NOAA Technical Report EDS 16-NGSDC 1 =M, Data Description and Quality Assessment of Ionospheric Electron Density Profiles for ARPA Modeling Project March 1977 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Environmental Data Service NOAA TECHNICAL REPORTS Environmental Data Service Series The Environmental Data Service (EDS) archives and disseminates a broad spectrum of environmental data gathered by the various components of NOAA and by the various cooperating agencies and activities throughout the world. The EDS is a "bank" of worldwide environmental data upon which the researcher may draw to study and analyze environmental phenomena and their impact upon commerce, agriculture, industry, aviation, and other activities of man. The EDS also conducts studies to put environmental phenomena and relations into proper historical and statistical perspective and to provide a basis for assessing changes in the natural environment brought about by man's activities. The EDS series of NOAA Technical Reports is a continuation of the former series,, the Environmental Science Services Administration (ESSA) Technical Report, EDS. Reports in the series are available from the National Technical Information Service, U.S. Department of Commerce, Sills Bldg. , 5285 Port Royal Road, Springfield, Va. 22151. Price: $3.00 paper copy; $1.45 microfiche. When available, order by accession number shown in parentheses. ESSA Technical Reports EDS 1 Upper Wind Statistics of the Northern Western Hemisphere. Harold L. Crutcher and Don K. Halli- gan, April 1967. (PB-174-921) EDS 2 Direct and Inverse Tables of the Gamma Distribution. H. C. S. Thorn, April 1968. (PB-178-320) EDS 3 Standard Deviation of Monthly Average Temperature. H. C. S. Thorn, April 1968. (PB-178-309) EDS 4 Prediction of Movement and Intensity of Tropical Storms Over the Indian Seas During the October to December Season. P. Jagannathan and H. L. Crutcher, May 1968. (PB-178-497) EDS 5 An Application of the Gamma Distribution Function to Indian Rainfall. D. A. Mooley and H. L. Crutcher, August 1968. (PB-180-056) EDS 6 Quantiles of Monthly Precipitation for Selected Stations in the Contiguous United States. H. C. S. Thorn and Ida B. Vestal, August 1968. (PB-180-057) EDS 7 A Comparison of Radiosonde Temperatures at the 100- , 80-, 50-, and 30-mb Levels. Harold L. Crutcher and Frank T. Quinlan, August 1968. (PB-180-058) EDS 8 Characteristics and Probabilities of Precipitation in China. Augustine Y. M. Yao, September 1969. (PB-188-420) EDS 9 Markov Chain Models for Probabilities of Hot and Cool Days Sequences and Hot Spells in Nevada. Clarence M. Sakamoto, March 1970. (PB-193-221) NOAA Technical Reports EDS 10 BOMEX Temporary Archive Description of Available Data. Terry de la Moriniere, January 1972. (Com-72-50289) EDS 11 A Note on a Gamma Distribution Computer Program and Graph Paper. Harold L. Crutcher, Gerald L. Barger, and Grady F. McKay, April 1973. (COM-73-11401) EDS 12 BOMEX Permanent Archive: Description of Data. Center for Experiment Design and Data Analysis, May 1975. (COM-7511116) EDS 13 Precipitation Analysis for BOMEX Period III. M. D. Hudlow and W, D. Scherer, September 1975. (PB-246-870) EDS 14 IFYGL Rawinsonde System: Description of Archived Data. Sandra M. Hoexter, May 1976. (PB-258057) EDS 15 IFYGL Physical Data Collection System: Description of Archived Data. Jack Foreman, September 1976. (PB-261829AS) NOAA Technical Report EDS 16-NGSDC 1 ^0 ATMOSP^ . r/ WerjT of °° Data Description and Quality Assessment of Ionospheric Electron Density Profiles for ARPA Modeling Project Raymond 0. Conkright National Geophysical and Solar Terrestrial Data Center Boulder, Colorado March 1977 o o 3. U.S. DEPARTMENT OF COMMERCE Juanita M. Kreps, Secretary National Oceanic and Atmospheric Administration Robert M. White, Administrator Environmental Data Service Thomas S. Austin, Director Digitized by the Internet Archive in 2013 http://archive.org/details/datadescriptionqOOconk Data Description and Quality Assessment of Ionospheric Electron Density Profiles for ARPA Modeling Project R. 0. Conkright National Geophysical and Solar-Terrestrial Data Center Environmental Data Service, NOAA, Boulder, Colorado CONTENTS Abstract 1 1. Introduction 1 2. Data description 2 3. The Lerfald analysis system 5 3.1. Film review 5 3.2. Measuring the data 6 3.3. Computer reconstructing and formating the data 6 3.4. Constructing the "unseen" ionization model 6 3.4.1. F(90) model 6 3.4.2. E- and F-region model 7 3.5 The inversion method 8 3.6 Internal program rejection parameters 8 4. Application of the Lerfald underlying ionization model 8 5. Profile quality assessment 10 5.1. Grading the profiles 11 5.2. Comparison of hand-analysed versus mass-produced profiles 11 5.3. Conclusions of profile comparisons 16 6. References 16 Appendix. Noon and midnight profiles 21 m DATA DESCRIPTION AND QUALITY ASSESSMENT OF IONOSPHERIC ELECTRON DENSITY PROFILES FOR ARPA MODELING PROJECT R. 0. CONKRIGHT National Geophysical and Solar-Terrestrial Data Center Environmental Data Service, NOAA, Boulder, Colorado ABSTRACT This report presents a description of the automated method used to produce electron density (N(h)) profiles from ionograms recorded on 35mm film and an assessment of the resulting data base. A large data base of about 30,000 profiles was required for an ionospheric modeling project. This motivated a search for an automated method of producing profiles. The auto- mated method used is fully described, the resulting data are given a quality grade, and the noon and midnight profiles are presented. Selected portions of this data base are compared with profiles produced by the standard profiling method in use by the Environmental Data Service at Boulder, Colorado. I. INTRODUCTION The derivation of electron density distribution profiles from film ionograms by the Paul [1967] method as implemented by the computer program of Howe and McKinnis [1967] has been an ongoing program in the Department of Commerce since early in 1960. However, scaling the ionograms and preparing the data have in the past been a very expensive, tedious and time-consuming effort. In 1972, there was a requirement for a large quantity of profiles for an ionospheric modeling project. This motivated a search for a more efficient data processing system by Lerfald et al. [1974] and his associates at the Space Environment Laboratory of NOAA. The technique decided on was (1) pre- examination and expert commentary of samples of the ionograms to be analyzed, (2) digitization by a nearly automatic laser beam digitizer and (3) introduction of a suitable model for "unseen" ionization. The difficulties inherent in this and any other automated method of producing electron density profiles are how to get the meaningful ionogram information accurately into digital format, and what assumptions are appropriate when information is missing on the ionogram. Generally, ionograms reveal little or no information at low frequencies (below 1.5 MHz), and in "unseen" regions (valleys and topside) or in "seen" regions where the electron density gradient is nearly zero. Solutions to both of these problems are important if we are to calculate reasonably accurate "true" heights. Ideally the inversion process would start at zero frequency but in actual practice this is not possible. In the evaluation of the inversion integral for every probing frequency, there is a singularity where the plasma frequency is equal to the probing frequency for the o component. This singularity has an effect which depends greatly on the slope (dN/dh) at that point. If we could choose the correct height, frequency and slope, we would be able to "start" the inversion at this point and thereby closely approximate the actual profile as long as the rest of the profile was monotonic. However, there are few data in the ionogram that can give guidance to these choices. Many different models (or "starts") can and have been used in an attempt to account for the "unseen" ionization. For the purpose of the joint ARPA/N0AA study, a diurnally varying D-, E-, and lower F-region model was used and a monotonic distribution assumed throughout all regions of the ionosphere. Thus the major part of this publication will be concerned with reporting how well the profiling procedure was automated by Lerfald et al. An analogous hut different technique was adopted by Dr. John S. Nisbet and colleagues at Pennsylvania State University for mass studies for a different time period in connection with the same modeling project. The ionospheric modeling project for which these large quantities of N(h) profiles were prepared was suspended, but the N(h) data have been deposited in World Data Center A for Solar-Terrestrial Physics. This report describes these data and summarizes the Lerfald data processing and analysis system. It also describes and illustrates a data quality assessment scheme which has been applied to the archived Lerfald data. The Appendix gives graphs of the noon and midnight profiles from the Lerfald data set, illustrative of the complete and detailed data available from World Data Center A, which is operated by and is col- located with NOAA's National Geophysical and Solar-Terrestrial Data Center. 