c S3., is : Ef> u mo-rtPCLio ■ A UNITED STATES DEPARTMENT OF COMMERCE PUBLICATION *'4TH O' * U.S. DEPARTMENT OF COMMERCE Environmental Science Services Administration Research Laboratories M ESSA Technical Report ERL 140-APCL 10 Plotter Subroutine for Meteorological Straight Line Flight Data (SLENDER) HEINZ H. GROTE BOULDER, COLORADO December 1969 ESSA RESEARCH LABORATORIES The mission of the Research Laboratories is to study the oceans, inland waters, the lower and upper atmosphere, the space environment, and the earth, in search of the under- standing needed to provide more useful services in improving man's prospects for survival as influenced by the physical environment. Laboratories contributing to these studies are: Earth Sciences Laboratories: Geomagnetism, seismology, geodesy, and related earth sciences; earthquake processes, internal structure and accurate figure of the Earth, and distribution of the Earth's mass. Atlantic Oceanographic and Meteorological Laboratories and Pacific Oceanographic Laboratories: Oceanography, with emphasis on ocean basins and borders, and oceanic processes; sea-air interactions: and land-sea interactions. (Miami, Florida) Atmospheric Physics and Chemistry Laboratory: Cloud physics and precipitation; chemical composition and nucleating substances in the lower atmosphere; and laboratory and field experiments toward developing feasible methods of weather modification. Air Resources Laboratories: Diffusion, transport, and dissipation of atmospheric con- taminants; development of methods for prediction and control of atmospheric pollu- tion. (Silver Spring, Maryland) Geophysical Fluid Dynamics Laboratory: Dynamics and physics of geophysical fluid systems; development of a theoretical basis, through mathematical modeling and computer simulation, for the behavior and properties of the atmosphere and the oceans. (Princeton, New Jersey) National Severe Storms Laboratory: Tornadoes, squall fines, thunderstorms, and other severe local convective phenomena toward achieving improved methods of forecasting, de- tecting, and providing advance warnings. (Norman, Oklahoma) Space Disturbances Laboratory: Nature, behavior, and mechanisms of space disturb- ances; development and use of techniques for continuous monitoring and early detection and reporting of important disturbances. Aeronomy Laboratory: Theoretical, laboratory, rocket, and satellite studies of the phys- ical and chemical processes controlling the ionosphere and exosphere of the earth and other planets. Wave Propagation Laboratory: Development of new methods for remote sensing of the geophysical environment; special emphasis on propagation of sound waves, and electromag- netic waves at millimeter, infrared, and optical frequencies. Institute for Telecommunication Sciences: Central federal agency for research and serv- ices in propagation of radio waves, radio properties of the earth and its atmosphere, nature of radio noise and interference, information transmission and antennas, and methods for the more effective use of the radio spectrum for telecommunications. Research Flight Facility: Outfits and operates aircraft specially instrumented for re- search; and meets needs of ESSA and other groups for environmental measurements for aircraft. (Miami, Florida) ENVIRONMENTAL SCIENCE SERVICES ADMINISTRATION BOULDER, COLORADO 80302 rtrtENTQg. Se 'UCl $1**^ U. S. DEPARTMENT OF COMMERCE Maurice H. Stems, Secretary ENVIRONMENTAL SCIENCE SERVICES ADMINISTRATION Robert M. White, Administrator RESEARCH LABORATORIES Wilmot N. Hess, Director ESSA TECHNICAL REPORT ERL 140-APCL 10 Plotter Subroutine for Meteorological Straight Line Flight Data (SLENDER) HEINZ H. GROTE ATOMOSPHERIC PHYSICS AND CHEMISTRY LABORATORY BOULDER, COLORADO December 1969 For sole by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 Price 50 cents. a. J i TABLE OF CONTENTS Page 1. INTRODUCTION 1 2. VARIABLES 10 3. GENERAL STRUCTURE 16 4. ACKNOWLEDGMENT 23 5. REFERENCES 23 APPENDIX A. SLENDER Lettering 24 APPENDIX B. SLENDER Printout 25 in PLOTTER