C 13 ,44 '' 7:3 1 A UNITS) STATES DEPARTMENT Of COMMERCE PUBLICATION Vso/ NBS TECHNICAL NOTE 724 Properties of Selected Superconductive Materials U.S. DEPARTMENT OF COMMERCE National Bureau of Standards M NATIONAL BUREAU OF STANDARDS The National Bureau of Standards 1 was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measure- ment system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Computer Sciences and Technology, and the Office for Information Programs. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scien- tific community, industry, and commerce. The Institute consists of a Center for Radia- tion Research, an Office of Measurement Services and the following divisions: Applied Mathematics — Electricity — Heat — Mechanics — Optical Physics — Linac Radiation 2 — Nuclear Radiation 2 — Applied Radiation 2 — Quantum Electronics 3 — Electromagnetics 3 — Time and Frequency 3 — Laboratory Astrophysics 3 — Cryo- genics 3 . THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research lead- ing to improved methods of measurement, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and distributes standard reference materials. The Institute con- sists of the Office of Standard Reference Materials and the following divisions: Analytical Chemistry — Polymers — Metallurgy — Inorganic Materials — Reactor Radiation— Physical Chemistry. THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to pro- mote the use of available technology and to facilitate technological innovation in indus- try and Government; cooperates with public and private organizations leading to the development of technological standards (including mandatory safety standards), codes and methods of test; and provides technical advice and services to Government agencies upon request. The Institute also monitors NBS engineering standards activities and provides liaison between NBS and national and international engineering standards bodies. The Institute consists of the following divisions and offices: Engineering Standards Services — Weights and Measures — Invention and Innovation — Product Evaluation Technology — Building Research — Electronic Technology — Technical Analysis — Measurement Engineering — Office of Fire Programs. THE CENTER FOR COMPUTER SCIENCES AND TECHNOLOGY conducts re- search and provides technical services designed to aid Government agencies in improv- ing cost effectiveness in the conduct of their programs through the selection, acquisition, and effective utilization of automatic data processing equipment; and serves as the prin- cipal focus within the executive branch for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Center consists of the following offices and divisions: Information Processing Standards — Computer Information — Computer Services — Systems Development — Information Processing Technology. THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal Government; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System; provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world, and directs the public information activities of the Bureau. The Office consists of the following organizational units: Office of Standard Reference Data — Office of Technical Information and Publications — Library — Office of International Relations. 1 Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washing- ton, D.C. 20234. - Part of the Center for Radiation Research. 3 Located at Boulder, Colorado 80302. Properties of Selected Superconductive Materials B. W. Roberts Superconductive Materials Data Center General Electric Research and Development Center P. O. Box 8, Schenectady, New York 12301 (Supersedes and extends NBS Technical Note 482) q, U.S. DEPARTMENT OF COMMERCE, Peter G. Peterson, Secretary National Bureau of Standards, Lawrence M. Kushner, Acting Director Issued June 1972 National Bureau of Standards Technical Note 724 Nat. Bur. Stand. (U.S.), Tech. Note 724, 100 pages (June 1972) CODEN: NBTNAE For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 (Order by SD Catalog No. C13.46:724). Price $1.00. Contents Page Introduction- ■ — — — — — — — -— i Background ■ — ■ ■ — — — - — — 1 General Properties of Superconductors — - — — ■ 2 High Field Superconductivity ■ .-.-._.— 2 Criteria for the Existence of the Superconductive State and New Developments — ■ — ■ — »____, — ,_____„.. 4 Metallurgical Aspects of Sample Preparation — — — - — - — -- 7 Notes Concerning the Data Tables _____ — _„__ .__ — . — __,__ 9 Table 1. Properties of Superconductive Elements — -.— — — .- 10 Table 2. Tabulation of Superconductive Materials- — — 14 Table J>. High Magnetic Field Superconductive Materials and Some of Their Properties------ — 70 Bibliography ■ — -. — __.——— 78 Review Articles and Books on Superconductivity-— ------- — ■ — ■ — 89 iii PROPERTIES OF SELECTED SUPERCONDUCTIVE MATERIALS B. W. Roberts This is a noncritical compilation of data on superconductive materials that have been extracted from the literature published up to early 1971. The properties concerned are composition, critical temperature, critical magnetic fields, crystallo- graphic data, and the lowest temperature tested for materials specifically explored for superconductivity. The compilation also includes a bibliography, a list of general review articles, and a special tabulation of high magnetic field superconductors. Key Words: Bibliography; compilation of data; composition; critical field; critical temperature; crystallo- graphic data; low temperature; superconductivity. INTRODUCTION This Technical Note extends the data set on superconductive materials published in Vol. IV of Progress in Cryogenics, 1964,* pages 160-231, and is in addition to the addendum, National Bureau of Standards Technical Note 482 of May 1969. The new material includes a portion of that data readily available to the author to early 1971. However, the world activity in the study of superconductive materials