2. DATA DESCRIPTION Ionograms for the Regular World Days (RWD) in March, June, September, and December 1964 (IQSY) were originally selected for producing the electron density distribution data base necessary for the ARPA ionospheric modeling project. However, due to the high level of geomagnetic activity during September and December, the period of coverage was extended in these two months to include geomagnetical ly quiet days. Except for September these include the dates recommended by the XVII General Assembly of URSI (Aug. 1972) for data reduction in Recommendation URSI Commission III . 1-Profi les of Electron Density. For stations with ionosonde sweep schedules of one each 15 min, 2,000 ionograms per station would have been taken during these periods. The distribution and magnitude of the quiet and disturbed times as indicated by Ap and Kp can be seen in Table 1. A survey of the available ionogram data during these peri- ods revealed 15 stations (shown in Table 2) with the 15-min sweep schedule and reliable data. These 15 stations operating continuously for the 22 days would have established about 30,000 ionograms available for processing in this modeling project. Only 18,226 interpolated profiles were actually produced, because ionograms were lost due to equipment malfunctions or were too complex to interpret. The profiles are archived in computer compatible form at the World Data Center A for Solar-Terres- trial Physics in two formats on magnetic tape. Examples of these formats are shown in Tables 3 and 4. Table 3 gives a sample printout of the profile data in terms of the points used in the calculation. Table 4 is a sample of the profile interpolated to true height intervals of ten kilometers as they appear in card or card image format. Each profile is contained on two or more cards. Other output formats can be provided upon request, such as shown in Figure 1 and Table 5. Table 1. Solar- Geophysical Data for Days Scaled in 1964 1964 Mar Jun Sep Dec Day Daily Three-hr Gr. Intervals Kp No . Ap magnetic inde X 1 2 3 4 5 6 7 8 17* 77 10 2 + 2o 4- 4- 2o 1+ lo 1- 18* 78 3 0+ + 2- 1 + 1- 1- lo 0+ 19* 79 3 1- 0+ 2- 0+ lo 1- 1- lo 16* 168 4 2- lo 1- lo 0+ lo lo lo 17* 169 4 0+ 1 + 2- lo 2- 1- 0+ 0+ 18* 170 7 1- 0+ 1- 2o 3o 1 + 2 + 3- 18 262 5 2- 2- lo 1 + 1 + lo lo 2- 19 263 3 0+ 1- 1- 0+ lo 0+ 0+ 1- 2U 264 2 Oo Oo 0o 0+ 0+ 0+ 1- 1 + 21 265 5 0+ 1- 1+ 2- 1- lo 1 + 2 + 22* 266 44 7- 8- 3+ 2+ 2 + 2o 2+ 2 + 23* 267 8 2o 2o 4- 3- 1- + 1 + 2o 24* 268 9 lo 2+ 2o 3o 2- 2o 3+ 1+ 9 344 5 0+ 2- 2- 1+ 1- 1- 1- 3- 10 345 3 1 + 1+ 1+ 0+ 0+ Oo 1- Oo 11 346 3 0o 0+ 1- 1- 1- 0+ lo 1+ 12 347 2 Oo 0+ 1- 0+ 1- Oo 1- 1- 13 348 9 1- 1+ 1- 1 + 2o 4- 3+ 2- 14 349 7 2o lo 2o 2 + 1 + 2o 2o 2o 15* 350 8 3o 3+ 2o lo 2- lo lo 0+ 16* 351 15 3- 2 + 2o 3- 5+ 2o 2- 3- 17* 352 15 5- 4- 3o 3o 1+ 2- 2o 2+ '' Regular World Days Table 2. A L zst of Ground Stations with Geographic and Geomagnetic Coordinates Station Latitude Long i tude Geomagnetic* Magnetic* Station Code (deg) (deg) Lat. (deg) Long. Computed Dip West East East (deg) Adak AD 51.90 N 176.60 183.40 47.22 N 239.99 63.1 N Bogota BG 04.50 N 74.20 285.80 15.95 N 354.61 23.8 N Boulder BC 40.00 N 105.30 254.70 48.85 N 316.44 68.3 N Conception CP 36.60 S 73.00 287.00 25.12 S 356.15 35.5 S Grand Bahama GB 26.60 N 78.20 281.80 37.93 N 349.56 59.8 N Huancayo HU 12.05 S 75.30 284.70 00.62 S 353.81 1.3 N Jamaica JA 18.00 N 76.80 283.20 29.38 N 351.48 50.4 N Manila MiN 14.70 N 121.10 03.37 N 189.78 14.5 N Maui MA 20.80 N 156.50 203.50 20.86 N 268.11 38.8 N Mexico City MX 19.40 N 99.70 260.30 29.14 N 327.08 46.4 N Okinawa OK 26.30 n 127.80 15.25 N 195.58 36.6 N Point Arguello PA 35.60 N 120.60 239.40 42.15 N 300.78 61.0 N Talara TA 04.60 S 81.30 278.70 06.64 N 347.66 13.1 N Wallops Island WP 37.90 N 75.50 284.50 49.31 N 352.12 69.9 N White Sands WS 32.30 N 106.50 253.50 41.10 N 316.94 60.5 N -These va 1 ues will not agree wi th those of Report UAG-38, Master Statior List for December Solar-Terrestrial Physios Data at WDC-A for Solar-Terrestrial Physios. \31h. Different field models were uset i. Height Profile of Electron Dens' Table 3. Sample printout; Single True '.ties BOULDER, COLO. 73 06 15 0700 FOR SAMPLE F=0 . 560000 FH=1. 429120 LOGFN H* H Z* SIN 1=0.924546 Z** INTEGRAL 9.9 50 EXTRAP 0.005 90 O 0.015 0.250 0.350 0.370 0.400 0.420 0.430 0.440 0.450 0.470 0.500 0.530 0.560 0.580 0.593 0.603 LOG FM=0.6067 90 O 107 O 110 O 119 O 120 O 131 O 150 O 90.00 90.00 90.00 94.51 98.78 99.99 102.04 132.70 105.37 218 OV 109.51 190 O 112.52 181 O 190 O 210 O 251 O 307 O 395 O 586 O 117.49 124.27 132.26 14 3.16 154.09 165.46 181.75 0.000 0.00 0.000 0.00 0.000 0.00 20.915 44.50 17.801 -000015.57 42.475 616.85 25.630 -000280.75 57.802 804.29 108.706 2545.21 305.188 9824.13 141.785 -000882.00 106.505 -000882.00 HMAX=199. 86 119.715 146.497 217.021 329.392 545.043 1084.418 S= 69.527 220.17 446.36 1175.41 2809.28 8294.26 26968.74 SHMAX= 0.000 0.000 0.000 1.386 3.302 4.092 5.576 6.952 8.417 12.236 15.134 20.247 28.117 38.761 55.486 74.257 95.306 127.119 163.608 EL/Cu 00805+003 26919+004 32901+004 92217+004 21623+004 81596+004 82576+004 8.58078+004 8.98518+004 9.40864+004 ,85205+004 08026+005 24030+005 42405+005 63503+005 79278+005 90339+005 99309+005 .02697+005 Line 1 — Station, Year, Month, Day, Hour, Minute (local standard meridian time - Line 2 -- Project designator (for sample), Geomagnetic field strengths at ground level in gauss (F) , gy rof requency at 200 km (2.55xF) in Megahertz (FH) , the sign of the local geomagnetic dip angle (SIN I). Line 3 -- (gives the column head i ngs) --1 ogar i thm of the plasma-frequency (LOG FN), virtual height (H-) , true height (H) , slope of the profile (Z-) , change in the slope (Z**) , integrated electron density (N 10 electrons/cm 2 ) (INTEGRAL), and the electron density with the exponents as shown (EL/CC) Last line -- Logarithm of the maximum plasma frequency (LOG FM) , height of the maximum plasma frequency (HMAX) , the quarter thickness (S or sometimes SCAT), the integrated electron density up to HMAX (SHMAX) , the electron density at HMAX. "V" in H- column represents a critical frequency and "0" indicates the ordinary trace was used to obtain the virtual heights. All heights in kilometers. LMT) Table 4. Sample Printout; Card Images of Five Interpolated Electron Density Profiles 540000 540000 540000 500000 500000 500000 500000 5 JOQ64 5J0064 5J0064 520132 523132 ^20132 BC640316 BC640316 BC640316 BC640316 BC640316 8C64Q316 BC640316 BC640316 BC640316 BC640316 BC640316 8C64Q316 BC640316 1700100 1700110 1700120 1715110 1715120 1730110 1730120 1745100 1745110 1745120 1800100 1800110 1800120 0000 362 2790 0312 2830 0270 2490 0000 0236 3370 0000 0197 2650 00000 00511 03690 00459 03750 00389 03510 00000 00371 03960 00000 00246 03370 000000000 005500059 043800475 005070054 044200476 004230045 043300469 0000 0000 004C20046 042600434 000030000 002770031 037830388 00000 10066 00484 40057 00484 00048 00473 00000 90055 00434 00000 60037 00388 00000000 60078000 00485000 90063200 00485000 50053200 00474000 00000000 6C068000 00000000 00000000 00045400 00000000 0000000 9230112 0000000 7950103 0300000 6010071 0000000 0000000 8760121 0000000 0000000 6010085 0000000 000000 001400 000000 001340 000000 80C971 000000 000000 001760 0C0000 000000 601270 000000 00079 01870 00000 019 30 00000 01530 00000 03055 02570 00000 00049 01870 00300 625 0325 00OOOO0OGO 090239C26M 625 0329 090239025Q 618 0291 090236022J 591 0313 0000000000 090228022L 559 0274 3000000300 090229017Q Columns 1 througn 6 -- give the internal job identification. Columns 7 and 8 -- give the two-letter station code (see Table 2) Columns 9 through 18 — give the year, month, day, hour, minute (LMT). Column 19 -- gives the profile quality grade, see section 5.1. Column 20 -- is a key digit which identifies the height range for the data in columns 21 through 70 (0=0 to 90 km, 1 = 100 to 190 km, 2 = 200 to 290 km, etc.). Columns 21 through 70 are divided into ten five-column sections. Each gives the electron density in 10 electrons/cc in increments of ten km. Columns 71 through 80 -- of the first card of each profile give the foF2 of ionogram in columns 71"73 and the quarter thickness (SCAT) of the F2 layer in columns 7^-80. Columns 71 through 80 -- on the last card of each profile q i ve the minimum height of the profile (HMIN, in columns 71 through 73), the maximum height of the profile (HMAX, in columns Jh through 76) and the integrated electron density up to the height of maximum plasma frequency (SHMAX, in columns 77 through 80) . The number in column 80 of the last card receives an overpunch to flag it as being the final card of the profile. 