tss\ NBS NOAA TR NESS 58 A UNITED STATES DEPARTMENT OF COMMERCE PUBLICATION X' 35 NOAA Technical Report NESS 58 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Environmental Satellite Service The Airborne ITPR Brassboard Experiment WASHINGTON, D.C. March 1972 W. L. Smith D. T. Hilleary E. C. Baldwin W. Jacob H. Jacobowitz G, Nelson S. Soules D. Q. Wark NOAA TECHNICAL REPORTS National Environmental Satellite Service Series The National Environmental Satellite Service (NESS) is responsible for the estab- lishment and operation of the National Operational Meteorological Satellite System and of the environmental satellite systems of NOAA. The three principal Offices of NESS are Operations, Systems Engineering, and Research. The NOAA Technical Report NESS series is used by these Offices to facilitate early distribution of research results, data handling procedures, systems analyses, and other information of interest to NOAA organizations. Publication of a Report in NOAA Technical Report NESS series will not preclude later publication in an expanded or modified form in scientific journals. NESS series of NOAA Technical Reports is a continuation of, and retains the consecutive numbering sequence of, the former series, ESSA Technical Report National Environmental Satellite Center (NESC) , and of the earlier series, Weather Bureau Meteorological Satellite Laboratory (MSL) Report. Reports 1 to 37 are listed in publication NESC 56 of this series. Reports 1 to 50 in the series are available from the National Technical Information Service, U.S. Department of Commerce, Sills Bldg., 5285 Port Royal Road, Springfield, Va. 22151. Price: $3.00 paper copy; $0.95 microfiche. Order by accession number, when given, at end of each entry. Beginning with 51, Reports are available through the Super- intendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402. ESSA Technical Reports NESC 38. Angular Distribution of Solar Radiation Reflected from Clouds as Determined from TIROS IV Radiometer Measurements, I. Ruff, R. Koffler, S. Fritz, J. S. Winston, and P. K. Rao, March 1967. (PB 174 729) NESC 39. Motions in the Upper Troposphere as Revealed by Satellite Observed Cirrus Formation, H. McClure Johnson, October 1966. (PB 173 996) NESC 40. Cloud Measurements Using Aircraft Time-Lapse Photography, L. F. Whitney, Jr., and E. Paul McClain, -April 1967. (PB 174 728) NESC 41. The SINAP Problem: Present Status and Future Prospects. Proceedings of a Conference held at the National Environmental Satellite Center, Suitland, Md., January 18-20, 1967, E. Paul McClain, Reporter, October 1967. (PB 176 570) NESC 42. Operational Processing of Low Resolution Infrared (LRIR) Data from ESSA Satellites, Louis Rubin, February 1968. (PB 178 123) NESC 43. Atlas of World Maps of Long-Wave Radiation and Albedo -- For Seasons and Months Based on Measurements from TIROS IV and TIROS VII, J. S. Winston and V. Ray Taylor, September 1967. (PB 176 569) NESC 44. Processing and Display Experiments Using Digitized ATS-1 Spin Scan Camera Data, M. B. Whitney, R. C. Doolittle, and B. Goddard, April 1968. (PB 178 424) NESC 45. The Nature of Intermediate-Scale Cloud Spirals, Linwood F. Whitney, Jr., and Leroy D. Herman, May 1968. (AD-673 681) NESC 46. Monthly and Seasonal Mean Global Charts of Brightness From ESSA 3 and ESSA 5 Digitized Pictures, February 1967-February 1968, V. Ray Taylor and Jay S. Winston, November 1968. (PB 180 717) NESC 47. A Polynomial Representation of Carbon Dioxide and Water Vapor Transmission, William L. Smith, February 1969. (PB-183 296) NESC 48. Statistical Estimation of the Atmosphere's Geopotential Height Distribution From Satellite Radiation Measurements, William L. Smith, February 1969. (PB 183 297) NESC 49. Synoptic/Dynamic Diagnosis of a Developing Low-Level Cyclone and Its Satellite- Viewed Cloud Patterns, Harold J. Brodrick and E. Paul McClain, May 1969. (PB 184 612) NESC 50. Estimating Maximum Wind Speed of Tropical Storms from High Resolution Infrared Data, L. F. Hubert, A. Timchalk, and S. Fritz, May 1969. (PB 184 611) NESC 51. Application of Meteorological Satellite Data in Analysis and Forecasting, R. K. Anderson, J. P. Ashman, F. Bittner, G. R. Farr, E. W. Ferguson, V. J. Oliver, and A. H. Smith, September 1969. (AD-697 033) NESC 52. Data Reduction Processes for Spinning Flat-Plate Satellite- Borne Radiometers, Torrence H. MacDonald, July 1970. (Continued inside back cover) .<<°'% S *TES O* + U.S. DEPARTMENT OF COMMERCE Peter G. Peterson, Secretary NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION Robert M. White, Administrator NATIONAL ENVIRONMENTAL SATELLITE SERVICE David S. Johnson, Director NOAA Technical Report NESS 58 The Airborne ITPR Brassboard Experiment W. L. Smith D. T. Hilleary E. C. Baldwin W. Jacob H. Jacobowitz G. Nelson S. Soules D. Q. Wark o Q -a \n r, o WASHINGTON, D.C. MARCH 1972 UDC 551 . 508 . 25 : 551 . 507 . 352 : 551 . 507 . 362 . 2 551.5 Meteorology .508 Instruments .25 Radiance measurement .507 Instrument carriers .352 Aircraft observations .362.2 Satellite observations The inclusion of the name or description of any product does not constitute an en- dorsement by the NOAA National Environmental Satellite Service. Use for publicity or advertising purposes of information from this publication concerning ' proprietary products or the tests of such products is not author- ized. li CONTENTS Acknowledgements iv I. Introduction (W. L. Smith, S. D. Soules , and D. Q. Wark) 1 Ob j ect ives 1 The CV-990 Expedition 2 II. Engineering description and evaluation (D. T. Hilleary and G. J. Nelson) 2 The instrument 2 Aircraft installation and flight testing 18 III. Measurement characteristics (W. L. Smith) 19 IV. Data reduction and accuracy (W. L. Smith, W. J. Jacob, and E . C . Baldwin ) 21 Introduction 21 The calibration equations 21 V. Clear-column radiance determination (W. L. Smith) 24 Introduction 24 Analytical solution 24 Aircraft test results 26 Conclus ion 28 VI. Aircraft-deduced atmospheric transmittances (W. L. Smith) 28 Introduction 28 Mathematical solution 32 Computational procedure 34 Results 38 Summary 44 VII. Determination of cloud transmittance (H. Jacobowitz) 44 Introduction - 44 iii Numerical method 45 Results of the aircraft measurements 48 Conclusions and recommendations 55 References 59 Appendix Flight plan and ITPR data for June 12, 1970, (flight 7) 60 I Flight plan 60 II Flight data 61 Acknowledgements We would like to express our sincere gratitude to Earl Peterson and his staff at the Airborne Science Office of the NASA Ames Research Center, and William Nordberg of the NASA Goddard Space Flight Center for their collaboration which enabled the successful accomplishment of the Airborne ITPR Experiment. We also acknowledge the assistance L. Mannello , P. Pellegrino, and R. Ryan in the reduction and analysis of the data. IV THE AIRBORNE ITPR BRASSBOARD EXPERIMENT W. L. Smith, D. T. Hilleary, E. C. Baldwin, W. Jacob, H. Jacobowitz, G. Nelson, S. Soules , and D. Q. Wark National Environmental Satellite Service National Oceanic and Atmospheric Administration Washington, D.C. ABSTRACT. A preprototype (brassboard model) Infrared Temperature Profile Radiometer (ITPR) was tested on the NASA Convair-990 aircraft expedition during June 1970. The objectives of the airborne ITPR experiment were to obtain data to test various techniques planned for deriving temperature soundings from spaceborne ITPR measurements and to specify the transmission characteristics of the atmosphere and clouds. This paper describes the instrument and shows various results obtained from the airborne measurements . I. INTRODUCTION Objectives A preprototype (brassboard model) Infrared Temperature Profile Radio- meter (ITPR) was tested on the NASA Convair-990 aircraft during June 1970. The ITPR measures the earth-atmosphere upwelling radiance in five narrow spectral channels whose detailed spectral characteristics are summarized in Section II of this report. The spectral intervals were chosen to obtain radiance observations similar to those collected by spacecraft instruments designed for sounding the distribution of the atmosphere's temperature and water vapor. A spacecraft version of the ITPR is assembled for the Nimbus 5 spacecraft to be launched in 1972. The objective of the airborne ITPR brass- board experiment was to provide data for detailed study of various problems of atmospheric remote sensing. The specific objectives of the ITPR experi- ment in the CV-990 were: (1) To obtain data to test a proposed technique for the deduction of clear-column radiances , and hence the atmospheric profile down to the earth's surface, from cloud-contaminated remote observations. (Section V summarizes some of the results of this test.) (2) To obtain radiance measurements in a cloudless atmosphere so that the atmospheric transmission characteristics of the ITPR spectral intervals could be determined. (Section VI summarizes these results.) (3) To obtain radiance measurements through various types of clouds so that the spectral transmittance characteristics of clouds could be studied. (Section VII summarizes these results.) The CV-990 Expedition The ITPR was flown aboard the NASA Convair-990 during the June 1970 meteorological expedition conducted by the Goddard Space Flight Center and the Airborne Science Office of the Ames Research Center. The CV-990 meteorological expedition consisted of 10 flights, each with a duration of about 5 hours. Figures 1-1, 1-2, 1-3, and 1-4 show the date, time, and ground track of each flight. The expedition covered a wide range of latitude (28°N-80°N) and terrain (desert, mountains, vegetated land, ocean, and ice); a wide variety of weather conditions was also sampled.. The 10 flights collected a sample of airborne radiance data almost as diverse as radiance data obtained by earth-orbiting satellites. This report describes the ITPR instrument, its airborne radiance measurements, and the application of these data to solutions of various atmospheric radiative transfer problems. II. ENGINEERING DESCRIPTION AND EVALUATION The Instrument The preprototype Infrared Temperature Profile Radiometer (ITPR) is a five- channel filter radiometer. Each channel measures radiances in a different spectral interval. The channel spectral characteristics and the pertinent atmospheric absorption bands are shown in Table II-l. Figure II-l shows the measured transmittance of the spectral filters in channels 1 through 5. The instrument collects infrared energy with five identical optical telescopes , all of which are oriented to view a common field via a scan mirror. Table II-2 is a summary of the ITPR optical characteristics, figure II-2 is a system block diagram of the instrument electronics, and figure II-3 shows the optical design of a typical channel. The radiation beams sensed by the five telescopes are chopped by a common mechanical chopper operating at 23.5 Hz, and are then spectrally filtered. A thermistor bolometer detector behind each telescope converts the chopped radiation energy into a proportional AC electrical signal. The signals are amplified and processed through separate electronic channels , each including a synchronous demodulator and a post-demodulation filter. The ITPR is. composed of two units: the optics unit (fig. II-4) which contains the scan mirror drive assembly, optics deck, a.c. amplifiers, a thermistor bolometer bias power supply, and a housing calibration surface; and the electronics unit , which contains the channel demodulators , scan logic, temperature monitor circuits, clocks, command relays, and an instru- ment power supply. The optics deck (fig. II-5) contains the channel telescopes, an optical chopper assembly, and the detectors. In the chopper assembly an arrangement, utilizing a galium arsenide light-emitting diode and a photo transistor, generates a phase reference signal for the synchronous demodulator of each channel. The ITPR analog signal channel (the preamplifier, amplifier, and G rd CM o W ■P bO • H rH o CP O) I & •H td > o O & O Mh CO X O (A Fh +- 1 I C O U o I I H I 3 bO 2017 SEATTIE Figure 1-2. — Ground-tracks for Convair-990 Flights No. 4 and 7. o w +J hO •H H Ph o en Ol i & •H B c o o V} X o rd & O o CO Q) M •H PL, ocetf» fd en o w +J .fi bO •H H Pi o en en Sh •h B a o o I CO M O rd I § o I I M CD 60 •H Pm PA C»F» C Table II-l. — Summary of ITPR spectral characteristics Channel Energy-weighted central wavenumber cm~l Half-power bandwidth cm - -'- Absorption band 1 532.5 (18.8um) 30 H 2 2 898.5 (ll.lum) 80 Window 3 747.0 (13.4um) 20 co 2 4 732.5 (13.7um) 20 co 2 5 708.0 (I4.1um) 20 C0 2 Table II-2. — Summary of ITPR optical characteristics Number of channels Optical FOV (half power) Objective optics Entrance aperture diameter Focal length Optical speed Effective aperture Condensing optics Scan mirror Five, each with separate telescope 3.0° Aspheric Cassegranian 4.52 cm 14.50 cm f/3.2 11.9 cm 2 Refractive (Entrance aperture imaged on detector) Flat Ni-plated aluminum alloy substrate-overcoated with Al and SiO LU CO > < ■a o p O Pi Ph H •H 00 & 0) p H »H rd +J o a, CI a> ■H 4h o oo a) o (3 id P P •H e 00 C rd 5-. P CD W rrj 0) s H I l-H l-l 0) § W) •H 3DNVlllWSNVyi '.23 o o. LU> 0-_J 0.0. OIL I=> lo io o a. < I- u > 2 > zt U zt 3 >5 LU < ^ 1 o z o < U> in - fflOl !>-2|lr^ g O-QO zSS < LU -, (J »/> i-i T s z a Z Oi Ho. S! z CL LL LU O u. o o _ 5° T rSsbsS Jj z LL. vi 2 § n ££ LL1 H -I U LU Or 1 s o- 0..9 Ko 1 - f 5 V bios So -®- < LU lu - 1 O^ S Q. < Q o £< So: - CO + M •H o o -I CO o ■H c o & +-> o Cl) 04 E-« CM I 0> 3 •H PL, 10 (T O QC o IT CO z UJ _l a. or ? iii 3 QC CO CO _j 8p > > z z a: UJ Ul z 2a! >- < 2 < a z o o QC UJ 1- 1 a: Ul i- i _l > < _l >- < o CO o (0 H CO O •H +-> o CD c 3 CO ,c o H CO O •H a, >i 4h O C O •H Id & ■H CO H H 00 I H CD •H 11 Figure II-4.--ITPR optics unit. Figure II-5.--ITPR optics deck containing the channel telescopes 12 synchronous demodulator) is a modified version of the circuitry designed for the NIMBUS 4 SIRS (Wark et al. 1970). The input stage is a differential amplifier in the Middlebrook configuration using a matched pair of Field Effect Transistors selected for low noise and high transconductance (Middlebrook and Taylor/1961). As in the NIMBUS 4 SIRS, the three-stage amplifier section is capable of producing total gains of 1.4 x 10^. Indivi- dual hybrid voltage regulators are used to decouple each amplifier from the power supply to reduce noise and to limit channel crosstalk to better than -60db. A thermistor mounted on the detector case, but electrically a part of the feedback loop of the amplifier second stage, is used to adjust the gain to compensate for the change of detector responsivity as a function of temperature (Barnes Engineering Company/1958) . ITPR had a gain compensation to within 2 percent. One of the problems inherent in a radiometer in which an opaque mechanical chopper is used to modulate incoming scene radiances is the need to correct the signal component caused by sensed radiant energy emitted by the chopper. Since the modulated energy reaching the detector is basically a function of the difference between the temperatures of the scene and the chopper, the instrument channel calibrations are affected by changes in the chopper temperature. In the ITPR, the chopper temperature is sensed by a thermistor embedded in a "radiation coupler plate" adjacent to the chopper. The thermistor is designed into a compensation network (chopper offset generator) which produces ad.c„offset signal. The offset signal is summed with the radiation difference signal to reduce the dynamic range of the measurement and optimize signal telemetry. The offset signals generated for each ITPR channel compensate the output signals for the spectral radiance of the chopper to within 2 percent. A more detailed description of the chopper offset generator and its function appears below. The following radiometric analysis indicates how a channel calibration should change as a function of varying instrument component temperatures. Each channel senses the chopped radiation (or the difference in radiant power at the detector which results from opening the chopper). The first equation below applies when a chopper port passes all of the sensed beam, and the second equation is applicable when the chopper completely obscures the beam. P, = A Q n Av [0.74 p p , p rn0 B(T o ) + 1 ms ml m2 s 0.26 p m2 B(T ) + 0.74 p^p^ e ms B(T ms ) + ' 74 p m2 £ ml B(T ml> + e m2 B ( Tm 2 )] + P a (H-D P 9 = A Q n Av B(T ) + P a (II-2) where Pn is the radiative power reaching the detector with the chopper com* pletely open and P 2 is the radiative power reaching the detector with the chopper completely closed; 13 A = it D 2 /4 and D is the outside diameter of the effective primary mirror stop (11.9 cm^); ft is the solid angle of the "half power" field of view of the channel (2.16 x 10~ 3 steradian); n is the effective transmission of the filter and lenses weighted for the associated spectral bandwidth; T f and T-. are the spectral transmissions of the filter and lenses, respectively; B(T) is the effective blackbody radiance in the spectral interval Av at blackbody temperature T and n Av B(T) = / TfT-L B(v, T) dv ; T and T are the effective blackbody temperatures of the scene and the chopper, respectively; T is the blackbody temperature of the channel components whose emissions reach the detector via the central portion of the primary aperature obscured by the secondary mirror; Tj-ji, T 2» T are temperatures of the primary, secondary, and scan mirrors, respectively; p-.i, p m 2 , P are reflectances of the primary, secondary, and scan mirrors ; P is the sensed radiation emitted by components on the detector side of the chopper" The numerical constant 0.74 is necessary because 26 percent of the channel entrance aperture, A, is obscured by the secondary mirror and spider as shown in figures I I- 3 and I I- 5. The second term in the brackets occurs because the detector views the obscured portion of the aperature. It senses radiation emitted by the cylindrical baffle tube and other components in reflections from the central part of the secondary mirror. The other terms in equation (II-1) represent radiation emitted by the mirrors. The radiation power, P , emitted by components on the detector side of the chopper and reaching the detector is eliminated by subtracting equation (II-2) from equation (II-1). Equation (II-3) was written in terms of the root -mean-square value of the chopped radiant power on the detector. Matched mirror reflectances and equal primary and secondary mirror tempera- tures have been assumed. P rms = C l (P 1 " P 2 ) = C l A fi n Av C0 ' 7U p3 B(T S } + 0.26 p B(T Q ) + 0.74 p 2 e B(T ms ) (1.74e - 0.74e 2 ) B(T ml ) - B(T )] 0.26 p B(T Q ) + 0.74 p 2 e B(T ms ) + (II-3) 14 C-i is a factor to convert the amplitude of the radiant power wave- form (P-^ - P2) s to its root-mean- square, P . The factor depends upon the shape of the radiant power waveform created by the chopper port passing through the sensed beam and depends upon the relative sizes of the beam and the port. The higher order emissivity term has been dropped from equation (II-4). This equation has been arranged to show that the channel must be considered to measure not only the differences between the chopper radiance and that of the scene, but also to some extent the differences between the chopper radi- ance and the obscuration and mirror radiances. P rms = c i A fi n Av {[0.74 - 2.22e] [B(T S ) - B(T c )3 + [0.26 - 0.26e] [B(T ) - B(T_)] + 0.74e CB(T ms ) - B(T C )] + 1.74e [B(T ,) - B(T )]} (II-4) , where e = 1 - p The relative sensitivities of the signal to target radiances , and to mirror emissions, can be estimated by assuming mirror reflectances and emissivities. The ITPR mirror surfaces are aluminum overcoated with a 0.15- micron thickness of silicon monoxide. Reflectivities of 96 percent and emissivities of 4 percent were assumed to obtain equation (II-5). These values may be pessimistic, but the cleanliness of the mirrors could not be maintained during the flight test program. P rms = C x A fl n Av {0.65 [B(T S ) - B(T C )] + 0.25 [B(T Q ) - B(T C )] + 0.03 [B(T ms ) - B(T C ) (II-5) + 0.07 CB(T ml ) - B(T C )]} It is apparent that the instrument calibration can be affected signi- ficantly by temperature changes in the chopper, obscuration, telescope mirror, and scan mirror. The chopper temperature is indirectly sensed in the ITPR. The rotating chopper is radiatively coupled to a "radiation coupler plate" which contains thermistor temperature sensors. One thermistor cir- cuit output is used only as a monitor; another is used with the chopper off- set generator circuitry mentioned above. The chopper temperature monitor was calibrated indirectly. The optics deck was mounted in a temperature-controlled fixture and set up to measure spectral radiances from a blackbody source. The optical path was purged with nitrogen. The amplitudes of the AC signals were brought to zero, at the out- put of the amplifiers, by adjusting the blackbody temperature. This proce- dure was repeated for several instrument temperatures. In each instance, the instrument and source were allowed to reach thermal equilibrium. The relationship of the channel output signal to the chopped radiance 15 can be simplified to the following equation: S dc = C 2 R(T d ) GjL (T d ) H G 2 P rms + X(T C ) (II-6) where : S-, is the do c. volt age at the analog electronic channel output. R(Tj) is the single flake thermistor bolometer responsivity in volts rms/watt rms (including all harmonic components) which is a function of detector temperature (Barnes Engineering Company 1958). C 2 is a constant factor necessary to adjust the single flake responsiv- ity specified by the bolometer manufacturer. It corrects the responsivity for the bolometer bias voltage, the chopping frequency, and the signal loading by the compensating thermistor flake (Barnes Engineering Company 1958). Gj_(T d ) is the a . c .amplifier gain which has been made a function of detector temperature so that the product R(T, ) G-,(T d ) is approxi- mately constant (Barnes Engineering Company 1969). H is a factor which relates the DC output of the synchronous demodula- tor to the rms of the AC signal waveform. The amplifier bandwidth passes all of the significant signal components. Q>2 is the effective signal gain in the post-demodulation filter which includes a DC amplifier. X(T C ) is the chopper-offset-generator signal component as measured at the channel output. Combining (H-5) and (II-6): S dc = Cjl C 2 A fl n Av R(T d ) G 1 (T d ) H G 2 {0.65 B(T ) + 0.25 B(T ) + 0.07 B(T ml ) + 0.03 B(T ms ) - B(T C )} + X(T C ) (II-7) The changes of detector responsivity with temperature are partially compensated as mentioned above. The circuitry was adjusted empirically to make the product of detector responsivity and AC amplifier gain constant, within +2 percent, over the temperature range 10° to 40°C. The slope of each channel's output versus the pertinent spectral radiance of a blackbody test source was determined from instrument temperatures of 10°, 25° and 40°C. The 10° and 40°C slopes were finally equalized by adjusting the value of a resistor in series with the thermistor. The slope at 25°C was about 2 percent greater than at other temperatures. The chopper offset generator signal is expressed in equations (II-6) and (II-7) in terms of its effect at the channel output, because the d.c„ 16 amplifier actually amplifies the fixed offset signal component, the variable offset signal component, and the synchronous demodulator output signal by different factors. Different input resistors are used at the summing junc- tion of the d.coperational amplifier for the various signal components. Equation (II-8) shows the desired offset term assuming that T = T . Equations (II-9) and (11-10) show the form of the offset signals generated by the chopper offset generator circuitry shown in figure II-6. X(T C ) = 0.74 p 3 A a n Av R(T d ) G 1 (T d ) H G> 2 B(T C ) X(T C ) = R^ El R 6 T + Rr R 6 + R T Rp = R exp 3 (L_ - L.) 1 O T T c o + G^ E 1 / R 3 + R4 + R 5 \ ^ R 2 + R 3 + R 4 + R 5 J (II-8) (II-9) (11-10) where : G is the d.c. amplifier gain for the variable chopper offset signal. G^ is the d.c. amplifier gain for the fixed chopper offset signal. R- and Ry are resistances as indicated in figure II-6. R™ is the resistance of thermistor temperature sensor mounted on the radiation coupler plate. R Q is its resistance at temperature T . 