C S5-J;t\T G/a Atlas of Climatology and Variability in the GFDL R30S14 GCM Michael A. Alexander and James D. Scott 60N 30N -16-12-8-4 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 University of Colorado Cooperative Institute for Research in Environmental Sciences National Oceanic and Atmospheric Administration Climate Diagnostics Center Geophysical Fluid Dynamics Laboratory December, 1995 Digitized by the Internet Archive in 2013 ••» *. :: r .' .f ■ http://archive.org/details/atlasofclimatoloOOalex Atlas of Climatology and Variability in the GFDL R30S14 GCM Michael A. Alexander James D. Scott University of Colorado CIRES December, 1995 Pennsylvania State University Libraries FEB 1 5 1996 Documents Collection U.S. Depository Copy University of Colorado Cooperative Institute for Research in Environmental Sciences National Oceanic and Atmospheric Administration Climate Diagnostics Center Geophysical Fluid Dynamics Laboratory Notice Mention of a commercial product does not constitute an endorsement by the Univer- sity o\ Colorado or the National Oceanic and Atmospheric Administration. Use for publicity or advertising purposes, of information from this publication concerning propriet} products or the tests of such products, is not authorized. Cover Illustration: 200mb U wind speed (m/s) for December, January, February mean conditions from the GFDL R30S14 model run. Acknowledgments The GCM used in this study was developed by the Climate Dynamics Group at the Geophysical Fluid Dynamics Laboratory, headed by Syukuro Manabe. Peter Phil- lips performed the R30S14 GCM simulation and also provided the model documen- tation and output. We are grateful to Isaac Held and Gebriel Lau for their careful review and many suggestions for improving the Atlas. We would also like to thank Jeff Whitaker and Mark Borges for their comments. This Atlas was developed as part of the GFDL-University Consortium project, which is sponsered by the Office of Global Programs at the National Oceanic and Atmo- spheric Administration. in Tabic of COntonts: 1 isi of Figures page v 1 isi of Symbols page xii 1 . Introduction page 1 2. Data Analysis page 1 3. References page 4 4. Zonal Mean Vertical Cross-sections page 6 5. Seasonal Means on Pressure and Sigma Surfaces page 28 6. Seasonal Mean Surface Plots page 72 InterannuaJ Variability: Interannual Standard Deviations and EOF's page 91 8. Middle Latitude Processes page 101 9. Tropical Processes page 1 16 IV List of Figures: Figure i: R30 Model Topography (m) page 5 Figure 1: Zonal Wind (m/s) and Potential Temperature (° K) for DJF and MAM page 6 Figure 2: Zonal Wind (m/s) and Potential Temperature (° K) for JJA and SON page 7 Figure 3: Meridional Wind (m/s) for DJF and MAM page 8 Figure 4: Meridional Wind (m/s) for JJA and SON page 9 Figure 5: Meridional Mass-Stream Function (xlO kg/s) for DJF and MAM page 10 Figure 6: Meridional Mass-Stream Function (xlO 10 kg/s) for JJA and SON page 11 Relative Humidity (%) for DJF and MAM page 12 Relative Humidity (%) for JJA and SON page 13 Vertical Velocity (mb/day) for DJF and MAM page 14 Vertical Velocity (mb/day) for JJA and SON page 15 Fractional Cloudiness (%) for DJF and MAM page 16 Fractional Cloudiness (%) for JJA and SON page 17 Net Diabatic Heating (°C/day) for DJF and MAM page 18 Net Diabatic Heating (°C/day) for JJA and SON page 19 Transient Meridional Heat Flux (°C • m/s) for DJF and MAM page 20 Figure 16: Transient Meridional Heat Flux (°C-m/s) for JJA and SON page 21 Figure 17: 3-10 Day Filtered Transient Meridional Heat Flux (°C • m/s) for DJF and MAM page 22 Figure 18: 3-10 Day Filtered Transient Meridional Heat Flux (°C • m/s) for JJA and SON page 23 Figure 7: Figure 8: Figure 9: Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 19: Transient Meridional Flux of Zonal Momentum (m~/s 2 ) for DJF and MAM page 24 Figure 20: Transient Meridional Flux of Zonal Momentum (m 2 /s 2 ) for JJA and SON page 25 Figure 1 1 : 3-10 Day Filtered Transient Meridional Flux of Zonal Momentum (m 2 /s 2 ) for DJF and MAM page 26 Figure 22: 3-10 Day Filtered Transient Meridional Flux of Zonal Momentum ~> i ~> (m-Vs-) for JJA and SON page 27 Figure 23: 700mb Departure of Temperature from the Zonal Mean (°C) Northern Hemisphere for DJF and MAM page 28 Figure 24: 700mb Departure of Temperature from the Zonal Mean (°C) Northern Hemisphere for JJA and SON page 29 Figure 25: 700mb Departure of Temperature from the Zonal Mean ( °C) Southern Hemisphere for DJF and MAM page 30 Figure 26: 700mb Departure of Temperature from the Zonal Mean (°C) Southern Hemisphere for JJA and SON page 31 Figure 27: 500mb Departure of Geopotential Height from the Zonal Mean (ni) Northern Hemisphere for DJF and MAM page 32 Figure 28: 500mb Departure of Geopotential Height from the Zonal Mean (m) Northern Hemisphere for JJA and SON page 33 Figure 29: 500mb Departure of Geopotential Height from the Zonal Mean (m) Southern Hemisphere for DJF and MAM page 34 Figure 30: 500mb Departure of Geopotential Height from the Zonal Mean (m) Southern Hemisphere for JJA and SON page 35 Figure 3 1 : 200mb Departure of Geopotential Height from the Zonal Mean (m) Northern Hemisphere for DJF and MAM page 36 Figure 32: 200mb Departure of Geopotential Height from the Zonal Mean (m) Northern Hemisphere for JJA and SON page 37 Figure 33: 200mb Departure of Geopotential Height from the Zonal Mean On) Southern Hemisphere for DJF and MAM page 38 200mb Departure of Geopotential Height from the Zonal Mean (m) Southern Hemisphere for JJA and SON page 39 