400 300 t 9 • • *♦»«* ■» — *■ UJ 200 UJ t— IOC ■ * 1 1 1 * **** 10 ELECTRONS PER CC ::' ::' :c 7 gra:e= ! :3C 54:2! 0) Figure 1. Electron Density Profile -from Ionogram recorded at Boulder on December 10, 1964, at midnight (BC 641210 0). Table 5. Interpolated Electron Density Profile Output (Electron Densities in 10 z EL/CC) STAT ION! cC ac bC bb oC 3L, BC uL O.C OATc: 640317 640 317 64-317 64v Jl7 64G317 640 3l7 64u3l7 6h j 31 640 0I6 GkADl : f TIME! 4Cu 5 u b 00 12 j 1600 1700 1800 4- j H l 0u71 00 86 270 0161 C136 0113 0030 0083 260 0165 0133 0114 84 0C89 290 0165 C138 0114 0085 0089 30 j085 310 320 330 343 350 360 370 360 390 SCAT 39.9 39. 2 43.0 34. 1 54.8 25.6 40 . 35 . 1 46.2 HMIN u90 090 090 93 090 90 L90 090 90 HMAX 262 278 278 25 246 2 32 237 2»8 276 SHMAX 01G4 0095 GG63 0345 G312 0212 ul79 0053 0077 THE SCAL £ HEIGHT (SCAT) , MINIMUM HEIGHT ( HMIN) , MAXIMUM Ht_IGH T (HMAX) A R E IN KM. Thi INTE GRAL TO THE MAXIMUM HEIGHT (SHMAX) IS IN i. OEjIi .. EL/CM2. 3. THE LERFALD ANALYSIS SYSTEM 3.1 Film Review Ionograms on 35mm film for the 15 stations of Table 2 for each of the 4 seasons in 1964 (Table 1) were retrieved from the archives of World Data Center A for Solar-Terrestrial Physics and sent to the EDS Ionogram Quality Review Group for comment. Each reel was scanned to note information to aid inter- pretation and digitization. At least one sample ionogram print was made for each station. This print was annotated to reveal fiducial points, distortions due to equipment misalignment and possible diffi- < l ul ^ r ^ s jr in interpretation. All of these specific comments and guidelines by EDS specialists were sent to SEL for use by its contractor. Generally, only stations with reputations for having well-maintained equipment, easy-to-scale 35mm film ionograms and midlatitude geographic locations were selected for this project. The stations known to be easier to handle were sequenced to the digitizer ahead of the more troublesome ones 3.2 Measuring the Data In order to automatically process the ionogram data, sufficient information must be extracted from each ionogram to define the h'(f) traces and to transform them into digital format. An automatic trace- following laser beam measuring machine (called the SWEEPNIK) [Lerfald et al . , 1974] was interfaced with an online computer. An operator with manual override capabilities supervised the digitizing to insure the correct trace was beinq followed. This system utilized the advantages of the inherent accuracy of the laser, the speed of the computer, and the pattern recognition capabilities of the operator. The resulting digital magnetic tape contained station and frame identification, fiducial points, x-y coordinate values of the ionogram trace (in cm) and coded comments. A small degree of smoothing was pro- gramed into the laser optics to prevent undesirable jitter in the digital data. 3.3 Computer Reconstructing and Formating of the Data The measured data were then ready to proceed throuqh a series of subroutines to prepare them for processing by the HOWE inversion program [Howe and McKinnis, 1967]. The subroutines are briefly described as fol lows : 1) SURVEY - lists station code, date, time, number of data points, number of fiducial points, the first and last frequency, tne difference in the first and last frequency, the difference between the frame fiducial and the master, and operator's comments for each frame. 2) START - assigns the D-region model to be used in the profile calculation. 3) ELAYER - assigns E-layer data points from a model when none is scaled. 4) X-YPICK - selects the digital data points to be used in the final profile calculation. 5) VPOIHT - assigns "V" designations to discontinuities at layer peaks. 6) TRANSFRM - converts the x-y coordinate values to h'(f) values. 7) FIVECHAR - checks tne one-hop to two-hop ratio. 8) TYPE2 - formats data for HOWE input. 3.4 Constructing the "Unseen" Ionization Model The "unseen" ionization must be taken into account to correct the virtual height of the first observed point on the ionogram to a "true" height. It is represented by a model which is applied to the observed ionogram data in two steps. The first step is to establish the electron density at 90 km (below which echoes are seldom observed). Next, virtual heights points must be selected to connect the first observed data with the 90 km points. 3.4.1. F(90) Model The F(90) Model of the electron density at 90 km is due to Smith [1974] and in effect takes account of the diurnal variation of the D-region ionization by the simple relationship involving the cosine of the solar zenith angle by day and linear relaxation in the late afternoon and evening (see Figure 2). This model was designed to match radio propagation experience. hours before sunrise or after sunset cosine of the solar zenith angle Figure 2. Smith F(90) Model of Diurnal Variation of D Region. Lerfald's attempt at expressing this curve in computer code is explained in SEL-34 [Jurgens et al. 1974]. His model was limited to latitudes lower than approximately 55°, thus to those stations having' at least 5 hours of darkness. However the model has been extended recently for global coverage [Smith, 3.4.2. fie E- and F-region Model he E- and F-region Model begins with a predicted value for the E-layer critical frequency (foE) as function of time of day, season, sunspot cycle and geographic location. This value is taken from tr empirical E-layer climatology used for ionospheric radio propagation predictions [Roberts and R ,ich, 1971]. The foE is zenith angle dependent by day. Nighttime values are from limited observa- t ins and radio propagation experience. The true height profile of the E layer is assumed to be i jghly parabolic, and virtual height points for the model were selected to reflect this. The recording on the ionogram of the virtual height of critical frequency is dependent upon trans- mitter power and receiver sensitivity. In the vicinity of foE, for example, it is common for the trace to be so faint that neither foE nor its virtual height can be actually measured, yet a numerical height value must be provided to the "HOWE" program. For modeling an unseen E layer, Jurgens et al. [1974] usually set the virtual height of the E-layer cusp (foE) at 50 km above the first scaled height in the F layer. An exception to this practice was when the lower end of the F layer trace had a zero or positive slope. In this case the virtual height of foE was set equal to the height of the first scaled point on the F layer. Serious difficulties occur in the calculation of the electron density distribution when the foE virtual height is close to the virtual height of the first F-layer point. Here is the only major difference between Jurgen's work and the model adopted by EDS (Figure 3). Because of the built-in continuity equations of the "HOWE" program, it makes little or no difference whether the virtual height is excessively high or not. EDS arbitrarily assigns 400 km as the virtual height of the E-layer cusp in an effort to make the profile computation more consistent. km 400 400 • K 300 i \ ' \ \ \ \ \ F-Reqion E rhn ?^ 200 - / 118 ___ 150/' 124 --* __ Model 100 foE 1 ill i 86% 93% 98% ~+lMHz Probing Frequency Figure S. E- and F-Region Model used by EDS. Figure 3 shows the E- and lower F-region EDS model with a 400 km f oE . It should be noted that all E-layer heights shown are adopted representative virtual heights and distributed in frequency relative to the foE. The shape of the E layer is specified by three height-frequency points, as follows: (118 km at 0.86 MHz x foE), (124 km at 0.93 (150 km at 0.98 MHz x foE) . \z x foE) , and The shape of the model E layer is best suited to low sunspot years, midlatitude stations and magnetically quiet summer midday ionograms. No allowance has been made for the height variation caused by temporal or magnetic changes. The heights are not adjusted other than placing them at 86%, 93%, and 98% of the scaled or assumed foE. The foE frequency was varied in relation to sunspot number, season, latitude, and time of day. The E region is joined to the measured F-region data by a fi rst-order approximation to an exponen- tial curve. 