3 is a property of the thermistor material. The chopper offset term has not been combined with other terms in equa- tion (II-7) because of the manner in which the flight data were processed. The fixed voltage E and the variable voltage corresponding to the bracketed portion of equation (II-9) were separately digitized and recorded with the channel output data and used to compute X(T ) from equation (II-9). The computed X(T C ) was then subtracted from the recorded channel output, S dc . In practice, the offset generator circuitry only served to compress the range of the recorded data. The proper performance of the generator circu- itry was checked by comparing the variable portion of X(T ) against the values of T measured by the monitoring thermistor. It can be shown from equation (II-7) that the primary and secondary mirror temperatures could be allowed to change about 1.5°C, or that the scan mirror temperature could change about 3°C before the spectral radiances deduced from an initial instrument calibration would err by more than 0.25 ergs /cm 2 s sr cm" -*-. The mirror temperatures were not measured. Variations in the chopper and obscuration temperatures would be much more serious. The temperature of the radiation coupler plate was measured 17 O Q < "I r O CO h- _l co h- Ixl co li < u_ o o CT o UJ 111 X X r- U_ o A ro *- UJ UJ UJ a. o X o o: v/W^^Vv^WW^^-aMZ-WW^ — Ml ro 10 /\ CL Q- Z> CO UJ o s _l O > UJ CD a ■s (3 o o •H Oh >, ■P 4-> •H O Pj ■H O Fh o +-> rfl U CD C CD bO -P CD CO Mn ip O u CD CX (X o A a Mh o o •H +J rC § oo i i <£> I bO •H J 18 but could not be considered a satisfactory indicator of chopper or obscura- tion temperature except when the instrument temperature was not changing. Aircraft Installation and Flight Testing The instrument, attached to a special frame which included a remotely controlled door assembly, was mounted in the forward cargo compartment of the aircraft. The NASA Convair-990 is fitted with windows near the bottom of its cargo compartments. A tubular section of the frame penetrated the air- craft fuselage through a mating sleeve in a dummy window plate, allowing the radiometer a clear view of the earth beneath the aircraft. O-ring seals between the instrument and frame and the tube and window sleeve maintained the pressure integrity of the cargo compartment. Two blackbody radiation sources were installed with the radiometer. The scan mirror indicated in figure II- 3 could be rotated on command so that the channels viewed (1) the earth beneath the aircraft, (2) a warm blackbody operated at about 50°C, (3) the instrument's housing calibration surface, or (4) a cold blackbody operated at a temperature between 0° and -40°C. The radiating surfaces of the blackbodies consisted of V-grooves milled into copper plates and coated with 3M401 "Black Velvet" paint. f The cold blackbody was designed as an integral part of a small 5-liter dewar and was cooled by liquid nitrogen (LN 2 ). A larger (45-liter) storage dewar contained enough LN 2 for flights of 4 to 6 hours . Thermistors sensed the liquid level in the small blackbody dewar, and a liquid level controller automatically valved LN 2 from the larger dewar when it was required. Nitrogen gas boiled off from the small dewar was used to purge the instrument's optical path prior to opening the remotely controlled door, and to cool the warm blackbody thermal sink. The blackbody temperatures were controlled to about 0.2°C. Commercial thermocouple deviation amplifiers were used to sense the blackbody tempera- tures and to drive temperature controllers which provided signals to Silicon Control Rectifier power units that powered the blackbody resistance heaters. Thermistors embedded in the radiator plates were used to read out the radia- tor temperatures. The thermistors were calibrated in situ against certified thermocouples, also embedded in the plates; however, these thermocouples were not read out during the flights. During the flight attempts were made to determine the channel calibra- tions (using two blackbody temperatures) whenever the instrument temperature changed significantly. The housing calibration surface proved to be unre- liable for calibration because of internal thermal gradients. The instrument, the blackbodies, the LN„ supply, and other auxiliary equipment were controlled and monitored from a console located in the air- craft passenger cabin. The instrument's infrared and housekeeping data were multiplexed, digitized, formatted, and recorded on a digital tape recorder. An auxiliary multiplexer and analog-to-digital converter transferred data to a paper tape printer which generated an inflight printout of the infrared data and selected housekeeping data. 19 III. MEASUREMENT CHARACTERISTICS The spectral radiance, I v (p-t)> measured in any spectral channel of the airborne ITPR at the pressure level, p. over a cloudless atmosphere is given by the radiative transfer equation ivoP> d m p (ni-i) F t d In p where B (p) is the Planck radiance source function at pressure level p and the channel central wave number, vo. x (p t »p) is the mean spectral transmittance of the atmosphere between the pressure levels defined by \, (p t ,p) = V v %(P t »P)dv// o %dv (III-2) where (L is the channel response function. The Planck radiance is given by B VQ (p) = 2hc 2 v o 3 /{exp(hc vo /k T(p))-1} (III-3) where h = 6.6237 X 10~ 27 erg sec, c = 2.99791 X 10" 10 cm sec -1 and k = 1. 38024 X 10~16 erg deg~l. T(p) is the atmospheric temperature at the pressure level p. The equivalent blackbody (brightness) temperature sensed by any channel is T5 (p t ) = hcv Q /k in {2hc 2 v o 3 /I vo (p t )+l} (III-4) Channel 1 (v Q = 532.5 cm - -'-) measures the radiation upwelling from the earth and atmosphere within a semitransparent spectral region of the rota- tional water vapor band. The radiance measured in this spectral interval can be interpreted in terms of the total amount of water vapor in the atmospheric column below the instrument sensor. Channel 2 (v = 898.0 cm -1 ) measures most of the radiation emitted from the earth's surface and clouds below the sensor. The radiation measured in this "atmospheric window" channel is only slightly attenuated by atmospheric gases (primarily water vapor) and so can provide a good measure of cloud- top and surface temperatures as well as cloud cover. Channels 3 (v Q = 747.0 cm -1 ), 4- (v Q = 732.5 cm" 1 ), and 5 (v = 708.0 cm -1 ) sense the radiation upwelling in semitransparent regions of the 15um CO2 band. Since the atmospheric CO2 distribution is known, these spectral measurements can be interpreted in terms of the temperatures of lower , middle , and upper layers of the atmosphere below the instrument. Figure III-l shows the variation of the effective radiating altitude for each channel at varying aircraft altitudes. The "effective-radiating- altitude" is defined here as that atmospheric level where the air temperature is equal to the measured equivalent blackbody temperature. Channel 5 measurements provide a good means for determining the air temperature at aircraft level (i.e., the effective radiating pressure equals the aircraft pressure) up to about 5,000 ft. The window channel, channel 2, senses temperatures at and close to the earth's surface, even under fairly moist 300 at => 400 o z < a 2 500 700 JlJ 850-- 1000 200 20 ALTITUDE (THOUSAND FEET) 29.0 15.0 7.5 0.5 T CV-990 ITPR JUNE 9,1970 75°N 121 D W : -29.0 CHANNELS 532.5cm" (1) 898.0cm" (2) 747.0cm" (3) 732.5cm" (4) 708.0cm" (5) "(41 --.15. a z < CO o x 300 400 500 700 850 1000 PRESSURE ALTITUDE (MB) 300 40.1 ALTITUDE (THOUSAND FEET) 27.7 20.1 15.0 10.0 T T 5.0 1.0 CV-990 ITPR JUNE 18, 1970 28°N 93°W -27.7 rr 1000 200 300 400 500 700 PRESSURE ALTITUDE (MB) Figure III-l. — Variation of effective altitude with aircraft altitude for five channels of ITPR. High latitude (Top), Subtropical (Bottom). 21 atmospheric conditions. At high aircraft altitudes, the water vapor channel senses radiances originating lower in the atmosphere than any of the CCU channels. However, from low aircraft altitudes, the water vapor channel does not probe as deeply into the atmosphere as channels 3 or 4, because of the relatively large concentrations of water vapor near the surface. IV. DATA REDUCTION AND ACCURACY Introduction There were almost continuous temperature variations of the ITPR optics unit because of large variations in the environmental air temperature during the CV-990 flights. Therefore, accurate determination of scene spectral radiance from a channel output required that the instantaneous thermal state of the instrument be taken into account in the output voltage-to-radiance transformation. Pref light calibration relations could not be applied to inflight data because they were not obtained for the thermal conditions encountered during flight . Furthermore , inflight calibrations , obtained by viewing the warm and cold blackbody reference targets , could not be applied directly to subsequent scene data unless the thermal environment remained constant. The CV-990 experiments generally required almost continuous variations in aircraft altitude so it was impossible to have specific inflight calibration data for every thermal situation. As a consequence, a multivariable calibration relationship had to be formulated for each channel to account for all the thermal energy transfer processes affecting the out- put signal. The coefficients of the calibration equations were determined by least-square multiple regression from the entire sample of inflight cali- bration data. The inflight calibrations were conducted under thermal condi- tions covering the entire range of those encountered during scene measure- ments . The Calibration Equations As discussed in section II, the ITPR electronics were designed so that the output of each channel would vary linearly with the spectral scene radiance when the instrument was in thermal equilibrium. That is B(T S ) = A Q + A x S dc (IV-1) As indicated in equations (II-7) - (11-10), A and At, are functions of the detector responsivity , the chopper radiation, and any radiation from compon- ents located in front of the chopper (e.g. , the mirrors and portions of the instrument reflected in the cassegrain obscuration), as well as the chopper offset generator variable. Expressing the detector responsivity in terms of a cubic function of the detector temperature, the chopper radiation in terms of the Planck function of the chopper temperature, and the remaining radia- tion in terms of the Planck function of the housing temperature, then 6 6 A = C + I C-f., and A, = d_ + E d.f o o . =i x !> 1 o . =i x J 2 3 where the C's and d's are constants, f, = T d , f 2 = T d , fg = T d , (IV-2) 22 fn = B(T C ), f 5 = B(T h ), and f g = X(T c ). (The symbols are defined in section II.) The Planck function of the housing temperature, T^, is used to account for all other radiation components because the mirror temperatures were not measured. Substituting (IV-2) into (IV-1) yields the calibration equation for each channel B < IV - 3 > where f is equal to unity. The cold and warm blackbody calibration data obtained throughout all 10 CV-990 flights were used to obtain the 14 coefficients of (IV-3) by multi- ple regression. B(T S ) is merely the Planck radiance of the thermistor- measured blackbody temperature when viewing a calibration blackbody. All the fj*s and blackbody temperatures were measured and telemetered simultaneously with S^ c , permitting the empirical determination of (IV-3) and its applica- tion to scene radiance data. The resulting calibration equations were tested by application to the calibration channel outputs, S^ c , from which they were derived. They permitted specification of blackbody temperatures by the output of each channel to within 0.5°C rms of that obtained independently by the blackbody thermistors. The root-mean- square error of the blackbody thermistor temper- atures were judged to be about 0.4°C. The random error of the channel out- put derived scene temperatures were found to be about 0.3°C for an indivi- dual M— second sample. Figure IV-1 shows a sample of calibration data obtained for channel 3. The dots are values of channel 3 output dc voltage, S ( j c , obtained by viewing the warm blackbody whose radiance was calculated from the thermistor-moni- tored temperatures. There is generally a 10 . ergs/cm 2 s sr cm~l disparity of blackbody radiance for a given output voltage of the channel. The X's show the same output voltages transformed into scene radiance by equation (IV-3). The 10.0 ergs/cm 2 s sr cm~l disparsity has been reduced to well within 1.0 ergs/cm 2 s sr cm~l after accounting for the thermal conditions of the instrument by means of equation (IV-3). As mentioned above, the random error of a M~ second radiance sample obtained by any channel was found to be about 0.5 ergs/cm 2 s sr cm"-'- (i.e., 0.3°C of scene temperature). Comparisons of the calibrated output radiances indicated interchannel relative accuricies of better than 0.5 ergs/cm 2 s sr cm~T. The absolute accuracy of channel output radiance is more difficult to assess because it depends upon the effective emissivity of the blackbodies as well as on the absolute accuracy of the blackbody thermistors . An esti- mate of the absolute accuracy of the output radiance was obtained by compar- ing the scene brightness temperature, measured by channel 5, the most opaque CO2 channel, with the temperature, measured by the aircraft platinum-wire thermometer. The brightness temperature measured by channel 5 at low alti- tides, where the atmosphere is opaque to 15-ym radiation, or within opaque clouds, should be close to the environmental air temperature. Figure IV-2, 23 8.3- 8.2 8.1 80 M 1 7.9 i- p 7.8- O 7.6 7.5 7.4 7.3 — i — i — i — r~| — i — i — i — i — | — i — r * CALIBRATED OUTPUT VOLTAGE VS WARM BB RADIANCE • RAW OUTPUT VOLTAGE VS WARM BB RADIANCE ft i — I — r s . J I L_L J I L J I L 175 170 E 165 _ 3 a. i— O Q 111 »- < -160 = 155 155 160 165 170 WARM BLACKBODY RADIANCE (ergs/cm 2 s sr cm" 1 ) Figure IV-1. — Warm blackbody calibration data obtained for ITPR channel 3 (13.4-ym). ? - flfo) (V_ 2 ) N 2 I clr^ w ^ " J 2^^ where the clear-air radiance for the window region is assumed known. I c i r ( w ) will be determined from the simultaneous ll-ym and 3.7-ym window measurements to be obtained by the spacecraft version of the ITPR (Smith and Jacob, 1972). Elements 1 and 2 are chosen so that Ij_(w)>l2(w) , which restricts N* to 1>N*>_0 . The above solution for the clear-column radiance is valid only when the geographical variation of observed radiance is due to a variation of frac- tional cloud cover in the adjacent fields sampled. A variation of either atmospheric temperature or cloud height would produce erroneous values of N* and I c -i r ( v )« Therefore, the two spatially independent observations should be geograpnycally close to each other so that variations in the observed radi- ance will tend to be caused only by cloud cover variations. The ITPR and VTPR are designed for high spatial resolution and contiguous sampling to ensure geographically close observations, to increase the probability of clear fields of view, and to produce a large number of independent estimates of clear-air radiance for a given geographical area. The "noise" level of the deduced clear-air radiances will be larger than the measurement noise. It can be seen from equation (V-l) that the clear- air radiance noise level is about 1/(1-N") times as large as the measurement noise. Consequently, the instrument noise level must be kept relatively low. On the other hand, the spatial resolution must be sufficiently high so that most of the N* values will be much less than unity. The satellite versions of the ITPR and VTPR temperature sounding radiometers have been designed to scan spatially and contiguously with instantaneous resolutions of 21 and 30 n.mi., respectively, and to achieve noise levels of less than 0.5 percent of the signal levels (i.e., 200/1 signal-to-noise ratios). Aircraft Test Results On June 12, 1970, high-altitude (41,000 ft) ITPR radiance observations were obtained above broken altocumulus and stratocumulus clouds over the Pacific Ocean at 46°N, 133°W. Clear-air measurements were obtained on either side of the broken cloud region, and clear-air radiances were calcu- lated from the cloud- contaminated observations. Figure V-l shows the measured window radiances (ergs/cm z s sr cm - - 1 -) during the period. Clear observations were obtained near 23:37:20 and 23:44:20 GMT. The actual clear-air radiance measured by channel 2 was about 84.0 ergs/cm 2 s sr cm~l (279°K). Cloud-contaminated radiances measured in the window channel were as low as 50 ergs/ cm 2 s sr cm~l (250°K). 27 JUNE 12, 1970 ITPR Channel 2 (ll.l^.m) Figure V-l. — "Window" radiances measured by ITPR 11.1-ym C0 2 channel, JUNE 12, 1970 ITPR 23:34 :35 :36 .37 :38 :39 :40 :41 :42 :43 :44 23:45 TIME Figure V-2. — N* distribution calculated for adjacent fields of view from 11.1-ym radiance measurements. 28 Assuming a clear-air window spectral radiance of 84.0, we calculated N* for the adjacent fields of view which were observed about 4 seconds apart. Figure V-2 shows the resulting distribution of N*. Values of the clear- column radiances were then calculated from the adjacent observed radiances in the three-temperature-sounding CO2 channels. The values for N*>0.8 are shown together with the measured radiance distributions in figures V-3, V-4, and V-5. It can be seen from figures V-3, V-4, and V-5 that some of the infrared clear-air radiances are erroneous, particularly in the region where a large amount of cloudiness exists (e.g., 23:38 to 23:44 GMT). Some erroneous values were calculated because N* is relatively high (greater than 0.5 between 23:38 and 23:44 GMT), and in some cases the variation in radiance probably resulted from variations in cloud heights rather than differences in cloud amounts (the field of view contained both altocumulus and strato- cumulus ) . However, many of the estimates of clear-column radiance are in fair agreement with the observed clear-air radiances measured at 23:37:20 and 23:44:20 GMT. Figures V-6, V-7, and V-8 show histograms of the clear-column radiances deduced from the cloud- contaminated radiances measured between 23:38 and 23:44 GMT. The values of the most frequently occurring estimates agree closely with the observed clear-air radiances. The mean clear-column radi- ance values, I c j-p( v ) 5 defined as the frequency-weighted average of the mode value and values of the two adjacent class intervals, agree with the measured values of clear-air radiance quite well considering the instrument noise. Conclusion The aircraft test results presented here indicate that the clear-air radiance contribution to radiances observed with a partial cloud cover within the field of view can be deduced with the accuracy needed for calcu- lating temperature profiles down to the earth's surface. (This conclusion is also borne out by other examples not presented here.) Since the earth's atmosphere, when viewed on a synoptic scale (i.e., horizontal scale of 300 to 500 km), is covered by broken clouds, this method applied to appropriate satellite measurements should make possible the determination of atmospheric temperature distribution on a synoptic scale over almost the entire globe. VI. AIRCRAFT-DEDUCED ATMOSPHERIC TRANSMITTANCES Introduction Vertical profiles of upwelling (or downwelling) radiance, as observed by an airborne radiometer, can be used to determine the transmittance of the atmosphere to the sensed radiation. The solution for atmospheric trans- mittance from the radiance profile is obtained through a solution of the differential equation of radiative transfer. The inference of the physical properties of the atmosphere (e.g., distribution of its temperature and water vapor) from satellite radiance observations requires knowledge of the atmosphere's transmission as a function of optical depth, pressure, and temperature. The observation of the radiative transmittance properties of 29 JUNE 12, 1970 ITPR Channel 3 (l3.4yu.rn) 90 r 85 80 75 LU u z < 70 a < Of 65 60 55 50 L Observed Radiance • Calculated Clear-Column Radiance 23:34 :35 :36 .37 :38 :39 :40 TIME :41 :42 :43 :44 23:45 Figure V- 3. --Observed radiances (solid line) and calculated clear- column radi- ance (dots) for the ITPR 13.4-um C0 2 channel. JUNE 12, 1970 ITPR Channel 4 (l3.7yum) 50 Li Observed Radiance • Calculated Clear-Column Radiance 23:34 :35 :36 .37 :38 :39 :40 TIME •41 :42 :43 :44 23:45 Figure V-4. — Observed radiances (solid line) and calculated clear- column (dots) for the ITPR 13.7-um C0 2 channel. 