200mb Zonal Wind (m/s) for DJF and MAM page 40 VI Figure 36: 200mb Zonal Wind (m/s) for JJA and SON page 41 Figure 37: 200mb Meridional Wind (m/s) for DJF and MAM page 42 Figure 38: 200mb Meridional Wind (m/s) for JJA and SON page 43 Figure 39: 200mb Wind Speed and Vectors (m/s) for DJF page 44 Figure 40: 200mb Wind Speed and Vectors (m/s) for MAM page 45 Figure 41: 200mb Wind Speed and Vectors (m/s) for JJA page 46 Figure 42: 200mb Wind Speed and Vectors (m/s) for SON page 47 Figure 43: 850mb Wind Speed and Vectors (m/s) for DJF page 48 Figure 44: 850mb Wind Speed and Vectors (m/s) for MAM page 49 Figure 45: 850mb Wind Speed and Vectors (m/s) for JJA page 50 Figure 46: 850mb Wind Speed and Vectors (m/s) for SON page 5 1 Figure 47: 850mb Velocity Potential (xlO 6 m 2 /s) for DJF and MAM page 52 Figure 48: 850mb Velocity Potential (xlO 6 m 2 /s) for JJA and SON page 53 Figure 49: 200mb Velocity Potential (xlO 6 m 2 /s) for DJF and MAM page 54 Figure 50: 200mb Velocity Potential (xlO 6 m 2 /s) for JJA and SON page 55 Figure 5 1 : 850mb Stream Function (x 1 6 m 2 /s) for DJF and MAM page 56 Figure 52: 850mb Stream Function (xlO 6 m 2 /s) for JJA and SON page 57 Figure 53: 200mb Stream Function (xl0 6 m 2 /s) for DJF and MAM page 58 Figure 54: 200mb Stream Function (xlO 6 m 2 /s) for JJA and SON page 59 Figure 55: 850mb Specific Humidity (g/kg) for DJF and MAM page 60 Figure 56: 850mb Specific Humidity (g/kg) for JJA and SON page 61 Figure 57: 500mb Vertical Velocity (mb/day) for DJF and MAM page 62 Figure 58: 500mb Vertical Velocity (mb/day) for JJA and SON page 63 VII Figure 59: 1 .o\\ I c\ el Clouds: Composite of sigma levels 0.997, 0.979, 0.935 (%) for DJF and MAM page 64 Figure 60: I .ow Level Clouds: Composite of sigma levels 0.997, 0.979, 0.935 (%) for JJA and SON page 65 Figure 61: Mid Level Clouds: Composite of sigma levels 0.568, 0.46 (%) for DJF and MAM page 66 Figure 62: Mid Level Clouds: Composite of sigma levels 0.568, 0.46 (%) for JJA and SON page 67 Figure 63: High Level Clouds: Composite of sigma levels 0.355, 0.257 (%) for DJF and MAM page 68 Figure 64: High Level Clouds: Composite of sigma levels 0.355, 0.257(%) for JJA and SON page 69 Figure 65: Mass Weighted Vertical Integral of Net Diabatic Heating (°C/day) for DJF and MAM page 70 Figure 66: Mass Weighted Vertical Integral of Net Diabatic Heating (°C/da\) for JJA and SON page 71 Figure 67: Precipitation (mm/day) for DJF and MAM page 72 Figure 68: Precipitation (mm/day) for JJA and SON page 73 Figure 69: Mean Sea Level Pressure (mb) for DJF and MAM page 74 Figure 70: Mean Sea Level Pressure (mb) for JJA and SON page 75 Figure 7 1 : Wind Speed (m/s) for DJF and MAM page 76 1 igure 72: Wind Speed (m/s) for JJA and SON page 77 Figure 73: Wind Stress (N/m 2 ) for DJF and MAM page 78 Figure 74: Wind Stress (N/m 2 ) for JJA and SON page 79 Figure 75: Sensible Heat flux (W/m 2 ) for DJF and MAM page 80 Figure 76: Sensible Heat Flux (W/m 2 ) for JJA and SON page 81 Latent Heat Flux (W/m 2 ) for DJF and MAM page 82 Figure 78: Latent Heat Flux (W/m 2 ) for JJA and SON page 83 VIII Figure 79: Short Wave Radiative Flux (W/m 2 ) for DJF and MAM page 84 Figure 80: Short Wave Radiative Flux (W/m 2 ) for JJA and SON page 85 Figure 81: Long Wave Radiative Flux (W/m 2 ) for DJF and MAM page 86 Figure 82: Long Wave Radiative Flux (W/m 2 ) for JJA and SON page 87 Figure 83: Net Surface Heat Flux (W/m 2 ) for DJF and MAM page 88 Figure 84 Net Surface Heat Flux (W/m 2 ) for JJA and SON page 89 Figure 85 Net Surface Heat Flux (W/m 2 ) for Annual Average page 90 Figure 86: Standard Deviation of 500mb Height (m) for DJF and MAM page 91 Figure 87: Standard Deviation of 500mb Height (m) for JJA and SON page 92 Figure 88: Standard Deviation of 200mb Zonal Wind (m/s) for DJF and MAM page 93 Figure 89: Standard Deviation of 200mb Zonal Wind (m/s) for JJA and SON page 94 Figure 90 Standard Deviation of Sea Level Pressure (mb) for DJF and MAM page 95 Figure 91 Standard Deviation of Sea Level Pressure (mb) for JJA and SON page 96 Figure 92 500mb Height EOF 1 and 2 for DJF page 97 Figure 93 500mb Height EOF 1 and 2 for MAM page 98 Figure 94 500mb Height EOF 1 and 2 for JJA page 99 Figure 95 500mb Height EOF 1 and 2 for SON page 100 Figure 96 3-10 Day filtered 850mb Transient Meridional Heat Flux (°C • m/s) for DJF and MAM page 101 Figure 97 3-10 Day filtered 850mb Transient Meridional Heat Flux (°C- m/s) for JJA and SON page 102 Figure 98 3-10 Day filtered 850mb Transient Meridional Moisture Flux (g ■ m/kg ■ s) for DJF and MAM page 103 i\ Figure 99 3-10 Day filtered 850mb Transient Meridional Moisture Flux {g m kg s) for JJA and SON page 104 Figure 100 3- 1 Day filtered 200mb Flux of Zonal Momentum (m 2 /s 2 ) for DJFandMAM page 105 Figure 101 3-10 Day filtered 200mb Flux of Zonal Momentum (m 2 /s 2 ) for JJA and SON page 106 Figure 102 3-10 Day filtered 200mb Kinetic Energy (m 2 /s 2 ) for DJFandMAM page 107 Figure 103 3-10 Day filtered 200mb Kinetic Energy (m 2 /s 2 ) for JJA and SON page 108 Figure 104 3-10 Day filtered Transient Meridional Heat Flux (°C • m/s) , averaged 35N-55N, for DJF and MAM page 109 Figure 105 3-10 Day filtered Transient Meridional Heat Flux (°C ■ m/s) , averaged 35N-55N, for JJA and SON page 110 Figure 106 3-10 Day filtered Flux of Zonal Momentum (m 2 /s 2 ), averaged 35N-55N, for DJF and MAM page 1 1 1 Figure 107 3-10 Day filtered Flux of Zonal Momentum (m 2 /s 2 ), averaged 35N-55N, for JJA and SON page 112 Figure 108 Net Diabatic Heating (°C/day) , averaged 35N-55N, for DJF and MAM page 1 