has continued at a high rate such that more than 500 references are in hand and yet to be perused for avail- able data as this Technical Note is assembled. BACKGROUND Sixty years of research on the phenomena of superconductivity has led to an impressive current world activity aimed at further understanding and exploitation. This effort has produced a techno- logy employed by many industrial concerns. Some of the latest developments include superconductive coils capable of producing magnetic fields approaching 25 Tesla. Superconductive magnets with precise and homogeneous fields and with selective spacial configura- tions are readily produced including some field gradient patterns that are impossible with normal state conductors. Huge linear accelerators are planned utilizing superconductive cavity walls. Large superconductive magnets have been constructed for hydrogen bubble chambers with coil diameters on the order of 3 meters and more. Plasma researchers have constructed floating superconductive This data set has also been published in a Soviet book "New Materials and Methods of Investigating Metals and Alloys", edited by Professor I. I. Kornilov of the Baikov Institute of Metallurgy, i960. Moscow pp. I-98. ' ' ' 1 coils. A direct current transformer has been produced utilizing a special arrangement of superconductive thin films for tunneling. A superconductive motor of 3250 hp. has been operated successfully as well as a 150 hp. superconductive generator. Doubtlessly, other applications will be stimulated as the information on superconducti- vity research and the data produced are disseminated to the scien- tific and industrial community. GENERAL PROPERTIES OF SUPERCONDUCTORS ** The historically first observed and most distinctive property of a superconductive body is the near total loss of resistance at a critical temperature T characteristic of each material. Figure 1(a) illustrates schematically two types of possible transitions. The sharp vertical discontinuity is indicative of that found for a single crystal of a very pure element or one of a few well annealed alloy compositions. The broad transition, illustrated by broken lines, suggests the transition shape seen for materials that are inhomogeneous and contain unusual strain distributions. Careful testing of the resistivity limits for superconductors shows that it is less than 4 x 10"25 ohm-m, while the lowest resistivity observed in metals is of the order of lO"" ohm-m. If one compares the resis- tivity of a superconductive body to that of copper at room tempera- ture, the superconductive body is at least IQr' times less resistive. The temperature interval, T c , over which the transition between the normal and superconductive states takes place, may be of the order of as little as 2 x 10~^K or several K in width, depending upon the material state. The narrow transition width was observed in 99.9999 purity gallium single. crystals. A Type I superconductive body below T c , as exemplified by a pure metal, exhibits perfect diamagnetism and excludes a magnetic field up to some critical field H c , whereupon it reverts to the normal state as shown in the H-T diagram of Figure 1(b). HIGH FIELD SUPERCONDUCTIVITY The discovery of the large current-carrying capability of Nb„Sn and other similar alloys has led to an extensive study of the physical properties of these alloys. In brief, a high field superconductor, or Type II superconductor, passes from the perfect diamagnetic state ** The NBS Office of Standard Reference Data, as administrator of the National Standard Reference Data System, has officially adopted the use of SI units for all NSRDS publications, in accordance with NBS practice. This publication does not use SI units uniformly be- cause contractual commitments with the author predate establishment of a firm policy on their use by NBS. Other appropriate conversion factors will be found in Tables 1 and 2. We urge that- specia- lists and other users of data in this field accustom themselves to SI units as rapidly as possible. Hci Hc2 (c) H C3 Figure 1. Physical properties of superconductors. (a) Resistivity versus temperature for a pure and perfect lattice (solid line). Impure and/or imperfect lattice (dashed line), (b) Magnetic field- temperature dependence for Type I or "soft" superconductors, (c) Schematic magnetization curve for "hard" or Type II superconductors at low magnetic fields to a mixed state and finally to a sheathed state before attaining the normal resistive state of the metal. The magnetization of a typical high field superconductor is shown in Figure 1(c). The magnetic field values separating the four stages are given as H^, K c 2> and H c3* T ' ie superconductive state below H c ^ is perfectly diamagnetic and identical to the state of most pure metals of the "soft" or Type I type. Between H c i and H c 2 a "mixed superconductive state" is found in which fluxons (a minimal unit of magnetic flux) create lines of normal superconductor in a supercon- ductive matrix. The volume of the normal state is proportional to -47TM in the "mixed state" region. Thus at H c 2 the fluxon density has become so great as to drive the interior volume of the super- conductive body completely normal. Between H c 2 and H c 3 the super- conductor has a sheath of current-carrying superconductive material at the body surface, and above H c 3 the normal state exists. With several types of careful measurement, it is possible to determine H cl' **c2 J and H c3* Table III contains some of the available data on high field superconductive materials. A more complete representation of the states present in a high field superconductor is given in Fig. 2 with the additional phenomenon called fluctuation superconductivity. The latter phenomenon is evi- denced in several physical properties above the appropriate critical fields and temperatures. High field superconductive phenomena are also