SUBROUTINE FOR METEOROLOGICAL STRAIGHT LINE FLIGHT DATA (SLENDER) Heinz H. Grote This paper describes a subroutine SLENDER that works in connection with the plotting subroutine CRTPLT to provide a two-dimensional plot of a relatively straight flight path and four analog traces of selected meteorological parameters lined up with the flight path. 1. INTRODUCTION The subroutine SLENDER works in connection with the plotting subroutine CRTPLT (Tucker, 19&8) to provide a two-dimensional plot of a relatively straight flight path and four analog traces of selected meteorological parameters lined up with the flight path. The flight path is approximated by a straight line that coincides with the x axis. A tilted coordinate system is then plotted and marked. Wind vectors and time notations are added to the flight path. The mete- orological parameters are automatically scaled and marked. Figures 1 and 2 give examples of a plot. The legend provides the following in- formation: (1) The flight number LID is expressed as a six-digit number and an index letter according to convention used by ESSA 1 s Re- search Flight Facility. The first two digits represent the year, tmb] PRESSURE FLIGHT NO 80708 B LONGITUDE LOO- 258.979 DEGREES LATITUDE LA0= 40.874 DEGREES Figure 1. Example of plot* POT TEMP FLIGHT NO 80708 B LONGITUDE LOO- 258.979 DEGREES LATITUDE LA0= 40.87$ DEGREES Figure 2. Example of plot . the next two the month, and the last two the day of the flight. The letter stands for the particular airplane. (2) The center longitude XC and latitude YC in degrees refer to the small circle in the middle of the plot. These reference values are brought in from the main program. Together with the scale notation every point on the plot is determined by this location reference under the assumption that the earth's surface can be represented by a plane. The relation between distances in geographic degrees of longi- tude dX and latitude dcp to linear distance values a and b in kilometers is given by the equation,, a = C„ dX b = C. dcp . cos cp, where a and b are in kilometers; dX , dcp, cp are in geograph- ical degrees; and C is approximately a constant with the value C = 111.32 ( — ) . geographical degree (4) On the right-hand side are the notations for the physical param- eter, such as PRESSURE, PR ALTIT (pressure altitude), LONGITUDE, LATITUDE, TEMP (temperature), POT TEMP (potential temperature). Above these notations is the unit of measurement, such as mb (millibar), km (kilometers), C (degrees Celsius), °K (degrees Kelvin). (5) On the left-hand side are two values , automatically genera- ted, for each parameter that determine the scale. The attempt was to select them so that one value is above and one value below the reference (mean value) line. (6) A scale mark for the wind unit is on the left in the center. Above it is the word "WIND" and below it the value of the unit length, for example, 10 M/S. (7) The center line for longitude LO and latitude LA and the lines next to them are marked. The notations for longitude deviations from the center line LO (km) are printed at the top of the flight path plot and the notations for latitude deviations from the center line LA (km) are printed below the flight path plot. In some cases some notations may be omitted to avoid super- position of letters and therefore difficulties in recognizing the notation. Figure 3 shows the geometry involved in tilting the coordinate system. There a is the angle by which the straight line approx- imation has to be tilted to coincide with the x-axis; cp is the polar coordinate angle of a point on the curve, and R is its distance from the zero point; X and Y are the Cartesian co- ordinates of the curve point in reference to <*arth coordinates; f / x= R cos<£ x'=R cos(<£-a) x' = (Rcos<£)cosa + (Rsin<£)sina x' = xcosa 4- ysina y = Rsin<£ y'= Rsin [-a) y' = (Rsin a a . f ( a . h) f (0) = - k k 2 h ^>q a 2 1 where a is the increment count, and k is the count limit. For k = 2, for example, the count sequence is a= -2, -1, 0, 1, 2 . Thus the number of points is n =2k+ 1 . The lowest value that k can take is one; thus the smallest number of points to determine the slope by this equation is 3. The letter h is the increment in the abscissa, and f (a # h) is the ordinate for the abscissa a • h . With k J£~a a z - 1 k (k + 1 ) (2 k + 1 ) 1-2-3 one obtains f'(0) = J> a a ' f • ( a • h) 3 -k h • k (k + 1) (2k + 1) If the average of five points is replacing the individual values, f_2 + f-l +fi + f 2 u c i = h = 5 • x + k . ( i ! i -! f „ !