13 Figure 109 Net Diabatic Heating (°C/day) , averaged 35N-55N, for DJF and MAM page 1 14 Figure 1 10 3-10 Day Filtered Standard Deviation of 250mb Geopotential Height (m) (top) and Monthly Mean 250mb Zonal Wind (m/s) page 1 15 Figure 1 1 1 Mean Zonal Circulation Streamlines and Vectors, averaged 20N-20S, for DJF (top) and MAM (bottom) page 1 16 Figure 1 12 Mean Zonal Circulation Streamlines and Vectors, averaged 20N-20S, for JJA (top) and SON (bottom) page 1 17 I igure 113 Net Diabatic Heating CC/day) , averaged 10N-10S, for DJF and MAM page 1 18 Figure 1 14 Net Diabatic Heating (°C/day) , averaged 10N-10S, for JJA and SON page 119 X Figure 1 15 250mb Velocity Potential Anomalies (m 2 /s) filtered to retain periodicities of 20-100 days, averaged 10N-10S, for model year 4 page 120 Figure 1 16 250mb Velocity Potential Anomalies (m 2 /s) filtered to retain periodicities of 20-100 days, averaged 10N-10S, for model year 7 page 121 \i I ist of Symbols and Definitions CI P Fractional Cloudiness q Specific Humidit) Specific Humidit) at 850 nib v'q' Transient Meridional Moisture Flux Q ]h Latent Heat Flux at the Surface 1 ong Wave Radiative Flux at the Surface Q Net Radiative Flux at the Surface Sensible Heat Flux at the Surface O Short Wave Radiative Flux at the Surface Q nc( Net Diabatic Heating Q j -- Net Diabatic Heating at Sigma Level 0.57 I Q .3(7 Mass Weighted Vertical Integral of Net Diabatic Heating Prec Precipitation at the Surface P_i Mean Sea Level Pressure \J Stream Function '/ Velocity Potential / . 100 20-100 Day Filtered Anomalies of Velocity Potential Potential Temperature T Temperature T700 Temperature at 700 mb 1 Surface Wind Stress V 7" Transient Meridional Heat Flux rT', _ .q 3-10 Day Filtered Transient Meridional Heat Flux u Zonal Velocity Zonal Velocity at 200 mb Transient Meridional Flux of Zonal Momentum u'v\ _ , f) 3-10 Day Filtered Transient Meridional Flux of Zonal Momentum v Meridional Velocity Meridional Velocity at 2(X) mb Total Velocity at the Surface 0) Vertical Velocity z-ir/j Geopotential Height at 200 mb <~> 3-10 Day filtered Standard Deviation G Interannual Standard Deviation X* Zonal Anomaly 'lime Average Departure from the time average \x\ Zonal Average Meridional Average xu 1. Introduction 1. Introduction An atlas of the Geophysical Fluid Dynamics Laboratory (GFDL) Rhomboi- dal 30 with 14 Sigma Levels (R30S14) general circulation model (GCM) is made available in order to facilitate the intercomparison of the climate and variability of the model with observations and other modeling studies. Our goal is to reveal some of the model's strengths and weaknesses, providing a benchmark for future experi- ments with the GFDL model. The R30S14 version of the GFDL GCM is a global, spectral, primitive equation model. There are 14 unequally spaced sigma levels in the vertical (from 0.9967 to 0.015) and a rhomboidal truncation at wave number 30, yielding a hori- zontal grid spacing of approximately 3.75° of longitude and 2.225° of latitude. The model has seasonally varying insolation, sea surface temperature (SST) and sea ice, but the values are fixed for each day. The SSTs and sea ice vary according to long- term observed climatologies and the same cycle is repeated for each year in this 17 year integration. The spectral representation of the orography has been improved by smoothing out some of the artificial ripples in the field that are generated by the spectral transformation. This model also features gravity wave drag and predicted clouds. Stratiform clouds form and large scale precipitation begins when the rela- tive humidity exceeds 100%. Subgrid scale precipitation is parameterized by moist convective adjustment. The surface temperature over land is calculated assuming there is no heat storage in the ground. Soil moisture is predicted using the bucket method, in which the ground can absorb up to 15 cm of rainfall before runoff begins (Manabe, 1969). Standard bulk aerodynamic formula are used to calculate the sur- face wind stress and sensible and latent heat fluxes using a constant transfer coeffi- cient of 1x10 over the oceans and 3x10 over land. More details on the GFDL GCM can be found in Gordon and Stern (1982), Manabe and Hahn (1981) and Lau (1981). 2. Data Analysis The seasonal mean statisties for Deeember-January-February (DJF), March- April-May iMAM). June-July-August (JJA), and September-October-No- \ ember (SON), are calculated from 16 years of daily output from the GFDL R30S 14 model run. Data from the model's sigma surfaces are interpolated to pres- sure levels: the temperature and wind fields are interpolated linearly, while specific humidity is interpolated logarithmically to pressure surfaces. In the model's cloud cover scheme, there is no fractional cloudiness; a grid point at a given sigma level is either clear or completely overcast. The fractional cloudiness shown in the atlas is a measure of the number of days in the season where cloud cover is present. For the layer average fractional cloudiness, the entire layer, made up of 2-3 levels, is considered overcast if one of the levels is overcast. Diabatic heating is calculated from the latent heat release associated with condensation, absorbed radiation, ver- tical diffusion and the convective adjustment process; both the clouds and diabatic heating are shown on sigma surfaces. The mass weighted diabatic heating is ob- tained by summing the diabatic heating rate over the 14 model layers. Variability in the model is diagnosed using interannual standard deviations - 2 li = 1 calculated from the equation: a(x) = |£ (x ( -X) /(n- 1) , where x, is the average for one season of a particular year (i), x is the long-term ( 1 6 year) seasonal average, and n is the number of years. Empiracal Orthogonal Function (EOF) analysis (Kutzbach, 1979) is used to objectively identify the dominant modes of 500mb height variability over the Northern Hemisphere. The fist two EOFs, calculated us- ing covariances rather than correlations, arc presented. The zonal average vertical cross-sections are constructed from data interpo- lated to 8 pressure levels (1000, 850, 700, 500, 300, 250, 200, and 100 mb), except for the vertical cross-sections of cloud cover, mass-stream function and diabatic heating, which are constructed from the original 14 sigma levels in the model. The merdional mass-stream function, \\f , is caculated following Peixoto and Oort l (1992), \i/ = 1*271/? cos [v • P] — , where R is the radius of the earth, the lati- J 8 o tude, g is gravity, P is the surface pressure, and the brackets denote a zonal average. A solution for \j/ is then found by vertically integrating this equation starting at the top of the atmosphere, where \j/ = . The transient meridional momentum, heat and moisture fluxes are derived from the model output using the following equa- tions: «V= («-«)• (v-v) , v'T = (v-v) • (T-f) , and v'q' = (v-v) ■ (q-q) , where x is the daily value and x is the long-term average for the appropriate season. These quantities are calculated daily and then the seasonal and zonal means are con- structed from the daily values. Time filtering of certain variables is performed using a Lanczos filter (Jus- tice, 1976; Duchon, 1979), with half power weights at 3-10 days to isolate synoptic times, and 20-100 days to examine the Madden and Julian Oscillation (Madden and Julian, 1971). The 3-10 day filter is also used to examine the seasonal cycle of the North Pacific and North Atlantic storm tracks following Nakamura (1992). We used 121 weights, which translated to a data loss of 60 days at the beginning and end of the 17 year time series. The filtering is performed on daily anomalies (rela- tive to the long-term monthly mean) and the total standard deviation or mean of these filtered anomalies are then calculated (except in the case of Figs 113 and 1 14, where the time series of the time filtered anomalies are shown) . Only model years 2-16 are used in the standard deviation calculations, since model years 1 and 17 are truncated by the filtering process. For filtered covariance statistics, each individual variable (i.e. v') is filtered before computing the covariances. A few variables, such as the precipitation and vertical velocity, are spatially smoothed using a nine point filter in order to emphasize large scale features. The filter weights the central point, the four adjacent points, and the four corner points by a ratio of 1:0.5:0.3. 3. References: Duchon. C. E.. 1979: Lanczos filtering in one and two dimensions. J. Appl. Mete- or.. 18. 1016-1022. Gordon. C. T.. and W. F. Stern. 1982: A description of the GFDL global spectral model. Mon. Wea. Rev., 110, 625-644. Justice, J. H., 1976: Lanczos-type smoothing in N-dimensions. Division of Math. Sci. paper. University of Tulsa, 24 pp. Kutzbach. J. E., 1970: Large-scale features of monthly mean Northern Hemisphere sea-level pressure. Mon. Wea. Rev., 98, 708-716. Lau. N.-C. 1981: A diagnostic study of recurrent meteorological anomalies ap- pearing in a 15-year simulation with a GFDL general circulation model. Mon. Wea. Rev. , 109, 2287-23 11. Madden, R. and P. R. Julian, 1971: Detection of a 40-50 day oscillation in the zonal wind in the the tropical Pacific. J. Atmos. Sci., 28, 702-708. Manabe, S., 1969: Climate and ocean circulation, Part I, The atmospheric circula- tion and hydrology of the earth's surface. Mon. Wea. Rev., 97, 139-714. . and D. G. Hahn, 1981: Simulation of atmospheric variability. Mon. Wea. Rev., 109, 2260-2286. Nakamura, H., 1992: Midwinter suppression of baroclinic wave activity in the Pa- cific. J. Atmos. Sci., 49, 1629-1642. Peixoto. J. P. and A. H. Oorrt, 1992: Physics of Climate. American Institute of Physics, New York, New York, pp. 520. s- bfl C e2 >, - — c c_ r - — o s t/3 C m — 3 if! uo on o o ro to (§9p) JIT] 4. Zonal Mean Vertical Cross-Sections I — j I KX III ' II ' . ' ooo OOO c CJ 10 ii m i4 ti ro o > c ■ ° u ~ l"0 HI''' C_ c £ > ^ aj h- >, - o ■ ^ A •: CN e -3 ' .1 o ? r— 1 — , i y ~^ o ~ X: C N < LT) s ^ T5 00 < ~ ' ' 13 , — N ID c~ o o N U- Q b/j o o o o o ooo o o o o o ooo ro tJ- lD CD r~^ 00CDO (qui) ssajj (qui) sso.i r j < ICD E IS o o o o ■— CM o o o oooco o o o o o ooo ro -t in (Dr~- oocno o O O o o o o o o ooo o o o o o ooo ro ij- lD <£> I--- 00OTO (qui) sssjj (qui) ssajj — < - i c p. < c rd CX O m ^> Q o T3 r3 O t3 •_ < C O N m bfl <■ J ' > ' 1 ' > o ooooo C ) < , • > ' > o ooooo ■ < 1 \> , -t un cd i^oocro (qui) SS9JJ (qui) ssojj < z o 1 o o T — ' I I O O O O OOOOO o o o o o ooco CM rO Tf LO cor-^oocno o o z o c c o c ■A c ^ T3 o M l-l u > < c — - o o o o o oooco o o o CD o ooooo <— cn m -*- m co r--oocno (qui) ssajj (qui) sssjj _i X < bl) i i I -^ m , CSJ ', o 1 ^— \ X ~--_ -! 