30 JUNE 12, 1970 ITPR Channel 5 (M.ljum) n i i 1 1 i 1 1 | [- Observed Radiance • Calculated Clear-Column Radiance 65 _ H 60 u z < at • - 50 - 45 - 40 l 1 I I i l I I 1 1 I l 23:34 :35 :36 .27 :38 :39 :40 TIME .41 :42 :43 :44 23:45 Figure V-5. — Observed radiances (solid line) and calculated clear-column 6? u z UJ oc ac 3 U U O >- u z UJ o radiance (dots) for the ITPR 14.1-ym CCU channel, 35 30 25 20 15- 10 TIME INTERVAL: 23:38 -23:44 GMT TOTAL NUMBER = 21 I CLR (3) = 83.4 ergs/cm 2 s sr cm" 1 CLEAR AIR RADIANCE MEASURED AT 23:37:20 = 83.3 ergs/cm 2 s sr em -1 — 23:44:20 = 83.8 ergs/cm 2 s sr cm" 1 80 81 82 83 84 85 — r~ 86 —r~ 87 88 89 90 CLEAR COLUMN RADIANCE Figure V-6. --Histogram of clear- column radiances deduced from cloud-contami- nated radiances measured in the 13.4- ym CO2 channel. 31 u z UJ ee. OL Z> U U O >- u z o UJ OL 35 30 25 20 15 10- 5- TIME INTERVAL: 23:38-23:44 GMT TOTAL NUMBER ■ 21 70 71 72 ICLR (4) = 73.3 ergs/cm 2 s sr cm" 1 CLEAR AIR RADIANCE MEASURED AT 23:37:20 = 72.7 ergs/cm 2 s sr cm" 1 23:44:20 = 73.8 ergs/cm 2 s sr cm -1 73 74 75 — r— 76 77 78 79 —I 80 CLEAR COLUMN RADIANCE Figure V- 7. --Histogram of clear-column radiances deduced from cloud-contami- nated radiance measured in the 13.7^um C0~ channel. 35i 1 1 1 1 1 — i 1 1 — i z UJ ae ee 3 v dv = (VI-5) d In p d In p where d in p[ P ° CB( P )-T( P )] d ln P (VI-10) where p is any boundary pressure level. By definition, t (p ,p ) = 1. The first order approximation of the transmittance profile, x (p p ), can be cal- culated directly from a measured radiance and temperature (Planck radiance) profile. The actual transmittance profile, i(p ,p), in which C(p)^o, is then T (P >P) = T (P 'P) ex P {j ". CJjlL J o [B(p)-I(p)] d ln p} (VI-11) The exponential factor can be thought of as a correction term. Since the covariance term, C(p), is not observable, it must be estimated from theo- retical principles. The correction term is estimated from theoretically calculated radiances and transmittances . Using (VI-9), C(p) « dl(p) + [B(p) - I(p)] d ln t(p) d ln p d ln p (VI-12) where the circumflex (a) indicates a calculated value. Combining (VI-9), (VI-11), and (VI-12) yields (VI-13) x~(p ,p)=exp -/ P — L. / d[I(p)-I(p)]- [B(p)-I(p)] d ln 7(p) (d In p] ° L Po [B(p)-Kp)] 1 dlnp dlnp ) J Equation (VI-13) is used to calculate the atmospheric transmittance pro- files pertaining to the ITPR spectral intervals from the observed radiance and temperature (Planck radiance) profiles. 34 Computational Procedure The ITPR aboard the CV-990 measured the upward radiance, I , as a func- tion of pressure in its five spectral channels. Other instrumentation pro- vided measures of air temperature and relative humidity. Vertical profiles were obtained over a cloudless sea on three occasions, during flights 1, 8, and 9. The observational procedure was one of flying 5-minute legs at various altitudes above a specific earth location. Table VI-1 summarizes the average values of radiance, air temperature, and relative humidity for each altitude leg of the three vertical profiles. Each profile variable was interpolated to 100 levels equally spaced in the natural logarithm of pressure, in order to ensure accurate quadrature in the numerical computations. Air temperature and relative humidity were interpolated linearly with respect to lnp. The measured radiances were inter- polated on the basis of the theoretically calculated radiances by assuming that the discrepancy between measured and calculated radiance within each layer is linear with respect to the logarithm of pressure. The theoretically calculated radiances are obtained from the equation of radiative transfer in integral form; I(p a )=B(p )t( P ,p ) - / Ps B(p) dx(p a ,p) , (VI-14) p d in p d In p where p a and p are the pressures at the instrument and surface altitudes , respectively. The transmission of atmospheric water vapor, for the rotational H2O band, is assumed to be given by the "Random Band Model", Vp a ,p) = expi -(S/6)Uw ) (Vi-15) (V 1 + (S/TTCOUW j where S is the mean line strength, 6 is the mean line spacing and o is the mean half-width of the lines. The path length of water vapor n = i / P w(p) dp (VI-16) g Pa where g is the acceleration of gravity and w is the water vapor mixing ratio. The transmission of the atmospheric carbon dioxide for the 15-um C0„ band is assumed to be given by the "Ordered Band Model" , x c (p a ,p) = 1-erf |V(m*S/6 2 )U c \ (VI-17) The path length of carbon dioxide. U (p), is assumed to be a constant 0.24-7 atm cm/mb. Assuming no selective absorption, the transmission in the 11-ym "window" spectral region is expressible in terms of the continuum absorption 35 Table VI-1. — Measured radiances, temperature, and relative humidity Pressure J (mb) Measure d Radiances (erg s/cm^ s sr cm 1) Temp Rel. Hum. Ch 1 Ch 2 Ch 3 Ch 4 Ch 5 °K Percent FLT-1 (44°N, 129 D W) 997 134.93 100.94 121.94 124.49 126.82 289.1 73 970 136.00 100.15 122.42 125.30 128.10 291.0 48 926 137.08 100.78 123.07 125.95 129.39 292.0 5 5 854 136.81 101.41 123.07 125.78 128.25 291.0 39 698 131.99 99.37 118.57 119.68 119.55 284.0 35 573 124.62 97.97 110.88 109.28 105.64 271.0 50 466 120.99 97.63 105.10 100.95 94.93 262.0 29 337 120.99 97.22 99.63 91.31 81.44 246.0 22 FLT-8 (34°N, 130< >W) 1017 138.05 100.80 124.35 126.90 129.72 290.0 85 1003 136.74 100.17 123.62 125.85 128.54 289.6 63 932 132.84 100.25 120.86 122.79 124.00 285.0 6 2 754 129.41 99.40 117.87 118.92 119.08 281.3 45 505 113.87 98.19 105.74 102.34 97.82 264.0 35 238 104.43 95.09 91.81 82.05 70.00 224.0 13 FLT-9 (28°N, 93°W) 1017 153.61 120.10 144.39 146.21 148.98 301.5 100 983 150.53 119.41 141.94 142.73 145.20 299.0 88 853 140.33 115.98 134.88 133.87 132.81 292.9 60 716 131.59 112.94 126.34 123.68 120.95 285.0 47 601 125.79 110.95 119.36 115.28 109.48 275.2 30 490 122.28 109.79 113.21 107.02 98.72 265.0 22 365 119.96 108.64 106.46 96.64 84.94 249.0 20 209 117.15 107.82 98.03 84.14 67.51 218.6 37 36 coefficient, 3, by x wD (p a ,p) - exp )- kU w [ (VI-18) where k is the continuum absorption coefficient. The temperature and pressure dependence of the line parameters S, a, and k is assumed to be accounted for by the usual forms (Smith, 1969) '"«)'"*'"«) S/T^ < ' - ;•. | J oV'/lV:\ m (vr-19 where S , a , and k Q are fixed values for standard temperature and pressure, T Q and p , values of 273°K and 1000 mb. The effective temperature and pressure, T e and p , of an absorbing layer (p a »p) are defined by T e = £ T du dp // du dp F a dp y & dp p a /r p P ^u dp // a dp *a dp (VI-20) P e = ' p P du dp // du dp Howard, Burch , and Williams (1955) showed from empirical data that (VI-15) can be expressed as , t w (p a ,p) = exp -1.97LU W (VI-21) \\j 1 + 6 . 57LU W ) for a given temperature and pressure, where L is a generalized absorption coefficient. It then follows from (VI-15), (VI-19), and (VI-21) that * w (p a>P ) - exp( - 1 " 97 L o ( W n »w | (VI-22) a j _ I V 1 + 6.57L (T e /T ) n+1/2 (p e /p )^U w ) where L is the generalized absorption coefficient for standard pressure and temperature. In a similar manner (VI-17) can be expressed as A T c (p a ,p) =1- erf IWLl^r /^.\ m U W(k) (VI-23) and (VI-18) by r wd ( Pa 5-dCPa.P) ~- e *P ■ L n /M ' /Pe\ m U, I (VI-24) ft) " fe) ' " where in (VI-23) the -1/2 temperature exponent has been absorbed by the n. 37 Thus the atmospheric transmissions for spectral channels 1 and 2 are calcu- lated by equation (VI-22) and (VI-24). The atmospheric transmissions for the 15-ym carbon dioxide channels, (3), (4), and (5), which are influenced by H2O as well as CO2 lines, are calculated as the product of (VI-22) and (VI-23), (i.e., t = T-,. T ). The transmission model parameters (L_ s n, and m) were determined from the theoretical data given by Moller and Raschke (1963) and are presented in table VI-2 below. Table VI-2. — Theoretical transmission model parameters Water vapor Carbon dioxide Channel L m n L m o o 1 3.550 0.72 1 - 2 0.158 1.00 - 3 0.347 .72 0.003 .66 7 4 0.380 .72 0.010 .66 6 5 0.437 .72 0.028 .66 5 As mentioned earlier, the measured radiances were interpolated to levels within a measurement layer assuming that A d[I(p) - I(p)3 = K = constant (VI-25) d In p Integrating (VI-25) between the limits pl and p, where P L is the layer base pressure, gives the interpolated measured radiances T(p) = I(p) + [I(p L ) - I (p L )] + K In (p/p L ) (VI-26) The slope K is found from (VI-26) for p=p u where p u is the pressure at the top of the layer. K = [T(p u ) - I(p u )] - CT(p L ) - I(p L )] (VI-27) ln (Pu/PL) To ensure that the calculated radiance profile will be a close approximator of the true profile, the generalized water vapor absorption coefficients for channels (1) and (2) and the generalized CO2 absorption coefficients for channels (3), (4), and (5) were specified for each flight as those values which yielded agreement between I(p) and I(p) for the highest level of the profile . 38 The transmission for each layer was computed on the basis of the measured and calculated radiance profiles using (VI-13) written in its numerical form ( N-l. A A x(p L ,p u )=exp 1-Z )[I(i+l)-I(i+l)]-[I(i)-I(i)]-[B(i+l/2) .-i(i+l/2)][lnT(I+l)-lnT(i)]iaBU+l/2>-I(I+l/2)}( (vi-28) where N is the number of the quadrature levels for the layer and Q(i+l/2) E [Q(i) + Q(i+l)]/2 (VI-29) where Q denotes any quantity. Results Table VI-3 lists the atmospheric transmittances computed from the mea- sured radiances and the corresponding optical properties of the observed layers. The pure CO2 transmittances for channels 3, 4, and 5 were obtained by dividing the total transmittance values by the model-determined water vapor transmittances . It is somewhat difficult to assess the reliability of these transmittances. One immediately questions their dependence upon the theoretically calculated .values used in (VI-13). To assess this dependence, the transmittances for flight 9 were recomputed using different absorption coefficients in the theoretical band models. Table VI-4 shows the results. The first-order approximation, t q , is independent of the model transmittance and calculated radiance profile except for their minor influence (<.001 per- cent) on the measured radiance interpolation. As may be seen from table VI-4, the final transmittance values are only weakly dependent upon the model values used. Figures VI-1 through VI-5 shows plots of the radiance derived H2O and CO2 transmittance values versus the pressure and temperature scaled mass of these gases. Here the pressure exponent was assumed to be unity. The temperature exponent was assumed to be zero for channels 1 and 2. For channels 3, 4, and 5 the temperature exponent and the generalized absorption coefficients of the ordered band model were determined by a non- linear least-squares procedure. The result minimizes the rms difference between the observed transmittances and those calculated using the ordered band model. The scatter revealed in these figures appear to be due primarily to inaccuracies in the estimated water vapor path lengths. This is because the scatter becomes successively smaller for those spectral channels which are less affected by water vapor. For instance, channel 1, whose radiation is completely dependent on the water vapor distribution, has the greatest amount of scatter. On the other hand, channel 5, whose radiation is almost independent of water vapor, has the least amount of scatter. Channel 3, whose radiation is due to both water vapor and carbon dioxide, has an 39 CD R -F •H rd ■p & o (1) CD ft Mh EH 4h O C rO -P CMP O -H O CD E P, ' co £-i CO CD P-i H Hi (H CD ,a CJ a nj H p 03 ■p CO +J ■H O B -C H CO C ft) P. o +J CM ,£3 CJ ro H O CN CM o o o CM re £ o 6 +j rO B o 4-OCM r- O O CN J- O CD (D CN O- f- in in cn C- CO O IT) ID CD ID t> f» d co zir in m CN CN CN CN CM CN CM CN CM CM CN CN CN CD CM CD d- t> H H o o c- r» d" O • • « • • ■ • • • • • • • in J- oj r- d" CO LO CD J" d" co r>- H in id t> (D c- r-" in co m cd LD CD [-« CM CM CM CN CN CM CM CM CM CM CM CN CM O LO CD cn CN CD rH CD CD (D C"« d- CD O m rH H CO co f- co d- O CN co d d" d- m m in cD co CN CO d d d- LO 00 [-~ m co d- CD cD c*> CD o co cd CO H cn CO CM o co CN o O o CO H m d- d- m m CD CD d- CO d- m d- in in d- CD o m m O CO o CO m CO O CD • • • • • • • • • • • • • H CO o UD l> rH in co CD f» o en t> co m en CM in CO CD CO CD CD co in CM a> en d o in in d- ro O CO CO CD oo O CM t> CM CD d- H o H CM o CM rH H co d- CD l> CD CO CM CO d CM o O H o rH CD CM O o o cn J d- o CD CO CM in CO o m CO CN CO co r- H f- co CN o o H o CM cD CD CO CD oo in co CD co m CO rH d CM O CM CD O 00 d CO CO co in CD CD CO (D CO CD O rH CD CD H in [-» o (D d- H I H O O CD J" H CD CN I t> in co cd H CD in 3- d- cd d- H H [> d CO ^ CO co d- LO CN H CD d- Ln l> CO CD CN CN CO o CD cd d - d" CN CO in co r-» cd i> r- d- co O- CD d" i> d- LO LO o cd in f- CD O CD CD CN | LO CD CM CN CO CD co CN co in h CD l> co d cd d- co m co LO r> cn lo o o o co CM O CO CM CN CO id t> m C"» CD C-- o F» d- H in co co n in m (D CO d co t> CO o ro CO CD CO r-- d- cD CD CD 00 CD CO CD CD CD CD CD CD CD CD CO CN O CN CO o o t- O CD CO H cd CO d cd o in co in m CD ro co ro co co m LO O H O H rH d- l> CD f> CD a^ o CD CD O CD o o H d 1 m CD m cD CO co m CD CO =t cD d CD cD &-< L^s 1 1 CD 1 CD 1 CO H CO Eh CD 1 CD 1 CD i m 1 m O J ro ro ro CD CD c~- J ro J O O O CD CD CD U4 ro co ro d d- LO Pl. CM Ph CM CM CM co CO J" 40 Table VI-4. — Transmittances computed from flight 9 radiance data using two different model transmittance values (t-j_, t 2 ) for the 209- to 365-mb layer and their differences (6 ). 1st- order Model Final Channel approx. (t q ) Eq (10) Value (x) Value (t) Eq (13) x 1 0.934 0.903 0.902 T 2 .933 .866 .897 6 T .001 .037 .005 T, .988 .997 .988 ^2 .988 .994 .988 6 .000 .003 .000 T 1 .836 .798 .772 12 .836 .811 .773 6 .000 -.013 -.001 •1 T 2 ,693 .653 .639 x _2_ .694 .661 .638 6 -.001 -.008 .001 379 .394 .401 T _2_ .378 .446 .392 6^ .001 -.052 .009 41 0.3 0.4 0.5 0.6 0.7 0.8 0.9JA 1.0 0.01 I I I I I II I I T 1 — I I I I I O O A A © © J I I l I I I I 532.5cm- 1 (Ch. 1) Flight 1 © Flight 8 D Flight 9 A I I I I I I 1 0.03 0.05 0.07 0.1 u w (p/p ) 0.3 0.5 0.7 1.0 Figure VI-1. — Radiance-derived ^0 transmittance values for channel 1, 0.88 TTT T 1 I I I I I 0.90 0.92 0.94 0.96 0.98 & 100 i 01 o A A © 898.0cm- 1 (Ch. 2) Flight 1 © Flight 8 □ Flight 9 A © 0.03 0.05 0.07 0.1 0.3 0.5 0.7 1.0 U w (p/ Po ) Figure VI-2. — Radiance-derived H2O transmittance values for channel 2, 42 0.0 L 1 1 1 1 1 1 1 1 1 1 t r ■ " i i i I.I. 0.1 * c =l-erf V L >/Po>( T /T )"U c 0.2 . = .00582 J 0.3 c 0.4 _ 747.0cm" 1 (Ch. 3) O Flight 1 °s . 0.5 D Flight 8 o _ A Flight 9 j. - 0.6 - D •£a - 0.7 >^± - 0.8 1 l i i4j*P m -i) - ^Pm'Pm-l )] h u , '^^Vl 5 „*, , B(p b ) + B(p ) where Kp^P^) = and B(p m ,p in _ 1 ) = g In this form the transmit tances can be readily approximated directly from the measurements . When scattering cannot be neglected, equation (VII-1) must be generalized to 47 ydl v (y) =-I v (u)+w v / p(y,y')I v (n')dy' dt ~ + (1-%)B V (VII-11) where 1 / p(y,y' ) du' =1 (VII-12) 2 _1 p(y,y') is the scattering phase function which describes how the scattered radiation is distributed with direction, y' and y are, respectively, the cosines of the zenith angles of incidence and emergence, and oj is the frac- . . . v tion of incident radiation that is scattered by a small volume element. Since the upward intensity of the radiation was measured, y=l in equation (VII-11). Because the size of the scatterers is of the same order as the wavelengths of the radiation, the major contributions to the integral in equation (VII-11) occur in the vicinity of y'=l, when y=l. As a result of this and the fact that I (y T ) varies only slightly with angle in the angular region near y'=l, equation (VII-11) can be approximately written dl^ = (l-oo )(B - I ) (VII-13) dt Similar to the derivation of the transmissivity for the case when scattering was neglected, the transmissivity that results in the presence of scattering is given approximately by Po x(p ,p) = exp -] 1 / [dl(p')/dp' 3( (VII-14) 1-W I(p» )-B(p» ) where _ f°° w a dv (VII-15) Jsing equation (VII-9), equation (VII-14) may be written T(p„,p) = t (p o ,p) l-oo (VII-16) Another useful form that equation (VII-16) may be written is obtained by defining t (p ,p) to be the transmissivity through the cloud- free atmosphere and "aT to be the value of lo in the absence of the gaseous 48 constituents of the atmosphere. Then, 7(p o> p) =/l>a!£l p (VII " 17) \x a (p o ,p)"o/ Results of the Aircraft Measurements The Convair-990 experimental program included 10 flights. On some of these, measurements of the radiances and ambient temperatures were made as the aircraft flew separate legs above, through, and below one or more cloud decks . In this way we hoped to gather sufficient data to study the spectral transmission characteristics of the clouds. However, because of insufficient data, only two case studies could be examined in detail. In the first case (flight 2), measurements were made of a deck of clouds described as cirrus. These clouds in the vicinity of Spokane, Wash., had tops at 27,200 feet and bases at about 15,000 feet. The first leg of the cloud study portion of the flight was made beneath the cloud deck, the second and third legs through the deck, and the fourth leg above the deck. This effectively divided the cloud deck into three sublayers. As the aircraft flew these legs , measurements of the radiances in five separate channels were made every 0.03 seconds, and ambient temperature was measured every minute. ' The mean radiance for each channel and the mean value of the ambient temperature were computed for each flight leg. These values and the equivalent blackbody temperatures corresponding to the meas- ured radiances are listed in table VII-1. The blackbody radiances corre- sponding to the ambient temperatures also are shown. These radiances were then used in equations (VII-10) and (VII-16) to compute estimates of the cloud transmittances , T ca . The transmittances obtained are shown in figure VII-1 for w =0 and in figure VII-2 for TO" =0.5 as a function of the elevation from the base of the cloud. The trans- mittances for each channel are connected by a smooth curve. While such curves as shown in figure VII-2 are good representations of the actual vari- ations of T Qa in most of the cloud, the variations at the base of the cloud are questionable. It is quite possible that the transmittances approach unity more quickly than indicated and then level off in a manner similar to that shown for the top of the cloud . Note that values of T ca in the window channel (2) are significantly higher than those for the other channels, while channel 5, the most opaque CO2 band, has quite low values. It is interesting that, toward the base of the cloud, transmittances in the water vapor band (1) are lower than those in the CO^ channels (3 and 4), while the values for channel 1 fall between those of the two COo channels at higher levels. This is probably because of the higher concentration of water vapor at the base. To isolate the effects of water vapor and CCU on the transmittance characteristics of the clouds , estimates were made of transmittances for conditions of zero water vapor and zero CO2 concentrations. These 49 pq pq CO pq CN pq pq fJ u CD (X £ Eh CO W (X. •H C o •H nd ■H 3 td o > H I w M H o o CD en CO en LO en CO o d en CM cn St H H CO en CO CM en d H en co d CO co LO LO cO co t> co co CO d CO d o H d CM l> CO lo o CM q-i o CO a +j CO 0) O 4-> CM CO CO d CO o CO CM CO CM o CM CO LD d H o H CD CD CM CO CO d- o d co CD CD LO O CD CD co co LO CN H d CD CO 00 CM H H d CM LO CM CO CO CO H CM CD d- CM H d LO en o H co CM O CM H CO CM O l> d CM H LO CM d o l> CM CO en • LO CO CM en en en CM CO H d- o CO CN O CO CM CO H H LO o CM CM H CD CD en o LO o en CO CD CM CD [> CM CM d H CO Csl d co LO en CN O d CM CN O CO cn co o co H cn LO CM CO CT> CO d co o CD CD O CO CD CM en d CD CD CM LO CM en CD CM en CM d CO LO CD CM CO LO co CO LO LO CD CD en CD co CO co CD CO d CM d LO CM LO CM H O CD LO CM LO co l> CD CM LO LO CM H I > 0) H ■a CD U co CO d) Ih Ph r- co LO o CM LO CO 00 d CM CO co 50 ca U» = 0.0 o Channel 1 532.5cm- 1 2 898.0cm" 1 3 747.0cm- 1 -l -l H (THOUSAND FEET) Figure VII-1. — Cloud trarismittance (x ) vs the elevation (H) above the base of the cloud (Flight 2). 1.0! CO I — '— Channel 1 532.5cm- 1 2 898.0cm" 1 3 747.0cm" 1 4 732.5cm" 5 708.0cm~ 1 Figure VII-2.- H (THOUSAND FEET) ■Cloud trarismittance (t__) vs the elevation (H) above the base of the cloud (Flight 2). 