■ i , !- f f(o) = 2 S^cc • ^_ 2 . ^ . . . ^ . . 2 5 h • k • (k + 1 ) . (2k + 1) The flight path is represented by an uneven multiple of five points. Table 1 shows the use of the coordinate points. From this distribution of points the interval h is computed as X IPQ ■ X IQ h = ^ * 5. IP - 1 As long as the average curve has a slope between -45° and +45° or between 135° and 225 , the abscissa values are used to determine h. If the slope of the average curve is between 45° and 135° or between 225° and 315°, the ordinate values are used to determine h. The re- sult ing slope is then reversed to obtain the slope with respect to the abscissa. Table 1. Use of Coordinate Points Total Number Number of Number of Number of First Lower Upper Center Value of Points Intervals Limit Point Point of a IP - 1 IQ IPQ IR -KP n KA + 1 15 14 1 15 8 -1 16 14 1 15 8 -1 17 14 2 16 9 -1 18 14 2 16 9 -1 19 14 3 17 10 -1 20 14 3 17 10 -1 21 14 4 18 11 -1 22 14 4 18 11 -1 23 14 5 19 12 -1 24 14 5 19 12 -1 25 24 1 25 13 -2 26 24 1 25 13 -2 27 24 2 26 14 -2 28 24 2 26 14 -2 29 24 3 27 15 -2 30 24 3 27 15 -2 31 24 4 28 16 -2 32 24 4 28 16 -2 33 24 5 29 17 -2 34 24 5 29 17 -2 35 34 1 35 18 -3 36 34 1 35 18 -3 37 35 2 36 19 -3 2. VARIABLES The following variables, listed alphabetically, enter the sub- routine: IFS A six-digit number that determines the scaling. The center two digits are without signficance and serve only as a separa- tor. The first two digits are the plotting scale values LSC. SC = 50. 0/LSC is the factor with which the coordinates X and Y (km) are multiplied to obtain the plotting coordinates WX and WY in the 1024-point CRTPLT-system. The last two digits are the wind scale values LWS. W = 50. 0/LWS is the factor with which the wind components OWX and OWY are multi- plied to obtain appropriate values in the 1024-point CRTPLT- system. For IFS=0 automatic scaling is obtained. Then the coordinate factor is SC = 1024. / SPAN, where SPAN is the largest span (km) in either abscissa or ordinate direction. The wind scale W is given below. 0. 5 for WMAX larger than 100 m/sec; 1. up to 100 m/sec; 2. up to 50 m/sec; 5. up to 20 m/sec; 10. up to 10 m/sec. The wind factor LWS = 50. 0/W. IM number of measurement points. IT a 500-word array for the time of the measurement. 10 IT has seven digits. The first is a 1 needed for printing; the next two are the hour in 24-hour notation; the following two digits represent the minutes, and the last two represent the seconds. KT record spacing (sec) . LID flight identifcation array of eight words, as follows: LID (1) two digits representing the most significant digits of the year of the flight. LID (2) number of the month, incremented by 1000 to main- tain leading zeroes in printing. LID (3) number of the day, incremented by 1000 to main- tain leading zeroes in printing. LID (4) airplane identifier in Hollerith notation. (The air- plane identifier B is thus expressed as 1 HB. ) LID (5) day in two digit presentation. LID (6) the first eight letters of the month in Hollerith notation. (The month of September is thus ex- pressed as 8HSEPTEMBE. ) LID (7) extension of the month for the eventually missing ninth letter in two-digit Hollerith notation. If the month has less than nine letters LID (7) = 2H (For the month of September LID (7) = 2HRa • ) LID (8) equal to LID (1) and containing the last two digits of the year. MW determines the spacing of the wind vectors on the plot. MW = 1 means that a wind vector is drawn for every co- ordinate point. 