1 1 1 r- -: :, CO I 00 Ol ^ c o o o in p., •r- O pu .a If) I CO in - CO > (L) O LD 'J c CN c rt , l-l CO oo c ^ O o 'o X /i o *—< c~ r3 m (3 C -3! i^ c -; a o <0 O CO •— cNjro-^-Lncor^oocr> ooooooooo p\rrj t?lu7)[ •„ — C c cj ■j-j u too c _ X /; i — i C ■ — * c_ c ~z m .2 ~~z CN 5 o 00 j— O o c /: r- • -^ u £ ^ _^ y. i r. s / ■ i / $ - ^ - C — ■C — ^csii v ~)^i-u~>cor--oocr> ooooooooo ooooooooo |3A3q BUlSTg J9A91 T3LUBTS II : < > ■H & <0 73 >-. (U < c o N 3 C o o o o ooooo o o o oooo rr in icr- oocno < > r > ' > ' - o ooooo ' > ' > • I ' i o o oooo ■ ' 1 ro -! lo U3 r-oocno (qui) ssoj^ (qui) ssajj 12 < ^ z o E c o £ O — o < a T3 ■ — E 3 E u > Ej u < c o N 3 - — — o o o o o o oooo o o o CD o o oooo ^ CN m >* m to r^-oocro o o o o o o OOOO o o o O O O OOOO '"" CM f~> ■tf m '' > o oooo • ' J rO •t r i to r-oocoo fqiuj SS3J ooooo ■- CNI <■ • •1 If 1 to i^-oocto (qui; sssj^ (qui) ssajj 20 < \ u o t- o o CM'".' rft o |lO s " r^ U o Im 00 o tx r-O o o o o o o oooo o o o o CD o ooco «— CM to ^ in to r~-oocno o o o o o o oooo o o o o o o oooo CM m Tl- m to r-~oooTO qui) sssjj (qui) ssaij 2! s - u: < LO o \ U o hn — ' 1 ' 1 — r o o o o oooco o o o o oooo (nj to -r lO '-o r- oocto c o -a o --. o ^-> -C c s I to G 1-4 < S 3 cu , , 1 1 1 . 1 1 lr ' £ o rJ LU Q Q :■.-.': o •—. IK i > 1") m < u , — r3 N — s G C X N UL, o r- ■ — i < — i Ri 0) (U l-l X 3 (/) 00 u- -i — i — r o o o ooooo o oooo ooo ro ■**■ LD to r-- oooo (qui; ssojfj (qui) SS3Jtf 22 < o I o or o K O "3 CJ •_ u_ c -C z O c H. o o g as s: < o N E do § DC 5 11- o o o O O O OOCDO o o CD O CD O OOCDO *— CM ro ^r IT) CD r--00ODO o o O O O O ooooo o o o o ooooo cm ro -^- m to r-- oocddo (qui)ssaij (qui) SS3JJ 23 f: o O O 3 C a; S G r-3 C N o o LL o 03 « CM s < • 2 S ■a "2 aj G o s 5 c o (U +-* c3 'Z? H^ o < 1 — , -3 C N ON ' — 1 0) l-c 2 bJO LU o o o o ooooo o o o o ooooo ' • r 1 r 1 r > ' • ooooo ' ■ ' > ' > < > ooooo 1 ro -t m cd r^-ooao qui) ssojfj (qui) ssgjj 24 < o o o o o o in «3- ro cnj «— I l l I I O cm C 2 c GO 0y) : Oi Mi o o o o ■nf- rO CM «- III O to o o CN ■f. \ 6 — C o 6 o c3 G C N c3 C O o % o y. o on 4-1 & c o IS 2 1=3 S3 — C c N d a 3 - o o c O o oooco o o o O o ooooo '" CN *n «tf in ud i--.oocto o o o O o OOCX3D o o o o CD OOOOO """ CM ro ^t u) 10 noooo (qui) SS3JJ (qui) SS3JJ 25 k 'iD O > 'O ', CNI'CM', ', •— i / \ < 10 oo CM -o O - . o o oooco o o o ooooo "~, t lo co r- oooo -i — r o oooo ooo o oooo ooo ro -t in (£ih- oocno X - Uh ~ F= c n O — ) o S-H j-j "~] icM'csj*-- ! I i ' i •': i i ; 00 --o 1 E o o S3 e % z - o 5 oo c c cd c3 !-. H ■— fc Cl, O lO >. c hi l+H Q 1) < E i o s __ N ?3 C ri ri N U — 3 M Hh o o o O o o oooo o o o CD O O OOOO "- CM rO ^r i/i CD r--oocno o o o O O o oooo o o o o O o oooo "— CN rO >* lO CD r~~-OOOTO (qui) SS3JJ (qui) ssgjj 27 5. Seasonal Means on Pressure and Sigma Surfaces - 3> - 3 T* 70 o(°C) DJF 80 E T%)o(°C) MAM 80 H 8 2 8 4 2 I i jure 23: 700mb Departure of Temperature from the Zonal Mean ( '• C), Northern Hemisphere for DJF (top) and MAM (bottom) 28 T* 7 oo(°C) JJA c 3 s LU O 180 E T* 7 oo(°C) 180 E SON I 8 6 4 2 8 6 4 2 Figure 24: 700mb Departure of Temperature from the Zonal Mean (° C), Northern Hemisphere for JJA (top) and SON (bottom) 29 T*7on(°C) DJF y - HOE T*7, )( ,(°C) MAM 180E 6 4.5 113 1.5 6 4.5 13 1.5 ire 25: 700mb Departure of Temperature from the Zonal Mean ' Southern Hemisphere for D.JI ; (top) and MAM (bottom) U) T*7oo(°C) JJA o o 180 E T* 7 oo(°C) SON 180 E I 4.5 3 1.5 6 4.5 1.5 Figure 26: 700mb Departure of Temperature from the Zonal Mean ( ° C), Southern Hemisphere for JJA (top) and SON (bottom) 31 z* 500 (m) P.ll- - - 180 E z*50o(m) MAM O^C -■ ' ^ - ^r — s „ ^~^r ,-'-- ' / ^!r J ^^ > ^c^~T^^^^~^-^l \\ - Y? ^'—'''k%0^Jvir^ ** ' i '-''' '///f J\M ' zXy{^ w / HjJjJpffi- 1 oovvyy ^a&7 fir 7 f 80 H 175 150 125 100 75 50 25 "OOmb Departure ol'Cieopotential Height Iron) the Zonal Mean (m), Northern Hemisphere lor I J>.H flop) and MAM (bottom) 32 z*5oo(m) JJA 3* 180 E 500 (m) SON 80 E I 175 50 25 Figure 28: 500mt> Departure of Geopotential Height from the Zonal Mean irrij. Northern Hemisphere for JJA (top) and SON (bottom) 33 z* 50 o(m) DJF _ 180E z* SO o(ni) MAM 80 E 80 60 40 20 80 60 40 20 500mb Departure of Geopotentia] Height from the Zonal Mean (m), Southern Hemisphere for D.JF (top) and MAM (bottom) 34 z*50o(m) JJA ON 180 E 2*500 ( m ) SON 100 80 160 20 100 i 80 60 40 20 180 E Figure 30: 500mb Departure of Geopotential Height from the Zonal Mean (m) Southern Hemisphere for JJA (top) and SON (bottom) 35 z* 200 (m) D.ll- _ 3" - 80 E 200 (m) MAM ^___^^y : ._, -^-^^-f^''~'yL^'' ^^9S^%\'' ,i 1 //~ ' y^SyPraV^'^' \'R i V ■■/Z^^K&A l I c . //,< ,'"-y > \ w£? »* N Us \_Jpli. -JPrf^^ ~ K ^^]oo-;;':-^y / ,,-- -v v ^^T^-C 1 ' """"^ / ''' \^ •• ^JPy/ _^y /,... 80 E ■ 200 ; 150 100 50 200 150 1 100 i 50 200mb Departure ol Geopotential Height from the Zonal Mean (m), Northern Hemisphere for DJF (top) and MAM (bottom) J6 z* 200 (m) JJA 180 E z *200 ( m ) SON 180 E 150 100 50 150 100 50 Figure 32: 200mb Departure of Geopotential Height from the Zonal Mean (m), Northern Hemisphere for JJA (top) and SON (bottom) 37 z*2oo(m) DJF _ - c o 180E z* 9nn (m) MAM 80 75 50 25 Figure 200mb Departure of Geopotential Height from the Zonal Mean (m), Southern Hemisphere for D.II' (top) and MAM (bottom) 38 z*20o( m ) JJA c ON ON 180 E z*2no(m) SON 180 E 125 100 175 HHi 150 25 75 50 25 Figure 34: 200mb Departure of Geopotential Height from the Zonal Mean (mj Southern Hemisphere for JJA (top) and SON (bottom) 39 u-,01 (m/s) 1X1 1 '. •. - _ ;- ; s - 20E 180 Lon (des;) 20W 60W 60 55 50 45 40 35 30 25 u 200 (m/s) MAM N 30N- t/j • |60 1 55 — 50 45 40 35 30 25 Lon (cleg) Figure 35: 200 mb Zonal Wind (m/s) for DJF (top) and MAM (bottom) 40 Uonn (m/s) JJA 60N 30N S3 -J 120E 180 120W Lon (deg) 45 40 35 30 25 u 2 oo (m/s) SON Lon (deg) Figure 36: 200 mb Zonal Wind (m/s) for JJA (top) and SON (bottom) 45 40 35 30 25 4! v 2 oo(m/s) DJF - 120E 180 120W 60W Lon (deg) 7.5 5 2.5 v 7nn (m/s) MAM zh 7.5 5 2.5 Lon (deg) 200 mb Meridional Wind I ni/s; ior DJF (top) and MAM (bottom) 42 v ?00 (m/s) JJA - -J 7.5 5 2.5 C Lon (deg) V2oo(m/s) SON 20E 1! Lon (deg) 60W 5 2.5 Figure 38: 200 mb Meridional Wind (m/s) for JJA (top) and SON (bottom) 43 _ l> A\\\\\U ,\\\\\|nt .