51 transmittances we shall denote x . The transmittances for the cloud-free c regions adjoining the region of measurement were computed for the CO2 band. These we shall call T a . Before the first leg of the flight was made below the cloud deck, the aircraft made a steady descent in the clear air adjacent to the cloud. During this time, radiances were measured, and the clear-air radiance values corresponding to the elevations of the legs were obtained. Using the program discussed in section VI, which is a generalization of Equation (VII-10), transmittances through the cloud-free atmosphere were computed. They are shown in figure VII-3. The values of t _ for the cloud for w =0.5 in the three C0 o channels ca o *■ were then plotted against the corresponding values of x as shown m figure VII-4. Curves for each cloud level were then extrapolated to where the value of x became unity. The transmittances in the cloud corresponding to these extrapolated values, therefore, are the desired "pure" cloud trans- mittances, x c . The resulting variations of these transmittances with eleva- tion in the cloud are shown in figure VII-5. Since there is only one channel for the water vapor band and one for the "window", the "pure" cloud transmittances at these spectral intervals must be approximated in a different manner. By assuming that x ca s x c x x a (VII-18) the "pure" cloud transmittances may be estimated. The resulting values are also shown in figure VII-5. It is interesting to note that the transmittances for the CO2 and water vapor bands are very nearly the same, while those for the window channel are considerably greater in magnitude. The results presented in figure VII-5 can be explained if the predomi- nant phase of the cloud particles is liquid. Although the cloud was reported as cirrus , it seems quite unlikely that ice particles predominate at levels as low as 15,000 feet. Therefore, assuming that most of the cloud was composed of liquid water drops, the agreement between the transmittances in the CO2 and water vapor bands can be explained by the fact that the values of the liquid water absorption coefficients are fairly close in the two bands. On the other hand, the magnitude of the absorption coefficient for the window region is less than half that for either the water vapor or C0 2 band. This explains the larger values of x c for this channel. The same conclusion may be reached by comparison of the extinction efficiency factors (ratio of the extinction cross section to the geometric cross section) for 10-um drops. Again, the values for the water vapor and CO2 bands are close, in value while that for the window region is considerably smaller. Table VII-2 lists the absorption coefficients and extinction efficiency factors for the three spectral regions. The second case for which cloud transmittances were computed was derived from data gathered from cirrus clouds with tops at 37,800 feet and bases at 27,000 feet (flight 10). Table VII-3 lists information on mean radiances and temperatures, similar to that listed in table VII-1. Only one leg of the 52 H (THOUSAND FEET) Figure VII-3. — Clear-air transmittance (x a ) vs the elevation (H) in the clear air above the cloud base (Flight 2). ca 0.5 0.4 0.3 0.2- 0.1 0.0 0.0 i — ■ — r i — ' — i ' — r OJ Q = 0.5 p=587mb to p=520mb .*— t 0.1 0.2 0.3 0.4 0.6 p=587mb to p-332mb Smm it— *■■<■ — I 0.7 0.8 0.9 1.0 Figure VII-4. --Cloud transmittance (t ca ) vs the clear-air transmittance (x a ) (Flight 2). ■ I 53 r c H (THOUSAND FEET) Figure VII-5. — "Pure" cloud transmit tance (t c ) vs the elevation (H) above the base of the cloud (Flight 2). Table VII-2. — Absorption and extinction factors for liquid water Absorption coeff Channel Mean wavelength in water um cm _J - 1 18.78 2633 2 11.13 1296 3 \ 4 / 13.72 3083 5 ] Extinction efficiency factor 2.628 1.789 2.284 54 o H +-> Xi bO •H H 4-1 bO C •H T3 GO =1 O H O C T3 & d w rtf 0) S ra a> o c iD •H c (D nj & 0) I I rrj l-l H > H ■a LO CO pq CN CQ H CD +-> (0 ft B 0) Eh to a •H c o ■H T3 to o > H 0) O H M CN S O ra bo (0 o LO UD CN o co UD CT> CM CM CO CO LO CN H CO CO o [> LO d co d- LO o r-- CN LO H UD co H P- CN LO d co UD CN co d CD CD CN o CD CN H zf d CM UD co CM d CM CM d H co d CM o H CN O M rd 0) w a> o -t- 1 CO LO co co LO d* Eh co CN Eh H to P-i en CT> LO CO CD LO CN O H H (D CO UD co CD CN cn CN O UD CN OD CO d- CN d d LO co CN UD LO O H co LO CO p» CM o CN co LO co CO L-* OD CO o o d- co o cn d CN oo C- o UD CN LO co oo UD CN LO LO cn co CN d 00 UD CM O CO CD LO o ID CN CD CD co d- UD cn O LO UD co cn co CO d r- LO co CN co CD CO d CN O UD d CN d UD CN d d" UD d CN d H co d CM O H CN 55 flight was made within the cirrus. Computation results are shown in figures VII-6 and VII-7. Note that here the window and water vapor channels have transmit tances very nearly the same in value. This is probably because of the smaller amount of water vapor at the higher levels . Since no data from cloud-free regions near the cloud area were avail- able, another means for estimating the "pure" cloud transmittances was used. A relative measure of the absorption coefficients in the CC>2 band were obtained from flight 2 data. By plotting the values of x ca against the absorption coefficients, one could obtain t c by extrapolating the curves to points where the absorption coefficients became zero. The transmittance values, x , computed for flight 2 were used to esti- mate an absorption coefficient k for the band, assuming the relation, x a ( Po ,p) = e- k (Po-P } (VII-19) from which k = - ln T a(Po>P) Po-P Since (p -p) is a common factor to all the values of the absorption coeffi- cients, plots of T ca for w = 0.5 for this case study were made against -In x_ determined for the thickest layer from flight 2 (See figure VIIr8). The values of x were then extrapolated to a value of zero for -lnx . The values of x obtained were the desired values of x ; these are plotted in figure VI I- 9. The "pure" cloud transmittances for channels 1 and 2 were assumed to be the same as the transmittances with water vapor present. For comparison with the curves of x c for the CO2 band, they are shown in figure VII-9. That the transmittances are much closer in value for all the channels than those for flight 2 can be explained by the fact that ice particles are much larger than cloud water drops. Thus, nearly all the radiation refracted into the crystals is absorbed, and differences in the absorption coefficients are unimportant. For large particles the extinction efficiency factors all tend toward a value of 2. Probably, the small variations in this parameter give rise to the differences in the transmittance curves of figure VII-9. Conclusions and Recommendations The results of the cloud transmittances determined from measurements obtained by the airborne ITPR brassboard instrument indicate that much can be learned about the radiative properties of clouds by using such measure- ments. Although not many cases were studied in quite so great detail as would have been desirable, the results definitely do point toward what can be achieved on future flights . Therefore, on the basis of this study, we recommend that more extensive 56 ca 1 — ' — r Channel 1 532.5cm" 1 2 898.0cm -1 3 747.0cm" 1 4 732.5cm" 1 5 708.0cm" 1 o.ol 1 1 I ,1 L 8 10 12 14 H (THOUSAND FEET) Figure VII-6. — Cloud transmittance (t c ^) vs the elevation (H) above the base of the cloud (Flight 10). ca 10 12 H (THOUSAND FEET) Figure VII-7.--Cloud transmittance (t ca ) vs the elevation (H) above the base of the cloud (Flight 10). 57 ca u.« i — 1 ' , 1 1 1 0.3 — #— p=314 to p=274mb - 0.2 - c3 =0.5 0.1 p=314mb to p=210mb 0.0 i 1 . 1 1 i 1 i 0.0 0.5 1.0 1.5 2.0 2.5 InT Figure VII-8. — Cloud transmittance (^ ca ) for flight 10 vs the negative of the logarithm of the clear air transmittance (-In x a for the thickest layer in flight 2. 1.0 0.8 - 0.6- 0.4- 0.2 0.0 I ' 1 ■ 1 1 1 1 1 ' 1 Channel i 1 532.5cm" — w ___ 2 898.0cm" 1 — * vV 3 747.0cm" 1 V % 4 732.5cm" 1 1 5 708.0cm" ! \ ^ OJ = 0.5 - — 1,2 - 1 3,4,5 1 i 1 1 i _i _ 10 12 H (THOUSAND FEET) Figure VII-9. - J 'Pure" cloud transmittance (t c ) vs the elevation (H) above the base of the cloud (Flight 10). 58 measurements be made for a variety of cloud situations to assess the accuracy of current results. These measurements should provide for flying a greater number of legs (perhaps six or more) within the clouds and in the adjoining clear regions to permit better definition of transmittance curves. Also, the study of a larger number of cases should lead to a clearer under- standing of the factors that influence the transfer of radiation through clouds . 59 References Barnes Engineering Company, "Thermistor Infrared Detectors," Reprinted from NAVORD 549 5, June 1, 19 58. Barnes Engineering Company, "Satellite Spectrometer, Phase II, 1st Quarterly Report 4596 to Contract Cwb 10-419," November 15, 19 59. Howard, J. N. , Burch, D. L. , and Williams, D. , Near- Infrared Transmission Through Synthetic Atmospheres , Geophysical Research Papers No. 40 (AFCRC-TR-55-213, Cambridge Research Center, U.S.A.F., November 19 55, 244 pp. Middlebrook, R. D. , and Taylor, A. D., "Differential Amplifier with Regulator Achieves High Stability, Low Drift," Electronics Magazine , Vol. 34, July 28, 1961, pp. 56-59. Moller, R. , and Raschke, E. , Evaluation of TIROS III Radiation Data, Ludwig-Maximilians - Universitat , Meteorologisches Institut , Munchen , Germany, NASA Research Grant, NSG-305, July 1963, 114 pp. Smith, W. L. , "An Improved Method for Calculating Tropospheric Temperature and Moisture from Satellite Radiometer Measurements," Monthly Weather Review , Vol. 96, No. 6, June 1968, pp. 387-396. Smith, W. L. , "A Polynomial Representation of Carbon Dioxide and Water Vapor Transmission," ESSA Technical Report NESC 47, February 1969 (Available from the National Technical Information Service), 20 pp. Smith, W. L. , "The Improvement of Clear-Column Radiance Determination with a Supplementary 3.8-ym Window Channel," ESSA Technical Memorandum NESCTM- 16, U. S. Department of Commerce, National Environmental Satellite Service Center, Washington, D. C. , July 1969, 17 pp. Smith, W. L. , and Jacob, W. J., "Multi-Spectral Window Determination of Surface Temperature and Cloud Properties," (to be submitted for publication). Wark, D. Q. , Hilleary, D. T. , Anderson, S. P., and Fischer, J. C. , "NIMBUS Satellite Infrared Spectrometer Experiment," IEEE Transactions on Geoscience Electronics , Vol. GE-8, No. 4, October 1970, pp. 264-270. 60 APPENDIX Flight plan and ITPR data for June 12, 1970 (flight 7) Flight Plan The flight plan is to leave Eielson AFB for a point southeast of Fairbanks and execute a pass over the glacier Gloco at 14 K. After Anchorage is passed, the aircraft will proceed to a point of 4-9° N. and 150° W. at 31 K in order to pass over a front. The aircraft will then turn left at Medford, Oregon, pass over the cold section of the front, there execute a 30-minute delay. The aircraft will then attempt to reach the cirrus shield associated with the warm front, and if time permits, to execute a 15-minute delay with clear skies below the cirrus. Afterwards , the aircraft will go down the coast about 200 miles offshore until Moffett AFB is reached. 61 II. Flight Data DATA FORMAT Time: Hours: Minutes: Seconds (GMT) Pressure Altitude (mb) Brightness Temperatures (°K) Tl (532.5 cm -1 ) T2 (898.5 cm" 1 ) T3 (747.0 cm" 1 ) T4 (732.5 cm" 1 ) T5 (708.0 cm" 1 ) 62 6/ 12/ 70 HP !• N St". .11 T Tl _L£_ T.3 Oil t__. ■.6 57 -*___i__ 1.7 37 28_- 261.60 2 8 3.i' ?6 C 260.31 77 7.2 236 260.6* 271. ?' '■17 ?6n.?. 27-_-___: 353.56 25*. 63 2^3 . S <♦ ._2.60.___9.. 25.1__.aJ 2-.2.__>.2-.. 261..H. 251. 69 21.3. C 1 .____5.9___.___L. 251 . ,15 _2_i2_.___2_ 296 258.51 277.11 268.31 21,9.93 2*1.92 '<' 759.P. 773.76 75Q.H1 251.11. _2__l3-_'J a 2>)7 257.97 277.21. 257.99 ?*9.12 21.2.21 2.6 8 253. °0 2 7..1. 252.6a 2*5.97 2*0.37 23? 259.23 277.65 253.95 251.07 2*3.03 .2.86 25_»_, S3- 225_-2 _. 2_-__J__. _25a.il. 2„_2_.7_2_.. '54 261.73 285.71. 76*. 72 251.. 03 21,3.75 37 761 .5"' 273. 1.9 7_?.r jfi 253.10 73*. 02 60.1.6 277. nC 260.7". 252.1.. 7,3.73 '36 f57.0 1 767.76 7C1..H 7*6.91 .2*3.0.1. .. 239 25",. 31. 259. '-i. 251.11 21,7.27 21,2.1,7 ai__2____-__L_. 269. -35- 251.67_2.!i2__7.a 232J.6.5 29' 253.86 266. 13 257.86 71.7.1.1 2,1.58 23i__2.i_2_-C--_ 2-5.3. f 6 __-3-..-J- -__1_-.J. 2.3 9. 2 2 . 25_ 21,9.00 262. (1 ?35. c '7 237.27 21,0.37 . 2_i6 . 2__6, 16 2.52.i6_233,-.5. 232.5 3 239. 9", 287 21,9.93 255. F. 237..? ?£._,.!_, 2,0.96 _2Jl5.2-t._L_.an 753.57 j>*f..3;> ?**.l.7 230.99 '36 71,8.1,2 251.66 7*5.29 21,3. 16 2>»0.36 731 71,9.11 ,-57.°', 71.6.73 7*3.6' 71.0.63 . 237 251.lt 256.67 2*8.23 21.6.57 21,1.63 _256_ 25___.7*. 25.__._L__.2k7 _62 2*5..12_.2*-1 . 3 5 23° 21.8.91 251.-3 21.6. ,0 2*3.3) 2.0. .33 _-.__i_2i-7-.9SL.25_l. LI _2-._-._fl2 21,2.2.3 2*11.35 78 7 21,5.72 2*. .89 71.7.16 21,1.35 239.13 .-__37-___**_-__--2*2.-.3_-!-_.-L32_._L5_ 23t_-.9 5.23J! . 8 8 731, 21,3. °3 -.6. P. '31.76 239.6. 213.23 -285- ?3-_..6..-2 31.,*.1 232.J29 2.1.-3 .33.83 337 21,3. .2 71.6.27 2.5.51 7'9.77 233.03 _2_5 7.3.0 6 7I.6. 75 7.39. 111 2_.__._3 J. 237.53 21.2.61. 239.32 __L_2_t3__ia. 2 -2._-_2.239.. 32 ?....') 238. .J 19 1_L 19 19 19 286 21,7.02 751. 7< 232_-2_i_6.65._2-*.._, 5. 37 737 21,1,. 82 2lt7.bg 7.1. .2 5-3 1,9 . . 236_ 245_. 16 _« . _3 .2m. .6 2*1. OJ 238.57 55 237 2.3.67 21,5. VI 7. ".61 2*0.21 237.96 55 l__-._2_L*_.2i_2.-ll_2.**. __L. 220.18 238.99 2 37.11 55 75 ?1> 2.2.1.2 7.H.H 739.36 239.25 737.27 55 '7 7.1F 7* 3.7* ?*7.'6 73.1.66 2.*.0._.3 237.9. 55 1,9 73" 21,6.11 2.9.1."' 21,7.1-3 21.2.73 239. J 3 & _0. 237 2*7.28 259.39. 23.3.53 2.3.53 239.37 56 13 23° 2.7.-7 7 5 . ' 7 2**. 18 21,3.11 239.73 56 25 .236 2Jt7, **.251. -5.2-5. 13 23?.6) 2*0. Qil. 56 35 23F 21,8.08 252. 6 . 7.5.33 2. ..05 ?'.9.9* -___--__ 2-___-_it_L_.t2__2.i__-. -__— 7_-_..__-___--3-.J. J..239.3 3. 56 59 735 2*5.65 2*.. 36 733.29 ?.'.. I 239.20 67 in .. _-J6-___-__52. _7fc9.f,5.Zi L3_.35._2-i-t.!tS. 2 59.3 6 57"23 297 2*7.75 251.11 ?V..'^ ?>.",.. '.ill Jj 1 57 35 78 5 2*6 .90 250. p 6 ___-.*-_0.1 2*' 57 1.7 737 21,7.91 251. :• 2 23. .92 2'.' _5 Z _59 . 239 2*7 .39 752.53 _?3 5. 3 1 23 . 58 61 236 21,1,. 76 71.7.63 ",1.77 23" 59 3 237 21.5.21. 2.7.73 n,?. lf ALT 287 286 285 2£7 288 282- 287 ______ 287 .286 766 28.8 2 6-, 288 286 286 286 288 285 2-6. 287 2ee 288 .290 265 286 286 285 2es 268 269 288 286 286 288 2.6 266 288 265 267 267 287 285 289 787 286 265 266 287 286 -__-_ _L_ T - tl T li. T 7 13. ______ _____ ...TJ I_ 255.62 265.61 251.61 21.7. .5 232.02 286 260.82 279.17 261.03 252.01 2.3.03 25.3.8.9. .27S..35 -__■--, -_i_. _L5-_-__t-2_2.-_-_n-_2_-.---.26J_. *1 217 -.27 759.57 750.99 7. 7. 6.3 259.65 276.32 259.73 250.10 2.2. .7 289 259.57 273.1,5 258.01 250.36 21.2.61 2__a._--t-27_L___3.__2__l__6L_-_5_..5i____Z___J 783 763.119 761.+- 76 1.13 751.61. 71.7.53 257.33 275.26 25b. 31 21.8.95 232.16 289 253.50 277.0') 257.62 21,9.86 232.35 25.9-.56 .73. J 9 759.5. 751;. .7 737.93 73? 758.55 776.35 757.91 750.07 7*7.5? .6. 2.33.5 9 .0 5 2,0.3 .-91 7 + 0.0 6 .6 3 2 18.8 3 2*3.23 739.1. 236 21,5.81' 238.65 232. "9 231.13 219.37 23" 233. °6 237.2? 737.13 2*1 .63 238.95 217 233.92 236.15 231.32 731.31 238.62 233. 231. 67 233. c. 236 .95 236. *9 237.7 3. 23* 2,0.55 233.21 7?7.«6 237.55 216.63 ?1^ 2, 0.63 233.'5 ?i7.66 736.36 2. 16,3 6 733 239.76 232.22 737.17 736.77 256.25 283.23 0.21 737. 1.1 737.50 23 7 , J.5_ 2 36. 3 3 781. 2,1.89 233.ro 239.36 238.23 257.31 287 231.69 733.37 733.37 238.99 237.25 236 232.7' 233.17 230.26 233.99 237.61 237 7,6. 09 239. 1-3 733.36 232. 81 239.33 . 23' 733.81 736.1.7 '31.28 230.16237.69 2_86_233.°5 2*7._7__ ?31._._5 230.53 236.53 787 236.29 731.37 ?*?. 39 231.31 239.36 i37 237.35 250. '.7 733 .71 237.2.2 239.9.3. 7,3= 237.51 751.7. 233.73 237.72 230.18 89 737.57 251.. . 733.22 232.63 2___9 ..i ... 717 239.68 253.6? 71,7.15 ?33.32 230.8.) 267 737.06 ..51.29 2,3. 15- 232.09 2.5.-J, 5 6. 233 236.36 2... 'I 233.1" 731.31 239.21 _285 7.5.57 233.38 ' 37.3 3 230.37 2.38.8.3. 287 251, ,1 755.2' '36.59 235.71 231.19 7 17 75 1.7' 756.31 73". 36 236.37 732.13 20 6 59 79" 250.58 255. "'1 736.38 235.86 232. 3* _70 7.11. 217 751..01 256.76 2* Q ..22 236...1 6 _232 . 3 7. 20 7 2C 21 1 2*8.18 253.27 7*5.96 733.17 7,0.95 70 7 3 3 2.1.1 25Q. f], 256.2° 2*6.90 236.16 ZJtZjZZ. 20 7 35 28. 2*6.52 751.73 73*. 18 2*2.57 2*0.11 70 7 57 787 7*6.35 7*9. .3 733. 3 2 232.3) . -_-.___--. _ 28° 236.17, 250.32 7*3.96 2*2.3* 2*9.2* 2C -.0 ?0 ?: _-_?__ 8 33 ___*__. '1" ?37.57 251. ■ 7 2,F. 11 2*_7_.90 2.0.9* 79- 2*6.79 259.63 '33.51 7*2.83 2*0.56 ___}?_ 2*6. * 6 2*9.1.5 7*7.76 2*2.2.9 .2*0.07 28°. 2,6.** 2*9..3 2*3.72 2*2.7) 2*0.31 233 2*6. Fl 2*9. f . ?**.;* 2*7.61 2*U.18 20 9 21 237 2*6.09 251.26 2*5.9" 2*3.91 2*1.05 20 9 33 266 2* 9.20 253 .11 ?*'.*! 2**^9 . -2*1.7.1 20 9 35 235 2*8.97 252.71 237.93 233.6, 2*1. *1 -___ ____7- _'35„__i-_,_i < __-_____.._______.6_..?.3. 2* *.5) 2*1.28 20 10 8 285 2*8.59 252. ,7 236.?' 233.31 7*1.32 .'11 10. '1 2.6 2*8.7 5 ,251. "9 7*6. *7 2**. 27 2*1.19 11 ___-_*___ 237 2*8.91+ 452.61 2*6.75 2**. 67 2*1.72 2.7-£<__--6. 25-7-.-Jt--2_t-!-_2_.-2»-i,-.*7- 2*1. *_5 286 287 267 266 „2_68 785 267 285 760 28 7 ..2.0 - 288 268 266 267 287 _-«__ .ee' ?_86 2 87 2_8_6 287 2 85 286 266 286 287 285 ______ 286 267 265 2 86 286 2.88. 287 7*7 787 267 268 _<_. 6_ 269 286 286 28.6 286 286 256. 6C 25__.9_ 259.79 258.9.2- 261.25 .26Q..23_ 755.33 257.77 253.20 255.65 239.10 2 3Z..3S. 2,9.62 .23. .52 238.61 23-. 63 236.27 2 39.53 251.73 23.9.8 3 238.70 237.30 235.83 -233.09 232. 95 2*5.63 2,3.33 2.35.09 23.. 37 236.22 2,5.73 236.21 232.53 232.37 2*2. *3 2*3,96 2*6.91 2*7.63 2*7.02 2*7.79 2*7.33 2*7....__>. 235.93 2*7,_5_ 2*1.11 2 3__-2-3. 237.82 219.-53 233.62 2 3 6j 3-5- 235.53 233.6* 2*3.72 2*1.31 2nj.59 23.0.53- 239.35 231.66 2*1.99 2*2.83 2*2.26 _2_33_.9 7 _ 2 3?. 8, 2*5.6* 2*6.0 -2*7. *1_. 2*7.26 23_9-_3 C- 2 38.9 7 236.2* 2*E.30 .2**.. 76. 251.20 Z. U.-1 3. 251. *3 250.2* 2*9.** 250.73 2*7.09 2.36-..Q--. 2*7. *0 2*6.56 2*C.*1 2*6,03 2 36.69 2 36.. 98_ 2,1.63 2_38.86 2*6.63 2. .3.8 j ,6-6- 238.3* ._-___._._. 277.17 257.71 239.31 231.33 279.9,8 -25a_-5* 251.J_L.-_3___.__2 . ?79.63 260.1* 251.50 2*2.98 775.7F. 756.116 751 . fl 7*3.7 5 282.29 262.99 253.36 2*3.56 281 256.93 278.1* 257.61 2*9.11 2*1.19 .247 260. *1 212.*5 267.00 252.*5 2*3.13 285 251.26 275.93 257.27 250.20 2*2.71 286 761.97. 262. __a -2-62.56 286 251.55 280.5* 262.65 253.31 2*3.91 ZZ7 _.7 _,. 2b_ -.33.66 783 76 1.30 779. .15 767.07 75.3.70 7*3.1* 269.55 251.21 2*7.28 2*2.50 27-3--23 .2-_.fa._J. 2_-__.___-233.26 259.06 250.80 2*7.25 2*2.67 261. 9. .252. 19 2*__.09..2*2 .9* 25*. 09 2,5.67 2*2.12 2*0.15 251.18 ?**■*" 7*7.*5 739.90 753.9* 2*6.06 2*3.-9 2*L'.5* 287 2*9. 3u 253.18 2*6.1* 2*3.55 2*0.66 .5 3.5* 2 3.6.19 -23.3. _»-2_.a_-72__-2_l.Z-25_-.-72-256_, 63 737.59 733.67 7*1.0 6 289 255.56 260.52 252.00 2*7.71 2*2.72 2fl_L_2S_____._2__5_i.7_- 252.2* 2*7. 9* 7*2.65 267 25*. 60 259.10 251.22 2*7.51 2*2.60 28_1.2SS.-6C - 2-66^ 3-* _25 3 -5-6- -2-3 a _52- 232_-~6. 286 2*8. *6 252.38 2*5.69 2*2.9* 2*0.01 -28- 2_-___ 6.- ---S-L-SS. -____3-_2 7 2*1.99 239.55- 255.07 2*5.53 2*2. )2 2*0.16 £52.9* 2*6.5.3 _23itxll-..2_---..87. 251.60 2**. 13 2*2.13 2*0.22 252.91 ?,ft.*. ?**. 7 3 7* 11.99 759.01 2*6.82 2*5.78 2*1.67 253.79. 2*6-.7-l .2*3. ,8- 2*Q..93 251. *9 2*5.56 2*3.11 2*0.82 251.38 2*3__33. 2*2.51.233.7.9 237.66 2*2.71 231.55 239.20 _i7-.-0 7 _2.ij._L.-bC . 7 39..1U -23-1-.27.. 236.73 233.36 239.56 238. Cd 2*1.95. 2*2.3. Z31..15 239.98 2*5.71 2*1.16 239.97 237.7* -*8.73 2,2.03 23.Q-.17..238.6-3 250.3* 2*3.55 2*2.12 239.13 2*9.38 231.-3&. 2_.2._-5-23_L___e.. 2*1. 2J 2*2.3- 2*1. *6 236.9* 2*7.79 2*2.3. 2*1. ,1 236.86 2*5.17 239.16 239.36 237.28 2*3. .3 2.3_9..8*-.2 3__.3_--237..*2 2*5.03 239.77 239.23 237.33 266 2*9.50 253. bl 2*6. *7 2*3.78 2*0.79 2-8.5 .2*8__-_- 757.31 ?*5.*6 7*3.57 7*fl. *5 285 2*3.32 253.19 2*6. *2 2*3.99 2*0.80 . 2fl-_-__l 9-_. Z_t-2___.l ?__-_J--5* ?**.*? 7*1.17- 281 251.11 257.96 2*8.26 2*5. *8 2*1.53 .282 7*9.70 751.6.3 7*6.13 ?**.13 2__0_-9i_ 287 2*3.19 251.05 2**. 70 2*3.2* 2*0.** 287.2*6.93 -250. _._. 2*3.-11- 2*-__-6-l- -229-.93_ 288 2*5.51 2*7.7* 2*1.95 2*1.18 239.15 28Z 2_,.*.._-.._2_t_-.-_2._L*a-.afl -2.39.7ft 7.36.3? 286 2**. 53 2*7.31 2*1.3* 2*0.2* 238.38 28 3. 2.**. 76. 2*7.J_7_231.6_L 7*0. 5* 22__.63 289 2*2.88 2*5.82 2*0.50 239. *9 237.63 289. 2*6.38 250.-9 233.5J3 23J_-_).5_ 23__--.3- 288 2*6.21 2*9.62 2*3.11 2*1.93 239.07 -__»___ 2*__. 76_2*-___J». 231. 62 7*11.66 736.76 281 2*5.66 2*7.9* 2*2.53 2*1.68 238.92 2_L2..2**.15 236,63 -230.62 2__l__t7 23fl__Q.6 287 2*1.96 2*3.90 239.11 239.19 237.0* 2d-.._2*J-_-94_2_,*.Sa 238.5b- 238. 6 7— 23Z .12- 295 2*2.85 2*5.5* 2*0.15 239.58 237.** 2*8.2, 2*2_J2 23__.j5--2.3d_._3 2_-7— 2*6.11 2 *____.*. 2k2. 739.19- 251.01 23*. *3 2*3.55 239.57 259.98 2*3.5 7 .2J___.flJl. e_kC. a 253.69 23*. *l. 2*3.28 259.79 251.61 2.**--9Z 2_-3_.?d 239.91 251.53 2**.** 2*3. *. 235.79 287 2*7.07 250.21 2**. 20 2*3. *7 239.53 286.2*3 .22 _2 51. *3„ 2*5_Jb3- .__.*-._) 6- -2_JL.33- 286 2*6.81 250.26 2*3. 9u 2>2.39 239. *2 2fl.6_2*3.i_l.__52-.5* 2.*5-_fe_- 2____.32- ?*0.2fl 266 2*7.** 250.76 2*5.11 2*3.72 239.99 2 33.91..2*.*.-*J--.2.*3-.*7-239.2a..---i__2!t-_.0_l---.-__^9a-_-*3.llt ?i?.'i' t 7.39.. 3ft 2*1.96 2*3.32 2*3.7* 235.30 253. 2b 23*. 91,.. 2-*.*. 32 2.*_L.dQ 251.92 2*5.35 2*5.53 2*0.33 2*3.81 .2 **._.) 8 -2__.U3 5 2*5.35 2**. 29 2*0.53 ._2.4_. &!--__.____.•__.. 2*2.05 2*1.92 2*3.67 238.11 287 2*6.58 2*9.19 2*3.92 2**. 10 239.60 -286__.i_7.26 25-L.96_2-_i_.19 2.3.3 .50 -23-U--. . 2'8E 2*7.*7 250.99 2*5.10 2*5.10 239.92 2 6 7„2*_7, 62 „ 25.1, .._1._ . .2 **-, 58- 2** .ll 2*0.08 287 2*7.67 252.57 ?*5.58 2**. 26 2*0.22 288 . 2*5.._20 2,8.3* 2*3.31 2,*. 55 239.50 -50.70 251.86 .2*3,1.6 2*7. Ml 2*1.92 2*3.67 238.11 287 2**. 6* 2*7. 2 'J 2*1.39 2*3.70 238.7* 2-,-. 03 g*_,17 2*3.26 239.08 26 7 7,6.06 2*8.77 2* 3.52 2,2.12 239.6 9 2*3.1* 2*2.61 2*2. )1 239.3* 281 2*5.03 2*7.70 2*2.1* 2*1.88 239.19 2*7. 12 . 2*1.. 8.9. 2*1-,5.1 _ ?38j_5_6_ . _j 7_.2**_. 35._2*6,ij2 2*1. *6 2*1.2* 2 38.66 2*5.66 2*1. & 2*0. ,7 238.32 2*3.-7, 2 3-Jj.7_Li3_L_J_7__-_7_.Ji-2 2*2.75 236.26 238.11 236.59 -.3.3- 5. 3 -23.-7_-9J__--I-_t.7... 23___J__. 2*2.33 236.68 236.30 235.97 2*3.95 239.3ti 226. )-8_2_37.23 2**. 56 233.9b 238.27 237.39 2*5. *9 2*0.0* 238._97 .237.-83 2**. 61 239.58 238.59 237. *3 253 2*2.65 2**. 79 239.9* 239.18 237.75 -2e-9...2__J.5_...232__a3__17.5_9 ■____-. 28 236. 