11 MW - 2 indicates that a wind vector is drawn for every second coordinate point. MT spacing of the points on the plot (sec). By means of the equa- tions MI = MT/KT MI = MI*KT , it is assured that the spacing of the points on the plot MT is always an integer number of the record spacing KT. At the same time MT determines the time increments of the time prints. These increments are 1 min for MT £ 10 , 5 min for 10 < MT< 60, and 10 min for 60 £MT . MY not used. OWX 500-word arrays. To save memory spaces, OWX and OWY change their meaning in the program. In the input they rep- resent the wind coordinates (m/sec) with respect to the earth coordinate system. In the course of the program, OWX and OWY change their reference to the tilted plotting coord- inate system. WMAX largest wind speed (m/sec) to be represented. This value is used for automatic scaling of the wind vectors as explained under IFS. WXA x- and y- components of the bias wind. 12 WYA if WXA = WYA = 0. the wind vectors on the flight path rep- resent the wind actually measured. If the bias wind vector has a value, the wind vectors at the flight path are the differ- ence between the measured and the bias wind. X, Y 500-word arrays. To save memory spaces, X and Y change their meaning in the program. In the input they represent the flight path coordinates (km) from the reference point with respect to a plane earth coordinate system. In the course of the program, X and Y change their reference to the tilted plot- ting coordinate system. XC, YC longitude and latitude of the center point in geographical de- grees. This value is printed on the legend. YM(J) largest deviation of each of the four parameters (which are plotted as traces) from the respective mean value ZA. YM(5) = provides the mean value reference. Z a matrix of 500 x 5 representing the four meteorological param- eters to be plotted and the reference line. The sequence is Z(l) pressure (mb). Z(2) pressure altitude (km). Z(3) temperature (°C). Z(4) potential temperature (°K). ZA(J) mean value of each of the four meteorological parameters to be plotted. 13 The variables in the main program and SLENDER are compared in table 2. The following variables are used for plotting: IX, IY, XH flight path KX, KY, XH trace of four meteorological parameters KX, KYL, XH zero abscissa lines for traces WX, WY, MN wind vectors XA, YA, KM longitude grid XB, YB, KN latitude grid XD, YD, (KZ) scaling letters on abscissa 3H+0( circle marks © denoting points XE, YE, LN on the flight path XF, YF, (LF) dimensions of parameters XG, YG, NG, LG lettering of parameter names XJA, YJA, JLX longitude scaling XJB, YJB, JLY latitude scaling XK, YK, (IZ) time numerals XKL, YKL, NQ, legend letters KL XKQ, YKQ, (KQ) legend inserts XLA, YLA, LA lettering of wind scaling XNA, YNA wind scale line 14 Table 2. Comparison of Variables Main Program SLENDER AY IFS IW JJ KY LID LT MM MT OLA OLO OX OY OWX OWY YM WBX WBY WMAX Z ZA IFS MW IT MY LID MT IM KT YC XC X Y OWX OWY YM WXA WYA WMAX Z 15 3H+0I XNA, YNA XP, YP 3H+0( XR, YR, LL XZ, YZ, ID end points of wind scale ordinate lines circle marks O points on the flight path for which the time is printed limits of the plot and identifica- tion of the user 3. GENERAL STRUCTURE zero plus 16 105 16 1610 1622 1623 1630 1640 PLUS 2 1650 PLUS 2 1660 PLUS 3 1718 2518 2518 PLUS 4 41 Data input Values for time print Flight path approximation Conversion of path coordinates Determination of scale factors Path scaling Location of time letters Plotting of flight path with circle marks and time notations Conversion of wind components and plotting of wind vectors Wind scale Longitude grid and scaling Latitude grid and scaling Plotting of coordinate grid Scaling and plotting of meteor- ological parameters 16 45 49 51 Determination and plotting of scale marks for meteorological parameters Lettering of parameter plots Lettering of legend T iming ITC IZA IZC IZD time of the first data point that enters the subroutine in six letter notation. The variables represent sets of two. hours. minutes. seconds. The time ITC is then converted to seconds, represented by