 .278441 ,215093 .274557 .276767 201728 289226 .296817 349821 .321 335 . 332290 341530 .347927 .350523 .349652 ,342159 .330839 .315924 .297997 .278334 .258136 .238450 .220079 20348 U . 108861 .170246 . 165573 .156733 149552 143734 138859 134 467 130226 , 12603 122022 ol18219 oll 4314 . TV9479 102705 093524 082611 101 1669 062523 -360 Table V (CC.bitirutd) . 3A02 . 3981 ,4169 . 4365 .4571 . 4786 5012 ,5248 .5495 .5754 , 0026 .6310 .6607 0918 .7244 .7586 , 7943 .8318 .8710 , 9120 .955 NNN 9 PULSE HEIGHT 3.0 MEV 4.0 MEY 5.0 MEV . 7.0.KEY. 20 MEN 11.0 MEY ... 14,4 MEV 7000359 000004 0000n9 00001 0000nC 00000 13213905 . 265642 181719 105938 105 1033 .019739 003979 .001366 .000240 .000030 000003 .000000 .000000 .000000 ,466302 ,449350 .423011 .390694 .357271 325940 297037 , 256817 :204807 .141150 .079316 ,034559 011166 .002568 1000404 .000042 .000003 .000000 .000000 T0000 1.0471 1.0963 1, 1402 1, 2023 1.2589 TJOY 1.3804 1.4454 1.5136 1.5849 1.6596 T.7370 1.6197 1.9055 1.9053 2.0093 2.1876 2.2009 2.3988 2.5119 2.6303 2.7542 2.8840 U70200 3. 1623 3.3113 3.4674 3.6308 3.8019 3.96 4.1687 4.3652 4.5709 4.7863 5.0119 5.2481 5.4954 5.7544 6.0256 6.3096 6.6069 6. 9183 7.2444 7.5858 7.9433 8.3176 8.7096 9. 1201 9.5499 .100917 161985 184630 109296 94966 .201542 .21.567 .216271 224427 ,231881 .237161. 236567 .23JAJO 221665 207426 1 86761 i171628 . 157803 730200 103959 .059096 .022644 .003343 .000722 .000053 .000002 .000000 116063 112305 ,107231 102220 090390 .098413 n95000 095994 ,096477 .897669 n99941 102968 106106 109460 ,113315 117926 ,122225 ,124763 .125323 ,125257 .123351 118431 111667 . 105432 .199766 191397 on 76897 .051596 .n23024 005874 .000709 .0010 47 100001 .n00000 7093007 094669 093453 092148 090323 ,087542 .084003 .000964 .079028 077911 076722 074695 1072414 .069611 .067135 ,065672 065421 066151 057623 ,069737 .072 118 .074164 .075116 . 076967 .07617 .080021 .08! 277 080881 .075969 .069988 .065006 ,060323 052627 ,035993 .014899 .002971 .000239 .000007 -37- 7056702 ,052106 ,049509 0047356 ,045316 043657 02776 042695 043136 043458 043878 044209 017292 044151 043794 .043005 041899 041 162 01200 041008 041755 041301 040079 038449 10.7572 .037688 037835 0 $7574 ,037425 038112 CJ9901 041569 042687 044579 046333 046458 071362 040697 038186 .036890 033154 021337 000444 .000843 .000030 .000000 .000000 oooooooooooooooooooooooooooo oooooooooooooooo ocooooooooo -36. the right hand edge of the pulse height distribution, when plotted on a semilog scale (lue counts vs linear channel number). This definition of resolution is somewhat deceiving in that the stil- bene curves slowly roll off before settling down to a straight-line drop- off. From 2.85 MeV data, the resolution values are poorer and much closer together due to photomultiplier-stritistics limitations, being about 14% for stilbene and 16% for NE-213 (1" x 1" to 2" x 2"). The smaller scin- tillators have a somewhat sharper edge because of reduced multiple neutron scattering in the scintillator, but cne obtains a small gain in resolution for the price of a large loss in detector efficiency. A good compromise is the 13" x 15" NE-213 scintillater placed in a la diam x 2" high S aluminum reflector. The photom.ltiplier should