3*_ 293 239.85 233.52 238.25 239.77 236.75 266 239.79 23 2.19 2 37 .33 736.95 ?36.22 286 2*0.2* 2*2. *9 237.91 237.06 236. *7 283_2*1.61 2*3.78 238.7* 238.06 237.1 267 2*1.56 2*3.38 23. .26 238.09 237.09 288.2*2.57 2**. 69 239.19 2.38.5* 137j_20_ 287 2*1.67 2*3.9* 239.02 238.35 236.99 l__- • 3*. 2*.3 , 56 2*1.93 238.60 28 3 2**.** 2*7.56 2*2. 13 2*0.89 237.95 2*6.21 2*0.78 239.69 237.70 285 2**. 60 2*7.10 2*1.91 2*0.35 238. *0 2*3._01 2*2.73 2*1. *1_ 239.2* J8.8 2*5.9* 2*8.26 2*2.63 2*1. 32 2 39.23 2*1.67 2*2.8* 2*1.30 239.13 286 2*6.73 2*9.56 2*3.81 2*1.98 239.62 250.8 l-?**-*o 2_*_2 t9'L_2_!3.9-_-__i_? _-*7_..7-_ 251. *3 2**. 7* 2*2.92 2*0.29 250.72 2h*.05 2*2.38 239.98 287 2*7. *8 251.1* 2**. 59 2*2.63 2*0.15 ___36 250. 28-25*.-- 2A7.53 2*5.113 231i29 288 237.18 250.13 23*. 26 2*2.12 239. *2 2.6 * 2*8,89 751.96 2*6.30 2*3.8* 2*0.77 286 2*6.21 2*9.29 2*3.1* 2*1.** 239.30 -2_Li_2*-__-9.3_-__51. 26_2 *_-.5_L________L2__2-i__-_'Q - 286 251.98 255.53 2*6.33 2+5.87 2*1.89 ___________ -__7--._U-.2**..-25- 2*1. .9. 252.62 2*6.26 2*3.11 2*C61 <.33-.-2.0_ 232. L 5i -2.31_,99 - _-16-,_-7 . 2*8.6* 2*3.16 2*1.36 239.17 2*3. .27 .-2.3.2.._->_23p J -5-3 2_5_3---_._ 255.31 230.96 2*5.9* 2*2.16 25..95 2*8. S *.-2 *-U___L_-________ 2 B8 25ll._a-_-_5-._-_. 7*fl.6U 2*5.95 2*2.15 287 252.10 257.05 250.03 2*6.9* 2*2.68 ______ 2*7.99 ?5*.19 7*6.16 ?,*. 00 2 *1.10 286 253.26 256.22 2*8.59 2,5.7* 2*1.85 28 3— 2_t6. *i»__25_Q __-._. 2-3*.** 2*2.6* 2*0.1* 283 2*7.27 251.91 2*5.03 2*3.20 230.55 287 23 6.70 250.6 7 ?**.76 7,7.16 7*0.36 256. *2 2*9.31 2*6.51 2*2. *8 255. *9 2*6.2* 2*5.51 2*1.80 .55.65 2*7.82 2*5.16 2*1.66 25____19._2.i8 , 57—2.3.6 . ) il 2__1..3 9. ?51.*6 2*5.25 2*3.20 2*0.57 2*9.3 / 2*3.7 7 _-_j_Z_i _i_ 23 0.U.5. 251.30 2*5. *5 2*3. *6 2*0.77 288 2*6.73 251. u5 2**. 5* 2*2.7* 2*0.53 .53.38 23*_.56 2 32 J5 _2*_-__-5 28_* JZHU3.5-Z5.U *.iL-____».. 33 233.*l-____L-_9- 2*9.93 2**.-* 2*2.57" 2*0.25 287 2*6. *9 2*9.81 2**. 53 2*2.60 2*0.35 2* 9_. 9_ 2 3 3_._0_ii _2 32 .37 230.00 _2.____2__5_.3J. _2 _._l_l__8_ .2_*-__,_L2 2*2.07 239.71- 250. U6 2**. 3* 2*2.56 2*0.1* 28 6 2*6.78 2*9.75 2**. 6* 2*2.77 2*0.37 251.05 2,*. 72 2*3.36 2*0.5 * 287 7*7.16 250. *1 2**. 66 2*3 .1* 2*0.65 252.11 2*6.3* 233.3* 2*1.10 236 2*9.01 252.9* 2*7.07 2h*.63 2*1.52 _52.85_2*7.1II 233.73 231.38 . 7.89. 7*8^9 1 7 5 .3 , 7 9 7*6.6* ?**.69 2*1.62 252.3* 2*6.2* 2**. 38 2*1.16 288 2*9.03 252.33 2*7.51 2*5.07 2*1.66 _25L, 63-_23___ 6.i_--_*-L.__l-____.iU---_l----3j_-3__-.25------_-___-6.95 2*3.6* 231.72- 252.12 2*6.39 2**. +7 2*1.28 235 2*3.37 252.35 2*6.11 2**. 27 2*1.09 f51.7.. 7 + 5.99 7*3.91 2 *1.06 285 2*8.*0 251.51 2*6.33 ?,*.13 ?*1.2Q 287 26.8 2*6.75 2 30-.. 8 2 252.13 236.63 233.66 231.30 -_S2_J--L--_32-.A5_2-i-3.53 2*1.77 281 2*9.00 252.39 2*6.81 2**. 80 2*1.61 786 7*3.31 250. 71 2*5.83 2*3. 99 2*0.95- 63 _______ 12. HR MN SC &< T 20 15 55 23f 2,48.82 251.6". 246.91 244.52 2m. 53 20 11 7 735 749.75 25'."? 746.39 24A._15 741 .7 1 .. 20 11 19 ?87 21.9.32 252.53 247.90 246.25 241. 93 20 11 31 787 749. 69 253.79 747.76 245.33 241.93 20 11 ".3 787 249.74 253. 69 248.02 245.47 241.35 ?n 11 55 '36 749. 7.7 7£_l_______ 743.06 745.47 ?4t.9 9 12 7 28^ 21.9. .12 19 „2„ 6. 24.iL. 12 31 285 E 1.8 . . _________ 2 37. 24a_. 12 55 28ft 2*8 12 Z ?3ft 21.8 23 253. Jii 21.7.91 21.5 5J_ _L_L__ J 71_2__i__._____2._. 81 252...ft9 ?4fi.96 744 31 251 .79 ?4i_77 744 10 251.81 2l.fi. 51 25 237 . 03 236 .11- 23.4.._9fl_ . 238.42 £33.49 235.98 235.43 234.29 238.24.239.58 236.1? .235 ..2i__234.2 3 233.83 241.44 236.72 235.19 234.71 239__j_2...241___4.u.. 23.7-__a___.23_5_.j___215__-2___. . 237.92 239.27 235.72 734.39 234.04 2.40.15. 242.25 Z38_. 3a.227_.l_L .235___Z_L. 41.83 233.61 237.17 235.43 41.-42 2_3_3-_23_Z3J_.J..0_-235_.53 . 33.60 233.52 232.94 232.71 33.4 9„_2-3 789 239.35 240.52 237.33 236.46 235.29 2S_____a_-_fll._2i__32-.__36._71 236_.___6-Z35_.i_l- - 289 239.70 241.40 238.20 236.86 235.89 2_7- 739.4b_-Z40.84 237_.57. 7.6.88 735.7? 236 239.19 240.47 237.46 236.26 235.17 2fl 7... Zla. 56 _2i_L___l_5.._2 37_. 47 23_6___4_9_235_.Z0___ _ 289 238.34 240.10 237.13 235.93 234.75 .28 S__23 3_.7£ -2AQ-_-5_ 2.36-.J3-? 35. 8 4 734. Z5 288 239.77 240.93 737.73 236.48 235.20 73 8 73 .1. J_i 739.80 735 .3? 775.7ft 734.77 287 238.98 240.19 236.66 235.77 234.49 28_L_240.2_) -2-4Z.17 23Z_.ii7 236. 3 3_ 23_5_.i_l.- 24J.25 239.95 2 36 . 56 2 36.8 7 287 240.29 241.37 238.37 237.14 235.41 2.8.7. 240.40 241.92 237. 28 2 3 6.76 235.4 1 289 237.14 233.36 233.75 233.19 232.84 33.12 _2_3._L._99 28.6 _23___i7 237.89 233.1 6 232.36 232.51 236.31 233.21 233.13 232.64 232.37 283 236.81 2~39.au 233.56 232.89 232.66 2_3 S • 3_1__L_9 , 2.0. _Z__ i._2 6 .Z32.46. Z3Z,_Z1 287 235 . 71 _:33.31 232.2 2 231.95 231.87 234.52 237.11 231.'. 91 230.76 231.07 286 234.78 237. 60 231.50 230.94 231.41 2 33 . 1.1 _235..3.U._2_30_, 3u_.223j.__ 230.12 28_6._231. 39_ 234. 39 227.63 277. 99 228.91 230.70 233.39 227.07 227.60 228.37 285 231.94 235.15 228.09 228.23 229.06 248.9.5. 25.3_93. 246.02 243.4 6 23 9.70 236 251.92 2 56.63 249.86 2 46.37 241. B2 231.34 248.05 243.27 286 253.54 257.86 251.36 246.23 243.30 24 8,JJL-2.4.2_-_- 285 254.15 259.39 252.5 7 249.14 243.86 249.16 243.62 286 253.79 258.99 251.81 248.68 243.45 284 253 ..62 258 .62 258. 2 £S 3,; a____.7,_>3 253.95 254.51 £59.39 252. 7u 253.69 iE9..02. 25.2 .j.7_2_48...o.3_243 .48.. 255.15 261.41 253.45 249.72 243.98 .254.2.3 253.3.7. 2.52. 18. 24.8...9 1 _ 24.3.,.3_ 4 . 255.33 260.39 253.59 249.93 243.84 253.45 253.4 7 251 . 3 7__2i8__L_______,__- 254.65 259.50 252.72 249.23 243.73 255,93. 2 61_. 5.3__2_5.4-,_64._2 5_0-._26 2_44_._a«__. 255.68 261.74 253.51 249.79 243.84 2.52 . 3 0__JL5 ?j j_4 250.7 4_ 2 47.62 242 , 54 254.06 259.54 252.22 248.71 243.09 253,42 c5A,..l_L.2_'_J_._-7i__jLe-U,SL Zk2j_I___ 252.03 £57.15 250.05 247.13 241.95 2-52.17 253.48 250 .94 247.63 242.36 253.35 259.01 251.16 748.10 242.50 2 53_,_74_. 2.60 .04 251.81 248. J 7 2 42.13 250.14 256.31 248.06 244.16 240.05 g.48, 88. 25i_ ,55 216 . S 4 . jj.3.)2 USU 50 244.72 249.54 242.50 240.64 237.76 247.60 251.97 245.32 243.12 239.50 247.61 252.12 246.31 243.76 240.20 250, 57_ 254-5.96 246.73 246 .13 24 1 .51 247.51 251.82 246.10 2"43.53 239.74 247.97 252.38 24 6.5 243. 73 239.72 249.45 £53.34 247.96 245.10 240.90 252.92 2.59.47 252.13 248._60 _?42.73_ 248.99 254.33 247.48 244.22 239.88 252 . 26 _2 _6_0__.5_!__52 ..2_C___2.4__,l_i._2_.2 1 _L6_ 251.66 £57.49 249.81 246.29 240.97 5_p_ 251.85 248. 40 2 43.21 284 255.01 260.52 252.90 249.50 243.66 2-8 5_255,_5_4_260_. 53. .25.3,63 249.84 244.15 287 754.28 259.46 252.21 248.95 243.64 283 25.2 .74 ___57 J -_tL 251. 03 246.04 243.05 265 253.29 258.15 251.61 248.49 243.24 287 256.12 261.53 254.30 250.50 24 4.38 287 254.43 259.69 252.46 249.10 243.75 Z8_5_ 2_._1__4_...25__, 7___ 249.21 246. 75 242.33 285 255.33 261.3d 253.76 249.84 243.69 286 25 3.93 259.57 75 1 .91 746.47 243.05 28 7 251.10 256.43 249.27 246.16 241.66 288 251.77 2 57. .1 249. 94 247.03 241.95 286 254.22 260.23 252.72 248.60 242.77 286 252.7 7 259.37 250. 99 247 .15 241.53 288 249.66 255.45 247.94 244.77 240.01 237 243.66 254.63 247.03 294.13 239.76 286 244.89 249.83 243.15 240.91 237.66 287 243 .23 252.9 8 246 .79 244. 20 240.27 238 243.53 252.61 246.59 244.23 240.66 288 247 .87 252. 46 .Z_Ji ______ 287 245.82 249.64 243.97 241.74 238.67 Z____ Z46.7 . 25 U.9 2 2 44. 69 2 4 2.82 239.3? 285 249.93 254.14 247.78 245.11 240.81 289 253.91 259. UP 25 2.19 24 8.52 242 .67 286 249.37 254.21 246.86 244.23 240.03 28 7 752.79 759.33 251.61 247.6 3 241.62 287 249.82 255.12 248.26 244.83 240.19 25_4 __Z?_ Zjl±,.ZA 252.72 2ij_L-_____242. 81 285 253.03 258.72 751.10 ?47.53 741.85 252.33 257.36 250.24 246.36 241.43 287 254.37 260.34 252.72 248.62 242.72 233 • 1 4-_..5_3__32___5.2 _0. ____.?_. 3. l.____L_JL___ 253.87 259. ul 251.91 248.24 242.43 Z_.7___J_.__.. 76 4.41 256.70 251.7? 244.34 252.22 257.64 25*. 46 246.78 241,30 254.41 261.22 257.83 743. 11 ?4?.74 253.82 2.4.S_.95_ £61.55 252.69 248.56 242.54 ,55.53 248. 42 2 45.18 240.55 .J2___&__2___9._______ 254.11 247.41 74 4.51 239.95 285 256.65 262.16 254.91 250.68 243.92 286 75 7.11 763.8? ?56.?3 751.13 744.1? 284 253.33 259.24 251.99 248.01 242.02 282 754.71 260.65 757.95 ?49.0fi 747.96 279 252.72 258.91 251.72 247.75 241.96 277 252.46 258.52 250.83 247.05 241.32 64 FLIGHT NO -i3 >n sr ai t 20 36 33 27? 253.32 259.55 251.99 217.75 211.72 276 253.69 259.12 251.62 217.50 211.12 275 252.75 257.77 251.02 21.6.88 211.18 20 36 13 ?7f P50.71 P51.75 Plfl.US P1S.P? P4li.ni 771. 719.63 753.U7 ?i7.5u ?uu.=;q 7i(i.n5 ?7n 7u7. nn ?gi.u 71.tj.3n 7U7.R7 738.68 20 26 55 271 21.7.65 251.13 21.5.63 21.3.01. 238.61 270 21.8.78 252.73 2lt6.22 21.3.1.7 239.10 269 250.13 251.. 30 21,7.91. 21.1.. 87 239.72 7Q 37 Z 26S 21.9.86 251.27 P47.68 21.lt. 41 P.39.P6, 77(1 750.5? 755.65 71.8.37 ?1.1.. -ll. 739.63 770 751.05 757.57 ?uq.(l? 71.5. 7ft 739.53 20 37 19 267 252.07 258.65 250.26 21.6.12 21.0.07 267 255.16 262.1.1. 253.27 21.8.65 21.1.58 266 255.08 262.70 253.29 21.8.1.9 21.1.27 20 37 31 26ft P55.71 P63..36 P53.94 P18.S9 ? 265. 71 ?64. 79 256.67 256.06 21.5 211. 03 7 / 261 266 261 2 66 10 ilfl 277.61. ;77.71 261. 265 85 34 256 256 16 1 1 244 21.1. 67 96 261 261 266. 266. 63 277 278 7 k •ii] 265.37 265.67 256.50 756.66 21.5.00 21.5.08 21 '1 3 4 1.9 n 262 262 266 266 67 67 278. 278 1(1 55 265. 71. 265.67 256.57 256. 50 21.1. 211. 96 79 261 266 60 81 278.1.2 278.54 265 265 11 71 2 56 256 . i 71 21.1. ?44 75 97 260 26? 266. 266 80 278 278 63 265.82 265.69 256.67 256.51 21.1.. 91 fhU. 9? 21 21 <> 13 25 262 26"! 266 266 89 6.' _._,.,' 2 7 _•_,____ .•.-..■' 2__.,i • 21. ,11 :t_ _•..., 97 _?.,ib .Li/j- £_____.___ 21.5.76 ___ z$t,*i 275.97 261.57 _________9 21.6 .1a 21 25 10 21 25 23 261 266, 761 767, 71 275. 11 ?75. 263. 761., 98 256.21. 21,5.90 31 756.1,1 715.97 262 267. 262 267. 09 275.50 36 775.35 261. 261., 1,5 256.58 63 756.59 21.6.09 71.6.03 260 266, 767 767, 97 275. 10 275, 31. 261.. 31. j_3 2 6".. 10 256.1.0 256.1.9 21.5.87 21.5.96 21 25 35 21 15 ___ 262 267. 25? 267 58 275, 65 276, 261., 761., 86 256.88 21.6.36 57 756.66 71.6.07 21 25 59 71 76 10 262 267, ?6T ?67, 98 275, 88 275. 265, 761,, 05 257.07 21,6.31 86 756.3? 716.73 21 26 23 21 26 35 262 268. 76? 768. 19 271,, 16 275 , 265. 765, 07 257.1? 21,6.1,1 37 757.01 716.16 1,0 276.08 83 775.88 261., 765, 62 256.62 05 756.88 21.6.01 71.6.1? 263 267, 260 767, 55 275. 75 775, 71. 261.. 86 16 761.. 33 256.81. 756.1.9 50 275. 3<» 3J_ 2 77 .55 31. 256.62 1.3 757.23 21.6.16 21.6.02 21.5. 79 21.6.33 262 267, 761 768, 92 275, 01 276, 00 271.. 76 2d 2 77 .1. 1.5 261.. 92 6? 765.76 256.96 756.99 21.6.23 715.95 261., 265, 52 256.87 78 ?57.?3 21.6.32 21.6.13 261 267. 261 263, 91. 275 01 27 01 261.. 50 _ 765.15 1 775.91. 765 256.61 21.6.01. ?57.n8 746.71 21 26 1.7 ?1 76 59 261 268. 761 768. 18 271,, 31. 271.. 21 27 10 71 77 73 263 267. 761 767. 76l«. 2 61.. 80 257.01. 21.6.1.2 55 256. jQ 21.6. 2 6__ 263 268. 263 ?ot). 33 271.. 53 06 271.. 77 261., 78 257.11 76 756.85 21.6.1.2 71.6. 77 262 268. 761 767. 01 271., 73 271. 92 27"., 87 775, 261.. 761., 70 256.69 21.6, 70 756.86 71.6, 262 267, 262 268, 78 27i.. 75 13 774.68 261., 765 , 1.5 256.87 07 757.07 21.6.13 746.15 261 269. 262 267. 19 275 7a 271. 75 261.. 30 28 261.15 09 265.17 47 761.71 256.72 256.70 257.26 756.96 21.6.06 21.6.22 21.6.50 71.6.75 21 27 35 _J 7 7 1.5 261 267. 76? 767. 87 275. 91 776. 265. 765. 02 257.09 21.6.37 71, ?57.? 8 71.6 .3 1. 263 268, 761 7 68, 00 276.51 00 275.53 265 761., 31 257.1.1 95 Z& U12 21.6.1.8 71 . 6. i.? 261 267. 261 76 7, 82 276, 78 771.. 1.5 265.20 35 761.71 257.27 757.09 21.6.30 716.41 21 27 57 71 76 9_ 260 267, 763 767. 59 2 73. 66 273. 21 28 20 7 1 7« 33 26^ 267, 761 767. 1.0 273. ■.7 ?73, 261., ?6i.. 761,, 761., 1.0 256.79 21.6. 69 757.09 71.6. 262 267, 76? 7 67. 69 27",. 17 63 773.78 261, 761.. 65 256.39 13 7 56.67 21,6.51 716.73 261 267. 761 767. 1,0 273 78 771 ,63 261.. 39 03 761.71 256.76 757. 1 21.6.30 21.6.61. 30 256.75 21.6.18 55 756.9 5 716 .-U1L. 21 30 53 '1 ?1 5_ 261 267, 761 767, 16 273. 76 773, 265, 76i.i 22 257.62 21.6.63 5? 757.06 71.6.7ft 2t2 267, 26? 767, 263 267, 262 266, 74 273.97 A3 273.80 ,60 257.00 ■35 756.86 21.6.71. 71.6.3 d 261 267. 761 766 07 273.00 81. 277.80 .89 257.36 ■21 756.66 21.6.20 71.5.93 261 266. 761 767. 93 273 18 77? 77 261.. 1,7 91 765.63 ,08 261.. 1,0 .66 761.33 256.83 ?57.89 21.6.52 71.6.10 256.99 756.61. 21.6.10 7i.ft.1i. 21 31 17 21 31 29 21 31 1.1 21 21 5_ 263 267. 2b: 237, 260 267. 7 67 76 7. 05 272. ? 273 , 2 61.. 263, 1". 256.57 21.6.01. 63 756.28 215. 9U 51. 273. 2« 273 . 261., 763, 20 256.88 21.6.39 83 256.1.9 215.86 260 266. 262-__£„_. 260 267. 767 767 . 21 3? ?1 3? 26? 267. 76? 767. 273. 773. 261., P63, 1.6 256.63 21,6.31. 95 756.67 716.71 261 267 261 267_, 93 273.03 35 2 7 3-44 28 273.73 31 27 3.51 28 273.59 .35 273.17 21.6.00 260 266.91 272, ,20 256.60 ,15 256. 72 ,92 256.39 _6. 10 256.61 21.6.20 261 267. 7? 756.88 746.30 761 76 7, 21,6.03 216.11 260 267. 261 267, 21 273 77 773 85 263.67 85 261.19 60 763.93 256.20 756.17 215.73 715.97 256.17 756.36 216.22 715.90 07 273, 31 273, 32 261.15 71 263. 9 8 256.52 756.67 216.12 216.22 21 21 32 27 12 JS. 263 267. 2 6? 267. 55 273. 15 273 21 32 51 ?1 33 3_ 262 267. ?61 767. 83 271, 98 771. 55 256.91 216.15 756.57 716. 71 85 257.13 216.73 85 ? 67.3? 716.65 263 267. < 761 768.1 265, 761, 16 257.59 216.81 69 757.33 716.79 261 266 .2.61 2A1 261 267 760 766 260 266 261 263 91 273.11 2a_27_I._7.9- 81 271.32 15 7 71. 73 263, ^.6A. 261, 761. 71 256.12 33 256. .1. 215.89 216.38 261 267. 261 2 67, 30 273, 16 77 1, 86 261.11 9 7 61.39 256. 7S 756.88 216.13 716.18 65 257.01 75 757.41 216.53 716.6 8 261 267. 76? ?67. 93 271, 66 271, 72 265.07 75 761.73 257.31 757.1 7 216.71 716.7,3 07 271.31 03 774.3? 261. 765. 80 257.18 Ii7 757.15 216.67 716.111 262 266. 761 768. 33 271, 01 771, 50 265.36 43 765.71 257.66 757.61 217.07 716.98 21 33 39 ?1 33 51 21 31 ?1 ^4 263 257. 26 7 767. 263 267 76? ?68 93 774 66 271 o? 774 95 257.45 216.91 12 257.63 2-17 _.C_7_ 36 257.11 246.91 91 757.3 3 746.77 262 267 . 2A(L 2f_Z . 261 267 761 768, 21 31 27 ?1 31 39 261 266 ___________ 12 274. 01 771. .65 31 257.72 3ft 757,91 217. 1( 7 47.1 l 263 268 _2£1 268 80 271.25 61 773.99 89 271.62 15 774.7 1 20 275.30 77 771. 3 7 265, 2S___ 01 257.51 97 757.36 216.88 216./4 261 267. ?6? 767. 92 271, 67 ?74, 28 261.90 19 265.06 257.18 757.63 216.83 716.97 265, ?65 06 257.55 6 7 57 .. .8 216.92 717. 1 3 261 266. 761 763. 15 274, 0? 771. 59 265.52 90 765.77 257.81 757.63 216.98 716.99 265 52 257.88 57 758..10 217.16 717.31 263 268. 76? 766, 09 271. 09 774. 95 265.74 96 765.74 257.91 753. OH 247.11 747-36 21 31 51 71 35 3_ 261 267. 76? 767. 78 271. _lS _____ 761, __£_£_. 95 257.59 55 757.79 246.76 717 . 3 261 268. 261 267. 03 271.72 63 774.65 265, 765. 47 257.90 08 757.56 217.11 716.93 262 268. 76 1 768. 00 271. 16 775, 66 265.39 31 765.97 257.81 758. .31 217.01 747.4a ?i :. is 21 35 27 26? 267. 263 267. 80 275. 96 271. 265. 265. 28 257.92 63 256.06 217.20 217.22 262 268, 262 267, 10 275.25 37 275.06 265, 265. 76 258.03 59 257.96 217.46 217.15 262 267, 262 268. 91 275, 21 275, 31 265.56 31 265.96 258.04 258.11 217.47 217.12 21 25 37 21 35 19 251 267. 261 267. 58 271, 19 271, 265, 265, 19 257.31 49 25 7.9 9 216.89 217.2b 261 267. 261 267 . 82 275.09 19 271.86 265, 2_. 73 258.10 36 2 57. .16 217.51 217.23 262 267, 263 267, 17 271, 65 271, 82 265.39 80 265.63 257.99 258.11 217.31 217.39 21 36 21 36 13 261 267. 261 267. 57 271. t8 275. 265 1" 257.86 51 257.83 217.21 2 17,g 261 267. 263 267. 275. 37 275.26 265, 265, 51 258.17 61 258.07 217.60 217.31 262 267. 263 267. 75 275 73 775. 37 265.69 12 265.61 258.25 256.11 247.61 217.15 21 36 25 21 36 37 264 257, 261 267 66 271. 76 271. 265, 765, 67 256.23 20 257.80 260 267, 762 2b7, 86 271.62 70 2 75. 12 265 265, 12 258. J3 57 256.38 217.31 217.28 262 268. 263 268, 33 275, 01 275. 53 266.09 28 265.82 258.12 258.31 247.71 217.53 21 36 19 ? 1 3 7 _ 261 268. 261 267. 21 275. - ' ' I • ■ . .07 258.35 ■63 256.11 217.67 217.31 261 268, 2 t 1 2 6.. 05 276.21 33 275.70 265 266, 90 258.3" 07 258.40 217.13 217.69 263 263. 262 268. 31 276, 26 275 18 266.33 62 266.01 258.60 258.31 217.77 217.48 21 37 13 21 37 25 253 268. 263 268. 30 275. 42 276. 266. 266. 258.55 256.37 217.63 217.59 263 ______ 12 275.80 13 275.81 12 258.18 05 258. ,6 217.61 2 17. .3 262 268. 261 266, 66 276, 63 276, 04 266.10 25 266.16 258.71 258.80 217.79 217,72 21 37 37 21 37 19 261 268, 260 269 41 276. 87 280, 266. 766. 79 258.58 35 259.11 217.38 217.30 262 266. 262 269. 96 277.60 77 280. U6 266, 26d , 91 258.37 11 259.29 217.80 217. II 261 269 263 269 56 279. 99 260. 267.79 58 268.12 259.23 259.71 247.71 216.01 2138 21 38 13 ZV 269. 26? 269. 70 280. 13 280. •' ' . 09 259.29 10 259.33 217.82 217.95 261 269. 2 62 269. 71 280.37 29 2 79.62 29 259.17 66 259.22 217.90 217.57 261 269. 261 269, 13 280, 31 279, 11 268.03 67 267.82 259.17 259.12 217.68 217.91 21 38 25 2 1 36 37 261 268. 26? 268. 59 276. 29 276. 267, 66_, 11 258.86 51 258.53 217.61 217.62 261 268 261 268, 65 278.16 36 276.62 267, 266, 18 259.07 71 256.69 217.68 717.67 260 268. 262 268. 25 277 13 ___. 11 266.77 91 2 6 6.61 258.78 258,77 247.50 217.80 21 38 47 21 28 59 260 268. 262 266. 21 276, 41 276, 266, 266, 18 258. 6 J 67 258.63 217.66 217. 64 265 268 ^ ' 7 _- 51 276.92 ,54 276.65 266 76 258.92 92 258.38 217.88 217.92 261 269, 260 268, 56 276, 13 276. 51 266.53 73 266.63 256.76 256.86 217.66 217.76 21 21 39 ?9 10 73 261 261 268 268 f 1 ( i 276 776 f '• 266 ■'■' ; ,7 258 6 1 67 217 ?17 75 85 262 262 266 768 13 7 9 276 276 50 61 266 266 52 i 258 759 57 02 217 217 70 91 26 3 262 268 768 50 58 276 776 38 3' 266 766 83 38 256 258 67 67 217 217 73 66 21 '1 39 .9 35 17 ' '; 1 ■■■ 268 £69 .... 276 779 ■ n "i I .67 17 99 25 . 759 6 218 717 09 96 262 261 768 ?69 1'J 7 9 276 ,7 ) 67 82 266 _-7 19 "1 2 58 259 58 38 217 216 67 1 8 261 262 268 269 93 ,'1 277 279 62 38 267 267 26 _ . 259 759 19 19 218 217 14 89 21 39 59 10 10 .51 279. . "- -'I'.. .21 259.77 .17 259. b9 218.23 7 4 7 . 9, j 263 269. 262 26., 19 279.17 17 279.72 267, 269, 75 259.31 37 259.77 217.97 218.07 261 269. 260 269. 71 279. 37 279, 77 266.17 72 268.07 259.65 259.16 .61 259.81 ■91 259.11 218.10 218 .01 263 269. 262 795, .79.97 279.71 267, 266, 98 259.18 13 259.63 216. 03 216.20 263 269, 261 269, 66 279 63 279, 67 268.25 _l2 2&»,2. 259.77 759.51 218.23 217,8 9 218.31 218.07 2 1 10 17 71 10 59 261 269. _____ ______ 77 279. 73 27 . . 269, 267, 16 259.51 66 259.31 213. 15 218.06 262 265. 261 26.. 70 273. 76 63 278.93 .96 259.50 ■03 759.16 218.11 216.06 262 269. 261 269, 56 278, 30 778, 12 267.37 62 2 67 .67 259.15 2?9. 61 217.93 713.13 ?1 11 10 21 11 23 ?6? 269. 26? 270. 78 278 30 267, 768, 98 259.60 70 259.69 218. 31 218.29 262 270, 2f •' 7 70 02 279. bl 01 279.55 268 2 6 •! 23 259.33 21 259.59 218.16 2 18, 12 262 270, 261 270, 07 279, 11 279 99 268.19 71 268.17 259.70 259.71 218.13 218.16 21 41 35 21 91 47 261 270. 261 270. 05 279. 60 2... 12 259.67 86 260,16 218.01 216.11 261 270. 261 270. 15 279.50 37 279.89 268 268, 39 259.71 39 259.71 218.11 218.11 261 270, 263 270, 30 280, 63 760, 01 268.15 .3 268.82 259.66 760.05 218.12 718.51 ?1 11 59 ?1 12 2_ 263 270.1 262 27Q . J 268.65 259.97 263.19 759.91 218.52 713 ■ 1 1 261 270. 262 270. 29 279.53 67 780.71 36 259.71 01 7 60.7 7 218.23 218.51 261 270, 261 273, 13 279. 13 780. 88 268.52 15 268.51 259.88 759.79 248.17 718.03 21 12 20 21 12 33 262 271. -' . ', 7 7 0. 21 42 15 ?1 12 57 261 271 263 270, 00 280. 9 ! ' 7 I . 269. ?68. 31 260.32 56 259.92 218.66 218.31 261 270. ;> f t ? it. Ti 280.13 18 279. 76- 07 280, 269. 26H, 01 260.27 96 260.02 218.51 248.20 261 270. 261 271. 60 280.11 05 28J.78 ,60 259.87 ,77 2 6 . J 1 218. qs 218.35 262 270 261 270 77 280, 12 279, 15 268.91 9 268.22 268 ,56 259.77 ■93 260.21 217.96 216.31 262 270, 261 271, 81 280 06 280 17 268.90 73 768.66 260.15 259.65 260.09 •259.99 218.28 218.13 248.31 2 19 .28 21 13 21 13 20 ?6 7 270, 263 271, 99 280. 12 280. 268, 768, 91 260.12 92 260.21 218.31 213. 39 261 271. 262 271. 01 280.59 26 280.60 268, 2 a ±. 89 260.07 26 260.2. 218.32 216.15 263 271. 2 61 271 , 10 280. 16 280. 89 268.91 91 268,8 . 26 0.2 260.31 218.53 218.18 21 13 33 71 1? 15 26? 271. 263 270. !3 280, 93 280, 269, 263, 11 260.11 17 259.53 218.55 217.73 261 271, 26J 271, 11 280.59 32 280.59 266, 266, 81 260.01 93 260.03 218.31 218.32 262 271 261 270 05 280, 81 260, 55 268.82 3? 768.16 259.76 759.54 217.81 217.86 21 13 57 '1 11 9 263 270. 26 1 271. 93 280. 1__ 28 0. 269, 763. 68 259.73 55 259.90 217. 86 219.32 262 270. 261 271. 82 280.02 12 260.16 268, 266, 25 259.62 61 259.96 218.23 216.27 263 271, 760 770, 15 260 87 279 38 268.81 65 768.58 260.03 759.91 218.55 718.16 71 11 77 260 2 70 760 771 79 280.13 268.56 259.63 218.12 18 780.36 763.76 760.13 716.36 262 270.91 280.13 268, 76? 271.08 780.6? 769, 72 260.02 11 26Q.2- 218.38 718.52 263 270. 761 271, 70 280, 06 780, 01 268.61 53 768.69 259.88 ?6..a9 248.11 748.36 21 41 15 ?1 11 57 261 271. _. . _'l . 30 280. 12 280. ?69. 263, 00 260.33 93 760.18 218. 57 218.15 262 771. 261 271 . 17 280.51 n .30.53 268, 266, 97 260.16 96 260.31 216.19 216.62 261 271, 262 270, 06 280, 82 280, 11 269.02 US 2 68.63 260. 31 760.02 218.51 218.30 67 FLIGHT NO HR PN sn oi r T T? 73 T4 T5 21 21 .5 •it 8 19 ?6? 261 271 ?7n 13 28. .42 ?6« 279.64 269 75 260.12 249.45 MS 259.82 248.23 21 '1 45 .5 31 261 261 270 268 53 279.1.5 263 277.53 267 23 259.5 3 2*8.24 09 256.67 2 .2.83 21 '1 45 .6 55 7 261 268 ?R7 10 15 277.21 266 ?7d.R3 265 62 258.1.3 2*7.50 qs ?57. q» ?47.?i 21 46 19 261 267.97 277.70 266.71 258.24 247.34 ?1 1.6 71 2 61 1 6__>___9.4._?___-__..LZ. _2A 5 . 9.L25T. 7 3 2i.7_._2.l__ 21 1.6 1.3 26' 267.99 27.8.19 266.17 258.61 2*7. 61 21 1.6 55 ?60 268.80 7Z3.78 75S.29 _2__2j_i_3. 2_i_3- O.S_ 21 1.7 7 260 260.89 269.60 253.96 253.32 244.69 '1 1.7 19 25? 758.6* 266.7? ?57. .,5 751.93 7*4.55 1.7 31 ili.J_3_ 252 261. 26? 266, 1.7 55 ___■ Z_ 260 266 76? 26 7 1.8 19 kfl 29 26? 268 ? h? 263 31. 271. '6 58 2 77. "7 98 277. 1.1 _L__2.__._S.9_ 03 273. .6 £__>_. 22 1__l__ 1.8 1.1 i___.__.3_ 1. 9 1 7 1.9 29 1.9 1.1 261 266 _______2_-__ 262 267 2 60 -252- 263 268 __££. £.6 33 277.66 _6l>_._79., 71. 