IZE. Since the plotting time sequence is MT, the time IZF for the first point to be represented on the plot has to be an integer multiple of MT. The largest value that IZF can take is 86400 (midnight). IZG IZH IZI IZM JY (1) IZN time increment with which time numbers are printed on the plot. time of the last point on the plot. number of points to be plotted. first time number to be printed. time of plot points (sec) (later converted to hour- minute -second notation). time number, composed of the four letters IZO, IZP, IZS, IZT. 17 LJK = 2™. Since Hollerith quantities with three characters are used in the plot routine, integer values have to be shifted by five characters for conversion (Control Data Corporation, 1967, 1. 1, "Wind Structure"): 6 6 6 6 6 6 6 6 Flight path approximation IP IQ IPQ IR KP HX SY COA number of points that can be used for insertion into the approximating equation for the flight path. IP has to be an integer multiple of five. number of the first point to be used. number of the last point to be used in the flight path approximation. number of the center point between IQ and IPQ. first value of - a in the approximating equation. approximation intervals. The one with the largest absolute value is selected for further computations. sum of weighted function values. slope f'(0) of the approximated flight path = tangens of the slope angle. cosine and sine of the slope angle. Scaling IFS scaling selector (see sec. 2) Plotting of Flight Path ZX ZY mean values of abscissa and ordinate. (Central point of plot. ) 18 wx IX IY XR YR XE YE XK YK scaled plot coordinate points. Their subscript is incremented by two in order to accommodate later the wind vector and points. coordinate points in the integer plotting system. circle marks on the flight path for time points. circle marks on the flight path to denote a time printout. time numerals. Plotting of Wind Vectors WX WY XLA YLA XNA YNA end points of wind vectors. A wind vector extending beyond the plot dimensions is omitted. wind scale letters. wind scale. Longitude Grid and Scaling YV ordinate for end of grid. YVA ordinate for grid lettering. XM abscissa span of grid line. XIMIN XIMAX extremes of longitude values (km). JXSP longitudinal span (km). J XE longitudinal increment. JXD absolute value of longitudinal increment (initial). 19 JXG JXX JXZ JAX JNX JXM XT XA JLX JXN XJA YJA YIMIN YIMAX JYSP JYE JYD JYG JYF JYZ flag has sign of JXE with value one. quantized value of longitudinal increment. final value of longitudinal increment. scaled projection of longitudinal increment on abscissa. one -half the number of longitudinal increments. total number of longitudinal increments. abscissa of center of longitudinal lines. (For marked lines the grid is extended by 10%. ) abscissa of grid of longitudinal lines. If the abscissa is outside the plot, the grid is shortened to extend only to the borderline of the plot. letters denoting longitude values. = 2JXM + 1. Example: JXM = 8 Then: K = 1, 3, 5, 7, 9, 11, 13, 15, 17 4f 4^ 4f JXM-1 JXM+1 JXM+3 longitude scale number coordinates. (Numbers that would not fit on the plot are omitted. ) extremes of latitude values (km). latitudinal span (km). latitudinal increment. absolute value of latitudinal increment (initial). flag with value one, denoting sign of JYE. scale factor. final value of latitudinal increment. 20 KDX abscissa increment. KX abscissa variable. KX (1) is chosen, so that the curve has equal margin to left and right. KYO bias value of ordinate to locate the curve into its proper space. KYL ordinate of reference abscissa. Determination and plotting of scale marks and letters XL abscissa values for scaling marks and letters, XD XL as three-dimensional matrix to facilitate lettering. EX scale values for ordinate, EM-ME ordinate scale factor. MB (1, J) upper scale value » MB (2, J) lower YD ordinate of scale marks and numbers, KZ lettering of scales. Lettering of plots XF coordinates of dimension letters. YF LF dimension letters (some in lower, some in upper case). XG coordinates of parameter