then have a photocathode area no smaller than that of the 2" RCA 68.10A photomultiplier tube. VIII. FUTURE WORK The response functions are being extended to neutron energies of 25-30 MeV by including (n,p) and (n, pn) reactions whose cross sections become important above 15 MeV. Also, leakage of recoil protons from the scintillator (especially the small, high resolution scintillator) becomes important above about 10-15 MeV, and depends on scintillator size. A 14 MeV recoil proton has a range of abcut 5 cm in NE-213. The 05R program used in this work is being modified to include 12c(n, p)??B una 12c(n, çn)72B reactions and proton leakage. -39- ACKNOWLEDGMENTS The authors wish to express their appreciation to F. C. Maienschein, R. W. Peelle, and C. E. Clifford f'or their helpful discussions and interest in this project. The calculations could not have been performed without the help of J. G. Sullivan, R. E. Textor, R. E. Maerker, and F. B. K. Kam. The earlier proton recoil measurements were aided by F. J. Muckenthaler and K. M. Herry. The associated particie experiments owed their success to R. W. Peelle, R. T. Santoro, and N. W. Hill. -40- REFERENCES 1. Manufactured by Nuclear Enterprises, Ltd., Winnepeg, Manitoba, Canada. 2. J. B. Marion and J. L. Fowler (eds.), Fast Neutron Physics, p. 228 Part I, vol. IV, Interscience Publishers, Inc., New York, 1960. 3. R. R. Coveyou, J. G. Sullivan, and H. P. Carter, Neutron Phys, Div. Ann. Progr. Rept. Sept. 1, 1962, ORNL-2609, p. 87. 4. M. Kalos and H. Goldstein, Neutron Cross Section Data for Carbon, NDA 12-16, (March 31, 1956.). 5. V. V. Verbinski et al., Neutron Phys. Div, Ann. Progr. Rept. Sept. 1, 1962, ORNL-3360, p. 105. 6. See, for example, R. J. Kurz, A 709/7090 Fortran II Program to Compute the Neutron-Detect Efficiency of Plastic Scintillators for Neutron Energies from 1 to 300 MeV, UCRL-11339, University of California, Lawrence Radiation Laboratory, (March, 1964). 7. 8. K. F. Flynn et al., Nucl. inst. Methods 27, 13 (1964). J. B. Birks, Proc. Phys. Soc., A64, 874 (1951). 9. W. Whaling, Handbuch der Physik, vol. XXXIV, p. 193, Springer Verlag (1958). P. 3. Schambra, A. M. Rauth, and L. C. Northcliffe, Phys. Rev. 120, 1758 (1963). P. G. Roll and F. E. Steigert, Nucl. Phys. 17, 54 (1960). M. S. Livingston and H. A. Bethe, Rev. Mod. Phys. 9, 246 (1937). 13. R. Batchel.or et al., Nucl. Inst. Methods 13, 70 (1961). 14. 1. C. Northcliffe, Ann. Rev. Nucl. Sci. 13, 67 (1963). 15. M. F. Steuer and B. E. Wenzel, Bull. AFS 2, 605, G 11 (1962). 16. M. L. Chatterjee and B. Ser, Nucl. «Phys. 51, 583 (1964). . . < DATE FILMED 4 / 1 / 65 - .- - .. . LEGAL NOTICE - - This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission: A. Makes any warranty or representation, expressed or implied, with respect to the accu- racy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method. or process disclosed in this report may not infringe privately owned rights; or B. Argumes any liabilities with respect .. the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report. As used in the above, "person acting on behalf of the Commission" includes ary em- ployee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor. ... - 1 i ; END 2+ ATA