95 2 8 0.38 .57 . 22_a_.._______ 1 .1 2 7 9.79 26 278.61. 76C.75 257.18 2*5. 4b _L6._l.___l_._-2 5_8_._1 i-_? 42 __Z 4 265.99 258.20 21.7.51 26Z.__3_& _ 2____B.__) ?_Z4Z_..9 1 268.11. 259.51 21.8.0b ____._-59 ?55_32„.? .5..__a.. 266.29 258.08 24Z.5S 267 , _S_?.___2 5_9 . 1 9 .2 4S . 1 7. 261.17 259. -.7 2i»8. 5'. _ 2J__Z______ 259, J 2..Z.4 a . 1.0 71 21 1.9 50 53 5 26? £68. 26' 268. 21 '1 50 .n 17 29 251 268. 26' 266. 21 71 50 50 1.1 5,3 263 268. 261 269. .3 280.35 07_.2__fljO.__ "6 278. 71 ZZ-ZZZjia 06 278.99 M 68 277. rt _12._225.___; 70 275.75 56 779. 29 79 273. 71 °0 77 5. 1 7 Ul 273.95 22. 27 Z. 11... °6 ?78. 3 . 51. 2.31. 1.5 __ ° 6 2 7 8."' ____2_Zii_____ 268. 11. 259.7* 2*8.62 267. 87 259.55 21.8.1.6 768.71 259.66 2*8.60 .P-oij 66_.Z5i..._Z3_2jt___._53. 267. 64 259.1.1 2*8.1.8 ?ci_.Z0 267.77 25.8.. 3 2 259.** 2-6. 265__Z0.Z__Z_._-j. 2*7. 3y 2*8.60 8.8.3. 259.23 2*8.68 .07 >48. 21 53 27 21 5 3 39 76' 265. _Z62_Z.i.. 21 57 51 71 tli 7 261- 265. 76' ?6fi. 21 5* 15 71 54 ?7 263 265. 76' 260. 21 71 5* 'if 79 51 21 21 55 55 13 55 25 55 37 261 261, _Z£-2_Z5_a, 261 251. -?_6 2-2_SJ*. 26? 253 26? 256 55 *9 56 26? 260 56 * 56 17 56 29 56 1.5 261 259, 261 26_8j 251 259, 2 6' 260 , 31 2 68. 11 1* 2 72.2 8 265.86 258.31 _26S___£ _25__..__ .2 _2_»6 . 6 9 26*. 39 257. _2 2*8.1 3 765.76 ?58. *8 2.+ 3. 62 265.03 258.0 2 2*9.28 .266 ..S7_ 25.9.03 2 1.8.5 5 267. 21 759.15 2*8. 62 2b9__13_ 2____.5J._2.9.0 9 767.65 259.1.1 2*8.71 2_l£__.1__8. ZS_L.il _2_J _8 2 . 263. 51 257.12 247.87 ?63.____5. 256_.67_ 2*7. Ob 265. 87 258.29 2*9.31 2__2._-i__25.9___.:. 3 .2i.8__.3S 265. 51 259.13 2*8.1 * _i_U 2__i_.___4.ai. 2 ._ b.JZ 26? .76 256.13 2*6.85 25.8_..95_25.3..U6 2 _i.. 9. 255.25 2*9.96 2*3. 1* ____?__ ._0 7_ 249. .J?. 1. . 2*2 . 1 1 253. *0 2*8.7* 2*2.48 258. 20 251.91 2**. 19 259.06 252. _* 2i.it. 77 ?6?.*6 255. *9 2*6. *1 359. 73 ?53.9 3 2*6. 11 261.3* 755.57 2*6.73 45 272.11. 33 271. 67 261.63 25*. 99 246.4b 261.72 2 55.5 9 .247.25.. 56 57 57 9 259, 258, 25 2 6 9.." 1.9 265. c- .*l 25*. 79 21.7.0 7 257.28 253.91 246.81 56.59 252.31 2*6. Ob _______.? 53 -31 2*6.52 19 252.5,1 2*6". 16 2*6.15 90 2 5 8.'? 8 3_ 260. 15 .9 262. 3' ___t__ 60. 6 1. 90 259.71 81 261. 19 CI 2 6 9 . . 2 9L____3__l'._' 67 269. °6 59 262.79 11 261. 8 8 °____76_____ 1.1 273. ?9 °2 767 .*i 65 271.. 29 Z_2____.l 537 258 551 269 58 2 7 3.90 19 2 83.75 266. 256. 41 252.0 255.63 761.49 245. _b 256 . 75 251.95 246.06 756. 38 251.*? 2*5.63 255 . 5*. 25.1__.5 3 _2_.5__7 3 256. 20 251.9b 2*5.93 2 5 5.. 5. 0. -_?____,__ 9 2* 5_. .5 1 253.82 250.32 2*5.22 257.56 25 0.35 2 * *__9_5. 25*.?* 250.67 2*5.3* ?5*._96_251,.15 21*5.6 256. 1* 252.59 2*6.4 J ?55.71 251.56 2*5.70 ?54. 9* 250.91 2*5.1.3 ___5 5 .62 251.71 2 * 6 . 9_ 255. 15 251.16 2*5.51 25 6 . *__! 25^2 . 11 246 ._0 4_ 255. 82 251 .62 2*5.96 _2_?5_ 96 _251_.3_3__245 . a 1_ 255.75 251.5 3 2*5.6~_i ?71. 18 266.3 260.69 268. 86 265.73 251.61 265.-1Q 263.17 290. lb 270.15 267.25 2b2~.76 27 5 , 35_ 2 7 1_._3__ .265.93 276.55 272.7. 266.79 277. 53 273.7 7 257.61 22 22 6 51 _7 3__ 22 _____ 7 15 _7__27_ 566 271, 59' 271, 603 27*. 622 271,, )0 283.71 LL_2___.1__1.__ 1* 284. 15 21 283.51 22 _£___ 7 79 7 51 6*6 275, 663 2 76, 21 283.28 6 8 ?8_.'2 697 277, 711 276, 35 232.9* 90 27 9. 8 7 '92. 10 280.119 ?7b.3* 291. 6* 280.0 5 _2_7 6.3 2 A_LI._ 260 2.fcQ 262 _Z£_2 262 Zf.3- 263 .2_£Z 263 _2t2 262 262. 263 _.2b2_ 262 261 263 .261 2 61 263 2t? 2 61_ 263 _262 263 262 261 261 2 62 .262. 261 262 262 ..2_5H_ 261 260 260 260 261 261 262 _2i_3. 260 2bl 261 261 2bl 261 262 262 .62 261 262 262 263 26J_ 2 6 _ 3 261 263 _263 263 _263 26 3 26 3 263 262 263 .__fe3. 263 265 262 2_6 3 263 __26.3. 261. _2_1 263 262 2~6 2 2_2_ 262 ' 261 261 261 2 61 _-._62_. 1.81 5_0.l. 517 531. 51.6 _5_57_ 677 _590 608 _628 655 SIS 701 715 270.93 280 27Jl__i__-_ 279 08 268.88 .bfl 2b_fl____S_9_ 260.13 2^S9__L_i9 2*8.51 ?*8.?9 262 270.62 279.9* 268 270.1.5 279.1.3 268 72 k? 259.99 2*8.32 259.7* 2.8.26 270.28 279 2t_2,_2 9___27.6 93 268.26 5U 265.72 259.73 _2_57.7._L 2*8.1.2 _2*_2___0_5_ 262 26i 269.69 279.81 267 ?68.*7 277.77 266 78 »0 259.19 21.7.88 258.53 2.7.9Q 267 _____ 92 276 q* ?77 31 266.33 .75 ?66.79 258.25 ?5fl. *5 2*7. *0 7*7.66 262 267 267.15 276.61 265 268.15 277.59 267 78 257.71 2*7.11 258.61 ?*7.7* I 7 7 7 t 6 £ 267 267: 2 69 268 259 259_ 263 266 268 257 267 2_l2. 2b7, 2 68_, 267. 267 268 269j 266 269, 267, 2.6.6 268, 2b S., 267, 2bS, 266, 2_9£, 266 266, 267, 266 268, 269, 267, 265, 265, 25*, 265, 2.66, 265, 2bjJ_, 260, 255, 255 252 256 257 258 26_L 259 259 259 260. 2 57 2 5_7 257 258 257, 256 256 -__.__, 255 235, 256 255 255. 2 51.. 25* 2 56, 257 256 256 256 2 56', 257, 255' 2 5.6, 257 _2_i9_ 262 258 266 268 258 271 270 273 2 7* 2_7_._ 276 27 ?77 277 59 177. 39 2bb.6* 258.37 2*7.3* 263 265.73 275.35 26*. 6* 256.92 2*6.77 1 i 276.93 265.96 ?57.77 2*7.13 26? 2 67.57 ?77.h? Z6.E.J2 ?5fl.3fe 2. 7.1.9 07 280.16 2b8.2b 259.5* 2*8.23 261 263.** 279.36 267.1.8 258.99 2*7.70 2 . _ 279.15 267.51 75R.88 7 *7.71. ?63 765.11 775.1 9 26*. *3 256.61. ?*6.*1 23 267.92 258.2* 252.36 2**.*8 262 259.63 266. *6 257.96 251.8* 2**. 3* J__t-2flZ-__-i. .2_5a._.i(1 252.39 ?hf^JJl 263 759.1.1 768.13 ?58.66 757.50 71.4.75 23 272.90 262.33 265. *1 2*6.38 263 26*. 02 273. *8 263.03 256.0* 2*6.58 51 2.7_u_6_l _2.6_i_.___ __2ia__._jli_.._2!.7_i_52 262.2_65. 35 .273.- 611 76*. 81 25 7.19 2*7.10 66 280.08 268.62 25°. 93 2*8.56 262 267.89 279. *8 267.61 259.02 2*7.90 8* 2J_a.-78___2_6Z_.Z__ ?59.'q 7*3 .17 760 ?67.58 778.9* 767.39 ?58.87 7 U7.9 .7 81 278.88 267.56 259.1* 2*8.00 263 265.92 276.25 265.35 257. *6 2*7.21 ia..-71_.Za_2i-l ■ 5f_-25._k__.!l_l.___2.*__L.2.3 ?63 ?6*.*7 771.. 85 763.7 7 756.70 7I.6.71 35 273.25 267.35 258.93 2*8.15 26* 267.77 230.17 268.03 259.37 2*8.30 09 280. 11_ 2 o a.05_ 2_L3___,a 2_t_8___6.6______2_a_L __2o2-.-9_ 280.02 268__. LQ. 25_9_.5J_L_2_L___.__7_ 7* 281.21 2b7.99 259. *0 ^^8.36 261 267.57 279.09 267.37 259.2. 2*8.23 82 28J.73 2_3.8.a_!_2£a..i_3._2.il___52 260 268.00 730.23 268.23 759.6 8 2*8.35 29 273.23 2o7.9t 259.63 2*3.72 262 268.39 278.98 267.99 259.68 2*8.6* 2 1( 2 7J.„a.5_ .2bi) ,_19_ _2 Sa J 2i>.__2.i____-__6. .. 23 280.1.2 268.65 259.31 21.8.50 CO '.7J.J5.3 267.86 259.*5 2*8.39 92 27.3.2* 267.1.L. 259.06 2*8.3* _2£_2..___.ji.-n___2_li_.i)i_.. 2Aai.a_-_.25__: 261 268.1* 28U.23 268.25 259.78 2*8.59 261..267._..9.5. Z7_9.a2 _2j_2, 6.6 __i9-ii ____)._-____.___ 261 267.** 277.31 266.75 258.6* 2*7.68 21 275. 5* 265___Z9. 257. .99 _2i.7_.6i _ _263_ 2b_6_.ij_S._-226__.a3_ Zhi*3b Zi^ZZ^ZAT^Xl 55 1 32 273.11 267.71 259.36 2*8.39 0i( 2ai..21._2ii5l-.H____2J_i0.Jl-.___'-3 J .a3 50 277.59 266.** 258.72 2*8.36 66 _7i». *9 .26*. 66 257.52..2it7._.9_2 69 275.36 265.67 258.33 2*8. *3 92 276.1b 266.1.1 25_a.i7_._Z-i.-Bj 3 5. 271*. 21 265.22 258.23 2*8. *9 27*.-__--.26____.2i__25_-__. 275. *6 265.8* 258. 8* 27b. 11 265.92 258.33 Z*8.35 9* 273.97 258.81 260.23 2*9.18 1.9 __8 0.1*. 2___L_.a_.._2_-Q_.32i._2*a-.9a *6 277.28 266.73 259.27 21.3.71 99._27_5.2a 2bi_.__l_L..2_-l__J9. _2___J___L3 11 272.32 263. 7' 257.15 2*7.98 81 27<_.65 _2bi(_.0.2. _256_._l5__2---2-.33 17 27*. 59 26*. *6 257. *1 2*6.00 55. 27.8__.*2 267.27 .25:9.. 2a 2i_a..63 1* 276.82 265.75 258.27 2*7.98 5k. __2j5 3. 15 ..._-.-, -._..35..Z5... , 9 1 2 ■*.--. .a. 30 ;63.99 260.19 25*. 35 2*6.31 261 268.87 279.98 268.58 259.9* 2*8.81 767 ?61.*1 730.17 763.1.9 759.91 ?*8.7* 261 267.30 277.97 266.86 259.08 2*8.67 26? _2d2..0___L_27Z..12 _2_6___._2a_ 25__a_,___,_9___2__LB__u3Z _ 262 263. *8 278.37 267.92 259.68 2*8.79 26.JL._265. 89 .273. *7. 26*..57 25Z.__7H___i_L.___a_ . 262 266.57 27*. 90 265.38 258.26 2*8.23 7_ZitJ_-_J-b. 2__L_2_L___)l__?2ii.-i___ ZE5.m 253.36 2.3.1.7 7 2*8. *0 260 257.19 276.7* 266.01 258.69 2*8. *8 _2£_2_26 7_.a9_27.8___9 _2_6 7_._3Q. 2S.__u3.-i_____iia-^ai)-— 262 263.93 280.19 268.33 259.91 2.8.77 26? 269. _a.-2iil.-bl 2 6 9-^53 26 0. 6-2-2.1*3^2-1 — 263 266.83 277.13 266.37 258.88 21.8.1(6 761 76 5.35 ?77 ■ 75 ?6*.77 75 7.56 71.8.0.7 262 26*. *8 27*. 16 263.93 256.33 2*7.30 261.. 265___01 _22_3_.62_._2fc3..il5 796.97 71.7.8Q 26* 265.83 276.96 265.83 258.36 2*8.19 Z62_.2__65.15._2Z5__.55 Z6S. 1 ? ?57.a__2 *7 . 81 262 263.88 273. *7 26*. 20 257.31 247.67 767 761.93 76R.*1 760.56 755. 01 71.6.9.7 261 260.25 271.47 261.35 254.75 245.84 28 _&J...5B.Z55__._12 Z5.a.l2. .2 __3__.2.6._ Z.6Z . 255.29 26_...27 . 2_l_l__55-25-0_.3 5 243.43 _ bl 267.38 257.02 251.22 244.00 263 255.34 265.56 255.85 250.78 243.76 b2__259._1.2 252.. 31 247.32 242.15 261 252.32 259.26 252.03 2 47.59 241. 9 5 50.35 243.75 262 256.32 268.90 258.09 251.71 243.87 -_-2_-_L57.8_7__2-7 0.3 3 259. 62 2 53.00 244.99 68 267 13 263.47 94 2 79.98 2 52.3* _24*__62- 25o.79 258.65 2bll.ll 253.67 245.64 26 276.24 263.76 256.41 246.95 64 27^.2* Z.biT.76 254.58 246.40 76 .772.21 251.64 255.14 246.41 61 272.13 £61.49 255.96 246.63 13 -73.36 262.76 256.2 247.50 87 26*. 4b 278.03 253.13 246.22 8__£ 62.3? 2_5 6^5 3 252.23 246.09 85 262.81 257.47 252.35 246.27 24_263.32 257 . 85-253..20 246.43._ 37 261.67 256.67 252. *6 2*6.24 47 260.85 255.90 251 ..7 2_. 2*5 .94 07 £60.44 25b. U 3 251.55 2*5.80 21 _J-6.9_-i*5... J 22>. l 6_2__22l J -___Z__.___3_ 59 259.87 25*. 94 251.13 2*5.41 71 260.07 255._26._2_5.1.?J_._245..64_ 99 £62.09 256~.80 252. *0 246.01 19 259.7 3 254 .50 250 J 7_t_2i5_,-,_7-. 11 259.32 254.51 250.59 245.06 Z2_2_59,?_0_._2?__i_-8-i!____5___3_..2it_i-.J_J_ 60 253.53 253.55 250.16 245.20 86 261 5: 2_56.12 251j_97 2.4_6._LZ__ 52 262.43 236.34 252. 44 246.33 1Z 253.96 2 261 259.03 2Z1.50 260.39 253.87 245.51 262 26J.52 272.30 262. 15 255.43 246.67 263 258.33 268.42 259.17 253.84 245.91 _260 25_9._36 27 ._8 2 2b . 7 4 254.73 246.59 261 259.51 27U.53 260.75 254.78 246.67 26 2 261 .00 274.6 1 263.46 256. 62 24 7 .37 261 257.92 265.93 258.16 253.26 246.43 262 2 57. 02 261.12 256 .21 252.15 245.89 262 257.76 262.75 257.00 252.64 2*6.05 261 257.75 262.41 257.02 252.67 246.25 47 260.82 255.71 251.6* 246.04 58 i61 . 2 9 _2 5_5 . 9_3_ .25 1___7_8 __2__t___.___2__ 7 3 262. 55 256.15 251.30 245.88 46 £63_. 43 _256_.94 252.51 246.16 85 260. 4~6 254. 71 250.35 245.38 09 261.5b. 25_5.56 251.39 245.41 21 £63. 0*. 256.0= 251.77 245.79 81 .2 6.7,. 5 5_ 264.89 262.72 2__1,___4_ 45 273.52 2b9.50 266.13 2bl.82 264.9_3 263.18 261.30 25_9s_51 £79.35 275.07 271.17 265.11 £8 0.. 1j_ _2 7 6.. 3 3 2 72.?i_2__6._ l _I_9_ 280.30 276.96 272.37 267.26 262 256.74 260.73 255.89 251.75 245.79 262.256.25 260_.37_2_55. 71__251. 6 3 245. fe2 261 256.39 2.60.30 255.83 251.47 245.71 ______-i-5_____3_-Z__l_._t6_..Z5.£ J -ia_.2i2_. 261 255.81 260.56 255.04 251.28 245.47 _2_3.2 255.47 259.76 254.75 250.88 245.30 261 256.85 262.36 256.53 252.25 245.90 £61 253.64 257.46 262.58 2*9.37 244.31 261 254.92 259.40 254.11 250.48 245.11 _2_6 3____-5..-I_!j_^_._L_.U_ 253.84 250.38 245.12 26? 255.27 259.19 254.53 230.75 245.36 2_6_3 256.97 261.33 256.23 252 . 18 246.01 262 257.09 261.69 256.34 252.05 246.08 251.22 245 .57 262 255 .85 259.61 254.93 251.15 245.7 6 264 256.65 260.66 255.47 251.55 245.84 263 256.29 260.67 255.40 251.55 245.82 263 256.64 263.02 256.26 251.85 245.68 262 257.16 262.48 256_l07 252.0 3 2 46.02 263 256.37 261.21 255.26 251.25 245.70 264 256.00 261.33 255.3 5 251.30 2 4 5.49 451 262.02 274.40 268.68 265.11 260.25 *69 260 .73 269 .74 266.33 26 3.82 260.24 486 260.52 268.85 266.38 264.06 260.61 512 26_0. 59 268.49 265.94 263.95 260.83 523 266/52 279.04 274.27 270.64 265.03 ___L6 ___6/___31 279.99 276.30 549 263.16 280.63 277.50 273.56 267.70 P 9_2_B3_, 7J__278_. 7.6 ._2_7_4 J _i7__26__._Zl.-, 5J3 111 _2 7_)_J. Z_ 2 D 1 .. L_L 767 279.36 280.97 ____________________ 77J 279.89 283.23 773 279.47 .28 3.25 77. 779.63 281.82 __.._> 9 230.02 283.8? 771 279.79 283. "9 77? 779. .1 733.63 780, 29 L, 281, _____ ?3., ?3_2 • 281 . .2. ... 233. 78? , ,.5_4. .94 j_a_ 10 JJL. 30 53.. 2 _?6 __"• 22 15 57 22 16 9. 22 16 20 ______________ 2 2 15 49 ?? 77 13 771 279.69 283.°? .__.... _L30j_Q 3. ?3 4_. 8 4 77" 279.99 284. .9 763 737.57 __fi___7__. 769 295.28 285.81 77 1 7 9 0.46 7 8 4.1. 28'', ?-9_3„ 283. .23", 285, 23 3, 281.15 279.72 2J.Q__4L. ___________ 290.73 279.55 __8____3______7_9.7 3 . 280.80 2.9.59 2-.._____27__, __ 291.79 279.94 2__2..14_2 90 .0 281.11 279.5b 28.2_.4 9 .290.27 232.3. 230 .06 Z82.Z_______.._2_ 282.25 230.0 3 2.«2.7 7_2.i0..31 237.46 290.1 u 2___j-Z.210.8 7 735.41 235.03 ______JL.__t_____J. . 768 279.52 281.79 231.13 230.97 279.54 767 .275.67. .26.]. 14 _.81..13.._29_.___._Z7_9-_-__5 770 279.24 280.31 28. 7 67 27 771 27 J.fc___2?_L_!__.._£_U___l ____j 15 78 U . 3lL-2Z3. 57 770 27. .83 2el.37 231.35 231. J6 279.69 767 279.57 280.65 280.77 290.75 279.54 .7_7__2._i.J9 -8. .53 230.95 280. -.3 279.42 771 779.3? 780.69 780.73 730. 6n 279.47 770 279.41 280.79 280.83 280.61 279.46 771 279.75 280.85 280.93 230.85 279.76 768 2 79.A2_Z8Q.7 3. Z 3 __.___>. _Z3.0 __LZ.Z2__.Jb6 770 779.46 780.69 781.08 780.74 779.45 769 279.70 261.47 231.35 231.15 279.73 768 279.55 230.97 280.76 230.53 279.51 769_Z75.83_Z_Z.. 0_3 .Z3_L_i_. 731.15 779.69 766 730.31 787. 39 787.18 731.68 780.03 770 279.79 283.47 232.97 232.20 230.13 767 279.87 283.75 282.75 292.05 279.91 768 279.23. .82.20 231.. 3__ 23 _..J_6..Z79..5__ .7.6.9 _Z__U_.S 28J..93 Zai_&__--___l.--_-____9_____- 773 280.02 282.83 232.53 292.17 280.14 767 280.01 283.45 282.73 282.17 280.02 773 230.05 283.33 2 83jl3__282.,._7..Z9. Qj____..7Ll_. 2.80.. 17 283.99 283.22 232.68 280.36 770 23U.05 284.0. 233.42 282.67 280.33 774 280.17 283.95 283.20 232.50 280.20 fl__._2fl 3.89 783. 05 737.50 780.75 2 2 2 4 47 22 24 59 282.63 230 .55 2_J__8.5 230 .5 8 282.24 290.39 2__2__S.3_2il._6 282.0 3 230.07 282. 36 230 _____.41.23_L 23 2.15 23 0.39 ____.1_.___3 230.17 280.94 279.83 282.09 230.35 292.45 290.43 231.39 2 79.91 ,3.6. ,32 .3 3. 22 25 11 76." 279.75 282.12 201.43 281.29 279.77 22 25 23 77? 230.06 2"3.22 232.1 2 32.112 2 30 .20 22 25 35 77.' 279.97 283.53 292.17 232.09 230.20 22 25 47 76" 23 0.56 233.64 7 62.57 232.45 230. 60. 22 25 59 77? 230.07 283.59 287.21 282.17 230.33 22 26 10 769 279.89 293. .3 732.07 237.11 23 0.22 7 7_3 23C.1 5 293 .31 282. 20 292. 11 23 0.21 769. 26U...32 .2.43 . 37 .233 . 14 2_Z_.lt_.___l 772 27. .88 284.33 233.37 ?92.63 280.18 769 7811.22 284.47 Z.63 , 2_9__ 82., 5a .. 230 .1 _.. 768 275.75 284.53 282.99 282.65 28T.29 765 2.5.30 735.53 735.78 785.35 785.0U 766 236.06 285.39 286.18 236.24 236.50 7 6.5 230.48 784.66 2 33.60 2a_.JP 281.05 766 230.50 284.45 283.6? 283.16 280.80 769 280.19 284.33 283.48 283.12 280.67 767 280.30 283.50 282.79 232.53 280.61 769.279.93 262__6.__24_j____2____._8 28Q__J___ 766 230.07 263.33 282.69 282.55 28C.44 7 70 730.10 .83.75 737 .87 797.57 780.46 770 77. .99 764 279.93 283.03 282.42 282.16 280.44 775 290.16 283.12 282.56 232.25 280.32 767 ?«0.?n ;«'... ?a?.M7 737.19 7.90.30 769 730.10 787. 1. Z81. 59231. 7ft 780.18 771 279.92 282.73 281.80 281.78 280.19 771 280.51 283.79 282.82 232.62 280.68 7 67 2 8JJ . 1 2_ -_8___. 0_4 _2 8 1_. 65 281.69 28 .30 7.71. 279.71 280 .3 3 280.57 230.89 279.83 774 290.05 282.91 281.86 282.02 280.32 771 280.39 283.52 282.58 232.50 280.63 772 2 3 0.12__28__._5_3 _281.88 2_____.j_. 280. 39 76 7 231.34 283. 25 282.36 232.22 280.40 767 779.60 282.56 231.73 231.60 279.90 766 279.77 282.84 281.62 231.69 280.03 _7 6 8 2.79 ___>_-____.. .14 .,81.15 781.34 279 .76 7 7 2 279. 82 282.44 281.33 281.41 279.97 772 275.64 282.45 231.23 281.50 279.34 769 279.97 282.83 281.66 281.84 279.94 767 280.17 _283._2._1 __?3_?_..?4 £82 ■ 2,1 ?80 . 26 77? 279.88 28 3.15 282.24 232 .06 280.2 4 767 230.23 283. oO 282.46 282.23 280.41 771 280.30 283.36 282.03 232.03 280.14 7 7 2 3 0.06 793.56 292.41 732.19 280 .40 771 279.89 283 .48 28 2. 08 232.09 280.18 771 28C.15 283.46 282.08 232.19 230.24 773 280.15 283.39 282.22 232.06 280.15 81 284.34 283.14 292.44 280.03 ______________ 234._30_.283._33 2_LZ_-67_Z__0 _J1 ._ 767 279.95 284.75 283.31 232.59 280.22 Zi>_3_ ?fl5._L7._2e_j57_2_______J 2a__.l___ 2___.________ . 769 280.46 283.53 282.62 232.31 280.72 771 780.34 784.44 783 .8? 283.13 280.93 775 280.27 284.27 283.50 232.98 280.68 771 780.76 783. _? 793.1? 73 7.87 780.6 8 774 230.35 284.17 283.16 232.90 280.70 Z6_9 _28._Uj3.i_ .281. 82 2S1__7_L 23 1.94 280.26 765 280.31 283.37 282.89 292.71 280.52 60 787.69 737.41 780-41 77? 279.94 283.41 26 1 .83 291.84 280.19 22 26 23 22 26 35 .2 .31 .45 .39 282.14 290.26 231.36 230.03 281.82 2 3 231.91 231 282.0 J 230 2 8 2 . .', 1 ?_3__L 282.14 280 .55 281.93 290.50 731 .6? 230.2 3 2__ n .4L_2 7 9_. 8_u 281. b.) ?8~0.25 280.. 3 279.96 772 230.01 283.11 281.97 231,94 280.13 769 279.74 28 2.67 281.7 3 231.60 280.09 770 280.24 283.26 232.04 292.10 290.19 771_275.99 283. 02_ 2 9J_1'' 281.34 230.25 767 280.22 283.16 281.82 281.35 280.21 775 230.54 283.40 2.32.18 232.35 280.36 775 230.20 283.55 232.02 281.30 29-. 43 773 230.45 2.3 .02 232.21 232.16 280.46 773~280.14 282.93 231.79 281.31 230.28 766 230.27_282.4_3 231___64 231. 34 280.34 771 290.10 "261.91 231. Ot 281.28 280.15 76 7 279.79 281.03 280.53 230.93 280.04 28 0. 33 230.19 _2 80 . 5 9 279 . ___§ 774 280 .07 2 81. 21 280 .89 231.12 280.16 771 2 79. 773 230.50 281.41 280.99 281.32 280.19 7 7 0__ 275. 6 7 2 81.31 280.01 29 0.52 279.88 770 280.40 283.23 282.08 291.89 280.22 763 290.44 283.31 2 8J_74 231.73 260.27 773 280.32 283.45 282.20 282.11 280.53 772 280. 1 3 282.76 261.76 231.75 280.33 763 280.44 282.39 281.99 232.06 280.40 770 280 . 2_L____82_. 43 281.65 231.76 2 8 0.34 769 280.12 280.48 279.87 230.41 279.91 765 280.03 280.56 280.23 230.77 280.19 22 29 45 2 2 2 8 57 280.49 230.00 _2.______.__2 279.flo 280.6? 279.99 280 ._9_9 __3 . 1_8 290.55 291.33 291.0 3 291 .73 773 290.12 280.97 290.45 280.39 280.15 774 280.10 2 80.7 2 280.26 230.37 280.32 772 2 30.06 281. 3. i 26C.88 281. J3 280.28 7 72 2 9 . 25 _2 8 1__) ___2 9J .20 280.7 3_ 2 8 0_._08_. -52 291.72 292.01 290.34 291.22 291.95 897 291.76 J91.63 291.07 291.2 5 291.96 907 291.96 291.97 291.18 291.33 292.06 904 2-J2j04 791.76 791.06 291.43 292 .09 914 792.18 292.03 £91. 5c 291.71 292.24 770 280.06 281.31 280.81 281.09 280.24 768 233. 42 281. 20 280.41 230.99 280.19 769 279.94 261.17 230.40 230.79 280.12 _7 6 4__J 8_i . 70 280.65 2 7 9 . 94 230.41 260.0 3 693 291.99 291.92 291.26 231.40 292.07 Cj_j 797. 1? 797.06 291.38 291.50 292.18 22 37 29 902 292.00 291. .5 291.21 291.35 292. C3 22 37 41 -ni 292. 16 792. 16 791 .__39 291.53 292.19 22 27 53 912 292.20 292.?? 291.41 291.59 292.22 22 33 5 915 292.33 292.25 291.63 291.33 2)2.43 922 2.9_. ,I1__L9_2_,_17_._2_9____38_29J,__ 5 3____2..2__L ?2 33 17 919 292.38 292.51 791.79 291.9. 232.51 912 792.25 292.40 291.42 291.79 292.39 22 33 29 912 232.49 291.17 236.75 287.24 2 91.55 ___1.8 _ 2_l_4.t___________-____._6_2._____.L._2____i_Z_t. 919 285.32 282.56 264.56 285.14 265.05 915 295.36 284.10 285.17 2_8 5 . 5 1 _2 6 5._2_3 _ 07"284._6 285. 3f 235.54 285.15 909 292.15 292.30 291.22 231.55 292.20 _S1 _L_29_1.-J.8_______,__._2aij^l 291.73 292.34 517 292.31 292.53 291.61 231.74 292.51 522 292.34 292.49 291.63 291.90 292.48 912 292.51 292.48 292.01 292.12 292.60 .16 235.24 282.95 284.63 29 5.71 785.31 22 33 47 22 38 59 91 T 295.41 2 9 5.62 283. 17 ?33. 8 4 284. 7 85. 22 39 3 ?2 39 21 »2 IZ_ !9 33 ^9 45 -lie an. 295.06 294.51 29 4.24 _____ 795.46 234. 7C 293. 89 29^.36 235. _____5_. 285. 234. 285.24 235.37 285.52 235.33 285.7 t 295.2 4 2 9 5__.6 4 g3 5_. 10 285."45 235.1 1 917 235. 921 2 84.8_3_ :63_- _ 3. Z_i _4.8__I._2_S 5 .24 2 84.56 912 285.39 283.45 284.97 235.45 285.28 9 1_L_ 235. 41 2 64 .28 285 .5 2 285.68 285.31 "918 285.05 284.27 285.22 235.58 285.11 919 784. 78 283.69 284.86 735.27 284.90 2 2 39 22 40 911 _>_!__ 22 '0 20 22 40 33 914 __!_. 234.cn 2 34.94 235.14 2 35_J 7 23 ___I__9__ 284. ,' 284, 234, 795, _____ 914 285.29 283.72 294.8? 285.2 5 284.84 285.17 235 . 0_l^ _U.--_.i_----.----i-J-_--.-_. 6 g 295 . J 2 . __________ 265.13 294.94 920 235.00 283.12 234.35 784.34 234.84 2 85.0 9 2_i'*_ ! A!L 919 234.84 263.99 235.03 285.31 234.90 915 7-5.20 2 912 285.11 283.42 284.75 235.25 284.92 917 264.74 262.96 764.35 734.36 264.80 235.35 294.99 285.16 235. 03 .04 284.63 285.13 284.78 _ 9 1 7 2 8 5_, ____________ . 4 1__23 4___4 n 264.3 3 234.80 915 285.01 283.39 284.71 285.06 284.88 921 284.95 283.63 284.71 235.13 264.75 =15 284.92 284.12 284.66 285.37 285.02 915 294.92 283.79 284.72 2 95.08 284.96 22 40 45 '? 4 57 971 .19 295.14 2.5,54. 263. 81 2 94 ,2' 7C4 , ______ "'■ 22 41 _2 41 21_ 235.05 214.39 ?3 r . 41 235.12 235.0 2 235.04 285/0 2 2.4.97 924 215.58 283.33 284.8? 285.25 235.04 ..9_?.9 ?'.5.?1 ?6 3.56 734.44 234. 3 9 294.33 926 265.19 283.19 2.94.64 284.39 234.97 C-6 735.04 7C...76 764.71 78 4.75 264.66 916 285.16 283.93 284.56 285.04 264.94 '29 285.30 783.57 7 84.63 735.14 265.02 929 285.20 283.21 284.50 294.78 284.84 93? 735.7? 78 3.58 284.77 735.18 264.9 8 69 6/ 12/ 70 HR MN SC _|_T_ ____ _L__ ALT _LZ_ _L__ 32 41 33 931. 284. °5 283.1.1 284. 29 281.. 7? 284.73 91.0 285.13 283.35 28".. 53 285.06 284.93 935 285.31 283.68 264.37 231.. 98 281.. 90 22 ill 1.5 > °37 284.90 283.33 281,. 1.6 281.. 92 231,. 84 g?5 235.07 283.74 281.. 39 735.1? 784.96 935 285.35 283. 7 7 264.82 i 22 _._2__3jU__L ID Q_ .2 33 . 5.C _2__2.._____; 282.06 23'. 07 282.55 232.93 1003 233.27 282.42 282.4; 73?. li 737.47 787. 73 7.93.. .H 10 19 233. 65 ..7 .4. 737.7' 282.79 283.13 1007 283.55 29 7.63 28?..a5.JL DOl- 2__ _-5_7. 232.79 282.97 1007 233.41 j_3.2d3.79 1011 ?3.3j5__- 282.91 283.16 1005 233.57 ?-.?. 7n 78.3. 1 9 1 005 73 ..49 22 49 51 '? 50 3 282.13 282.41 232.78 283.08 282.2.6. 282.11- 737.58- 2___3jJ_6 282.01 282.34 282.65 283.08 2_2_.1_S _2.82._S-0 -2-7.8 3- 783.14 282.73 282.34 282.84 283.26 787.46 787.57 73 7.96 793.38 101" Ull 1005 J. 793.32 23_L. 81. 283.56 23_L.J_;. 283.83 2 33.74 232, 2-8?-, 282, 2.82. 282. 23_L, 28?, ?..,'. ?1 281.86 282.60 282.98 1008 233.31 282.41 232.39 i__-222j.16-2_2._7J. 28.3.2b 1002. 283.66.. £8 2..4-__2i2j____. 56 292.52 233.05 283.27 1003 233.74 282.50 232.75 it, 2il2.__i-_2_lj_.l_2.-3.j4_t_l-.19 2.3_9.2 „_2_-73.. 2_i__j__L!_.. 85 232.67 293. J3 293.42 1004 283.77 282.39 232.73 ?5 ? 3 2. 5I-2_:. J 1 2_-3. 4 u JJUO. 234.09 .92.85. 82 282.6° 283.13 233.47 1011 234.17 283.21 233.0, 6? 792_-__. 293-1. 23 3 . 