3.5 The Inversion Method The problem faced here is, given the virtual height as a function of frequency obtained by the ionosonde technique, to calculate the electron density distribution as a function of real height. This is a troublesome problem which can never have an unambiguous answer, because the inversion integral to convert h'(f) into h(f) requires complete information about h'(f) over all frequencies, and this cannot be obtained by the ionosonde technique. An infinite number of electron density profiles can produce the same incomplete ionogram. Thus, certain assumptions must be made about the nature of the electron density distribution before a calculation can be made with the available h'(f) information. To begin with, some assumption must be made about the effect of underlying ionization with densities less than that which can reflect the lowest frequency seen in the echoes on the ionogram. Another common assumption is that the electron density increases monotonically with height. A detailed description of the step- by-step procedure of the calculation is given by Wright [1967]. In the method used to calculate the data base presently under discussion it was assumed that dN/dh is greater than until foF2 is reached, at which time dN/dh becomes 0. This monotonic condition can sometimes be proved by inspection of the ionogram. However, more often it is not confirmed and the existence of a "valley" between the E and F region is a very real possibility even though conventional ionograms give no direct measurement of the morphology of that region. The HOWE program does allow for at least partial correction of this valley situation. Such a correction, however, was not included in the Lerfald automatic processing adaptation. It is also impossible to measure from an ionogram the exact value of the foF2 because the virtual height is infinite at that frequency. Customarily foF2 is scaled by estimating the asymptotic position. The HOWE program does not use the scaled value of foF2 but instead uses a systematic method of extrapo- lating the observed trace to foF2 and of extrapolating to the height at which the maximum electron density occurs. This is also described by Howe and McKinnis [1967]. 3.6 Internal Program Rejection Parameters An important feature incorporated into the HOWE program is the ability to flag bad profiles. In addition to normal computer input data checks, this program also checks the output data for profile parameter variations beyond a subjectively established reasonable limit. The parameters checked are the profile slope, integrated electron density, height of maximum electron density, height of minimum electron density, the quarter thickness of the parabolic nose, the parabolic fit of the peak, the magnetic field, and the standard deviation of the "start" extrapolation. These parameters are also listed on the profile output so a more detailed check can be made. In the hand-processing of profile data this detailed checking is an important step in the quality control. It is also one of the most difficult things for the inexperienced person or for a computer to do. In the Lerfald SEL automated system this step was neglected altogether. 4. APPLICATION OF THE LERFALD UNDERLYING IONIZATION MODEL To demonstrate the model application techniques, a typical afternoon ionogram is shown in Figure 4 in several degrees of observed detail, and the model is applied appropriately to each case. Figure 4a is the easiest ionogram to process. Heights are observed and can be measured down to about 100 km at fmin, so this ionogram is nearly complete, since there is little ionization below 100 km. The Lerfald model needs only to supply the 90 km point (as determined by Smith [1974]}. For monotonic cases the profile resulting from the calculation of these virtual height data is as accurate as is possible from the method used. All of the F region and a definite indication of foE can be seen in Figure 4b. In this case three height-frequency values for the E layer (their frequency depending on the value of foE adopted from the indication on the F-region trace) and one for the D region are supplied by the model. The accuracy of the resulting profile depends on how well these three points describe the real shape of the "unseen" E region and the D-region electron distribution (as described above). Figure 4c shows an ionogram which gives an indication of underlying ionization by the minor cusp at the lower end of the F region, but little else. In this case an foE is calculated for the season, hour and sunspot number [Roberts and Rosich, 1971] and set at a virtual height of 50 km above the first scaled point in the F region. The resulting profile has additional inaccuracies caused by prediction and model connection errors. Progressing a bit further with the absence of necessary information, as shown in Figure 4d, we note that none of the retardation caused by underlying ionization is observed on the ionogram. Lerfald de- cided to handle this situation by assigning the virtual height of foE to be the same as the height of the first scaled point of the F layer. As described earlier (see Sec. 3.4.2), this can lead to trouble in the profile calculation by greatly lowering the computed heights. A better approach would be to assign an arbitrary height of about 400 km, as in the EDS modeling technique. PI ARGUELLO 1700 LT MARCH 17, 1964 (a) (b) (O (d) (e) 3 4 Frequency MHz T Lowest observed data point used for profile calculation. • Model points. Figure 4. Sample Afternoon Ionogram with Successive Deletion of Lower Frequency Echoes to Illustrate Model Application as Observed Detail Decreases . 0-trace Only is Shown. Finally, the absence of lower level data (Figure 4e) is such that it is doubtful that the information on the ionogram warrants an attempt to compute a profile. Generally if the slope (dh'/dlog (f^)) is much greater than 50, the results of an attempt to calculate a profile by this method are doubtful . These examples illustrate a range of conditions experienced in practice in determining N(h) pro- files from actual ionograms, in this case daytime ionograms. The profiles calculated in these five examples are tabulated in Table 6. There is fair consistency among the profiles calculated from (a) : (b) and (c) of Figure 4. The apparent degradation when so much information is missing can be seen in the results from (d) and especially (e). Table 6. Profile Calculations of Ionograms in Figure 4 PT. AiSGUELLO, CALIt 6 4 ;3 17 17Bi FOii tiAfiPA. 0=A. F=tf.4"99aa a. t'H=l. 273448. SI.' 1=8. 3 59 3 52 .2 . LOO t'X LOG f'l\ K* H(Fig. 4a) H(Fig. 4b) H(Fig. 4c) H(Fig . 4d) H(Fig. 4e) a 1 a 2 8 . 7 7 a a tixit CAP 90 .0a 9.371, 90 9 j . t; -J 9 .380 98 9 . ,i j a . (•', 5 8 108 vj 94.45 .2 M0 109 J ^ 99.72 a . 2 5 J lit o 1 1 . u 5 a • 2 c '-' 112 1 !■; 1 . 9 7 . 32 ti 12 2 104.12 8 . 3 3 v 131 1G5.15 L-.34G 144 1 J 6 . 7 7 b . 35a 18a lu9.87 0.357 359 ov 118.23 116.53 a .37n 275 126.49 12 4.92 b . 3 S u 255 G 1 3 1 . ti 5 12 9.56 B . 3 9 ii 24G J 134.78 133.36 '{j . k'j »; 248 1 3 B . 2 3 13 6.86 132.9 6 . 4 3 '<:■ 235 14 7./ 7 14 6. "j 6 14 3.11 y . 4 6 a 234 155.19 154.1:, 151.53 u . 4 y a 2 38 162.52 161.53 15 9.33 i-i . 5 vj a 2 4 164.94 16 3.99 161.33 ■J.b'zv 246 169.89 16 9. a a 1 6 7 . 8 8 8.54 8 2 47 J 17 4.68 17 3.32 172 .8,6 8 . 5 7 (j 243 o 1 8 a . o 4 179.80 17 8.31 ii . 5 -j o 2 44 185. o2 13 5.13 13 3.74 178 11 ( j . 6 5 u 247 193.94 19 3.34 192.1b 187 6 9 18 4.9 1 > J . 6 ii a 2 5.. 198.54 197.99 19 6.94 192 96 19a. 57 a . 7 a a 257 2 a 1 . 9 j 2 i. 1 . 3 a 2 v. a . 4 196 71 19 4. '52 ■j . 7 3 a 2 7B 207 .95 2 a 7 . 4 7 2 a 6 . 5 3 2a 3 27 2 a 1.3 4 l . 7 7 j 3j3 210. Hii 218.37 217.58 214 ,69 2 13. a 4 (J . 7 3 5 323 o 2 2 4.48 2 2 4 . « 6 223.31 22;. .56 218.98 ii .795 4 ';. 'J u 2 3 4.49 2 34.1-8 2 3 3.35 2 3 3 6 9 229.17 LOGt'M=a . 7 95S f ' 1'i \X=2 38.53 =2 33.19 = 2 3 7 .43 = 234 . 9 6 = 2 8 J . 