\\\\\r A\V|t :\UT1 o rr;°n r trrfth, rrhrkr tttttKu ifrwntti ttrttttttn , ttttjttrr U \o t t T fo .\\V\V \\°\\ 1 1 1 TTT '\ NT rrrfr trci CM rfr /ifftt TTit\l tttttvi rtrtttt rtttur ttttttt ti'ttttt ttjjt.t ft t r r ?/// LO / t/T tft f f "TV/W^^o^ #i > A ft f 1 tf tlt:f 111 TSf / i i \ \ \ / I I \ \ \ * f inivf. ^i an *^\ sjf/fW f tit 'shu hit \4 l M l N 7/ \ /O. A V t/t r t T/T T ^iij c o [In 1—1 Q In o u 01) a Ph O I- o CO o IT) O rt- o CO CO CO o o o m to r^ 44 < 1 c l> TOP ■ 1 t/f ? tf t tt tot r tu 1 T o a CN / */ lA A A *p X* fjt^ttitk-sWf t rjrt foftf tffovl\\\ t tf // f/t t K\ \7 < \\\Mt . CNI AAA*. t ;t j AAA. \ \ \\vn r 1 1 1 ^m^m T T V ■ ^ T ft T ^ ^ ♦ m A T T» T ^ » V ^ ^ ^ ^ ^ AAA A A, to A A A A A ^ A ,rn AAA A / J flt/f 1 1 U \ :\ Hi life fTf/ *r<-)A a fit,,. fttAi t t'W ,fO. ACN - to ?MJ& t rrrtitujxKw tfttttVCwW tit nhtfK ^\nt t ^UA^H tt tt tt \/j ttttttt wL/tt ottt f w^ tt\t I V W /fit TTTTfTT f ttt|/t A AAAAAA t Mil. tit Mtt4J)t f 1 1 1 1 1 1 t/t 1 1 1 1 1 i I i j i j T T tS ^^ T T T (ttfllf AAAAAA rlt-Tt? t-tfrft tuff tf tt t/t tttttfT T _Jr ' T T t T aaaaIaO ttttttl tf 1 r t/f o -J V". — o o o > 0/J c JO — n o * — i o u 13 53 "3 U o C C r | d -r •— - (gap) ^q 45 < > wmut 'ttthrr . ttwttm tvulttttt . t Htttrt N\ tit t t T T \\"2iHtt V t o tukv/^ ^ ift/tttu t ttt f Ttt fltt-t tttt Tt tymtt t n vt ft f It t J 1 1 1 mt int tnv^ r/:fttu|tf:l Mi twtittmwyjA tttn\\\\k\t fJt fittttt\jjC Mnv^vt/uT nw/tttfr ru*/t tvKw \ tit tit * ?s^"f?n\\\\ ttt r /^v///A\\ \ ttt r/^_^v^ ^\l\oititi lr r r n/ * rf.fr/ , tn°/ ttt tit i ttttlrt \ \i\ t r r v o nn wtwtt r tt tt ttt T T T T \ l r tttt tttt tttt TTTT TTTT A .* A A CN ff f f tttt i 1 r i* if 1 T T I I* r /p ^ ^ T I* I l* I* I* o 4 CN f r r r / / / ° o CN o CO U c O .o 1/1 u 2 o > C 3 cr D c O ■ — h CJ T3 C r3 ex c 1 O O r i 3 bfl • ■— i (/> CY) o o to r~- (Sap) prj 46 z o C/3 1 c c l> H.Ht T f f f ^ » ^ ^ ^ ' ^ *fr 4i wttn f / AMI ffttjj T ^ t t u*ft T T T tit ft tit t 1 T T T T T fir ,™ A\U \\f! wit WW iw Mto :\ \ n x t ?/7 t th 1 1 rt t rtitt rttt nit tt rtt ttt\\\ tttm\ tt.tfjj Wtftttyti' Sill ItrMtfjh Mt t t<$ t t + mi vt ////, t f ttt oTK\V\b ft f tt/1£ , W* t r o c o -J y o on ■— .o — — o o 3 c O o r3 T3 1 c n cN -r - CO CO CO o o o to ■*■ un CO CO o o (Sap) nn 47 > u c o -J I—) Q — z s. o *_> o o > bfl c u c _o o u c 73 T3 O a on "d I O in en (gap) nn 48 CO E oo l> k*- ^^Atif TT ^ ^ s // /f Vt/T 1 1 1 ' HJllU if •* v/v Uii K>' "If? ft \ \ if r lk\ r-f/n fit 1 1 1 nf 1 1 1 f t f t ' ' m ^ lo Mill A flttl >f It Tl T T T -J, /Ttt /ttt A A A A A A A A ttt ttt tttt tu Af >* m \\ \ M»n _ //?/yfi > & Ur/tf t ^ Vs^J^i I )jff/M If t IK < TIT / ft l/f IT) ,m< / / k . l^n. iin o o CO O to CO o o U — c -J CO CO o o id r-- ■— c — ' •J u > 1 a — I — G g o — T3 o o IT. -r u (gap) jBi 49 < l> AVs\ .\vW WW \\\\ Law \ \W u {jt\r K t pvJ 7 ^ / n t ?w /Xft/s. Ttt.T f / un r / bfl c o 1-1 o i- 2 o > «— > bO G JH cr C o o 1-c T3 C -3 -a f O in oo in -1- bfl O r O to o o o O r J o UJ in in in in o o o o t- csj ro •**- o m to (/) o o 50 c c l> TIT Sfttkttftoy t f ft ;.f pl^\tt ft; i^vi tit t i^Ejtit t ii^V/f ttt :i y^fjw///KA t r r ///// f ; f f /7t T T/T T t int' t m t'tt (it Hi r/ f Y t t t t fit t H ^/v\T 1 1 1 1 t\ tt ittfl A1 /ft /ft f ft h o o CO ttl t ft ft f f ' ft' til^fr^Nj^ tttt/r >^*V ttfr f\\^1\tt-ff . o O co CZ3 •— s •— O > — 5: bJO o a rsi 6_2 Tj7 8 , (1x10° m z /s) JJA 60N -( 30M bJQ -J 30S-. 60S — 120E 1 Lon (deg) 6_2, ^ (lxlO°m z /s) SON 60E 20E 180 120W Lon (deg) 60W Figure 52: 850 mb Stream Function( lxlO 6 m 2 /s) for JJA (top) and SON (bottom) 57 tp :oo (lxl0 6 m 2 /s) DJF D _ N ■ :c : : 5 - 60S- 20E 180 120W Lon (des) 6_2, ^ on (10 D nr7s) MAM -/, 60N- '. . 60S 60E 120E 180 120W Lon (deg) 60W F-igure 53: 200 nib Stream Function ( 1x10 m 2 /sj lor DJF (top) and MAM (bottom) 58 6_2, W) - -J tp, m (1x10° nV7s) JJA 60E 20E 180 120W Lon (des) 60W 6_2, T]7 9nn (1x10° nr7s) SON 20E 180 120W Lon (de^) Figure 54: 200 mb Stream Function ( IxlO 6 m 2 /s) for JJA (top) and SON (bottom) 59 q S s lg/kg) DJF : . — - _ 30SH 60S 120E 180 120W Lon (deg) I 12 1 1 10 9 8 7 6 q 850 (g/kg) MAM _ 120E 180 120W Lon (deg) 60 W 12 111 10 9 8 7 6 850 mb Specific Humidity (g/kg; for DJF (top) and MAM (bottom) icld was smoothed using a 9 point filter (see data analysis section). 60 q 85 o(g/kg) JJA 60K 30N bij 0) T3 r3 30S- 50S Lon (deg) qsso (g/kg) SON 1 12 1 1 10 9 8 7 6 Lon (deg) Figure 56: 850 mb Specific Humidity (g/kg) ior JJA (top) and SON (bottom) This field was smoothed using a 9 point filter (see data analysis section). 61 co 500 (mb/day) DJF 60 N : - 30S 60S- 25 -50 1-75 100 125 Lon (deg) 60N- 30N- tru (nib/day) MAM &/j 30S- r/r 120E 180 120W 60W Lon (deg) -25 -50 .-75 -100 I 125 500 nib Vertical Velocity (mb/day) for DJF (top) and MAM (bottom) r !n- fieid was smoothed using a9poini iiltcr 'see data analysis section). 62 G5, 00 (mb/day) JJA CD •a -J 60S - 1 20E 180 120W Lon (des) -25 -50 -75 -100 -125 CD, 00 (mb/day) SON 20E 180 120W Lon (deg) S ■ I -25 -50 -75 -100 -125 Figure 58' 500 mb Vertical Velocity (mb/day) for JJA (top) and SON (bottom) This field was smoothed using a 9 point filter (see data analysis section). 