name letters. yg LG parameter name letters, XP ordinate lines. YP 21 JBX JNY JYM XU XB JLY XJB YJB scaled projection of latitudinal increment on abscissa. one-half the number of latitudinal increments. total number of latitudinal increments. abscissa of center of latitudinal lines. abscissa of grid of latitudinal lines. (For marked lines the grid is extended by 10%. ) If the abscissa is outside the plot, the grid line is shortened to extend only to the border line of the plot. letter denoting latitudinal values. latitude scale number coordinates. Scaling and plotting of meteorological parameters F-YM largest deviation of parameter from its mean value. E scale factor. F E <; o.oi 10, 000 £ 0.02 5, 000 < 0.04 2, 500 < 0. 1 1, 000 ^ 0. 2 500 <; 0.4 250 <; 1 100 <; 2 50 <, 4 25 < 10 10 <, 20 5 ^ 40 2. 5 > 40 1 22 Lettering of legend XKL legend coordinates YKL NQ legend character specification KL legend letters KQ legend insert letters XKQ insert coordinates YKQ 4. ACKNOWLEDGMENT The author wishes to thank Mrs. J. M. Tucker for her assistance in the debugging of the presented work. 5. REFERENCES Tucker, J. M. (19&8), Cathode ray tube plotter subroutine, ESSA Tech. Memo. RLTM-OATS 3. Control Data Corporation (1967)^ 3800 Computer Systems Reference Manual: FORTRAN. 23 APPENDIX A SLENDER Lettering 1 F -492 2 L -480 3 I -468 4 G -456 5 H -444 6 T -432 7 -420 8 N -408 9 O -396 10 -384 11 (8) -372 12 (0) -360 13 (7) -348 14 (0) -336 15 (3) -324 16 -312 17 (B) -300 18 -288 19 -276 20 -264 21 L -252 22 O -240 23 N -228 24 G -216 25 I -204 26 T -192 27 U -180 28 D -168 29 E -156 30 -144 31 L -132 32 O -120 33 -108 34 = - 96 35 - 84 36 (2) - 72 37 (5) - 60 38 (8) - 48 39 . - 36 40 (9) - 26 41 (7) - 12 42 (9) 43 12 44 D 26 45 E 36 46 G 48 47 R 60 48 E 72 49 E 84 50 S 90 51 108 52 120 53 132 54 144 55 156 56 L 168 57 A 180 58 T 192 59 I 204 60 T 216 61 U 228 62 D 240 63 E 252 64 264 65 L 276 66 A 288 67 O 300 68 = 312 69 324 70 (4) 336 71 (0) 348 72 360 73 (8) 372 74 (7) 384 75 (4) 396 76 408 77 D 420 78 E 432 79 G 444 80 R 456 81 E 468 82 E 480 83 S 492 24 APPENDIX B SLENDER Printout SUo^nUTlNP" SL^N'^P ( Tt"S s|_ T^»^ T »»•".<' »MT * TT s T •%'•'•' * v , i Ym, Xr > Yr »WXa » WY A » Z a • X , Y « nWX s O'a'Y » Z »mY ) roMMf)w/i /TX»TY»tZ»i^X» ^(io),vx(iO;.) tKY( 1 ?Ti sKYLf "I 00) ,krYO( A } s'^Zf isA s£l sLI'M *») s ■* L p ( 24) »LG(7) f MA (6. ) »" D ( ?»4) >Nr:( * ) sNQ(M »OWX ( c ~^ ) »OWY( 5.00) s 4 '''X( Q00 ) sVY(900 ) sX (*0 n ) sXA(?4) »X°( ?h) »XD(?,4»6')»XF(5) ^XF( 74) » ^ XU( sH) sX|_(*) »X|..A( Q\ »XVA( -J) sXZ (•>) »Y( kOC) ,Ya (7&) ,Y=(.?41 »Y^C»4»ft] -7 yc-( R 1 »Ytr ( •>/, ) , Y^-( 7 i , Yja f 1 -> ) »Yjc (T5 ) , Y* ( f^n, .v^do,, a Yla(o) iYm(r) »Y,ma( 7) *YP(Q ) »YR(iOO> sYZ(->) »Z(=0C»c) ♦Z.Mai r> a T A ( ric - 1 . , 1 nQ # s m,% iQ/) n A T A (T^ = ?pi_iu # r,o^T c r XT.677C DM^p-a-a^n^ipj OAT ft (!JK' = 107' : »741P.?A) DATA (KL=83HFLIGHT NO LONGITUDE L00= . DEGREES i l_ATITUO p LA0= . DFGRFFS) hat A (??s71 7 s 307,102 ) H A T A (|_A = ^U + l«.l ,1U + '1T ^MJ-^^^U^P^,",^ ,^U-(_~M,'5LJ4.^/,,'3q-|- C} r>ATA ( LE=6 ( ^H+0 ' ) ^M + ^^'STCJH + ^^l s ° ( 7M+ n # ) , n.*T A ( LG=8HPRFSSURF,pHP t 5 A.LTTT»c j MLO^'"-I T U rN »"i L - lir »PHL /v TI TUDF » 1 4HTFVD,RHP0T -TFMP ) Oat A (NG=1 »0,0»0»0»1 ) OAT A (NQ=I1 »0»0»C,C, 1 )• OAT A ( XF=6 (4 54.0 )» 6(466.0 ) »6(47p.0) 96 ( 490.0) ) » i f YF=4(4' 2 0.0»??R.0» 1 i n .0»-1 1 0.0» -l QC '. n » -'900.0)1 n a t a ( xn=? ( 4O6 . ) 9 3°4 .0 »4O0 . s406 . »4^4. 9AO* . ) » 1 (Yf*-:^O^ t ^, 1 pc; .r» ?(90. 0)» - Qr . * -77*,^, -47^ # 0l OAT A (XATA (X^0=-P74.^s -' a 6?.0» -350.0s -??P.09 -326.09 -302.0s 1 _q^.O, _7i,^, _fc?.P, -5C,% -26.0s -?4.0, -?.0, ? ^ ? 2 . « 334.0s * 4 6 . n 9 370.0s 3 8 ? . 9 *°4.C)»(YlC0 = ! o (-511.5n ^ aT a ( XL A =-400. 5 9-4PTfe, 5 »-47C.K s-4A Q . * s- c i i . r s 1 -too, c ,-471; # c; S-4A-5 # c ,_ A c i t c ) , ( Yi a=a ( _c ".^ 1 , - ( - V '\" ) ) ^aTa (XNA=-^ii. c s-46T. Ci )9(YNA=7(LnO,0) ) HAT A (XZ = ^n.^s- c '"'''. ,:; )9(YZ = c; n. i:; »- c '''' 1 . c ) haTA (YP=4QO,0s ^^^.^s ?«^.0s 1^^.0s-t 75.0s-7OK,0s-330.0»-4o0.