5 2 5. PROFILE QUALITY ASSESSMENT Assessing the quality of an electron density profile is not a straightforward task because of the da oi n us ° n he 1p hoH riab "^ IS 6 ^ ali V e P en ds upon the accuracy and completeness of tie onogram vals f m?ft C2S US a the C3re ta , ken in the com P ut atTon. Since there were short time inter- vals (15 mm) between Tonograms processed for this data base and since changes in the ionosphere were generally smooth over such time scales, we decided the most meaningful test wou d be to check the n,nf Cy ° f the P roflles from one P^file to the next. This will not necessarily be a test of Ki'S'SSiitaj ?he t p h ?of?li:' StenCy "'^ Wh1Ch the Pr ° JeCt eX6CUted the -thodVanalvl^which bv rhIrkinn S iL W Hl e -^ ed t0 / heck t°r consistency. Each profile in the entire data base was graded calculatld 9 f^ Si ? n !° f a Pr0fl1 ! P arameter from the average value of the profile parameter the t » of Z Si tEI° fll f-i P T e K Sed in M , that m ° nth f0r that Station and month within one hour of HnL w I f y ° f the > Pr0flle t0 be graded - In addition to grading the entire data in this way, a nrlrln '^ ,T ""^ ° f pr0files fbr selected times " The latter were hand-processed by the same procedures used to compute the profiles in the automated mode. These are discussed in the following 10 5.1 Grading the Profiles Each profile was assigned a grade of acceptable (grade 1), marginal (grade 2), unacceptable (grade 3) and rejected (grade 9). The scheme involves combining individual grades based on deviation of each of several profile parameters from their average in stated ranges. Table 7 gives the details and the relative weights given to the grading by the various parameters. Table 7. Variation and Weights of Profile Parameters Profile Grade 1 Grade 2 Grade 3 Parameter acceptable marginal unacceptable weight foF2 to 14% 15 to 29% 30 & above 2 Hmax to 9% 10 to 19% 20 & above 3 Scat to 49% 50 to 99% 100 & above 1 Shmax to 24% 25 to 49% 50 & above 2 N(200) to 19% 20 to 39% 40 & above 2 The variations are deviations with respect to the corresponding two-hour average for the parameter concerned. Profiles rejected altogether and released from the data base were assigned a numerical grade "9". Spot checks were made of profiles which were graded two or three in order to find the reason for the inconsistencies. In most cases this search revealed that either there had been an incorrect inter- pretation in the ionogram or the incorrect edge (following rather than leading) of the echoes had been digitized. Interpretation of an ionogram is relatively easy during magnetically quiet periods when the echoes are being reflected from a nearly overhead horizontally stratified ionosphere. However, this is not the case most of the time, and there are times when even experts argue over the proper interpre- tation. Figure 5 shows an example of an ionogram from which a poor profile was produced, A good profile would have been possible had the interpreter been somewhat more experienced. The first reason the ionogram resulted in an unacceptable profile was that the second reflection of the c-type sporadic E layer was digitized as echoes from the F region. The second reason the ionogram resulted in a bad calculation was incomplete digitizing of the data. Only the E and Fl layers were digitized; the distinct F-region trace at a great height was overlooked. Seldom would an experienced scaler have made these errors. In this example one can also see the leading edge problem described earlier. Each profile in the data base has been assigned a grade, and this appears along with the profile stored on magnetic tape. It is also indicated in the profile index of which Table 8 is a sample. The index for all profiles in the data base appears in Conkright [1977]. 5.2 Comparison of Hand-Analysed Versus Mass-Produced Profiles A detailed analysis of profiles for selected times has been conducted to compare the results of the automated system with those obtained by hand processing the ionograms. Both procedures followed essen- tially the same rules regarding model application and the inversion calculations. The exception was in the way the model for underlying ionization was applied to the (h'f) point at foE as discussed above. In the hand processing the EDS scheme of putting h ' =400 at foE was used Also there proved to be some small differences in the climatol ogical prediction used for the value of foE. In most cases these exceptions made no significant difference for values obove the minimum observed frequency of the normal layer (Fl or F2). Data below the lowest frequency observed from the normal layer on an ionogram should be disregarded in any case, since they are only model data. The ranges for the different grades were rather arbitrarily determined by study of the ionograms discussed in this section. The profiles from the hand analysis were considered to be the "truth". Parameters from these were compared to the corresponding parameter from the mass-produced profiles in each of several ranges of the deviation from average. The agreement between hand and mass results was reasonably good in the ranges like adopted for grade 1, and deteriorated at larger ranges. Similarly the weights assigned to each parameter for forming the grade level for the profile cal- culation as a whole are somewhat arbitrary. Discrepancies in "Hmax" between hand-and mass-produced profiles seemed to be a rather better or more sensitive discriminator of consistent profiles while "Scat" was less sensitive than the others. 11 A summary of the grades assigned to the 18,226 profiles in the data base is shown in Table 9. The station and time selections for these analyses were based on four easy-to-handle stations with a history of good performance (Point Arguello, White Sands, Manila, and Boulder) and on periods of appreciable contrasts, that is, noon, midnight, sunrise (0400,0500 and 0600 local time) and sunset (1600, 1700, 1800 local time). 500 300 100 /A, = points used by Lerfald to compute N(h) profile ;•' * r ,ii v i ^LLi -m i , ill • •* A »a • • . too* 4i>*Mt Frequency (MHz] Figure 5. Boulder 0920 (LT J March 17, 1964. Ionogram. 12 *-t *-t OJ OJ ■ ^^OJ^^^HWtH ^ ^ h h h rj ^ *H CM H OJ H OJ -H *-t *H (Si t* *-l H rl (VJ H (\J •-4 OJ OJ vt —* -H OJ OJ *H *4 Hfg r^N »H ^-t (M *H W t-4 H »H '-I (M -H *H *H «-« *H -H *-l (M ■H *H W »H OJ I i^ -H rl h ry ,_j -H _t rH ,-t - * »-t H iH -1 W »-* T-t (M ^ ^ _( _l ,-» _l ,H ^ -h „h »h ,h ,_) I *-4 (7> *>4 -4 *H *-) T-t rH ,h .H *4 *H *H r-4 -H -1 ■^ .H .H r-i W OJ i-J ,-t T-t W ■^ -1 OJ -H OJ CM -H 4 (\J CM «-t -H . 3 3 ts cq ft ca £■ O to K O ^ Ms H S3 s K^ 1 ft to A, K o 3 ft srl- <^. Q I ^ O Ci TO to to TO ft, 5? o >. TO to ft IS* ZWCO-hzI ro =r o o 3 3 O 3 B) T| O) » o o) r+ ro x x X fc-"~*2S ^ "-' 25 o i-» 3 re o 3 oj O ts! c»> o o o ro ro -Pi en co ro vliOOl- ■£> -Pa sii\). ro en 1— > .j> 00 • CD si r\s co en en co ro co >-> -P» • en -& ro • • co h~> cti • ro 00 ro • o o ro ro co en co ro en co en • en co to co • wooi O co • o co ro ro ro en co ro -P» 1— » en • ct> co co ro ■ *« co ro en 1— > • o o ro 1— > co en co ro ro 00 to • 1— > -P» CD 03 • 000 en o • o o ro >-* -P» -P» co ro rosio- o co -C* to • to en si o cti . o o 00 en co ro co co • o -p» • CTI o co • en • ro si .p. -p* 1— » en co ro co ro si co en • en • cr> . 03 I— > l— 1 co 00 zwi/i-ti I rc ro =r -i =! DJ T| OJ DJ OJ r+ ro x X X 1— ■ ^ — 7^ -< t— ' 1— 1 3 re (-> 0. INI u> fD — ' rt> T* 1 —1 O s^ O co h-» co co 1— ■ ro ro o 00 • en 00 . ►_■ • en to en ix) en to • 00 co i— 1 co co i— 1 ro m MOID' CT> 00 o . -pi . en en ro co k-> to en • o -pi co co co i- 1 ro 00 ix) si co • co si m . ro .j> en r~ o en to • ro -P» to co co 1— ■ ro m ro en co • co si o • co 00 00 co co ro -pi • O si h- 1 .p» co 1— ■ ro kooi" i— ■ en • ro • o en co 00 ro si • to .pi 00 -pa co 1— • ro m ro 00 co • 1— * si a • O -Pi 00 co to o co • o ro co en en co ro co -Pi si O • si en m to • • en to 00 r~ • en t— > co • o ro ro co co en co ro -p. -pi js. • 00 en 00 • • en o o • en 1— 1 -pi • o o a CO 17 s o o "to m$ — • i— i co cj\ • •> S >3- cm ^~"\ -„ r- z o _1 Ul 1/1 X o o z "2 • ~ 3 2 • i m t* — 2 o o o w • CO CT> _ s to ■-HOO • CO «* ■ 5 Q >, i 3 uj ^j- o • cm cr> r-»- CM CM *3- LO i— 1 i— 1 S S to O *\. -o •OlN "-/"V _l co r^ co • co en ""* LU CO CO • uo 3- co «3- -S UJ OJ iHCOUD rH CO -I 3 *~ a «.* 55 -to oiNcn i—i ****>. _J O " LT) • ^V UJ i— 1 r-l • 00 CM •— 1 UJ en \ 00 CM 00 CM «3" tO CO r- LU tr £ CO z „ z 3 s :d to ■to t " 3 ■** CO » *> N — S CM 00 CM C> „ oo lO . tO • = Q r-» oi • to i"~» en 7 3 ^ CM CO CtJ «t N «t J! CO t-O ^ 1 = 3 O r— O CD o CD ^> , — ,co N . — - O co eon: e «-• o § s s " 2rH£ i£ !