63 : CLD, (%) [>ll ; 60E 120E 180 120W Lon (deg) 60W 190 ■ 75 60 45 30 CLD low (%) MAM "... ■ 180 120W Lon (deg) 90 75 1 ^^ 45 30 . : - ■. : Low level Composite (sigma levels 0.997, 0.979, 0.935) Clouds [%) for DJF (top) and MAM (bottom) :ld was smoothed using a 9 poinl filter (see data analysis section). 64 CLD low {%) JJA — - - 120E 180 120W Lon (deg) 90 30 CLD low (%) SON 90N Lon (dee) Figure 60: Low level Composite (sigma levels 0.997, 0.979, 0.935 ) Clouds (%) for JJA (top) and SON (bottom) This field was smoothed using a 9 point filter (see data analysis section; 90 75 60 45 30 65 CLD mid {%) n.n . -- . Lon (deg) CLD mid (%) MAM Lon (deg) Figure 61 : Mid level Composite (sigma levels 0.568, 0.46) Clouds ('/< ) lor [III (top) and MAM (bottom) This field was smoothed using a 9 point Idler (see data analysis section). 45 ■ 37.5 30 22.5 15 4 b M37.5 : 30 22.5 15 66 CLD nnd {%) JJA 5/j — - _ 90N 60N- 30N 90S 60E 120E 180 120W Lon (deg) 60W 45 37.5 30 22.5 15 CLD mid (%) SON Lon (deg) Figure 62: Mid level Composite (sigma levels 0.568. 0.46) Clouds (%) for JJA (top) and SON (bottom) This field was smoothed using a 9 point filter (see data analysis section). 67 CLD hi . h (%) n.ii- — - _ 20E 180 120W Lon (deg) I 60 | 50 I 40 ^30 20 s/j 90N CLD W ^ (%) MAM • Lon (deg) Figure 63: High level Composite (sigma levels 0.353, 0.257) Clouds (%) for DJF Mopi and MAM (bottom) :ld was smoothed using a 9 point filter (see data analysis section 60 68 CLD hlKh {%) JJA 73 - -J Lon (des) 90S^ Lon (deg) Figure 64: High level Composite (sigma levels 0.355, 0.257) Clouds (%) for JJA (top) and SON (bottom) This field was smoothed using a 9 point filter (see data analysis section). 60 B 50 J 40 "30 20 60 50 40 30 20 69 \Q nel do (°C day) DJF 60N - Z:. 120E 180 120W Lon (deg) 4.5 3.75 3 2.25 1.5 0.75 \Q nel do CC/day) MAM 120E 180 120W Lon (deg) 4.5 3.75 3 2.25 1.5 0.75 figure 65: Mass Weighted Vertical Integral of )iabatic Heating (°C / 'day) for DJF 'top; and MAM (bottom) This field was smoothed using a 9 point filter (see data analysis section). 70 JS„,ao rC/clay) JJA 60N 30 N 00 30S- 60S- 20E 180 120W Lon (deg) 4.5 3.75 3 2.25 1.5 0.75 $Q net dc> CC/day) SON 20E 180 120W Lon (deg) 60W 0.75 Figure 66: Mass Weighted Vertical Integral of Net Diabatic Heating (°C/day) for JJA (top) and SON (bottom) This field was smoothed using a 9 point filter (see data analysis section). 71 6. Seasonal Mean Surface Plots Free (mm/day) DJF '. 30N _ 20E 180 120W Lon (deg) 16 14 12 10 8 6 4 Prec (mm/day) MAM 60N 30N W) 30S- 20E 180 120W Lon (deg) 16 14 1 12 I 1 8 6 4 Figure 67- Precipitation (mm/day) lor DJF (top) and MAM (bottom) This field was smoothed using a 9 point filter (see data analysis section). 72 60N 30N- 30S 60S Prec (mm/day) 60E JJA 20E 180 120W Lon (deg) 60W I 16 I 12 I 10 |g 6 4 Prec (mm/day) SON 20E 180 120W Lon (des) Figure 68: Precipitation ( mm/day j for JJA (top) and SON (bottom) This field was smoothed using a 9 point filter (see data analysis section). 73 P., (mb) DJF '. — - _ 20E 180 120W Lon (deg) 1008 1004 l 1000 5 996 992 988 984 P s ,(mb) MAM S/J 120E 180 Lon (dcg) 1008 1004 1000 996 992 988 1 1984 l 69 Mean Sea Level Pressure (mb.i for DJF (top) and MAM (bottom ) 74 P s , (mb) JJA H-l 60E 20E 180 120W Lon (deg) 1008 1004 1000 996 992 988 984 i P s , (mb) SON 60N- 30N T3 -J 30S- 60S 120E 180 120W Lon (deg) 1008 1004 1000 996 992 988 1 984 1 Figure 70: Mean Sea Level Pressure (mb) for JJA (topj and SON (bottom) 75 V sfc (m/s) DJF - 20E 180 120W Lon (des) 12 l 10 I 8 6 90N 60N V sfc (m/s) MAM Zij — -;;■ 20E 180 120W Lon (deg) 12 10 * 8 I 6 i 4 f'igure 71 Surface Wind Speed ;m/s; and Direction (equal length vectors) for DJF (top; and MAM (bottom) 76 W) -J 90N 60N- 30N- V sfc (m/s) JJA 30S 60S-1 90S 120E 180 120W Lon (deg) 12 I 10 8 6 4 90N V sfc (m/s) SON 20E 180 120W Lon (deg) 60W 6 4 Figure 72: Surface Wind Speed im/s> ana Direction (equal length vectors; for JJA (top) and SON (bottom) 77 K3 -J 90N 60N- T (N/m 2 ) DJF 20E 180 120W Lon (deg) 1| 0.35 10.3 So. 25 (0.2 0.15 90N t (N/m 2 ) MAM 90S 60E 120E 180 120W 60W Lon (deg) 0.35 0.3 I 0.25 0.2 0.15 Figure 73: Surface Wind Stress (N/m 2 ) and Direction (equal length vectors) for DJF (top) and MAM (bottom) 78 C3 90N T (N/m 2 ) JJA 20E 180 120W Lon (deg) ■ 0.4 J 0.35 Jo. 3 ^0.25 I 0.2 0.15 90N T (N/m 2 ) SON 60E 120E 180 120W 60W Lon (deg) I III - 4 0.35 0.3 0.25 0.2 0.15 Figure 74: Surface Wind Stress (N/m 2 ) and Direction (equal length vectors) for JJA (top) and SON (bottom) 79 Q sh (W/m 2 ) DJF 60N-* ~3 _ 120E 180 Lon (deg) 20 105 90 75 60 45 30 Q sh (W/m 2 ) MAM 120E 180 120W Lon (deg) Figure 75: Sensible Heat Flux (W/m 2 ) for DJF (top) and MAM (bottom) A positive flux indicates an energy loss from the ocean. This field was smoothed using a 9 point filter (see data analysis section). 80 Qsh (W/m 2 ) JJA 60N 30N X3 73 - EQ- 30S 60S 60E 120E 180 120W Lon (dee) 90 75 „ 60 ^45 30 Qsh (W/m 2 ) SON 20E 180 120W 60W Lon (deg) 90 75 60 45 30 Figure 7 6: Sensible Heat Flux (W/m 2 ) for JJA (top) and SON (bottom) A positive flux indicates an energy loss from the ocean. This field was smoothed using a 9 point filter (see data analysis section). 81 Q, h (W/m 2 ) DJF 60N 30NH 30S- 60S- 120E 180 120W 60W Lon (deg) 200 175 150 11 125 100 Qih (W/m 2 ) MAM 60E 120E 180 120W 60W Lon (deg) 200 175 1 1 50 125 100 Figure 77: Latent Heat Flux (W/m 2 ) for DJF (top) and MAM (bottom) A positive flux indicates an energy loss from the ocean This field was smoothed using a 9 point filter (see data analysis section). 