5 s___ld a____...a3 -__l__.a.._____6__ B2.61 232.79 ______ 22 52 13 22 52 25 1004 1014 2 33.b7 294.26 283, 293, 1010 233.69 __C_.2_. .2 .it... 2_7. 283. 01 1003 284.16 282.81 232.81 1006 284.10 283. 10 Z82..97 14 293.01 283.4? 233.73 10C8 233.79 283. lu 283.21 92 282.61 283.03 283.54 75 262.95 283.1 9 293 j 7. .2 233. 14 283.50 233.77 2? ?63 .48 283.6 1 23 3 . 8.7 ?4 733.-4 28 3.5 233, 22 52 37 ?2 52 49 1007 1010 233.6? 283.68 283 283 1009 284.04 1006 233.67 27 28?. 28 263.53 233 13 232.38 233.41 233.68 10C5 ?93_.89 22 2 2 1006 1019 293.94 234.13 283, 283, C . 233.17 283.49 283.74 10C6 234.27 283.24 283.5 2 23 3. 78 101 234.34 .53 283. .91 283.05 83.31 2 83.05 83.27 283.16 83.41 2.33.51 63.46 283.17 83.51 283.00 232.31 283. 2_2j.12-___j 232.39 283. 28__j_17 7,33.. 233.15 233. 63 .23 — ___. 283.31 233. 2 9__j__ 283.19 233. 283. 56 2 83. 283.21 233. 29-3_j 2 4 283 . 283.47 263. 763.32 285 . 25 1019 283.57 71 1 007 783. 60 40 1011 233.71 36 100? 733.44 56 1012 233.53 61 1003 233.65 8.4jJl_- 58 1009 283.98 76 1009 284.29 60 1005 283.74 70 10 4 233.92 75 1011 233.70 62 1014 283.63 282.58 282.65 283.01 283.26 797. 76 767 .67 793.01 ?8?.14 282.59 282.20 232.69 2_-_j_l5 7 87.50 787 .95 282.60 282.72 232.86 787.63 ?87.76 73.3.06 282.7.3 282.75 233.02 733 .17 7B 3.37 7 33.44 232.74 283.30 233.36 263.78 283 . 34 283.07 233.62 283.93 282.97 283, 2 63.12 26 3, 263.26 232, 282.63 262, 14 233.48 20 233.53 283.81 283.60 92 233.42 76 283.19 283.87 283.56 293.53 263.48 283.58 283 .50 233, 283, 283 283 83 1009 283.86 73 100 6 .2 8.4. J, 5. 96 1009 283.58 84 1002 284.19 282.93 263. 262.77 283 , 282.94 283. 28 3.4? 263. 09 233.37 32 233.36 283.73 263 .76 03 233.31 30 283.71 283.68 263.98 22 53 25 1005 284.00 283.15 283.29 233.53 283.79 1006 263.94 22 5? 37 100° 233.92 283.16 283.11 233.3 3 733.80 1009 284.26 283.27 283.41 22 53 49 1005 234. .1 283.47 28?. 46 233.72 234.14 10C6 234.18 283.34 233.55 22 54 1015 234.33 263.17 233.53 28?. 77 284.06 1007 2 3.4 . 44. 2_ 6 . . X 9. 283.53 2 8 3.44 293.63 283. _____ 84 1003 294.30 98 1009 234.14 283.39 283, 283.45 283, 53 283.72 45 2,33.82 284.02 284. 04 22 54 13 1011 284.36 283.^7 283.59 283.94 234.31 1006 284.52 263.46 283.40 22 54 25 1005 2811.52 283.51 2 83.37 283 .73 2.34.21 101:5 284.76 283.36 283.77 22 54 37 1012 284.26 283.16 283.44 283.65 234.03 1009 284.47 283.2b 283.33 22 54 49 1006 234.76 _ _____} 233.51 ?8'.33 234. 01 10 05 234.28 263.4b 293 .37 293.77 2 3 3 . 5 3 2 8 3.33 .2__3__8_ 2 8 3.32 283.67 284. 284 . 284. 2.84, 284. 263. 11 1001 284.39 4 10 11 284.64 23 1007 284. 79 22 1002 234.54 09 1010 284. 37 90 10 02 284.31 283.44 283, 28 3.64 2 83, 2 8 3.43 283, 283.4 7 28 3, 283.18 283, 283.36 283, 25 283.68 54 28 3.82 52 233.71 36 233.67 38 283.65 66 233.69 264.06 284. 33 284.14 284.0 5 284.07 294.05 22 55 1007 294.02 283.14 283.19 263.51 233.75 1004 284.26 263.07 233.87 263.36 284. 22 55 11 1019 234. 17 283. 29 293.39 2 83.7 ? 234.0 0_ljUO 7d4.13 283.19 2 63.5 4 283.76 283. 22 55 23 IIP 284.33 283.15 ?«?.36 233.56 233.89 1003 234.02 263.24 283.17 283.50 283. 22 55 35 10Q7 2 34. 10 283.5 1 283.33 2.33.62 283.94 1 005 234. 01 263.13 233.5. 283.74 233. 22 55 47 1009 284.71 283.29 283.55 763.33 214.02 1007 234.20 263.53 283.13 233.57 283 22 55 59 1011 234.35 293.35 233.49 293.63 ?33.9? 1009 234.13 28 3.12 233.24 283.58 2.33 04 1011 284.09 92 1 JJ3.3. 284. 53 77 1013 234.47 95 100 9 284.17 96 1007 234.14 97 1006 284.73 263.36 283, 283. 35 283 , 263.41 283, -8.1, 56 2 __t, 263.47 263, 283.31 283, 40 283.72 39 2 33.60 283.92 2 84.02 66 283.80 39 29 3 .81 55 233.79 56 293.83 283.98 284.06 284.11 284.11 ?2 56 10 22 56 ?3 234.90 234.18 763. 263. 293, 283. 70 22 56 35 22 56 47 1007 in05 234.71 234.07 283. 263, 2.93. 53 73 3. 49 233 28? 763 29 3 74 234 6 3 234.1b 30 234.06 5 7 233.95 2 2 5 6 59 22 57 11 1311 1009 294.19 234.39 733. 732. 233. 49 733. 32 233 28? 61 233.85 54 233 . 7 7 46 233.7? 17 233.26 2 6 3.39 263. 72 234, 284. 22 1004 00 100 5 284.46 234.46 283.57 263, 263, 283, 42 233.83 28 233.70 284.25 2 83.99 92 262 9? 283 , 03 283. 11 __7_ 283.28 39 233.04 11 2B3.22 283.55 283.45 283, 263, 80 1011 84 1002 233. 95 233. 95 262.93 28 3 . . J 233.21 263. .0 233, 283, 56 1009 71 1006 233.86 2 34.0 7 282.61 283. 36 283, 283 , 282, 2___ 29 233.52 07 233.29 99 233.21 34 233.54 283.76 283.73 2 8 3.63 283.80 22 57 23 22 57 35 22 57 47 22 57 5 9 22 58 11 1 2 56 20 n05 100° 1 < 1009 1311 1009 283.63 234. 18 233.94 2 83.88 282. 282. 292. ?87.97 787. 90 23'. 19 783. 29 ,2 3 2 93.5 9 ,25 283.57 ,36 283.74 ,53 2 9 3.32 283.98 294 .07 282. 2___ 28?. 73 _a__ l? 783 ___L 42 283.72 ___________ irii 1005 1C09 1007 1012 1011 ,06 283. , 4p._2.e2, ,00 282. ,96 263, ,84 262 ,67 263 03 282.99 98 233.21 83 233.11 ._ I 2 . J . 3__ 6 d c '. - . 1 i. 03 263.19 283.25 263.36 283, 283, 6 6 It 5 69 1009 284. 32 234. 20 283.08 283.11 263, 283, 49 233.66 10 283.38 283.91 263.70 283.46 283. 24 283, 283, 78 1009 68 100 2 234.11 284. 13 282.82 282.71 282. 2 82, 88 233.15 92 283.17 283.66 263.50 283.27 263-'.l ?3 7 ____ 71 1011 73 1005 233. 77 281.19 282.98 26 2.7 2 283, 282, 19 283.54 77 233. 14 283.84 283. 54 22 58 33 22 56 45 22 58 57 22 59 9 1011 110' 100' 284.17 233.9 282. 283. ?83.33 283. 11 22 59 20 22 59 33 1107 1008 283.98 2____-J 284.18 ________ 283, 282, 287. 31 -12- 233.10 ?37. 30 28 3, -26 3_ 283, 283, 283 293 51 243.77 43 2 33 . 8 5 52 283.71 40 2,33.68 45 233.81 25 ?63,s 3 10C9 1C06 lino 1C 07 1C06 ion 2e3, 283, 263, 2.83, 294, 234, 96 262, 94 _28_2, 91 282. 69 262, 20 282, 2 262, 84 232.96 99 283.31 68 282.89 36 2 33.01 88 283.23 69 23?. 07 283.25 __8__..5___ 283.15 283.34 263.54 2 93.25 283, 283, 283, 283, 65 1006 8 C 1005 284.06 234. 24 28 3.1 263.1 28 3 283 30 233.51 11 233.37 283.78 263.73 64 1009 69 1010 234.17 264.24 282. 80 263.17 283. 783, 17 283.36 03 733. 283, 293 67 1011 58 1008 234.16 .29 3.95 282.88 787.39 263, 262, 03 293.21 95 293.17 283.72 283.67 72 59 45 23 3 1011 707 283.79 307.45 28?, 307, 24 307.14 283. ?07 46 233.53 35 307.50 23 16 3 23 16 15 261 257 246.07 247.23 245. 254. 242.93 243.99 242 242 21 240.67 63 24 . S u 1011 _ 304. 259 __Z£6_ 283, 2.4 c __ 2 45, 2-__8j 96 282, 43 250, 93 248, 87 253 , 99 232.92 76 24 8.57 49 242.78 36 246.77 283.23 li^sjiO. 242. 16 Z44__l___ 283 244 ?-._ 241 66 1005 76 273 284.24 251.17 262.96 ________ a 4 283, 242, 13 283.32 26 27£_Jl_L 283.57 276.60 258 -232. 246. 35 751.07 261.14 26 3.1 _'4 4 2A3 05 242.47 17 746.16 240.91 747.35 23 16 27 2 3 U 39 257 257 250.43 247.83 261. 259. 248. 52 ?44. 16 245, 242 , 52 241.89 52 240.99 257 25 6 246 249 85 253, 71 260, 31 246.25 50 247. 22 243.95 244.75 241, 747. 258 258 247. 55 249. 09 255.22 259.73 244, 746, 75 242.85 8? 7...U 240.94 241.35 23 16 51 ?3 17 L 261 259 247.11 246.57 253. 2S1j 243.69 243.19 242 24.L 3 3 240.68 _2_5_.240.4 5- 256 -2.56. 247, 2_47j 11 254, -4_5_.25.5_, 19 243.82 85 244 .39 242.21 242.41 240, 240, 86 259 _15 2-2_i 246.83 249.1 2 254.29 756.99 243, 245, 75 242.19 5_a 2_JjJ_- 240.60 2___U_Z_- FLIGHT NO 70 HR fN sr iu_ Tl 23 17 15 :. i 7 _7 251. 247.60 256.18 244.52 2"*2."4 1 21.0. 24 250 247.74 257.1.5 ?44 .94 242. 17 239.4 6 .1- _I_3_ . L_l_ _____ 23 17 39 21.3 21.9. ".6 260.37 246.98 21.3.67 21.0.1.3 23 17 51 239 250.50 262. IS 248.28 244.60 240. 54 23 18 3 236 250.02 261.62 21.7.69 21.3.76 239.56 23 18 1? ?35 21.6.3? 255.?? 21.3.00 21.0.25 237.60 23 1« 27 23 18 39 23 18 51 23 19 3 2<«5.08 251. 253.12 262. Al T .51 21.7.31 £56.29 244.19 21.1. U 239.66 _24 5 2 i.° . 2,9 -26-.. 12 74 6.7B 21.3.61 21.0 .31. 21.2 21.9.19 259.67 21.6.30 21.3.18 21.0.21 236 250.19 262 .23 21.7.8? 244 .73 740..30 231. 21.7.95 258.23 2 ^ <+ . 59 21.1.1.6 238.35 235 ?44.43 £51.17 239.79 777.97 236.1.6 M T it _L2_ li Ti. T5 21.0.1.6 238.1.1 236.82' 233 21.6.99 25i». 53 21.2.90 21.0.13 237.1.8 250.31 21.5 .61. 239. 97 233 252. 1.2 260 . 1.3 24 9.52 21.5. 18 239 .96 233 253.78 262.35 251.28 21.6.1.2 2i«0.69 233 255.11 265.82 252.67 21.7.57 21.1.11. 21.8 21.6. 1.3 255.1.5 21.2.98 21.0.90 239.08 -2___L 250.35 262.19 748.10 £l_k___L_. 740.81 21.1 21.8.67 258.83 21.6.03 21.2.97 21.0.11. 23 7 250.57 262. 4B 21.7.75 744.09 239.89 231. 21,7.1.5 257.79 21.3.90 240.95 238.15 231. 744.58 251.1? 21.0.1.9 738.15 ?36.38 231. 250.29 259.52 21.6.71. 21.3.01 238.81. 260.99 21 .9. 73 21.5.1.6 21.0.27 23 19 13 23 19 25 232 255.32 268.38 253.25 ?47.9i 21.1.33 23" 260.1.2 271.. 59 260. 228 259.18 277.64 25. 252.69 21.3. 30 09 251.26 21.2.1.3 231. 255.37 267.55 253.81 21.8.28 241.50 23.0 . 2.5 8j 18 272.01. 257.19 250.65 21.2. 56 233 259.71 274.1.3 258.96 252.17 21.3.01 220 260.38 274.44 259.57 252.25 243.14 230 259.88 273.1.7 258.99 251.93 21.2.86 230 2I?3 .64-.2-_2_Jl_-.2- -7 ,ii 25. .d9 2 4 2.01 226 258.60 272.22 257.02 250.1.9 21.1.77 23 19 37 227 259.33 273.15 258.32 251.1.2 242.43 225 260.1.1 £74.59 259.67 252.1.2 21.2.91 226 260.83 275.35 260.51 253.08 21.3.33 23 19 1.9 221. 261.31 275.75 260 .6 8 253. 2] 243.58 221. 260.83 275 .07 260.27 252.86 21.3.12 222 260.13 27 1.. 09 269. 26 252.09 21.2.1.8 23 20 22? 259.85 273.68 259.02 251.80 21.2.31. 222 259.21. 272.81. 258.12 251.07 2m. 68 220 259.03 272.62 258.01. 250.85 241.63 :. :j 13 ::•' 2_59.,___: .'7?,:' _5_..i_ _-.___.__ .'.1,' 2i_a 2-L9..11 ,/i,n 258. 51 _-.i.i_ _4i.-. 217 25 a. .0.9 -.zi.ji 25a.11. /su.to 21.1.39 23 20 25 216 258.83 273. M 257.71 250.51. 21.1.35 211, 257.1.° 271.08 255.8! 21,9.23 21.0.81, 2H 258.27 272.29 256.85 250.02 21.1.20 -3 20 37 212 260.18 271,. 81. 259.29 251. 90 2it2.pi. 21 2 261.18 £76.33 260.67 757.33 747.40 21? 261.37 276. 14 260.91. 252.95 242.45 23 20 1.9 212 260.88 275.95 260.38 252.1.6 21.2.16 210 260.72 275. itB 260.06 252.17 21.1.97 210 258.16 272.61 257.09 21.9.86 21.0.1.1 23 21 21 1 251.. 53 268. 53 2 52.23 21,6.22 238.71, 2i_0. 251.. 89 268.91. 252.81. 21.6.39 238.81. 2 10 252 .98 266.6 6 2 50 .11 21,1,. 71 238.04 23 21 13 2K 252.12 261,. 73 243.34 21.3.83 237.58 210 250.27 260.92 21.6.56 21.2.21 237.16 210 21,9.1.9 259.18 21.5.1.2 2.«» 253.31 7.7Q.87 ?37 .39 774.65 200 21.6.03 255.01. 24J.83 238.32 235.28 198 21.5.28 255.51 21.1.57 238.88 235.1.1, 198 746 .38 257.81. 23 23 11 197 249.39 261.36 21.5.81 21.1.37 236.03 23 23 23 197 21.6.99 257.95 21.2.57 239.07 23.1., 8.8 23 23 35 197 21.3.09 21.8.78 237.79 235.83 233.51 _2_3-21_-_7 193 244.43 253.44 ?39.67 236.99 2 31.8 6 23 23 59 197 244.96 253.75 ?40.7? 237.75 2.31,. 1,9 23 21. 1 197 £48.48 260. »■ ? 74 5.34 21.1.09 ?3 _ __!_-_ 23 21. 23 19^ 248.63 261. "5 21.5.69 21.1.33 736.25 23 £4 35 191. 21,4. 67 2 5_7-, 6 7 _2_4 Q , 5 2 3 7.4 3 2 3 4.27 23 Ji. 1.7 19? 21.8.21 260.70 21.1.. 53 240.45 235.25 23 2 4 .-2_l____191 21 .8 .50 260 x90 244. 9_L 2_4.Q.?._- 233.5.7 23 25 11 192 253.70 268.01 251.19 21.5.02 237.1.2 '3 25 ?? 19P 753.7? ?67. 7 4 2..Q. .0 2.4J__.;il__2.16 .3 3 . 1°9 246.58 257.12 21.2.25 238.7b 231.. 58 198 21.5.72 2S5.itL.2itQ.i9 233,13 23__,5.__ 198 243.95 251.35 238.55 236.32 231.. 01 1°Z._2J)5.. 05_ 255.15 24 0..2 Z .217, _L0 .23Jtj.ll. 199 IS. 196 191. 153 21.5.55 255.1.1, 21,1.19 238.44 234.93 23 25 33 23 2 5 1.5 188 260.71. 275.11 259.11 250.91 239.65 188 2 60.51 275.1.9 259.61 251 .____ 239 . 9 6 23 25 57 189 259.91 271.. 81. 258.83 250.1.9 239.1.1 23 26 9 1 88 259.78 2 7^.7,^ 2 5 8 . 1._-25JI_.2.- . 2 3J3 . 15 23 £6 21 139 258.88 273.79 257.39 249 % 61 238.88 23 76 33 138 257.68 777.46 ?56.S0 ,2j8.6;1 2J7-.aii 23 26 1.5 187 258.07 272. 00 257. 1C 21.8.97 238.33 23 ?fi 57 187 256.81. ?71.i.5 ?55.3? ?U7.6? 2IZ..D7. 23 £7 9 \%* 256. 53 270. ni, ?55.25 21.7.1,6 237.27 23 28 20 181, 253.50 262.37 256.Hi. 21.7.3 7 2_33 . 3J3 18 2 259.5? 193 2it6.li. 256.23 21.1.1,8 238.05 231.. 54 1.9.4 2i.it.H9 253.67 2.39.80 237.23 231.. 33 198 21,3.59 250.58 238.85 236.26 233.1.9 19S. _2.it 6j_ia 256.67 7.1.8. ? 38.61i ?3U .ft5 196 21.7.65 258.81. 21.3.85 21.0.27 235.69 Zt 6..12. 2.5iL.j_.2_ 2iiH.66._2itiI J Jta 235.97 19. 2..7 .79 259__ 5 2 2 . 3 .66-2. .19 235.83 2-.8.07 253.72 2. it. 39 2.0. .5 235.82 193 2.6.71 257.12 2.3.1.0 239.56 235.09 69 253.07 2..1..23 .2_.Q..17_23J.4L_..13_! 2. 2__8.1_259, 82.2. 3.65 219.87 235^3fl- .. 31. 259.71. 2HI..17 2"t0.12 235.36 191 250.26 262.93 2.7.18 21.2.31 235.99 19J__2jL2._i8_.2f.l.lit 2-t6__?_3_ 2.1.6 . 235.89,.. 190 256.79 271..5 251.. 92 2it7.76 238. kl 183 260.52 275.52 259.17 250.91. 239.78 2t?. 2".7. 192 250. 8U £e.it.6.6_ 2Jl7 ._L0..2_2_iJ_L236.0 9 190 251.. 69 £69.52 252.54 21.6.11 237.61. .15Q 257.,?-9:._272.5J__255___3_12.._.12_2J_8__--3_. 190 1S8 187 255.56 188. 259.55 260.31. 275.1. 260.3. £75.1.7 59.51 250 .39 239.83 59..19 25fl J .3J_. 1 3.91-7... 6. . .6 257.53 2.8. i. 234.93 7t.5J .2afl.t71.25Jl.l9_2ia_i.9 187 253.26 273.01 25b. 60 248.79 238.14 _16_6 25_L-__2_272.7J_ 256.63 248. nO 2.37.97. 188 267.85 £72.67 256.42 248.60 237.92 185. 2_L-_ll-271_it_L.254.a5 247.11 2.36.95. 182 256.46 £62.49 258.60 249.36 237.24 .1.3 2 59.,_25_ £73.85 256.96 250. 7U 239. u 2 161 259.54 £73.76 258.11 250.10 238.80 182 258.92 272.64 25b. 97 248.93 238.1 3 188 26-.. 29 27i_x-)-__ 259_.2Z_2__-____L 239.63 189 260.08 274.78 259.13 250.53 239.31 .1_I_L_2__9____4___.Z_-.___Q. 25.Z-_.21-. 189 258.63 273.51 257.57 249.46 238.70 187 753.20 77.3.16 756.90 7-.B.98 ?38.3? 187 257.91 272.43 256.49 248.42 237.99 187 756.77 770.75 754.74 7I.7.11 737.14 182 258.50 273.22 258.89 250.97 239.05 182 259.34 273.31 258.53 250.46 238.96 161 253.32 272.45 257.0? 248.73 237.95 23 28 33 13? 259.56 273.83 258.37 250.33 238.86 23 23 45 137 259.1.3 273.41 257 .38 249.43 238.4 6 23 23 57 131 258.78 272.24 ?56.39 248.44 237.30 ... U _7 ! 4 .L 259.27 7 1 . _J :__'.■._: '50.99 139.17 18.2 i ■ : _ 6 ' _ ' . . .'* 259-14 250.97 23' 23 34 9 IB'' 259.33 273.11 258.46 249.92 238.46 181 255.37 273.26 257.75 249.56 238.39 23 34 20 1_3_1_ 2 58. Ql 2 71.81 256 .41 248.50 ?37.85 1.83 259.17 £71.93 256.79 2 48.52 237.93 23 34 33 182 259.77 271.57 256.41 248.32 237.91 182 259.24 £71.30 256.19 248.25 237.92 23 3 4 45 131 259.49 270. c 255.8° 248.2? 237. 33 182 260.14 £72.47 25 7.71 249.33 23 8.55 23 34 57 18? 260.52 271.41 257.13 249.38 238.78 183 260.56 £71.64 257. 4:. 249.50 238.87 23 75 9 181 261.39 273.19 253.76 750.03 239.11 1 83 261.59 273.7 4 259. 27 250..9 239.41 184 259.49 273.54 258.11 249.93 238.71 J 82 258.48 271.86 25 6.27 248.33 237.71 184 253.90 270.79 258.73 251.31 239.46 1B1 253.75 273.5 4 258. 78 250.52 236.75 184 259.02 272.29 257.22 249.18 238.17 183 259.05 271.29 256.03 248.21 237.61 182 259.30 270.99 256.06 248.33 237.86 1 82 26J. 41 272.1 3 257.28 24 9.42 238.60 23 35 19 13? 252.11 275.72 260.06 251.31 239.58 23 35 31 18 1 262 .31 275.63 260. 14 251 jJJ! -_2J.9 • 5-9 23 35 43 182 262.28 276.54 261.39 251.47 239.59 2_3__.S 55 182. 262_.J.2^ 277.3 8 261.2 5 ?51 .82 2.39^34 7 18? 262.35 277.84 261.12 251.82 239.81 18? 262.8 3 273.20 261.72 251.93 239. 85 182 260.98 272.14 257.75 249.75 238.92 182 261.51 274.13 259.05 250.41 239.19 23 36 ?3 26 19 182 21.1.84 £75.45 259. Si 251.14 239.46 183 262.03 £75.33 260.37 2 51.37 2 39.50 18 2 262.52 £77.03 261.0'? 251.71 239.75 161 .2_62--34_ 277.45 260.84 251.65 23 9.71 183 262.42 _77. 77 261.50 251.95 239.90 1 e 3 262. 7 277.35 261 . 21 251.36 239.87 183 252.16 275.51 260.14 251.30 239.59 1B2 2 62.2 3 276.05 2_6 0.35 251. 44 239.6 8 182 262.39 277.56 260.96 251.76 239.72 183 262. 58 277_. 82 261.30 25 1.84 239 .94 181 262.63 277.7k 261.0? 251.77 239.83 183 262.80 276.71 261.36 252.05 239.99 23 36 31 13 23 36 43 13 23 36 55 .3 37 262.61 275.2? 2 . C . 8B- 251 .7 3 239.93 £52. 8 3 277.7? 261.2 5 252 .26 240. 31 .8 240 ,2b 183 262.94 276.43 261.17 252.16 240.24 1 63 _262.64_ ?77._a_7 261_32 252.19 240.1 7 131 262.96 2>7.14 261.4? 252.23 240.2b 182 262.56 £77. 1U 2ul.0B 252.00 239.86 18? 26 2. 50 ?77.49 761 . 02 252.11 2_39 ._ _._ 182 262.86 £7 3.14 261. 59 ?5 2.tO 24U. 21 3 27 19 132 262.78 273.34 261.60 ?52.34 240.20 182 262.69 278.41 261.39 252. J7 239.95 3 37 31 137 ? 6 i.72 277.71 26.1.62 251.53 239.56 182 261.24 276.79 259 .91 251.05 239.24 183 262.60 276.28 260.88 251.86 239.82 !_8J_ 262.63 277 . 1_ 261 s__8_ 251.95 23 9. 93_ 181 262.72 277.16 261.23 252.26 240.01 183 262.75 277. 79 261.34 2 52.26 240.02 23 37 23 37 55 23 38 7 2 . 3 3 -8-___-__ 18? 260. °9 277.20 132 259.97 27 5. 8 6 132 259. r? 27 4.78 _1 V 2_ 256.97 273. 79 259.98 250.97 239.21 182 260.83 276.61 259.74 250.35 239.13 253. 9b 250.1 2 238.58 _ 182_ 259_.96 275_.2J 268.86 260.23 238.68 °.3.17 24°.. 1 238.28 182 26. .12 £74.28 257.63 249.31 23B.24 257. 38 243 .93 238.10 182 258.42 272.12 256. 84 248.75 238.06 13? 257.24 270. f9 754.95 247. 6J 237.22 182 257.38 273. b7 255.37 247.64 237.23 182 262.20 277.75 260.85 251.92 239.71 181 261.15 276.32 259.97 250.95 239.10 182 260.56 276.61 259.52 250.65 238.99 -HJ. 2 59.21 275. 01 258.16 249.51 238.16 23 28 29 2 3 38 4J 18? 256.76 77 . 1>°. ?54.47 246.92 236.81 23 38 53 13" 1 255.43 269.90 253.45 246.11 236.48 23 39 5 132 2 55. 10 269. 6? 25?. 72 245.63 2 36^4 8 23 39 17 13' 248.43 263.26 244.37 240.12 233.83 182 259.39 274.42 258.13 249.81 238.47 132 2 56.96 270. 34 25 4.76 247.16 236.86 182 257.52 270.84 255.75 247.92 237.25 182 25b. 06 2 69.67 25 3.9 182 255.10 263.67 252.93 245 246.57 236.76 182 ?55.65 269.68 253.56 746.14 236.35 _0 236.29 183 255.35 270.66 253.59 246.19 236.56 1J2. 2 54 . 16_26 3. 0.2- 262.14 2 45.30 236. 24 181 251.54 264.20 248.52 242.65 2 3 4.96 182 247.20 253.30 243.18 238.74 233.20 182 247.17 258.80 243.58 239.03 233.43 Z3 18 4 246. 70 258.65 242.53 238.73 233.26 181 749.94 7.6?.?4 ?4b .51 241.47 234.54 1 31 25-3. 10 265.4 5 250.42 244.34 235.78 23 39 41 133 250.43 262. e8 247.71 242.03 234.79 ie2 249.73 £61.89 245.86 241.26 234.63 181 250.32 262.10 247.24 241.90 234.90 23 39 53 13? 249.50 261.95 745.39 740.97 234.53 ie2 2 52.95 £66.91 250.01 244.J2 236.10 182 252.71 267.11 250.93 244. 5Q 235.79 23 40 9 132 244.53 254.74 743.33 237.07 232.64 23 4 _25__ 133 £51 .68 263. °5 £48 ._7J0_ 243 .15 23_5 . b 6 23 40 37 19? 251.81 266.06 249.16 243.35 235.74 23 40 49 13' 249.3? 263.23 246.55 241_.7_2 234.92 23 41 13' 254.57" 266.69 252.15 245.71 236". 91 23 41 13 131 £52.69 260.13 248.68 243.37 236.09 23 41 25 13? 247.95 252. '9 242.97 239.33 234.07^ ?3 41 3 5 182 247.34 252. P 5 ?4?.4Q 239. 22 234.17 23 41 47 13? 252.29 261.11 748.68 243.65 236.44 23 41 59 13? 259.61 273.07 253.16 25".53 239.7 8 23 42 11 182 259.67 276.15 259.77 751.22 239.78 23 4? 27 13? 257.75 273.26 757.15 249.21 238.62 181 250.37 261.96 247.50 242.14 234.87 18.2 243.41 26J.49 244.81 240. .6 234.38 183 251.42 265.36 248.8? 24*3.11. 235.51 183 250.86 265.23 247.82 24 2.60 235.67 163 251.82 261.82 243.07 242.33 235.89 182 250.90 £57 . 1 246. 3 23 42 47 IB? 255.43 263.13 757.79 246.83 737.35 1 3 2 £ 55.3 9 267.16 757.51 246 .97 237 , 5 b_ 238.4? 233.66 240.15 234.75 245.45 237.27 251.03 239.7 4 182 258.74 274.46 258.26 250.07 238.90 183 258.13 273.90 2 57.74 249.72 238.89 67.57 249.39 243.32 235.94 71_-34-._2___.7_ 24 9.26 238.76 181 247.01 251.01 241.2 183 249.15 £54 .2 2 24 4_ 182 254.59 263.89 251.1 182 259.80 27 4.56 259. 3 241.79 235.26 182 249.68 261.98 246.07 241.20 234.82 182 250.62 264.05 248. 07 242.58 235.59 18? 250.09 264.12 247.17 242.06 235.02 _ 183 254.23 268.31 252.23 245.77 237.05 182 252.39 260.50 248.64 243.28 236.07 181 249.21 254.52 244.31 240.36 234.64 182 252.20 182 257 .71 183 247.35 251.36 241.86 238.64 234.03 192. 25 . 27 256.4 7 245.61 241.35 235.41 182 257.61 269.26 255.37 248.53 238.77 181 259.77 276.04 259.43 250.98 239.79 182 257.52 273.18 256.92 248.99 238.64 182 256.51 272.07 256.05 248.42 236.11 182 252.55 263.22 249.51 243.96 235.98 183 259. 80 275.41 259.52 251.08 23 9.72 ______ 71 HR M N SC &U_ J__ 23 1.3 35 23 43 59 182 256.91 182 259.55 270. 37 275. 36. 255.68 2<.8.50 238.25 259.'.'. 251.1 5 739.72 J81 252.77 261.. 22 . 250.23 244. S4 236.29 18? 260. 111 775.97 PhD.?? 251.78 239.96 182 257. 72 183 261.1.6 271.10 256.1.0 21.9.12 238.76 278.31. 261.97 252.97 21.0.70 23 1.1. 23 23 1.1. 1.7 181 261.61 182 262.13 279. 25 278.16 262.33 253.20 21.0.77 ?h?. 5fl 253.1.2 ?41 .12 182 261.67 277.13 261.77 253.10 21.0.67 182 262. 01. 277.1.5 2 62.23 25.3 . 1.3 741.18 182 261.81 182 262.28 277.1.8 262.02 277.10 262.1.6 253.30 21.0.81. 253.62 741.18 23 1(5 8 ?3 1.5 29 182 262.13 182 262.38 277. 3» 277.71 267-2« 253.31 21.0.92 ?6?. 48 253.1.7 741 .05 183 262.21 277.90 262.52 253.55 21.1.06 183 762.1.1 ?77.?1 76?. 1.1 ?53.58 741.15 181 262.21. 18? 767.75 277.70 262.65 776.8U ?6?.36 253.66 2U1.15 253.65 71.1.71 23 45 57 23 1.6 21 182 262.38 182. £62. 27 277. 87 276. 6T 262.1.9 253.61 21.1.17 _t£2_. 54 253. 67 2 m . 26 182 262.15 277.07 262.1.0 253.1.6 241.23 182 262.18 277.1.2 262.7? 76 3. 75 21.1.31 182 261.93 182 262.27 276.82 262.38 278.16 76 3.03 253.67 240.94 253.85 21.1.27 23 1.6 1.5 23 3.1? 251.. 7.3 71.1.57 182 262.1.8 182 767.69 277.15 262.91. _27 7 .6 2 26 2. 91 251.. 11 21.1.1.6 754.17 71.1.56 23 53 17 133 263.63 279.61 23 53 ?3 51. 263.91. 263.83 282. 63 ?a?.?4 263.33 253.60 21.0.80 _2£!__t3_ 261.. 1,6 257.3 3 2 1, . 75 183 263.73 281.52 264.09 253.92 21.0.91 .1.9 281.32 2h3.37 ? 53.43 740.69 182 264.04 282. 06 261.. 61 253.97 21.0.75 181 263.1.0 18? 76.3.98 280.1.5 263.1.5 287.75 7 61.. hi. 761.. 60 ?53.96 740.88 183 ?f,3.7 9 28?.?6 ?n4.64 751.. 06 740.94 182 263.79 1 83 26 3 .59 282.1.1. 261.. 39 780.71 ?63.97 253.61-21.0.76 753. 7 1 71.0.68 253.75 21.0.60 753.70 71.0.75 23 51. 23 51. 33 182 263.51 35 182 263.5 5 279.60 280. 1.0 263. 29 253.1.6 240 .67 Z6_3 . 94 253 .78 240. L4_ 182 263.59 273.53 263.29 J.8JL -2____.__6_7_J8.L.46___3___.- 253.56 21.0.73 353.77 740.74 182 263.58 1B2 263.98 280.31 263.71 282.39 26U. 9 1 23 55 23 55 183 263.55 .3.23 10 193 263.07 23 18? ?63.7? 281. 05 27 3.1.8 277. 39 ?75 .e e . 263.93 253.72 240.58 267.99 75 3. 1.5 21.0.81 262.1.6 253.0 9 243.50 182 263.55 279.95 263.52 _t_l__2__2_. 02 277.33 262. 83 182 263.35 277.33 262.92 253.61 21.0.82 253.2 1. 740.5 3 181 263.1.1 182 763. 0? 279.11. 263.50 277.11. 762.71 253.59 2 51.. 18 21.0.81 21.0.87 253.60 253.1.0 21.0.79 21.0 .70 26?.79 753 .1. 3 ?*0.75 1 83 26-.1 4 276.83 262.74 253. _5J_ iO 21.0.77 !. 240.73- 183 263.12 183 76.3.71 276.U8 262.50 276 . 71 2 62 . 65 253.22 253.56 21.0.57 740.76 23 55 35 182 263.61 277.07 262.81. 253.54 249.83 182 2t>3.72 277.01. 2 23 55 1.7 13? 263.51. ?76'.6Q 262.H5 7 53.uO 71.0.86 18? 763.70 777.1U 2 6 23 55 59 183 253.59 276.77 262.83 253. <« 7 240.92 183 263.86 277.nl 2 3 56 27 181 264.39 2 77 . 