-H mil* anu X X X CM 4-> ro O irj (OU. id E O E E O O -C CM IZ» OO CM CO CM >Q- LO OO h- " LU £ to ^ z o -J D CO LO o . r-~- cri o-> cm co • LO O • LO "=J" CM CJ, ■— I CM CO LO CO CO lo o en "sj* r~~ • co • LO LO . r-H OO r-H CM LO CM OO ■* 0O . — . u-~^ o — o U r— CJ ■>», QJ -~-~ 0) o CD ,m M O «•> ; o rc E t-io X X CM +J itt O na ro li_ ro E co E E O LJ -C cm LO LO • CO CT. O CM r-- CM (O OO CM CO LO *3" LO r-~- • o • LO OvJ • CM CO CO CJ LO CM OO CM ^h C O • O <— 1 1-^. LO CO • CD LO co co • co co r-. cm t\i Q" n h h LO O • co co cm r^ oo • >=3- en CM CO 'NOlfl CM t— < CO CM t— I <-H o en E — .. o "— -> o ^ o O i— (J \ a ■». CD o CD . , tH m Nl .-^ O ■" 5 O 7T. E i— • O .-< S; :2^r-l X X x cm -*-> ro o ro ro u_ ro E O F E O CJ -C CM ZT 4- CO CO Z- co O Rh -: \, w '. :: M -Li a ■- £ a . 5 «^r LO :*) O LI J CD LO 1 <3> o CVI CO LO <3" CM CM % S «* Cj co i — 1 CM CO co o o co co CO LO 1 — jj CM CM UJ ex, s o c Co S) - CTl m • s "jj- c CO ■ P-. CD ss ■=* oo • r-^ o CO CM sc. 5 S s r^ (-i LO O CM LO CO CO CO LO CO • LO CM CO CM CM ■=j- «* CO — 1 19 • o o • o ■ "W M • oo r» cm ■ «*|- «d- t-H CO CM • — — co CM 00 CO • i— 1 CO M M co co • r^ «a- o "" — Q CM CTi • tD O O Is cm t-H co ^i- cy> lo **^. ^5* LU CM «* lO CM CO «s* x LO \ «— 1 o • co t-n «d- \ -k. •MN H "■■■^ •to CTi l>. CO • «*• • z \ _l lf)Hv en co o • \ LU to LO •Hl"»# \ LO t-H • 00 00 CO \ to CM i-H CO «a- CT> to \ cm t-n co co r-^ lo \ %^ **■ v ■to " ^S X - i 1 1 i E -* 5 1 " 3 " 3 ^ ^» * S M - •« m w s CO LU o • O CO LO r^. cm • rH co to CM t-H CO CO tO CM 1 o o 55 — M 1* • oo r- co r^ CM • CM LO «3- cm • en «a- •*■ CM CM «a- CO t-H t— l *™*^_ t-H o 8 "N -w» _J LU • CO CO 00 r-H en CM • • r»- cm • lo to lo LU \ •v. • o r>. to o ^1" • CM to lo «3- •inrvin NNtJ'f iHH \ %» oo cm i— i co co r-». co \ ^ s cr v r CO \ •? z Nr z 1 5 D V. o 3 g CO 1 " 3 CO - 3 ■» M W •" «» M M "- O O „ 5 . <- r-4 o • co «d- er> "• 5 O i-H CM • to o cm «d- • «*• co t-H •w 5 ^ co «3- o «* • • CM CO LO CO t-H CO — M Q to lo • «* r-~ en — «M 1* LU CM t-H CO CO to t-H -i 5 — « w 5S ""*v to o CTi \ • *a- io •^. • CO CO CM \ -k» co co co • t-n o A ^» _l LU to co co lo • tO LO -OSN CM t— 1 CO CO tO t-H \ CM LO • CM O CTi CM CO LO CO CM CM \ _ *j 1 >. s , ^ \ - ? IN I — at r E \ i e 1 -^ o--~ \ *— ^ tj ^-N -w £ o -^. o "^^ •w 5 o — . o (J r— O "-t\ " 3 o >— o " 3 ^v> C0^^ » ^ CD ■w *~*sn hs| ^-^» f~~tm 5 »» <* — e o ^ e t-no 3 S ::. : 4 m ■ m *■ eoi e i-ho >Zh£ iZ — t-n uf9i» anu X X X cm +-> gj O m g lw M E o i J O U£ CM *»i» mi X X CM +J JO o ig idU. ig E o S i O fei i 20 APPENDIX Noon and Midnight Excerpts from Data Base This Appendix displays all of the noon and midnight (local time) profiles resulting from the Lerfald analyses described in this Report. The format of the display is as shown in Figure 1. For easy use of this Appendix, an index is provided below. Station Dates - 1964 BC Boulder Mar 17, 18, 19 Jun 16 Jun 17, 18, 19 (noon only) Sep 20 Sep 21 Sep 22, 23 (midnight only) Sep 24 Dec 10 Dec 11, 12 (midnight only) Dec 13 Dec 14 Dec 15 (midnight only) Dec 16 (noon only] Dec 17 Page Station 23 AD Adak 24 25 26 27 Dates - 1964 Page OK Okinawa Mar 17 (noon only) 28 Mar 18, 19 PA Point Ar Mar 20 (midnight only) Jun 16 (noon only) 29 Sep 20 Sep 21, 22 (noon only) Sep 23 (midnight only) 30 Sep 24 Dec 10 (noon only) Dec 11 (midnight only) Dec 13, 14, 15, 16 31 Dec 17 32 HU Huancayo Dec 18 (midni ght only) GB Grand Bahama Mar Jun Jun Sep Sep Dec Dec 17, 16 17 19, 22 10, 13 18, 19 20, 21 11, 12 33 34 35 36 Dec 14 (noon only) MA Maui Dec 15, 16 Dec 17 37 WS White Sands Mar Mar Jun Jun 17 18 17 18 (midnight only) (noon only) 38 Sep Sep Sep 19, 21 22 20 (noon only) (midnight only) 39 Sep 23, 24 40 Dec 10 (midnight only) Dec 11 Dec 12, 13, 14 41 Dec 15 (noon only) Dec 16, 17 42 Mar 16 (noon only) 43 Mar 17, 18 Jun 15 (noon only) 44 Jun 16, 17 Jun 18 (noon only) Sep 18 (noon only) 45 Sep 19 Sep 20 (noon only) Sep 21 Sep 22, 23, 24 46 Dec 9 (noon only) 47 Dec 10, 11, 12 Dec 13, 14, 15 (noon only) 48 Dec 16 Dec 17 49 Mar 17, 19 (midnight only) 50 Jun 16 (noon only) Jun 17 (midnight only) Jun 18 (midnight only) 51 Sep 19, 20, 21 (midnight only) Sep 22, 23 (midnight only) 52 Dec 12, 13 Dec 16, 17 (midnight only) 53 Jun 16, 17 (midnight only) 54 Jun 18 Sep 23 (midnight only) Sep 24 (midnight only) 55 Dec 10, 11, 12 (noon only) Dec 13 (midnight only) 56 Dec 14, 15 Dec 16 (noon only) Dec 17 (noon only) 57 Mar 17, 18, 19 58 Jun 16 Jun 17 (noon only) 59 Jun 18 (midnight only) Sep 19 (midnight only) Sep 20 (noon only) Sep 22 60 Sep 23 (noon only) Dec 10, 11 Dec 13 (midnight only) 61 Dec 14 Dec 15, 16 (noon only) Dec 17 62 21 Station Dates - 1964 Pac Station CP Concepcion Mar 17 (noon only) Mar 18 Mar 19 (noon only) Jun 16 Jun 17 Sep 19 (midnight only) Sep 20, 22 (noon only) Sep 23 (noon only) Sep 24 Dec 10 (midnight only) Dec 11 Dec 12 (midnight only) Dec 15, 16, 17 (noon only) MN Manila Mar 17 (noon only) Mar 18 Mar 19 (noon only) Jun 17 Jun 18 (noon only) Sep 20 Sep 21, 22 (noon only) Sep 23 Sep 24 (noon only) Dec 10 (noon only) Dec 11 Dec 12, 13, 14, 15 Dec 16 Dec 18 (noon only) 64 65 66 67 Dates - 1964 Mar 17, 18 Mar 19 (noon only) Jun 16 Jun 17, 18 Sep 19 (midn ght only Sep 22 (noon only) Sep 23 Sep 24 (noon only) Dec 10 (noon only) Dec 11 Dec 12 Dec 13, 14 ( ioon only Dec 15 Dec 16 Dec 17 (noon only) Page 72 73 74 75 69 70 71 JA Jamaica Jun 16, 17, 18 (midnight only) Sep 19 Sep 20, 21, 22, 23 (midnight only) Sep 24 (noon only) Dec 10 (midnight only) Dec 11 (noon only) Dec 12 Dec 14 (noon only) Dec 15 (midnight only) 77 78 79 22 EXCERPTS FROM DATA BASE NOON MIDNIGHT 400 - soo X 200 3 *■ 100 1/ if id 1 ELECTRONS PC* CC 10' \t to' HAOC- I (IC 840317 1201) 400 '« X ® 3 10* 1 o' 10' ELECTRONS PER CC 10 10* 10' SRM>E» 1 (IC C40319 1200) \t \t 18* ELECTRONS PER CC 10 II* 6JU0t> 1 (IC C40SIS 1200) 10* II* ELECTRONS PER CC «UDE» 9 (IC S40C1C 1200) 400 400 300 200 ELECTRONS PER CC \i 10* 10* ELECTRONS PER CC tO 10 ELECTRONS PER CC 10 10 ELECTRONS PER CC 10* 10' «AOE« 1 IIC (40317 0! 10 6RA0C- I (IC C403II 0) 10 10 10 CRAPE* 1 IIC C40319 0) 10 to SSAOE' 1 IIC C40C1C 0) 23 EXCERPTS FROM DATA BASE \i NOON io* \t to' to' MADE- 1 ELECTRONS PER CC (DC S40C17 Ittll 400 300 200 / I 5 too J 1 i if 10* 10* 10* 10* 10 10 ELECTRONS RER CC 10 MADE- t ELECTRONS RER CC (»C (40C1I 1100) 10' 10 WADE- 1 IIC (40919 1200) 400 1 soo 200 J % w 1- 100 •— J 0* \$ 10* 10' 10* 10' ELECTRONS RER CC MADE" I IIC 840920 1200) MIDNIGHT \i 10* 10* ELECTRONS RER CC 10* 10* 10 6RA0E« 2 IIC (40920 01 24 400 \i 3 I 3 EXCERPTS FROM DATA BASE NOON MIDNIGHT 400 100 200 lo" 10" electrons per cc 10 10 10" ELECTRONS PER CC 10 to' 6RA0E* t IIC (40921 1200) 10 10" 10' WADE- 1 I I a> « I EXCERPTS FROM DATA BASE NOON MIDNIGHT l»" il* ELECTRONS »ER cc 10 10* 10* 10* ELECTRONS PER CC 10 ti* 10' HAOC" t 1 IIC (41217 1200) 400 300 10* \t ELECTRONS RER CC 10 1 1* to' 6RAOC* I (IC (41211 0) ELECTRONS RfR CC II* II- WAN> t IIC (41217 0) 27 EXCERPTS FROM DATA BASE NOON MIDNIGHT 1/ if l/ if ClCCTRMS PfM CC 1/ If • I (OK MIII7 Kill \i \t if if if if MAM" 1 ELECTRONS Hk CC COR MIHI HID if 10 10" ELECTRONS "ER CC II* II' MADE" I (OK C405IJ 1211) I 411 311 211 III i i i i ni« i i r r> 1/ if if if »f »•' MAM" I CUCTKOMI »t» CC IOK (41119 I) 411 311 211 III 1 f II* 1/ II* II* II* ELECTRON! »ER CC MAN* I (OK C4I3II I) 411 311 211 III t f if II* if ii* if MAM" I ELECTRONS PER CC IOK C4I320 0> 28 EXCERPTS FROM DATA BASE NOON 400 *. 100 o 2 too / > J ^ 100 S MIDNIGHT io* to* ELECTRONS PER cc 10' 10* to* MADE" I (OK I40IIC 1100) 10 10 ELECTRONS PER CC to 10 10 ELECTRONS PER CC 10 10 6RA0E« 1 (OK (40920 1200) 10 10 10 «UDE» 1 (OK $49921 1200) ELECTRONS PER CC 10* to' MADE" 1 (OK (40122 1200) ELECTRONS PER CC to to CRAOE* I OK (40120 0) 29 EXCERPTS FROM DATA BASE NOON MIDNIGHT I I 3 10' 10* ELECTRONS »ER CC \t to* MAN' I (OK (40114 1I0II 400 300 5 200 J > 5 p too J i to' to* to' to 1 10' ELECTRONS »ER CC WOE* I (OK C4I2I0 ttOO) to* \i to* io* to* \i MAOS* t ELECTRONS »ER CC IOK MOMS 0) ELECTRONS »ER CC (RASE* 1 (OK C40S44 0) 400 300 200 too 1 i \$ \( to' to' to' ELECTRONS *ER CC MADE 1 t (OK (4121! 0) 30 EXCERPTS FROM DATA BASE NOON 400 «. 300 X 200 100 1/ a a i i him r i - *•***■ m io' id 1 ELECTRONS PER CC 10" to* 11* MADE* I (OK 141213 11001 400 300 ^ 9 €> X 200 100 ■ 1 1 \i \i 10* \t io* ELECTRONS PER CC SRAOS- 1 (OK (41214 1200) 400 300 9 ) X 200 / r 3 100 y 1 i io' 10* \t \i \i ELECTRONS PER CC HAOE* 1 (OK C4I21I HID 400 X a> 3 io 1 to' 10* ELECTRONS PER CC 10 \i io' 6RADE- 2 (OK S4I2IC 1209) MIDNIGHT 490 3t» 200 100 \i 10 ELECTR0W3 PER CC If 10 S«40E» t (OK 841213 0) 10' 10* ELECTRONS PER CC o 1 «AOf« 1 (OK 841214 0) 400 sot 1(1 i eof is? r i unm n nimi * *- • ■'~ jl i §r is- is ELECTRONS PER CC \i io' (RACE" 1 (OK S412IB 01 10* 10* 10* ELECTRONS PER CC 10 10* 10 WAOE" 1 (OK C4I21S 0) 31 EXCERPTS FROM DATA BASE NOON MIDNIGHT \t ELECTRON! »ER CC to' \t II' MADE" I (OR I4IIIT till! 5 I I X 3 \i \f \i \t \t u •MAN* I ELECTRON! MR CC I0R Mill 7 I) in i i l i um ii ill inn i i \i \i \t \i \t to' ELECTRONS MR CC (OR Ml til t> 32 1/ EXCERPTS FROM DATA BASE NOON MIDNIGHT 400 *- 300 5 X 200 100 1 t .0' 10* to' 10* 10' ELECTRONS PER CC 6RA0E» 1 ((• (4031? 