82 Q, h (W/m 2 ) JJA 60N 30NH -J 30S 60S 20E 180 120W Lon (des) 200 175 150 \ 1 25 100 Qih (W/m 2 ) SON 60N- 30N 73 -J 30S 60S- 20E 180 120W Lon (deg) 200 175 1 150 1 25 100 Figure 78: Latent Heat Flux (W/m 2 ) for JJA (top) and SON (bottom) A positive flux indicates an energy loss from the ocean. This field was smoothed using a 9 point filter (see data analysis section). 83 Q sw (W/m 2 ) DJF 300 275 250 I 225 200 Lon (des) Q sw (W/m 2 ) MAM 60N-- 30N- 60E 120E 180 120W Lon (deg) 300 275 1250 l 2 25 200 Figure 79: Short Wave Radiative Flux (W/m 2 ) for DJF (top) and MAM (bottom) A positive flux indicates an energy gain to the ocean. I his field was smoothed using a 9 point filter (see data analysis section). X4 Qsw (W/m 2 ) JJA 60N- 30N Si) 0) 3 30S 60S 60E 120E 180 120W Lon (deg) Q sw (W/m 2 ) SON 120E 180 120W Lon (deg) ?3 300 275 250 225 200 Figure 80: Short Wave Radiative Flux (W/m 2 ) for JJA (top) and SON (bottom) A positive flux indicates an energy gain to the ocean. This field was smoothed using a 9 point filter (see data analysis section). 85 Qi* (W/m 2 ) DJF . ;-:\ 1) _ ; : 5 • ; s ■- 20E 180 120W 60W Lon (des) 100 90 80 70 60 Q, w (W/m-) MAM 120E 180 120W Lon (deg) 100 90 80 70 60 Long Wave Radiative Flux (W/m 2 ) for DJF Hop) and MAM (bottom) A positive flux indicates an energy loss from the ocean. field was smoothed using a 9 point filter (see data analysis section). 86 Q lw (W/m 2 ) JJA 60N -J 20E 180 Lon (deg) I 100 ■ ■H Q Q ' 80 I I 70 *60 Qiw (W/m 2 ) SON 120E 180 120W 60W Lon (deg) I 100 lli 90 ■ 80 60 Figure 82: Long Wave Radiative Flux (W/m 2 ) for JJA (top) and SON (bottom) A positive flux indicates an energy loss from the ocean. This field was smoothed using a 9 point filter (see data analysis section). 87 Qo C*/m : ) DJF '■ 30N •: ; 5 120E 180 Lon (deg) 160 120 80 40 Qo (W/m 2 ) MAM 60E 120E 180 120W Lon (deg) 60W 160 120 80 40 Net Surface Heal Mux (W/m 2 ) lor DJF (lop) and MAM (bottom) A positive flux indicates an energy gain to the ocean. This field was smoothed using a ( ) point filter (see data analysis section). :■::-; Qo (W/m 2 ) JJA 60N 30N- - 30S 60S- 120E 180 120W Lon (deg) 160 120 80 40 ■ Qo (W/m 2 ) SON 60N- 30N bJO T3 - 30S- • 60S 20E 180 Lon (des;) 160 ■ 120 |80 m 40 Figure 84: Net Surface Heat Flux (W/m 2 ) for JJA (top) and SON (bottom) A positive flux indicates an energy gain to the ocean. This field was smoothed using a 9 point filter (see data analysis section). 89 v. < id B O * 4-J o 1) o m ■— > < 3 B B the ocean, ta analysis se 5= o CM I |o < •— 3. n y gain to er (see da |(0 _ S W)Ei U :-H 0/J E *-< T3 X 0> E 3 E O o 1 lo B U. c3 &, O 2 LU en O CD C o l-H o o o o CM o o o o o ooo o o o ooooo o o o O o O OOOO o o o O o O OOOO — CM ro ■3" LT) to r^oocro (qui) ssajj (qui) sssjj 109 O t>5 \ U r- .2 in IT) ^^ m c (1) r^ m — 1> > s UJ CX) CD CO in u — W3 o o o o o o o ooooo o o o oooco o o O O o o oooo O o C 3 t j C 3 o oooo «— CM to ^T in (£> r--COCTO (qui) ssajj (qui) SS3JJ 110 f o to ho to O CD Q OC o ID O < o 00 CD r^ ;:■,;■■;:■■ n y. C 1 x^::'x g £&M o -I o • lO s E CNJ o CD O 00 a _! o C O O -O Si U-, -a o o o o o o o o o o o o *- CM ro ■<*■ iD CD o o o o o o o o r~- oo en o oooooooooo oooooooooo ■— CNrO^LDtOr^OOCDO (qiU) SS3JJ (qui) ssajj 11! z C en n r. i o _; to a c 6 * K o • CM |i 1 ° s? Zonal (botto |o ^Z | CI j Flux ( ndSO o 1 15 « oo |f ' > O Oh o CD O o o — i CO r-' O — i o •— 3 t/j u- o o o o o o o o o o o o ^ n in i in m x) o CO — > c u S- 2 C - PA3^ BUI3IJS pA9q uuiSts 113 < ^J z o C/5 u o Oi -i 1 1 1 r *— CNiro-^-Lncor^oocn^ ooooooooo -i 1 1 1 1 r- i— CNiro^t-LncDr-coai'— ooooooooo o o 3 Oh c < in in i in m r3 ^3 X bfl c S3 73 cd u O u •— bO |9A9q ^UJ§|S |3A3q BUlSlS 14 { a ( Z 25()Vl()} ( m ) AUG SEP OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR APR MAY JUN JUL %l 1 60 70 80 Lon (deg) {U 250 } (m/s) 30 35 40 Lon (des) Figure 1 10: 3-10 Day Filtered Standard Deviation of 250mb Geopotential Heignt (m) (top) and Monthly Mean 250mb Zonal Wind (m/s)(bottom), averaged 30N-50N. 115 9. Tropical Processes U N 'C ''SI* ooooooooo o < .2 — > u s— u c N 0) O-— CNi-O-^-LncDr^-oocn'— ooooooooo c xa • — ■ 2 r> J xi m 2 c ~o £ c , rt n - — s g Cl, o s. I - CJ U- j=. ' — ) Q o •__ 03 c — 1 '-i-i z; y. *— ' — C o 71 13 > E ~ 03 C „r. rt rt •— s. rr| Fl E 03 — o u ■— c v. 03 „ £ Y< c n o 00 C Q C r i ri o/j -a g3 u ■— a) S3 > U - C/3 „ v. c K! c £ rt >, —— . —> ■ i Z u 03 > — a3 -: C '> c N 03 c > 03 H 03 S-H [3A3"] £UJ§[S |9A9q eui§is < O U ~ c N <=. -i 1 r ' i i i — i— ooooooooo 4-o o in c as U ■— u C N -*- — < < <- 1 4 5 — i — ' -C s — -' /-. n C — m C/3 c T3 G £ S3 r^ ■ ' ri Ui n c s < r o •— T3 / 3 ■~ ^ o ri ' 1 M (1) s3 > h' T3 a) : ■ Kl j- ■n ./". — 1) S3 c a 1 E o n o ■ •— ■*— ► . / 1) X. X3 3 IN 2 ■ _- y: c C 3 ri r j — >. (U £3 — •_ QJ •- S3 y. S3 S3 >. :j O — u > r3 C S3 r; U X i-> r r i . a U O^ 1 ro T lO tc r-^ 00 CT: * O O O o O o o a O -I — ' I ~~ 1 1 — -I — ooooooooo c < -a c D- O U- 03 C I Z o X3 "S3 \ (30 c U 5 bfl [3a3^ eiu^is [9A9"] BUlSlJS 18 T° < >. OJ z o u o OJ £ o — i o O c -1, c o CO c T3 O bfl — > 7! -z "a \ M C X y. <0 ■— oooodoooo J3A3"| EUlBl$ |3A3q eui§is 119 {)U_ inn) ( lxl ° m2/s ) Model Year 4 Lon (deg) Figure 115: 250mb Velocity Potential ( 1x10 m 2 /s) filtered to retain periodicities of 20-100 days, averaged ION- 1 OS, for model year 4 120 {% 20 _ 100 } (lxl(f m 2 /s) Model Year 7 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC Lon (deg) Figure 1 16: 250mb Velocity Potential (1x10 m 2 /s) filtered to retain periodicities of 20-100 days, averaged 10N-10S. for model year 7 121 <: U.S. GOVERNMENT PRINTING OFFICE: 1996—774-842 ADDDDEM7E t 171D ADDDDEM7ET71D