^) XV! M=X TMJN=YM 1 M=YT^ 1^=1^306 XmaX = XtmaX=YmaX=YtmaX=-1 c "9 06 M r > = TTr= IT ( V) -1000000 AfT=vT/vT v t = m I ■«■ < T T 7 a = Tjr/ i 0^0 I7»= ITC-IZA*1000C 25 i i ;L :"IC T 7 r = t Z n / i 00 T Z^= T Zd-t Zf* 1 00 lZ^=TZ«i*^A0O+TZr*!t04-TZn IZF=( ( IZF-1 )/MT+l )*MT IZG=?0 T^ (WT.LE.1C) !ZG=6 tc (MT.fie.f,^) TZr--*00 IZV=( ( IZE-1 )/IZG+l )*IZG TZm=(iZp+(tv-t)*kT) /mT#VT T 7 T - f T7U_r7n /MT4.1 TZ r =!Z--B£&00 T Z M = I Zm— PictOO d^C^ ) JY( T + i i =jv( i + i i 101 » 104 17 r \' = JZ ( < ) /?6.0C n = T Z M / 1 ) JZ (<+3 ) =J7 ( K+i ) -<>*/,■ IZI={ IZH-IZP) /mt+1 T F ( T Z c . r, r . p 6 4 o 1 IF ( IZ M .^.«^00). JY( n = TZF JZ(1 )=IZM J=1 Iff = 1 no 10* I=1»IZI JY( T+ 1 )=.JY( J )+MT T c ( JY( T + i 1 . r - r . IF ( JY( I ) .EQ.JZ(K) ) jZ K + 1 )=JZ(K ) T^ ( JZ(k: + i ) - r - 7. 1 7 ZO= JZ ( * 1 -TZN'*^A0 r Z P = T Z O / A ZS=IZR/1C 7T= TZP-TZS*] 71 != TZO- TZo*£0 ZV= IZG/AO Z ( < ) = T Z M * 1 n ' J- T 7 D - Z(J )=IZO*IJK Z ( J-t-1 1 = tZp^-T Jf Z ( J+^ ) = tZS-*t ji< Z( J+3)=IZT*IJK = J+^ = K + 1 '.»A = JY( T ) /^OO V'' D - j y ( T ) - T '-'■' a -x- -5 A '«./("= T W c /6 ' ; ' A T)= IWR-I WC*60 Y ( T ) = T W a #1 0+ 1 \'-!f * 1 + J ''.'^ +■ 1 .00 n ^ ON.TINUE P=( IM+5 )/ 10*1 0-5 Q='( JM-ID )/2 + l p = ( TD-1 ) /?j_ T Q Y=0.0 QM=TQ+2 - a a / n o . j Z U + ] ocooo 26 KA=-KP-1 HX=(X(TDO)-X( TO] ) ' ( TD-1 )*s. uv-(Y(iDn)-V(p)] /(to_i ) *R # f! DO 109 1=1 ♦ IV X c = X c + X ( I ) 1 ^o rnMT T N't J^ X^=XS/T M Y c = . r. DO 11 I=1»IM Y^=YS+Y( T ) it r r\ K' J T N U c YO=YS/'T^ |C ( ad^(mY),^-T, aDC; ( l, X) ) 1?»li 12 CO 13 I=IQV»IPQ»5 KA=KA+1 <;Y-SY+>^A*"( (X( I-->)+X( I-i )+X( T }+X ( t + 1 )+X( T + -»n /c.O-XO) to f- n m T T |vi U r HX = HY GOTO 1.6 ] a DO \ c i I = 1QY » I D 0» c k" a = K a + 1 c V= ^y + . N E . n ) 1 6 2 , 1 f ? 1 [yc = IFS-L^C*U 00'". Xt""X=Xt X T " TM = X T Y T * •' A X = Y t Y tmtn=YT X M a X = X ( T 1 y- T M_X ( T ) Y»' *X = Y ( t i YVIN=Y ( I ) 27 1 A91 £>? 1 f, 01 1 6? c 1 6° X^(LL) = IX(I)- r -n YR(LL)=IY( I )-512 L L. = L L + 1. T^ (TT(Tj,F^,jZf^"n) < = i1> R ) (XNA»YNA»?»0»1 ) (XNA»YNA,2>0»9) jXr,=-i 1 7 •? 9 1 7 ? 29 GOTO 1701 170^ IF (JXn.|_F.50) JXX=* I c (JXh.lf.pO) JXX = ? IF (JXD.LE.10) JXX=1 JXZ=JXX*JXF*JXG JAX=JXZ/COA*SC JNX=JXSP/JXZ/2 JXW=JN'X+JNX XT(1 )=-JNX*JAX DO 1704 1=1, JX^ XT( 1+1 )=XT( T )+JAX 1704 CONTINUE JXN=JX^+JXM+1 JXN»? KC=KC+1 XA(K)=X.T(KC)-XM YA (!<)=-YV IF (Xa(K) .LT.-51 1.5) 17041,170a? 17041 YA(K)=(-XA(K)-A5S(XM)-511.5)*P XA(K)=-511.5 17042 IF (XA(K) .GT. 511.5 ) 17043,17044 17 04? YA(K)=(-XA(K)+ABS(XM)+511.5)*P XA (K) =51 1.5 17044 I r (K.fo.JXm-1) 17C^,T"706 1705 JLX(l)=3H+0- Jt_X(2)=JXX*IJK JLX(3)=2H+0 IF (JXF.GF.10) JLX(4)=?m+0 IP ( jXc,r,c #1 00) Jt_X(5) = ?H+0 r-nTo i7i0 1706 IF (K. C 0.JXM+1) 1707 JLX( 6 ) =?H + Oi_ JLX( 7)=3H+00 JLX( 8)=3H+00 GOTO 1710 ]70r ip (K.FO.JXm+3) 1709 JLX(9)=3H+0+ JLX(lOi=j L X(?) JLX( 11)=JLX(3) JLX( 12)=JLX(4) 1710 XA(K+1)=XT(KC)+1.1*XV YA(K+1)=YVA GOTO 171? 171 1 XA (K + l )=XT(KC)+XVl YA (kf + l )=YV 1712 IF (XA(K+1) .LT.-511.5) 1713 XA(K+1 )=-511.5 YA(K+1)=(-XT(KC)-AF5(XM) Jl_X(*M = 3H+00 JLX( 4) =?M+no 1 707,1 70P 1700,1711 1713,1714 •511 . ^)*P 30 171 ^. 1715 1716 17161 1716? 1 71 64 1716^ 17166 1 7 1. 7 1718 2501 2 502 ?50^ XJA( 1)=XA( JXM XJA( 2)=Xfl (JXM XJA(3)=XA( JXM XJA(4)=XA( JXM IF (XA(K+1) .GT.511.5) 1715*1716 XA(K+1 )=511 .5 Ya (K + l ) = (-XT(12 TALL roTD(_T (0»0» jLX(kT) »1 »5 ) CALL CRTPLT ( X JA ( K ) , Y JA ( K ) * 1 » ♦ 1 ) CONTINUE jYS D =YTMAX-Y!MT!\i JYE=JYSP/11 jYn=lAoS( jYF) JYr-=i IF (JYF.LT. 0) JY C =10 IF (JYn.GT.50) JYD=JYD/10 jYc=jYc*i GOTO 2501 IF (JY^.l^.^0) IF (JYO.LF.20) IF (JYD.LE.IO) JYZ=jXY*jYF*jYn JBX=JYZ/SIA*SC JNY=JYSP/JYZ/2 JYM= JNY+JNY 17161 »1716? 17163 »17164 17165»17166 JYG=-1 2502,2 503 JXY=^ JXY=? JXY = 1 31 XU(1)=-JNY*JBX nn 2^04 I=1»JYM XU(I+1)=XU( I )+JRX 2504 CONTINUE JYN=JYM+JYM+1 KC = po ?5l f K=l »JYN»? KC=KC+1 XR(<)=XU(KC)-XM YP (<)=YV IF (Xp?=044 2 5 043 YB(K)=(-XB(K)+ABS(XN)+511.5)/P XB(K)=511.5 25044 IF (K.EQ.JYM-1) 2505*2506 ?«$0«n jlY( 1 )=*h+0- JLY( 2)=JXY*IJK JL.Y(3 )=2H + IF (JYF.GE.10) Jl_Y(?)