12001 400 300 ♦- S I 200 ® 3 w 100 1 t to 1 10' 10* 1/ 10' ELECTRONS PER CC MAOC- t ((• 84J31I 12101 10' II* to' (*ADC» I electrons per cc tsi uostt 1200 10" Iff ELECTRONS PER CC .1* II* !•' «RAK> I ((» (40(l( till) 400 300 200 100 1 i \i 10' 10* 10* 10* ELECTRONS PER CC 400 \i 10' 10' ELECTRONS PER CC ELECTRONS PER CC 400 300 211 100 (RU>E» 1 ((• (40317 0) (RACE* 1 ft* (40311 0) 400 300 200 100 1 i to' 10* .0* 10* !•' 6RA0C* I («• (4*319 I) 1/ II* 10* ELECTRONS PER CC it \t II* (ROE* I <(* (40(1 ( I) 33 EXCERPTS FROM DATA BASE NOON MIDNIGHT \i \t io* ELECTRONS m CC X II 1/ it 6«ADf> I I6fi 64161? 18*1) 10 10 ELECTRONS PER CC 10 II* 10* 6RA0S* I (61 64(119 120D 40C 300 •*- £ ,2" '5 a: 200 ^y ; © 3 1 00 ^-^ 1 0* to' 10* 10' «/ 10* ELECTRONS PER CC GRADE* 1 (6* MINI 1201) 400 soo 1 200 / ) 100 *• ^ 1 i \i 19* II* it ii* ELECTRSNS PER CC SRAOC* I (6§ 641921 till) 411 III III ill \t ii* ii* ii* ii* ii CRAM* I ELECTRONS PER CC 168 641617 I) 11* 10* II* ELECTRONS PER CC 11* ll' (RAM* I 160 641919 0) 400 SOO 200 100 i it ii* 10* ll' ll' ELECTRONS PER CC GRADE* I 169 641920 I) 410 SI0 211 100 ] t it 10* it it ll' ELECTRONS PER CC 6RA0C* 1 (61 641921 I) 34 EXCERPTS FROM DATA BASE NOON MIDNIGHT \t 10' WAOC* I (SI 640R22 (till 40« 300 X tee 3 1/ to to ELECTRONS PER CC 13 to* II* 6RA0C> I («• 641210 tlOO) 10* 10' ELECTRONS RER CC 10" 10* >0 6RA0E* 2 (61 641211 1200) 10* 10* ELECTRONS RER CC 10* if 10* MADE" 2 (tl 641212 1200) ELECTRONS RER CC l/ io- MAOC* 1 IM M0M2 0) 10* 10* \t io' WUOt » 2 ELECTRONS RER CC IM 641210 0) 10* 10* 10* ELECTRONS RER CC \t \t 10* 6RA0C* 1 (61 641211 01 400 300 200 100 i \i 10* \i 10* io' ELECTRONS RER CC WOE* 2 (61 641212 0) 35 EXCERPTS FROM DATA BASE NOON 5 X 400 soo 200 j ; 100 y 1 i to* to' 10* to' to' MIDNIGHT ELECTRONS PER CC to tr ELECTRONS REft CC 10 to to" ELECTRONS RER CC to «ADC» t 161 MlttS 1200) \t to- SRAM- I ft* C4I2I4 1200) to* to' «AO€« t <(• 841211 1201) 400 soo Height / ; 0> 3 100 w. t- y 1 400 300 1 I 200 I 1 100 y 1 f if ii* \i if 11' ELECTRONS RER CC X ■3 It 10 ELECTRONS PER CC 10 «AOf • I (MS Ml«4 till) 10 10" MADE" I IMS 641211 !23C if if if |f 6RADE- t ELECTRONS RER CC (MS S40S23 01 411 III III III 1 f if if if if to' MADE* t ELECTRONS RIR CC (MS 640924 0) 411 Sll 211 too 1 f if if if if to' ELECTRONS RER CC MADE* 1 (MS (41210 400 300 200 too 1 i if if if if if ELECTRONS RER CC MADC* I (MS 641211 I) 40 4|| .c e» '5 X SOS 290 ^ ® > / 1— 100 / 400 SOO ® 200 I o > 100 if EXCERPTS FROM DATA BASE NOON MIDNIGHT to' .0* ELECTRONS 'Eft CC to' io' io' 10 10* 10' ELECTRONS PEft CC 10* 10* \i 10* ELECTRONS RCR CC MADE" t IKS (41212 1233 10* 10' MADE" 1 l« S41213 '2: 10 10 UAOE' 1 (US C41214 1233! 303 — I 200 IV 1- too 1 i io' 10* 10' 10* 10' MAM" 1 ELECTRONS 'ER CC IKS C41U9 1100) 10* 10 II 10* 10* to - «UDt« I ELECTRONS ftIR CC (M Mlttl 0) 400 300 io 8 io' 10* ELECTRONS PER CC 10 8 ELECTRONS REft CC II* If MAN' I (MS MIllS 0) 400 300 200 too 1 i 10* 10* 10' \t io' «A©€« 1 IOT (41114 0) 41 EXCERPTS FROM DATA BASE NOON MIDNIGHT 400 "5 X 300 200 >» / r £ tot — -' \i \i io* ti* ii* ir MAN* I ELECTRONS (»IR CC (V* Ulttl till) i/ \i \< ELECTIONS H* CC I 3 7/ 1/ l/ taut* t m Miair tsHi 411 Silt 211 too I I I HUM I II i l li lM l 10* II* II* II* ELECTRONS >ER CC ELECTRONS RED CC ■ * ■* I k htm* to 10 MADE* t IMS S4I2U 0: 10 to SRAOE* 1 l«S C41217 01 X 42 EXCERPTS FROM DATA BASE NOON MIDNIGHT 1/ \t if lucmoNt n* cc 10* 1/ if 0AOE- I 1*0 C4IIII llll> 400 300 .C .? I 200 j ■ 3 £ 100 y \i if io* electrons nn cc 10 10 10 HAOE" 1 IAC 840317 1200) 411 Height / 0> «•*■■ y 1 f 10* 10* if if* ii* elections m cc MAM* I IAO S4ISIO 1200! 1/ if if ELECTIONS W CC 1/ 1/ 400 300 I IAO Mill? «' II* 10' «*AOE« 1 IAO C4IIIO I) 0> '5 I 43 EXCERPTS FROM DATA BASE NOON MIDNIGHT 4*1 Height • * ... J / \t \t \t \t !•' MADC" • ILICTKONI PtM CC 1*0 (4.CII It*.) CUCTKONS MM CC MAN* I 1 IAD 14.117 It..) 400 Height | % JOJ 1- J 1.1 ~J \t \t \{ \t \t I.' MAM" I IXICTtOMS •« CC 140 C4MI0 It..) 400 St. t.. It. 1 f \{ \i \f if 1.' CLicraoNS ■€> cc 400 see 308 I.S MAM" I (AD C4.CIS .) 1/ I* 1 It* >•* tactions *n cc i/ k' MAM" I IAO C4.6I7 .1 44 EXCERPTS FROM DATA BASE NOON MIDNIGHT tl* tl* \f tl* \t tl' •RAOO 1 ELECTRONS H* CC «A0 MIJ18 till) 411 4— © X III 211 t ) 3 w. H 1(1 *<< y 1 i \i \< ,i \t II* ELECTRONS Wl CC MAN' I (AO Mlttt till) 40) Height ) True y \i \i \t \i tr* \i «ADC» I ELECTRONS W CC (AO Mlttl till) 4C sot c o> ® J X tot / » / 3 J w y 1- III w*m ^ 1 / \i \< \i \t 11' ELECTRONS Wt CC MAOS- I (ad Mini out 1/ \t 1/ ELECTRONS PVt CC 1/ tl* WAOE* 1 (AO Mlttt I* II* 1/ l' ELECTRONS PER CC II 1 II* II* 6RA0E* t (AO C4lt*l tl 45 EXCERPTS FROM DATA BASE NOON MIDNIGHT 1/ 1/ 1/ suctions n* ec \t it it (40 uistt Itlll t II «4M« I i«o Mists itw 400 ♦. sic jC S Illl ►"ill 1/ 1/ 1/ ELECTIONS *f* CC if 1/ ll' M4DC* I 140 C4IM4 ttlll <» I 411 III til III 1 f it it it it it elections m cc E> I (40 Mittt 11 411 in 211 III .1* 1/ 1/ ELECTIONS K* CC 1/ it W40E> I 140 C4IMS II If* II* M4DE* I 440 C4IM4 II 46 EXCERPTS FROM DATA BASE NOON MIDNIGHT 411 X 211 III 1/ 1/ ELECTRONS PER CC \t if II* «A0E» t (AO S4IIM ISM) 1/ If «A0E« I (AO C4IIII till) if if electrom *ER CC if 1/ if MAN' I 1*0 Mllll Kill 411 Sll Height N True I f if if if if it euctrow m cc MAM* I (AO Mlltt ISIII 400 400 \t if II «*X» I ELECTRONS PVt CC IAO C4IJII •> 400 Sll III 111 1 f if II* II* if if ELECTRONS *t* CC MADE* 1 IAO Mllll I) urn * *im mi i ill II* II* 1/ !•' «AOE» I ELECTRONS PS* CC (AO C4III2 l> 47 EXCERPTS FROM DATA BASE NOON MIDNIGHT 1/ it \t tLECTKONS WW CC t \i i (AD Mtttl 1MU 4«| ' ' ' III '5 X Ml y 3 k. III y \i \t \t \t it \t MAN" I CUCT«0HS H* CC (40 MUM IMII \t \i MAN* 1*0 Mttlf IMI> \i \t \t MAN* I (AD MIS1C 1MI> AM SM Ml 111 1 / \t \t \t \t xt [LCCTRONS N« CC MAN" I IA0 MISM II 48 EXCERPTS FROM DATA BASE NOON MIDNIGHT 1/ 1/ l/ «*©€■ 1 1/ l/ \t \t 1/ MAM* 1 MCTftONS H* CC IA0 Mitt? IIM> CLECTRONS W CC IAO Mill? e I 3 jC 4*1 III Mf Iff »l* 5 I 3 49 EXCERPTS FROM DATA BASE NOON ® a> I 1/ l/ 1/ cucTtoNi m cc it it it •UN" t cm MHII IIMI X 3 MIDNIGHT 8/ 4iir~* 380 til III it \t it it it MAN" I iuctkons m cc cm miiit ii 411 III Ml til t / 1/ 1/ it it l/ I (L1CTWW m CC CM UHlt II 1/ 1/ 1/ CLECTMNS MM CC l/ it I CM UMI7 II 50 EXCERPTS FROM DATA BASE NOON MIDNIGHT 9 x S X o 3 jC 5 X .c I 3 4*1 Ml Ml III 1 / it 1/ 1/ 1/ it I HJCTMNI W CC IM MMtl • > it if 1/ l/ 1/ \t tucnws ret cc in aim n i/ it it \t it xt «uot» i CLfCTONS *» CC IM Mlttl II '< if 1/ 1/ it it WAOf ■ t aicraws m cc cm utm n 51 EXCERPTS FROM DATA BASE NOON x q> X a> 3 1/ it it (LfORMS PfR CC 1/ 1/ 1 (»« Mttlt till) if it it CUCTRONS Pt* CC 1/ it I (»« MIIII Itlll MIDNIGHT i/ it it CLf CTRONt HA CC i/ it MAN" t m Mites i) >' it it it \t xi KUCTtMS *R CC 1 im mini it *•» Ml til iM 1 / it it it it it OICTRONS *Vk CC man> t IH Mill! •) it it it HI CTROM KR CC 1/ it it MAN" I im Mini ii 52 EXCERPTS FROM DATA BASE NOON MIDNIGHT X 3 X 3 i/ \i \i \t \t «/ ELECTRONS *» CC <»* MIIIC •> 1/ if 1/ 1/ 1/ 1/ euoc" i ELECTRONS m CC CM Mill 1 •> 53 EXCERPTS FROM DATA BASE S a 3 I jC » I a> E NOON 1/ 10 10 ELECTRONS PER CC 10 to CRADE- t ihu (40(11 1200: <» I 3 MIDNIGHT to* to* 10* ELECTRONS l»ER CC t 10* 10' SHADE* 1 (HU (40(1 ( 0) \i \f 10* ELECTRONS PER CC 400 10* 10* ELECTRONS PER CC \i 10* \t ELECTRONS H* CC \t 10* «AOE» 1 (HU (40(1? 0) 10* 10 6RA0£» 2 IHU (40(11 0) 10 10* 6R*OC« I IHU MOWS 0) 54 o X JO* I o 3 I*. EXCERPTS FROM DATA BASE NOON tit lit electrons rer ce 1/ 1/ MAM* I (MU (41110 ItOI) to* iof to* ELECTRONS RER CC 10* 10* .0* UAOC- t (MO C4IIM 1100) to' 10* 1,0* 10* II* I CRAM' t ELECTRONS RER CC (MU C4UI2 1200) I 10* io' 10* to' ELECTRONS RER CC 10* 10' 6RADC" I 1HU U0M4 0) 55 EXCERPTS FROM DATA BASE NOON MIDNIGHT 400 r to 1 is 1 id* to* io* s ir* MAOt* I ELECTRONS •£* CC IMV |4ltt4 1100) 1/ 10' 10* ELECTRONS »EA CC it 1 ir MAM* I tW I4IIII 1100) 400 Height CM 2 200 lgo l 0* 10' 10* 10* \t II* «AOC» 2 ELECTRONS »£R CC (MU C4121C 1200) 10* to' to* ELECTRONS PER CC Si 10* 10 «»ADt» I (MU (41213 1200) II* t/ 1/ rf 1/ if MAM* I ILECTROHS •« CC IW C41I14 0) if to 1 10* 10* II* If WAN* I ELECTRONS KM CC I (MU MIDI D 56 EXCERPTS FROM DATA BASE NOON S '1/ 10' 10* ELECTRONS PER CC 10 10* II* «RAOC> t IHU (41217 1211) MIDNIGHT I 3 I 57 EXCERPTS FROM DATA BASE 1 1 NOON 4(0 -n i Height , / True / I* \t to* to* ELECTRONS RER CC 1/ to 1 MAM* 2 (HA MIJJ7 12001 I ll* ELECTRONS Wt CC 10* 10* ./ WAN- I tNA «40St« ttOOl 10* 10* to 1 ELECTRONS H* CC to* to* «Aoe« t (HA M0SI9 12001 » m I see / Height M / True y 1/ to' If* ELECTRONS RER CC to* 10* \i MAM- 1 IIU MOCK 12001 MIDNIGHT mi- if Iff 10* to* \t 10* «RAOE> 1 ELECTRONS RER CC (HA C40S17 0) i 400 soo 209 i too 1 t 10* 10* 10* 10* to' ELECTRONS RER CC 6RA0E- 1 (HA (40310 0) 400 sec 290 | 100 10* lO* 10* ELECTRONS RER CC HOW ' I ill 10* to* to' MADE* 1 MA C40SI9 0) ELECTRONS RER CC 58 EXCERPTS FROM DATA BASE 1 i NOON 411 i Height / ) True - J i f if \t i t \i \i WAN' I CLICTKONS m CC (HA S4MI7 KM) '5 x 3 jC 5 I 9 3 tit — 500 I ? 