21 2 63.1.7 7 5 3,. 9_l_2i_ 1_2_ 182 _264.44 27Z-i__i 51 131 261.. 66 273.92 263.95 254.29 241.24 1.3 264.65 278.87 2d 12 131 7 61. .1.7 778.31. 763.61 ?...ii; . .1.1. 18? 761.. 7 7 7 73.1 3 2Ja 23 56 23 57 253.61. 21,1.08 _2J5.3_.JLL. 2___L_JL2_ 253.66 21.1.01. ?5 4.i]0 71.1 .34 183 263.U1. _l.a__Z6ij.i_L 183 261.. 05 183 764.46 276.1.6 262.52 276.79 7 63.08 i77.7Z 263.25 778.38 763.1.8 253.38 753.69 21.0.75 7 1*11 -9.3 253.76 754.00 21.0.98 71.1-17 254.17 21.1.29 251.. I 'I ?i(1.?5 181. 261.. 71 131. 261.. 60 277.71 263.65 778.05 ?63.6fl 253.95 2_ij_U 21.1.17 ?3 57 '3 57 23 58 73 58 182 261.. 5i* _L_2__6___L 183 261.. 61. 18? 7 6 1.. 86 23 58 33 182 261.. 87 _5 l_2___k_Zi_ 277.86 263.62 251.. 21 71,1.25 182 26!.. 61 278.1.7 263.73 277. tH 263.69.25i.. 13 2 . 1 . _Ji 162 _.£ _,7L _7.(i_21 __£.„. 15. 278.81. 263.95 251.. 1.3 21,1.1,9 163 264.76 273.19 264.05 22___._ 54 26J.. Pi. 25.4.41 2.1 .6-3 18? 2-4.5* 2Z.di___2__._J 273.01 263.72 254.43 2.1.63 183 2o4.68 277.95 264.03 27-. 12 264.05 254.49 741. 6B 181 2J.4.77 777.7 9 7n.3.B4 251.. 11. 21,1.25 . Z5___ 9 21.1 .1.7 251.. 57 241.65 _2_.iL.JLa- ________ 251.. 51 241.67 754.35 ?.l. .i 183 261). 68 _-6.3,26___.83_ 181. 264.47 _i.a3 ________ 182 261.. 72 183 761.. 73 278.22 263.72 778.77 76 3.71. 278.1.3 263.71) 7 78.71 763.99 278.31 263.96 777.71. 763.69 251.. 30 251). 2Q 254.18 2 51. . 1 . 3 2.1. .7 7.1 .3? 21.1.1)9 21)1.57-- 251). 53 75-.. 3? 21.1.51 ? - 1 . . - 23 59 23 59 23 59 2 3 59 57 181 261). 70 182 265.19 20 182 261). 81. .33 ____2__.___ 1.5 182 265.22 31 183 265. 03 277. 35 777.51 53 251.. 21 21,1.1,9 _L_J_-it_b___Z.___.3_ 263.7" 251). 3J 21)1.58 2i_.4_-.__8, 254.6 7 ?l>1 .79 261). 17 254. 7". 21)1 .65 -{;_..___-&- 251). _ 263. 78 251.. 57 2*1.67 263.3 3 251.. 55 71,1. 75 261.. 13 251,. 31 2*1.99 ?6<). na ?5i.. 3 7 2*2.1 1 5S _Z_ 265.63 277.1.1 261.. jg 251,. a 3 21,1.97 . ■6,4. 11 25i ).6il 212.11 182 265. ,1.8 3 _6A. 183 261.. __1 62, 2£5._. 182 265. __2_6_, 182 265. _16 2_2S_... 182 265. -.l_.2-2_5._. 182 26 _L£iL___a 06 277.1*6 92_£7_. ,10.. 61 277.52 3-27.7. .___ 11 279.13 13 _:__.. j 2 37 277.5. _43...2_ZZ__4j_. 1(5 277.1,3 __i 51 277.21 i)l) 277.62 261). 03 _i>3.._a 263.85 2______ 263.76 2 6 3.99 251). 56 2i,l.7i> _. 5 -___3__2 _i__7.___ 18? 261.. 92 18? 76 1. _1Z- 277 251). 1)9 2i)1.59 2_2_____ia_2,l_7 2_ 251.. 53 21.1.83 .2 5 it. 7,2-2-1. 1. 9 1 183 261). 77 .-L_U__2___11-. 22 263.59 3_L,2_3_Za 4b 263.73 77 764.0? 251). i)i) ?5l).51 21)1.56 2i)1.7Q 251). 1)7 _?___-___L_L 21.1.60 ?l(1 .73 182 265.21. 182 765.11. 278, 777 12 261.. 38 64 764.09 251.. 72 25,-58 21.1.86 71.1.81) 26i). 07 __j_ai_ 264.13 264. 1C 264.36 254.37 242.00 754.70 ?4?.00 254.32 241.94 94 247 .16 254.84 242.08 255.1? 747.1? 192 265.42 183 26 182 265.44 183 255.45 18? 765.5? 277 22Z 23 264.27 54.02 67 264.20 263.71 . 26 264.15 71 26 4 .1 8 254.75 .25_! 254.96 ?54.77 242.24 ?41 .80 254.92 25 4.99 .39 254. _-__.___., .37 255. . 3 8 254 , 9 2 42.15 9n.2__2__12_. 7 242.17 97 242.0 5 265.21 2 66.49 277. «2 279. 09 264, 265. 38 754 67 255 ,92 242. C 2 ,3j 241.55 183 265. ,182 ________ .81 265. 182 265. 182 266. 163 2o6. 69 277.89 ____.-2ZZ__.____- 58 277.79 65 277.97 27 277.84 61 279.0 9 264.5,1 _________ 264.29 2n4. 52 266.06 265.52 15 17 18 7 132 266.57 266.56 279. 0? 279. « . 265, 264, 11 254 95 254 5 3 2 41.29 2 5 2 4 0.9 1 182 2ot 162 266, 50 279.24 66 279.66 39 51 18? 182 2q6.54 ? o 6 . 7 2 273. 37 279. 99 254 254 13 240.8 9 6 2 4 0.87 184 266. 183216. 62 278.69 93 2 60.6 2 183 193 266. Fl 267.02 279. 87 280. 05 264, 265. 29 253 05 254, 84 240 .65 3 7 241 . 6 .64 279.28 .93 2 80.8 2 264.75 264.84 264. 06 265.02 264.32 265.02 255, 254, 2 54, 256, _2 5 5j 254, 254, J 7 242.17 _____ 36 242.10 9 8 242.17 255. 42 _2£_5, 182 265.52 182 265.69 .79 264.27 7 64.3? 254.82 ?54.9? 277. 277, 87 264.37 6U 264 .48 255.02 255.07 241.91 ?4?.na 242.12 242.24 03 242.06 20 241.67 14 240.92 25 240.97 182 266.63 162 266.57 278, 278, 95 266.06 63 265.06 255.82 254.65 242.03 241.26 182 256.85 161 266.57 280. 279. 57 265.32 18 264.46 254.51 254.17 241.21 240.91 253, 254, 253, 254, 32 240.75 24 240.90 182 266.81 163 266.79 35 240.74 24 240.70 181 266.71 111- 266. 74 279, 279, 278, 2 7 9, 82 264.68 62 264.7 5 254.09 254.13 241.03 241.04 43 264.24 72 264.69 253.96 2 •-> 3.98 240.85 240.76 192 162 266.7" 257.11 278.52 273. 1° 264, 264, 23 254, 53 254 04 240.92 23 241.21 .82 278.23 . 72 277.29 264.02 263.94 2 53 ' . 3 94 240 .80 ,92 240.97 183 266.96 182 267.04 279, 277 , 47 264.63 45 264.08 254. 15 254.08 240.97 241.14 9 10 183 182 267.21 267.88 277. 87 281.97 264, 265, 21 254 37 254 19 241. 1 2 93 241.32 10 10 19? 182 10 10 37 183 42 %SZ 267.64 2 6 7.56 267.85 267.2 6 2 8 0. l>4 279. 17 265, 264, 14 254 74 254 280. 25 278. 77 265, 264, 40 254 61 254 62 241.51 65 2.1.50 90 241.65 51 24 1.46 182 267. 163 267. 1P3 267. _18 3_2&_7_. 163 2 67. 1 84 267 . 24 278.20 72 281.97 264. 41 2 b 5 . 8 9 254, 254, 12 241.17 7 2 2 41.12 182 267.37 183. 267.43 279, 280, 52 273.70 56 279 .39 16 278.76 4 6 278.51 265.02 2 64. 3 5 ! 64. 3< 264.46 254. 2 54. 2 54 , _L5i! 45 241.28 .1 241. 5 1 i 1 241.13 35 241.26 182 267.39 16 1 257.21 183 267.40 182 267.36 279, 278, 279. 278. 63 264.74 13 26 4.82 32 264.72 01 264.22 15 264.59 15 264.38 254.22 254.40 241.07 241.09 254.50 25 4.17 241.34 241.23 254.37 254.46 241.32 21.1 .4 9 13 13? 133 267.28 267.74 2 77. 7 9 277. 71 264. 264, 30 254. 47 254. 1 241.44 ,3 24 1.90 11 11 183 182 11 12 192 132 268.38 267.90 268.23 266 .27 281. 33 273. 57 266, 33 255 06 254 31 2 4 1 . 7 ,9 9 1 2 *1.8 4 183 267. J_8 3 26 7_. 183 2 68. 183 267 . 46 277.03 , 2 7 3.. 3j 2o3.97 2 9 5 ._ u 1 £81.23 .77 . 33 265.97 26 4.47 279. 09 280. 47 265, 2.5, 18 255 73 755 1? 241.91 36 241. 3 3 181 268. 162 2 63. ;79.88 .60.31 265.55 265.95 254, 254 , 255, 254 , 255, 255, .6 241.42 ,3 2 241 .74 04 241.70 3 8 241.63 132 267.54 182 263.05 277, 28_0_, 1C 264.36 26 26 5.69 254.71 255.05 241.61 241.54 182 268.49 182 268 .08 281, 277, d8 266.45 92 264.81 255.38 254.94 241.71 241.79 19 241.65 40 241.76 163 268.74 162 263,34 282, 26Q, 06 266.44 2 4 2 6 5,47 255.61 25 5,0 6 241.90 241.91 12 12 182 182 268.42 268.5 2 280.6? 281. 32 265, 266, 78 255, 32 255 26 241.82 5 J .' 4 1 .• 1 12 JL_i2. 192 1.3 3 12 13 256.43 -268,. 56, 269.00 268.92 280. 38 -280.54 265. 265. 86 255 37 255 , 5 _ 241.38 4 I i.l.. 282.73 282. 53 266. 267, 97 255 06 255. 9 242.0 2 79 241.82 182 266. 163 256 . 163 268. m 2... 163 2o9. 183 268. 23 278.62 3 9 280.07 264.87 265.61 254 2 5 5 ,8.3 241.63 37 241.8 183 269.60 182 263.55 279, 261, 69 265.59 40 266.23 37 279.7.J 12 2 8 3.27 03 282.63 78 280.49 265.53 267. 07 255 256 ,37 242.14 ■16 242.1 3 255.3! 255.60 183 268.51 182 269.39 260. 263, 40 266.18 54 2 67.50 255.61 256.17 242.08 242.00 242.19 242.27 267.11 266.09 256, __:.2__ 05 242.34 63 242.11 18? 269.08 183 263.66 282, 2 8Q. 74 266.96 03 2 6 5.9 5 256.05 2?5.55 242.21 _______!_!__ 13 13 13 13 23 134 35 13? 47 53. 187 258.99 268.72 268.83 268.81 282. 44 279. £4 .07 256 . . ? u ^5 5 13 242.11 L . 5 2 4 2.-1 279. 72 279. C6 265 265 14 Q 14 132 132 269.00 269. C3 279. °4 290. 59 90 255 64 2 55, 14 255 26 255 63 242.32 73 242.24 182 268. 11-2 2 o 9 . 162 2 68. 163 269. 74 242.31 75 242.32 183 266 182 2o. 70 280.00 34 273.74 82 273.22 1 3 279.77 99 273.55 15 261. 66 266. 01 2 65.86 265. 84 26o. 21 26 _. 12 266. 92 255. 255. ,3 242.11 ,3 242.17 183 263.65 163 263.69 279. 279. 265.70 265 .77 255.59 255.61 242.15 242.27 255, 255, 74 242.38 jj 2*2. nl 162 259.75 183 263.96 255, 256, 37 242.37 21 242.46 184 269.13 183 269.04 278 , 280, 34 265.21 05 266.10 255.44 255.76 279, 280, 73 266.35 37 266,25 256.06 255 .78 242.05 242.26 242.50 242.19 15 15 66 242.24 ,6 3 242 .35 ,53 242.60 ,53 2 42.46 ,95 242.63 ,0 1 242.64 .15 242.40 -_2-_2-42_7_4 255.96 256.63 242.57 242.61 35 266.19 03 267.07 256.01 256 .31 242.57 242.60- 15 15 53. 181 13? 269.74 269. 36 267, 69 256 90 256 16 16 182 182 269.95 269.66 ?62. 75 287.L9 267. 266. 256 _____ 62 242.77 13 242.67 55 242.99 30 242.7. 182 269. 183 269. 183 269. 99 283.63 50 2 60.26 83 282.46 __8______lL. 256. ___>_, 267.53 256.52 242.87 26 8.05 256.91 2 43 . Q0 267.85 .26_6_J__, 36 242.96 25 242.91 183 269.76 183 269.17 183 269.64 162 269.85 ,24 267.85 56 266.16 256.71 255.99 242.73 242.56 56 266.73 76 768.11 256.31 256.58 16 16 182 131 269.96 269.67 283. 89 231.fl 769, 266. 36 256 71 256 85 243.08 32 242. 93 182 269, 18? ?69, 57 282.19 257.43 26 7.08 256. 256. 52 242.81 34 242.72 183 269.58 183 769.9.3 281, 263, 06 266.83 256.30 ,14 267.93 7.6.90 242.87 743.10 16 17 183 183 270 .16 2 69 .40 284. 11 28Q,f . .? 263, 266, 38 256, 49 256, 94 242. 67 15 2 4 2.72 183 271.. J_8_i_2 6'L. 07 284. 33 3 278.83 268. 54 265.92 256 _2___ 33 242.98 37 242.72 183 269.98 183 269.51 28 3 278, 91 268.15 95 266.34 256.93 256.05 242.93 242.9 3 72 6/ 12/ 70 ^ N» sr. M T 17 17 20 183 269.5". 273, 33 182 2 69.46 279. 266. 35 266. 54 25.6.19 21.3.0 1 256.1 3 747.81 183 269.18 278.82 265.96 255.37 242.63 IB? .69.77 779.47 266.(11 756.33 747.5B 183 269.1.8 279.17 266.31 18? 769.67 ?an.7H 266.76 256.15 75_.74 242.96 74?. 96 17 17 ".5 182 259. 9". 283. 57 182 269.78 ?8?. 267.98 267. ?8 256.73 21.2.93 ?56.6i. 743.04 182 269.68 282.71 267. 5". 256.56 21.2.78 183 ?69.59 787.15 7 ft 7 ■ 1 9 ?56.51 7 47.88 183 269.52 281.50 266.63 1 83 769.49 780.13 ?66.36 256.1.3 756.26 21.3.17 21.2.96 18 18 2_. 183 269.53 281. 19: 269. 24 279 . 266.87 266.17 256.29 21.2.76 256.13" 74?. 95 182 26. .45 280.26 266.30 256.12 21.2.81. 1B3 269.31 773.73 766.05 256.35 747.88 182 269.30 279.1.2 266.10 1fl? 769.77 780.79 766.69 256.19 256.29 21.2.88 743.1? 18 18 18 19 33 182 269.80 281. 1.5 ir .'[.'£ ;m, 57 182 270.1.1 283. __9 IB? 770.31. 283. 266.88 268.02 256.28 21.2.86 256.85 243.04 181. 270.13 282.81. 267.31 256.61. 21,3.01. 182 270.1.2 283.79 ?68.?1 757 .0 ? 71.3.19 256.98 21.2.99 257.03 2 f 3 . 0*t 182 270.37 281.. 09 2b8.40 256.91. 21.3.16 163 2.Z .47 _-2_ e4 .23 268. 29 257.16 21 .3 .22. 183 270.1.7 283.70 263.33 182 270.57 783.67 76B.36 19 19 19 183 270.1.2 283. 21 183 770.70 ?8i.. 268.1.6 2.68.1.2 256.9. ?57. IP 21.3.02 243.35 183 270.53 281.. 32 268.30 256.99 21.3.22 183 183 270.78 781.. 65 768.3? 257.10 743.77 ]_____ 181 270.16 283.97 268.37 182 270.1.7 283.91. 768.33 257.03 256.92 21.3.20 21.3.07 256.98 756.9B 21.3.02 21.3.05 270.82 281.. 78 268.57 2 70 . 75 2 81. . 60 268.36 257.29 ?57.07 21.3.1.2 21.3.23 19 19 18". 270.63 281.. IB'' 270.21. fee?. 268.1.5 267.31 257.15 21.3.32 25 6-33 2 1.2.95 181 270.50 281.. 13 268.20 256.35 2"»2.88 183 _.182 27U.35 :e_,A__2__Z_,a? 2S6_.ijL_2_iti.Zl 18.1 270.70 281.. 1.1. 268.1.6 770.08 7B1.76 266.95 257.09 256.1.0 21.3.28 21.3.02 20 . CO 7 183 270.62 f 82. 19 183 270.16 260. 267.61 266.52 256.88 2.3.36 256.1 9 21 .3.20 182 270.13 281.77 267.12 256.51 21.2.95 181 182 27 .0. 280.93 266.68 256.31 71.3.16 183 270.23 280.55 266.86 270.00 280.28 266.57 20 ?0 182 269.95 280, 1 65 2 69.89 279, 266.71 266.26 256.53 21.3.39 256.27 243 .23 182 269.91 281.17 266.75 256.26 21.3.01 183 183 769.89 78i1.ni. ?66.37 766. 3 3 74.7.10 187 256.36 756.36 2.3. .1 2.3.1.1 269.92 280.01. 266.51 ?7,..?3 781 .1.1 766.99 256.29 256.54 21.3.22 243.77 20 II 21 21 21 55 181. 270.33 282. ._? lj_? 270, 50 283. 19 13? 270.99 281.. 30 18' 770.4? 7B7. 1.0 267. '=6 256.66 243.09 181 270.37 281.87 267.22 256.61. 21,3.26 182 71 268.08 2 56.88 21.3. 1 8 182 270.71 2 83. 69 268 .07 257.00 21.3.29 183 36 268.51. 257.24 21.3.1.8 182 270.91 264.13 268.38 257.02 21.3.26 183 [i? 767.17 756.75 21.3.1.6 18 3 270. 1.8 781.91 767.3 3 756.5? 743.36 1A2. 270.80 281.. 05 268.57 270.87 281.. 78 268.17 257.3. 257.08 21.3.69 21.3. .2 270.91. 283.11 267.77 770.75 781 .67 767.76 256.89 256.55 21.3.36 21.3.21 21 n ?1 270.(11. 2B0. 770.30 ?79. 256.1.3 2.3.30 756.39 743.41 182 270.53 1B3 770,56 E81.62 267.1.2 256.82 21.3.39 183 81.71 767.01. 756. 61 71.3.78 1£L2_ 269.91. J78 .64 265.99 770.95 787.65 767.B6 255.96 756.96 21.3.03 21.3.37 22 ?? 7 181. 271.19 284. 19 13? ?70.7? ?81 . 268. 58 26_.il 257.13 21.3.39 ?56.6? ?43.4h 22 n ?7 28 13' 271.32 281,. Jtl 18? 271 .35 281.. 768.72 2 68 . 71. - 22 n 73 183 271.27 28V. 18? 771 .6. 781.. 263.62 769.71 257.37 21.3.35 ? 57 .?4 ?4,7. 4 ___ 257.26 21.3.57 ?57.6.3 71.3.8? 182 271.21. 283.69 268.1.2 257.21 21.3.60 1 181 771.11 783.11 763.0B 757. 17 743.60 1 182 271.53 281.. 52 268.91, 257.1.1. 21,3.66 1 18 7 771.56 2B4. 6i. ? 68.58 757.71. 743.60 1 83 270.86 283.59 268.35 8? 771.16 7B7.78 768. 05 83 271.25 28i». 63 268.82 83 771 .1.? 7H4.4.1 76B.56 257.06 21.3.1.0 257.39 257.1.0 21.3.1.8 ?i.3.fti. 183 271.20 283.67 268.1,1, 257.23 21,3.68 1 18? 771.1,6 7B4.54 768.89 757.. 7 743.4B 1 271.1,1. 281.. 1,5 268.71 771 ■ 75 784.HB 769.16 257.33 757.67 21.3.52 ?43.6_ 23 23 17 18' 271.51. 281.. 23 183 2 71.69 285. 269. Oi, 269.29 257.1.1. 243.60 757. 7. 21.3.95 1.0 13? 271.1.8 281,. 52 181, 771 .81 ?B5. 268.78 ?6 9. 1,7 257.31. 21,3.59 -257.8 ___i__..l____ 24 ?4 l, 182 271.50 285, 11 1 37 271 . 57 264 . 269. 19 768.89 257.61 21.3.91 757.1.1. 7 1.3 .6? 21. ? !■ 26 183 271.38 283. ill ____ 271.56 _2B3. 53 18' 271.33 283. 5 137 771.51 73?. 25 75 2 271. 3 271. 257.2 J 21.3. 73 _2S-7_.2i_.2i._3. 3_6 257.13 21*3.31 ?57.? 8 7-3.96 257.26 243.74 J____. ____________ 183 271.62 284.3. 269.06 257.52 2.3.65 1 ie.2_271_5__2___.6___26S_.8_.. 2_Z.-_i___2i_____i 1 182 271..3 28.. 74 269.01 257.59 243.65 1 18? 271.57 784.34 768.96 757. 37 ?43 .75 1 182 271.54 284.74 269.27 257,65 243.88 1 ____________ 182 271.48 283.63 268.48 257.25 243.69 UU 271.3_8.263.2_____6_.2_. 2 5.Z.___..._2J___6 Z 183 270.98 280.81 267.10 256.34 243.61 J.61 271.6X_2__4.Q6 2___.69 257. 4 ; 2_4_j___k ie2 271.26 282.64 267.95 257. )9 243.85 82 271,56 284.93 268.97 .6 3 7 71.56 784.9? 269.; 82 271.46 284.98 268.87 -2_._X1.38 284.Xa-2_.8_H_-. 81 271.56 284.46 268.90 82 271.19 282.52 267.95 81 271.7 1 764.25 . 2 68__8-_ 82 270.79 279.81 266.68 87 ?71 .66 7B4. 14 _2&9_1_- . 257.44 243.89 257.03 757.54 243.60 7 43.84 256.65 7 57 . 46 - 243.59 74.3. 7Q 269.43 ?69.Hfl 257.20 243.67 25-7. _5_3_24.3. 3.9 257.53 243.60 _2__Z_.4.Z_.2.4____6 257.^0 243.20 ______L__.___2_____ .l-.3._2__l_..59 _6_3___i___-____ . „ , .57.7- 243.6 1 1 184 271.50 284.00 268.75 257.36 243.76 1 183 271.-7_6 2ait_.-67 268. 64 2 5_Z_.2 2 43 ___! 1 183 271.70 .84.77 269.02 257. .7 243.80 1 18? 769.8? 787.71 ?6 7.75 756.38 ?43.54 1 ie2 271.74 283.44 269.21 257.37 243.00 1 271.49 282.33 268.01 771.59 783.70 76B.76 257.01 757.76 243.72 74.3.90 271.72 771.75 284.39 268.89 2_J___.1___6 ______ 257.52 257.61 243.91 243.81 82 271.67 87 769. 51 62 271.86 137 7 7.-.16 783.45 76H.S4 756.73 747.63 16? ?7?.?6 284.47 268.79 787.77 769.96 283.56 268.69 7B.?.?h 768.51 257.42 758.50 257.30 7-6.69 243.77 746.04 242.81 7-7.6? 256.60 242.81 25_____i___.___.a_ 256.09 242.46 255.63 242.19 182 272.10 282.97 2b8.24 256.41 242. 3S 183 271.86 __..8___.Z_..___. .?B.3.3_____Z__flIL-?56. 16 747. ?4_ 182 271.53 282.55 267.74 256.00 242.26 182 271.78 282 .40 267. 55 255. -7 242 .21 . 267.6? 267.30 256.01 242.40 255.31 242.2 ld2 771.79 281.91 267.53 255.-4 242.21 183 271.66 281.79 26 7. 7 255.64 241.91 39 39 272 272 12 281.1 .1 281,' 267. 13 267.40 255.94 242.13 256. U 1 242.28 182 271.99 281.49 267.27 255.90 242.07 1 83 77?. 10 781.6? 767.3Q ?55.35 242.19 271.48 272.03 271.83 £7. 2,07 283.21 268.19 9 767.96 282.63 267.79 262.05 267.52 256.31 242.48 255.91 255.95 282.06 267.38 282.0? 267.59 255.96 256.16 242.12 242.28 242.25 242.32 IS., 272. 22 27 1. 9 4 281.83 267.47 281. 64 2 67.26 256.02 255.75 242.22 242.06 39 271. 271. ?2 281. • ' . - J . 267. 33 267.40 256. ?55, .3 242.18 94 242.1 7 39 40 )? 271. 33 272 89 282. 04 282. 267.57 268.17 255, __5___ 89 242.06 41 242. 35 182 272, _7_L 162 272, 163 271 35 281.72 267, !_____-__ 14 282.56 267, 88 262.80 26 7, 47 256.11 242.27 33 256.09 96 256.32 242.24 1 34 756.20 24 2.29 1 272. i _/_; . 03 283. 67 283. 267.92 267. 31 256, 256 27 242.43 39 242.47 182 271 ie2 271 82 282.93 267, 59 282.94 263, 81 256.23 242.44 12 256,37 242.50 272.23 ________ 272.17 272. 19 271.81 271 .78 282.00 267.49 262 .75 2 68. 0i_ 256.13 256.40 242.50 242.57 283.13 268 263.03 268 283.43 268.13 283. J6 267.98 256.45 _L! 256.63 256.42 242.70 242.47 40 40 271. .71. "5 283.: 48 233. I 268.23 ?56 256, 57 242.63 42 242.62 53 271 12 271 ,38 282.84 267, ,61 283.08 268 , 72 256.27 242.27 15 256.46 24 2 .64 271.79 271.56 283.13 282.67 268.02 268.00 256.44 256.42 242.57 242.37 41 41 3 271. ? 271 . 67 287. 71 283 . 268.09 267.96 2 5 f , 256, 41 41 41 183 271 . 271. 63 283. : 92 283.1 263.08 7J 7. ■' 5 6 256 62 242.58 44 2 42.59 45 242.64 6 8 2 42.9 2 183 271 162 271 182 271 1-2 271 64 282.95 267, 51 28?. 95 267, 54 28 2.6 8 26 7. 9 1 £63. 12 267. 99 256.47 242.51 1 99 256.4 8 242.50 _ 1 93 256. h3 242.52 1 83 25 6.58 242.79 1 271.72 271.53 272. 06 271.85 283.28 262. 83 283.23 283.15 268.10 267.98 256.48 256.51 242.71 24 2.59 268.18 268.15 256.70 256.70 242.91 242.97 41 42 )1 271. .7 271. 75 282.1 65 283. ' 268. 09 263.13 25< 256 58 242, 55 24.2_, 162 271 182 271 ,69 283.01 268, ,57 283. 05 2 67, 27 256.59 242.86 93 25 6. h9 242.74 4? _______ 271. 271. 42 40 13' J>_ _3_ 271, 271 74 282. 63 28?. 267. 79 266.13 256, 256, 74 282. 58 282, 267.94 268. 19 256 52 242.33 77 242.84 56 242.70 7 3 242.92 183 271 163 271 74 282.73 267, 56 282.31 2 66 79 256. .0 242.78 01 256 .66 242.84 271.75 271.70 283.01 268.06 268.02 256.57 256.70 242.78 242.89 272. 11 271.80 283.05 _________ 182 271. 1 P3 271. 283.02 2b8 E82.80 267 19 256.33 242.93 77 256.59 242.71 271.78 271.61 283.06 262,69 268.26 268.33 256.82 256.84 268.11 268.31 256.72 256 .78 243.03 243.14 242.99 243.04 .2 271. 19 287. 31 28 2. 25- 256 51 242.73 45 242.32 183 271, 164 271_, 07 .82.53 267, 07 292.74 267, 4? 43 43 44 ? 270. _______ 69 282. _3_7_____. 267. 62 268.06 256 256 38 242. 77 77 242 .94 183 270 183 271 271, 27 2, 87 287. 71 262. 263.45 ?63.55 23 243.23 ?7 243.27 183 271 163 272 38 282.83 267 5 4 282.83 268 83 282.62 266 78 2B2.88 268 ,67 256.23 242.62 1 ,73 256.47 242.74 1 ,92 256.62 242.93 1 ,0 6 256.66 243.09 1 271.26 271.09 262.64 2B2.78 268.06 266.24 256.59 256.75 271.12 271.36 262.95 262.61 267.85 268.00 256.56 256.74 242.92 242.98 242.91 242.60 0? 256.75 243.10 37 757.17 243.23 272.06 271 .49 283. 01 ?6?.S6 266.33 767.8? 256.89 ?56.63 243.32 242.96 79 282.46 267, -35 262.5 5 267 , 84 282.43 268, 13 282.30 266, 18 282.52 267, 35 262.50 268, 99 256.62 242.91 84 256 06 256.70 242 30 256.98 243 83 256.64 242.97 29 256.32 243.07 266.40 268.15 257.04 256.58 243.41 243.01 47 .82.43 263 282. 5 7__2_68 29 282.95 268 69 262.94 266 77 282.97 268 39 283.21 268 14 256.67 242 ,73 257. -4 243 ,49 257.12 243.37 ,4. 2 56.79 2 i____Ji ,67 257.29 243.32 ,43 257. 13 243.57 257.12 257. 37 243.29 243.62 46 46 » 272, 1 272, 67 283.20 263.77 263. 37 257, 257j 50 _______ 700 272 307 77? ,61 283 69 28? 10 76°. 09 257 271. 30 271. 04 '■' f, 1 2__L 46 243.73 69 243.93 35 244. 3 _____ 50 249.32 64 749.63 169 2 72 191 272 92 282.90 268 ,7 1 262.97 268 ,62 257.41 243.54 ,93 2 5 7.60 243.60 273. 15 272.60 282.93 _ 83,2 2 268.89 268.65 257.62 257.64 243.78 243.6.7 195 772, 295 272, 302 272 308 272 21 282.71 263 __«________. ______ 83 282.41 271 42 262. QP 271 257.42 243.81 7 61.76 2 45.12 272.56 _273.P1 282.69 282.27 269.09 771.56 257.93 261.88 244.06 249.59 35 261.70 249.40 30 06 761.50 249.60 3-1 272.64 272.53 282.29 782.21 271.25 771.40 261.70 761.96 249.59 749.97 51 _______ 711 272, 12 317 ?7? 23 2e2. .________, 271.02 271.06 261 ____ 56 249. 76 __9_J__0 ______ 315 272, __3__Z_222, 42 _0_2__2 2B2.16 271 ,29 261.37 250.03 , 13 26 1.76 250.13 272.43 2, _.____- 282.17 282.03 271. 04 271.16 261.73 261.95 249.99 _______ 73 FLIGHT NO 7 6/ 12/ 70 HR MN Sf 4U_ _L1_ Ii _L5_ 51 31 51 1.3 325 330 272.31. 272. 16 281. 75 201.58 271. 05 27CI.B7 261.88 250.32 261.35 250.52 325 329 272.1.2 281.32 271.68 261.5s 271.23 271 ■ 03 262.11 262.11. 250. hh 2511.87 327 329 272.60 271.73 281. 79 281 .57 271.15 271.21 262.17 250.70 250.79 51 55 Q 52 7_ 33? 335 271 .7". 271.68 281.73 2 82.3? 271 . 09 270. 92 262.0? 250.81. 262.1,2 250.93 332 336 271.88 £82.09 271.91. 283.21. 271. 23 £71.1.9- 262.19 262.57 250.81. 251.36 333 338 271.88 271.91. 282.23 286.1.9 271.1.1. 273. QQ 262.32 262.92 250.99 251.22 52 19 52 30 31.1 31.3 272.35 271 . 98 2RI.. 12 ■: 8 ? ■ i z 272.28 271 . 33 262.87 251.1.2 262. SI 251.58 31.0 3*t6 272.37 282.73 272.16 282.27 271.70 271 .60 262.68 262.30 251.58 251 .8q 31,5 31.7 272.23 271.76 282.50 282.07 271.82 271.53 262.85 262.69 251.61. 25l.6!t_ 52 1.3 52 55 53 7 11 53 19 31,7 JJ5_?_ 358 362 271 .77 27 1.9 1, 281. 72 281. TJj 271.1.6 2ZU.L5- 262.71 251.75 262.85 251.68 351 352 271.80 282.12 271. 95 281. 79 271.60 271 .1.7 262.31 263.17 251.91 251.95 35 J 358 271.89 -271.69 282.20 282 .05 271.56 271.61 262.90 263. 15 272.01 271 .97 281. 77 281.Q1 271.63 271.82 263. U3 252.02 263.25 252.35 359 362 272.17 £81.93 271.9? 281.39 271. 75 271 .77 263.16 263. -.1) 251.91 252.17 252.25 252.1.6 363 365 272.13 271.79 281.91 262.19 271.99 271.91 263.21. 263. 52 252.1.2 252.62 53 31 53 1.3 367 366 271.71 270 .99 281.67 281.83 271.65 271 . 85 263.25 252.1.3 263.33 252.73 366 373, 271.69 282.10 271. 21. 261.96 271.80 272.05 263.1.5 763.6.. 252.76 252.97 369 _2XJi_ 271.32 271.1.1 281.98 282.111 271.76 272.10 263.1.6 263.78 252.78 253.16 53 55 51. Z_ 37? 379 271 .65 ■2.72.26 281.95 282.10 271.91 272 . H1 263.67 353.11 261.. 06 253.71 5". 19 5H 31 51. 1.0 Sit 53 385 331 391. 1.01. 272.06 282.15 272.12 271 271 70 282.17 63 2 82.27 272.69 272.99 261.. 23 253.95 2 251.. 32 261.. 75 251,. 67 265.02 255.1 ,1 375 382 390 39£ 1.00 ma 272.21. 282.22 272.00 £62.02 272.58 272.1.5 261.. 23 261..1B 253.57 2 53.65 378 381. 272.25 272.07 282. 00 282.22 272.1.0 272.55 261*. 08 26U. 1.3 253.57 251.. 05 272.19 282.23 2H J 77__2.6 2.2 2 272.1.5 272. 51.- 261.. 51 261.. 58 251.. 25 251..1.B 33 i 393 271.87 271.91. 281.89 282.05 272.32 272.83 261.. 31 26U.89 25".. 13 251.. 51 _ 271.71. 262.22 2 71.51 282.33 272.83 272. ZJL 261.. 32 7 65. 1.3 251.. 82 255.19 1,0 me 271. 87 271 . 76 282.33 282.2q 272.91. 273.no 265.08 265.3? 255.07 255.1.3 55 55 1.07 _il6- 271 271 55 28 55 1.0 MS ■.2° 271 III 67 282.32 67 282.12 1.2 282.15 272. 3 6 273. 3