=3H+00 JLY(4)=2H+0 IF (JYF.GE.100) JLY(4)=3H+00 JLY(5)=2H+0 GOTO 2 510 2506 IF (K.EQ.JYM+1) 2507*2508 ?*07 JLY(6)i=^H+0L JLY(7)=3H+0A JLY(8)=3H+00 GOTO 2510 2508 IF (K.EQ.JYM+3) 2509*2511 ?e,0o J|_Y( O) =^H+0 + JLY(l0)=JLY(7) Jl.Y( n )=JLY(3) JLY( 12)=JLY(4) ?5"|0 XR(K+I )=XU(KC)+1 . .I*XN YB(K+1)=-YVA GOTO ? c l? 2511 XB(K+1 )=XU(KC)+XN Yd(k+1 )=-YV 2512 IF (XR(K+1) .LT.-511.5) 2513*2514 ?<^1^ Xo (< + i )=-*! ] .5 YB(K+1)=(-XU(KC)-ABS(XN)-511.5) /P 2514 IF (XB(K+1).GT«5-11.5) 2515*2516 2515 XB(K+1)=511.5 2516 YR(K+1 ) = (-XU(KC) + ABS(XM)+5U.5) /P CONTINUE XJB( 1)=XB( JYM J-12.0 Xjo( ? )=XR( JYM ) Xjo( ^ )=XQ( JYV )+l?.n XJR(4)sXo(JYM )+24.0 32 ) .OR- (XJB(4) .GT.442.CO) ?5161»25162 2 ~ 1 6 1 162 IF ( (XJ«(1 ) .LT.-45C XJ C ( 1 ) =-4 5C • < XJ Q { 2) =-4 33.0 X i " ( -? j = _ /. 7 c , o X |n ( A } = -&"i&.C Xjc ( c i--/. 0?.0 . ) I Y ( G 1 = "3 U + P - XJ a ( 6 )=X C ( J v " + ? )-12«0 XJP ( 7)=X° ( JYM+2 ) xj- ( ° ) =x^ ( JYV+? i+i ?.r IF ( ( XJ n ( fi ) .LT.-450. ) .OR. ( XJ C ( « ) .GT.^42. ? q . 1 6^ JL.Y ( 6 ) = JLY ( 7 ) =JLY ( Q . ] =?w+C "? = 1 A A X J 1 ^ ( i =X^ ( JY-v+4 1-1 ?. - XJR( ci =x n ( JYM+4) X.jn ( 10 J =X^ ( JYV+4 ) XJP( 11 )=X 3 ( JYM+4J+12.C XJD( 1 7 ) =X n ( JYV + '-) +24. P IP ( (XJ D (p).LT.-/- = ". r, ).^P.(XJ^(n ) .r-T.44? JLY( n ) =JLY( i ) =JLY ( i i )=JLY( i ? ) =?M-i-C n n 2 517 k' = ] » 1 2 Y | n ( < ) - _ Y V A rnM| t mi ic ^O OE1Q /si ,17 CALL CRT D LT ( C »" , JLY ( < ) , 1 ,5 ) fALL rr? T^LT ( X jn ( ^ j , yjd ( kT ) » i , n , i) ) ) ?K-|f-2,?E1A& ) ) 7 c . 1 6 : "3 C 1 f C ?M f a 9 r. 1 "7 KVsrJXN + 1 f M=JY W +1 r a i_ L r ° T ° L T r M_ L r D T R L T F ( c ) = n . o ( X A , Y A , / M , (Xo,yn ,/v, F=YM( J ) J= ^ a 1 . P(J)=1 .0 aC T c ( r . I - . t . '~ ) ■31,-3-3 1 r = r*i- # - r>=n-*i r, ,P r, n t ? C "3 9 T r (p.LF-AO.Oj ~( J) = ?. C T r ( r . 1 r , -3 Q , j ~ ( J 1 = r • " I - ( r .L c .^.n) nj)=iO. T ^ (c.^T. A.^l -3 "3 , "3 -3 -a P( J)=r( jj *n ■2£ k' f> X = i ■ ' 6 / T V" fXt 1 ) = ( 1 074-^^X * T v ) / 7 no A 1 J= 1 , A DO 40 1 = 1 , I v KX( 1+1 )=KX( I J+K ^Y ^Y( T 1 ="Y~ ( Ji^7 ( T »J1 * =■ ( J 1 33 41 4 71 W>0 431 k'YL.t T ) =" 1 « ) fOMT T ^ ' !j ^ XL(1 )=^ L 7 Y = i , f- n^ 6.7 J=l ,4 r>n 42 1 = 1 4 21,422 O.C/^Jl/A^MZ'.f.nn 4 7 4 , 4 7 r > Xn( I ,J,K) =XL (< ) 47 roMjJMijir On 4 3 J = l ,4 FV = p< ( J)* c .O.C/F( JJ IF (ZA( J) •EQ.O.O) v«{ i , J)=0 r -oTn 4^4 Mir-Fk' ( J) *Z A { ,M * ( 1 . 0- apn, yn ( j , J ) =Mp/VF*VF T rr (WR[1,J),cn t 0) 4 24 MO (2,J)=-^E GOTO 426 i^ Yn( i , J,i ) = {yn(i , Jy -Za ( J)*="< ( J) )**( Jl /^'< ( J)4-KY0( J>-ei*5.0 Yt>( ?,j,i ) = (vc(?,j)-za ( jo*c (J) )* r ( J) /c-k 1 ( j)+ 4 Q i J = ] , 4 "Z ( T » "" » 7 1 =^Z ( T , i ,^> ) ^Z(T»1,^)=KZ(Ij1»4) \(Z ( T , i ,4 1 =" Z ( T ♦ 1 » k 1 "Z ( T » i , c ) =?U + 433 KZ ( I ,1 ,6 )=2H+C KAG=MB< I 9?) /lOOr KZ( I »? »?) =KT &G*T JK '/ A U| = M D ( ]■ , 7 ) _ V \ r. # ■] 3 kMT = KAH/lQO "7 ( T , ? ♦^ ) = < ft t *t JK rZ ( T f ?»4) =^H+0. KAJ=KAH-KAI*100 KAJA=KAJ/1G ,=; ) =KA JA*T JK KAJR = t* ) = ,'^m='''Z(T,' 7 »4) » M KZ ( I »?»6 ) = ?H+3 4 3^ 3) .LT.C) ) =4 ,^ ) =KZ ( T ,^,4 ) 35 «7_( I ,4»4)=KZ( 1,4,5) KZ (I ,4,5)=KZ( 1,4,6 ) »Y^( T ) » 1 »1 »U 6* CONTTN!U r D^ 46 1=1 ,6 CALL CRTPLT ( , , LF ( I) , 1 » 5 ) CALL CRTPLT ( XF ( I ) , YP ( I ) , 1 , 1 » ! ) h c ro^TTNU c n n 6 "7 T = "? » t 6 rALL rRjD.LT ( n » ft »L c ni» R » R ) r«LL ^ n Tni.T (Xc(n»Yc(I),i»l»l) 6 "7 CONTINUE no 6 Q T = *> 7 , ? 6 rALl cpTdlT (OiMjinj]^) r/\LL ^pTP!...T (X^( I 1 ,Yp( T 1 * 1 » "" » 1 ) CONTINUE r>n 6° 1 = 1,7 r A| L roTo L T (Xr-(J ) )YM! ) »w^»Lr-( T )»i r PA'T T MlJF 4? 60 c U XP( I ) =XL( 1 ) 5 CONTINUE r ,M l rPT D LT (XP»YD»n,"» Q ) KQ("l)=LlD(l)*UK KQA=LID( 2)-lCG0 KQq = KG.A/ 1'J K or = fcf O A — ^ O n * 1 KQi(3 ) =KQC*IJK (3)-lC00 KQE=KQD/10 _ v. Q r # 1 n( ^ ) =^0^^-! J" KO(6)=Ll r >(4)/60o6 K0(7)=?H+ r ip (Xr.LT.O.Q) 5( xrj*i 000. C i^n(7i=''H+0- 36 KO ( i U ) =^w + 0- KQM=KGL-KQG*1000 KCN=KQM/10C KQ( 11)=KQ.N*IJK 1 ) n n ^i i = i » i q CALL r^TDLT (0,0»KO(!)»1»=) (XKQ( I ) ,YKQ( I ) »1 »0»1 ) CALL CRTPLT m rOMTTNUF CALL C9TDLT FND >?0 > 37 GPO 888-780 PE N N STATE UNIVERSITY LIBRARIES AOQOOTEOiit,^