1 200 / True J \t \t to* ELECTRONS K« CC ll* 1/ ll* MAM- I (ha mimi iiiii MIDNIGHT to* 10* II* \i ELECTIONS K* CC ELECTRONS »ER CC II* ir uaoc* i (HA C4ICIS II 410 soo 200 100 1 $ \{ 10* 10' 10* ll' UA9E> I (HA C4IS19 0) 59 EXCERPTS FROM DATA BASE NOON 1/ 1/ ELECTIONS 'Eft CC 10* II* MAN" t (HA C4IS2I till) o I 400 soo J 200 / y too J I i it to* \i \< \i ELECTRONS HM CC MADE- t iha utns 12111 400 100 5 too / J ® 3 1- 100 m J* ■ t t \t \< \t 1/ \1 MAN" I (HA Mlllt III0I \t MAN- I (HA S4I2II 1*00 410 SOO too 100 M|DNK?HTl 1/ 10* if .0* ELECTRONS Offt CC to* 10* id* if II* MAN- I (HA «4|ttt 0! 4(0 SOO 200 100 to' 10* II* MAN" 2 ELECTRONS •£« CC (HA €41210 0) 10* 10* JO* It/ It* if MAN" 1 ELECTRONS »l« CC (HA Mill I II 60 EXCERPTS FROM DATA BASE NOON , MIDNIGHT 10* 10' CftAOC* 2 (HA 641*14 12111 400 300 • 200 A j |E ioo y i i 10* 10* \t \* \i MAN- I ELECTRONS "ER CC IHA U12I5 1200) '5 X ® 3 400 300 200 100 1 t 10* 10* .0' 10* »' electrons per cc MADE" I (HA (412IC 12101 tO* 10* 1/ ELECTRONS H* CC 1/ «•* II* MAM* t MA C4I213 I) 10* 10* ELECTRONS *CR CC 10* 1/ 10* CRAOC- t IBA C41214 0) 61 EXCERPTS FROM DATA BASE i 400 NOON | 1 '5 X sqo 200 J y r~ no — - / MIDNIGHT \{ 10* II* 10* ElECTHONS pv cc II* If* «AOf • I lltt C4I217 ItM) I ® 62 EXCERPTS FROM DATA BASE 400 <- 300 X. 200 e *~ 100 I it NOON | if io' id* io* to* ii* ELECTRONS REft CC (CR C40J17 1210) • 400 SQO 200 ^ f 100 ^ 1 \t to* id* to* io* ir • M*9E« I ELECTRONS R£R CC IC*> C40S1I 1200) 10 10 ELECTRONS PER CC 15 10* 10' CRAOE- 1 (CO €40119 1200) 10" 10* io' 6RA0E" 1 ELECTRONS RE* CC ICR S40CI6 1200) I MIDNIGHT 1 400 500 200 too , I t 10* 10* !•• 10* to' ELECTRONS RER CC 10' 10* \(f ELECTRONS RES CC (CR €40111 0) 10* 10' OtAM* I ICR C40CIC 0) 63 EXCERPTS FROM DATA BASE \t it ELECTRONS H* CC ii* ii* if ttAOO 1 IGR C4ICI7 till) if Ifl' 10* ELECTRONS PER CC tof ii* ir «ADC" t ICR C4IMI 1210) \i it it ELECTRONS m CC it it \i SRAflC- I IC «4l»tt 12H) MIDNIGHT 411 III i too / ■ ■ III it \t \t \t ELECTRONS Ht CC I II* \t \t ELECTRONS HR CC II* it MAN" I IC «4I«I7 II • ! 411 Sll 211 1 I 111 it it it MAM' I 2 im (40(17 1200) 400 ELECTRONS PER CC MAOE" t INN 840111 01 ELECTRONS PER CC .0* CRADE' 1 INN (40(17 0) 67 EXCERPTS FROM DATA BASE NOON MIDNIGHT 400 .c s 5 X SOO 200 / ® 100 ^ J 1 t 10* to* J t \t u' 6RAOC' I ELECTRONS PER CC (UN C406tl 1200) 10* 10* ELECTRONS RER CC to* 10* to' CRAOE* 2 I «N (40920 1200) 400 SOO ) "5 200 I / / a> ,2 too / i i 10* i/ \t \t \i ELECTRONS PER CC 6RA0E* 1 INN (40921 1200) ELECTRONS RER CC to* 10 . WAOE* 1 (UN (40922 1200) 400 500 1 200 ^^\ IOC ELECTRONS RER CC \t 10* 10' «AOE» 1 (UN (40920 0! 68 EXCERPTS FROM DATA BASE NOON 1 MIDNIGH^ a ■ ■ ■ mm \t 10* MADE" I (IW 640925 1200) 10' 10* 10* MADE* 2 ELECTRONS PER CC [UN 640924 1200) 10* 1 1 10* ELECTRONS PER CC to 10* ID* 6RA0E> 1 INN C4I2I0 1200) If 10 10 ELECTRONS PER CC I o' 10* 10' MADE' 1 IHN 641211 1200) 10' 10* ELECTRONS PER CC 10* 10' 10' ELECTRONS PER CC 10* 10* MAOE* 2 I UN (40)23 01 10 10 6RADE" 2 inn 64i2: : 0) 69 EXCERPTS FROM DATA BASE NOON 1 MIDNIGHT I o 3 400 300 J 200 / / 100 / 1 0* \i \t io* 10* to' MAM* 1 ELECTRONS HR CC I'M 641212 ISM) 400 300 • 200 • 3 £ 100 1 0« 10* 10* 10* 10* to' ELECTRONS R£R CC 10 10' ELECTRONS RER CC 10 ttAOC* I INN 641213 1200) I** 10* 6*ADE» 1 !«N C4I2I4 1200) 10* 10* ELECTRONS RER CC 10* 10* II* MADE' I INN 64)215 12ID 10* 10* 10* 10* 10 6*A0C> I ELECTRONS RER CC tHN 641212 0) 10* 10* 10* 19* 10* 10' HADE- t ELECTRONS RER CC (IN 641213 0) Iff* 10* 10* 10* ELECTRONS RER CC 10* 10' 6RA0E- 1 IHN 641214 0) 400 300 200 100 I t io' 10* 10' 10* ,0* ELECTRONS PER CC 6RA0E* 1 t«N 641215 0) 70 EXCERPTS FROM DATA BASE NOON ■ i ■ >;iim i i ■ f w \f if if tt«M> I ELECTRONS PER CC 0P \t \f \f II* ELECTRONS RER CC II* 10 «RAOC" 2 (IW C4l2t( 0) '5 x o 3 71 EXCERPTS FROM DATA BASE if if tf if if if C*AM" 1 bicnm m « m miii? itw if if if if VtKDf 2 (T» 640311 1200) i nir n r I I i» if if if if II SRAOC» 2 ELECTRONS »ER CC ! ITA 64ISIS 1200) if if ELECTRONS »ER CC if if \f MADE* I I ITA 640(16 1200! MIDNIGHf! if if if ELECTRONS PER CC 10 tf II- 6RADE- I (TA 640S17 I) if if if ELECTRONS »ER CC if if •RAN* 1 ITA Mine II *:: 300 200 100 i i 1 f if tf if if if 6RA0E- t ELECTRONS KR CC (TA 640616 0) 72 EXCERPTS FROM DATA BASE NOON 400 1 1 Height True J \i \{ II* 10* ELCCTftONS rir cc 10* io- WAM> I (TA (48(1? 1100) 400 soo £ 200 100 18* it 10* \t ELECTRONS »er CC I 1/ 10* MAM" I (TA (40(11 1100) J? 5 X t (TA (40111 1100) midnigh|t soo 200 100 1 1 t to* 10* 10* 10* to' ELECTRONS »er CC ELECTRONS RER CC 10' 10* ELECTRONS RER CC 10 SRAOE* I ITA (40(17 0) *: : 300 200 too 1 0* to' to* to' to* to' MACE* 2 (TA (40(10 0) to 1 to' 6RA0E* I (TA (40119 0) 73 EXCERPTS FROM DATA BASE NOON 400 *. Ill « X 200 e 3 too : MIDNIGHT to' to* ELECTRONS PER CC 10* to' GRADE" 2 (TA 641216 0) CT> « X 76 EXCERPTS FROM DATA BASE NOON MIDNIGH(r ® x ® I © 3 jC ® x e 3 if \f \t lUCTftONI »i» cc \f if if MAM" t UA C4II1I HID «/ 1/ \< SUCTIONS PC* CC MADC* 1 (JA I4ttt« I) \i \i \t if if \f MAOC" Z clcctroni n* cc ija uocn oi 400 300 200 100 1 t if to* if if 10* MADE- I ELECTRONS 'Eft CC IJA C4ICII 0) 400 300 200 100 I S if \t if if if ELECTRONS RE« CC MADE" t (JA (40919 0) 77 EXCERPTS FROM DATA BASE NOON MIDNIGHT x £ 411 101 100 too 10* 10* t0* if 10* ID' ELECTRONS HR CC MA0I> I I J* 840120 0) JO* lfl' 10* JO* if to' HOC- 1 ELECTRONS PER CC (J* 640921 0) Iff* 10* 10* ELECTRONS *ER CC to* 10' «*AOE« I tJA 840922 0) 400 300 to* io 1 to* to* io* io' WAOC- I ELECTRONS nn CC UA MOMS 0) 78 EXCERPTS FROM DATA BASE 1/ ELECTRONS PER CC \t 10' «ADE» I (JA C40S24 1200 10* t»* ELECTRONS PER CC 10* 11* CftAOE* I (JA (41212 1200) MIDNIGHT 400 soo 200 100 1 i 10* 10* \i 10* 10' ELECTRONS PER CC fiRAOO 1 (JA 641211 0) 400 SOO 200 100 1 t 10* 10* \t 10* 10* ELECTRONS PER CC CRAM' 1 (JA S4I2I2 0) 79 EXCERPTS FROM DATA BASE NOON i MIDNIGHT \t to* \{ ELECTRONS KM CC if 10* «•' MAK> t i UA C4I2I4 tilt) I ® I 401 its 201 too I t \t { it \t .0' WAOC" 1 ELECTRONS HH CC (J* 841215 0) 80 * U.S. Government Printing Office: 1977-777-045/1234 Region 8 PENN STATE UNIVERSITY LIBRARIES ADDDD7E0E3DED NOAA SCIENTIFIC AND TECHNICAL PUBLICATIONS NO A A, the National Oceanic and Atmospheric Administration, was established as part of the Depart- ment of Commerce on October 3, 1970. The mission responsibilities of NOAA are to monitor and predict the state of the solid Earth, the oceans and their living resources, the atmosphere, and the space environment of the Earth, and .to assess the socioeconomic impact of natural and technological changes in the environment. The six Major Line Components of NOAA regularly produce various types of scientific and technical information in the following kinds of publications: PROFESSIONAL PAPERS — Important definitive research results, major techniques, and special in- vestigations. TECHNICAL REPORTS— Journal quality with ex- tensive details, mathematical developments, or data listings. TECHNICAL MEMORANDUMS — Reports of preliminary, partial, or negative research or tech- nology results, interim instructions, and the like. CONTRACT AND GRANT REPORTS— Reports prepared by contractors or grantees under NOAA sponsorship. TECHNICAL SERVICE PUBLICATIONS— These are publications containing data, observations, in- structions, etc. A partial listing: Data serials; Pre- diction and outlook periodicals; Technical manuals, training papers, planning reports, and information serials; and Miscellaneous technical publications. ATLAS — Analysed data generally presented in the form of maps showing distribution of rainfall, chem- ical and physical conditions of oceans and atmos- phere, distribution of fishes and marine mammals, ionospheric conditions, etc. OMMOSP. ? ^£NT Of C °* Information on availability of NOAA publications can be obtained from: ENVIRONMENTAL SCIENCE INFORMATION CENTER ENVIRONMENTAL DATA SERVICE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION U.S. DEPARTMENT OF COMMERCE 3300 Whitehaven Street, N.W. Washington, D.C. 20235