related to specimen dimension and configuration. For instance, the Type I superconductor, Hg, has entirely different magnetization behavior in high magnetic fields when contained in the very fine set of filamentary tunnels in an unprocessed Vycor glass. The great majority of superconduc- tive materials are Type II. The elements in very pure form with the possible exceptions of vanadium and niobium are Type I. A further complication in describing a high field superconduc- tor has been found in a few examples wherein a specific alloy may exhibit Type II behavior up to a temperature intermediate between T c and absolute zero and then is a Type I superconductor from the intermediate temperature to T c . CRITERIA FOR THE EXISTENCE OF THE SUPERCONDUCTIVE STATE AND NEW DEVELOPMENTS Substantial numbers of experimental and theoretical attempts are still being actively pursued to enhance the known criteria out- lining the existence of the superconductive state in materials. Still, the most used criteria are Matthias' rules developed empiri- cally but with qualitative theoretical support. The primary pre- diction of Matthias 1 rules is that alloys with average valence electron per atom values just below 4 (3.7-3.9), 5 (4.7), and 7 (6.7) will often have notable superconductive critical temperatures. The average valence electron per atom ratio is taken directly from the periodic table and the prime example is shown in Fig. 3. T data for most of the known alloys with the 0-W (or Cr0 3 or A15) structures PHASE DIAGRAM Type I : Meissner Very Weak Fluctuation Superconductivity Normal Type II Sheath Mixed Meissner Fluctuation Superconductivity CI tB&»//g£;-.« : T c T Figure 2. H-T phase diagram representation of Type I and Type II superconductors with locations for fluctuation super- conductivity indicated. (R. R. Hake, personal communi- cation and J. Applied Phys. 40, 5148 (5.969). "The Thermodynamics of Type I andType II Superconductors"). which have been prepared and tested for superconductivity are pre- sented as a function of valence electron per atom ratio. ' The pronounced peaking at 4.7 and 6.7 is evident. The evidence for the peak below the value 4 has been demonstrated from a group of alloys with seven different crystal structures.' ^ Many additional para- meters such as the mean atomic volume, the valence electron density and the mass of the constituent atoms have been useful but most often only in comparison among slmiliar structures or materials. A recently described oscillatory dependence of T c on the mean number of valence electrons per atom has been described for the CuoAu-type (Llo) alloys. ' c ' In five ternary alloy systems they find maxima in T near 3.3 and 3.7 valence electrons per atom. The authors indicate that Brillouin zone effects lead to the oscillatory behaviour. Another theoretical insight leap is needed to lead materialists to the 30 K critical temperature realm which the superconductive technologists state would greatly amplify the present application of superconductive devices. Critical temperatures around 30 K would permit high magnetic field production with inexpensive liquid hydrogen as a coolant. A wave of interest has swept the technical world for even higher critical temperatures in one -dimensional organic materials and two- dimensional layered arrays requiring new mechanisms for the super- conductive state. A novel series of metal lo -organic compounds have just been reported(^) which are composed of "atomically-thin, metallic layers of TaS£ and layers of substituted pyridines" in alternation. Selected examples of such sandwich construction are T c TaS 2 (pyridine) Q 5 y-^r TaS« (4 -Dimethyl amino pyridine) «, 2.30 TaS 2 (3-Ethyl pyridine) Q ^ 2Q 4.50 TaS 2 (2,3,6-Trimethyl pyridine) 0>165 1.95 from data on twenty combined materials. The added complexity for systematic data selection from these materials could become quite involved as this field may grow. Several selected new developments include the reconsideration of Pauling's resonating-valence-bond theory of superconductivity*^ which gives good correlation for observed and calculated critical temperatures of Y, Zr, Nb, Mo, Tc, Ru and Rh. Not only has fluctuation superconductivity been well documented above T but in high field superconductors two types of behavior have been delineated:^) "standard" Type II and "extreme" Type II. The need for designation in these tables is under study. Perusal of the new data in the "Pressure" portion of Table 1 illustrates the intense activity of study of the elements under various very high pressures and we note that several elements have been found superconductive including the alkali metal Cs. Further data are given in Table 2 along with a considerable number of new results on alloys prepared or studied while under high pressure. A significant block of study has enveloped the discovery of the high critical temperatures in the ternary alloys of Nb (Al, Ge) and suitably composed and annealed alloys have been found to have an onset critical temperature of 20.98 K^> and has been quoted as 21 +0.1 KW. Andres and Jensen' 1 ' have shown a clear correlation of T c with the mean electron density in over fifty alloys of the noble transi- tion elements covering the temperature range 0.015 K to 5 K. An extension of Ginzburg and.Kirzhnits theory of surface superconductivity by Pashitskii^ suggests another mechanism for the superconductive state with critical temperatures in the realm of i superconducti ~10 2 to 10 3 K. A calculated value of the critical temperature of Al which agrees well with experiment has been obtained from inelastic neutron scattering data on phonons and the Heine -Abarenkov pseudopotential for the electron-ion form factor. W The critical temperature of Be co- deposited at low temperatures with KCl or zinc etioporphyrin has been found to increase T Q fro "?»v the usual range of 5.4 to 8.6 K to 10.2 and 10.6 K respectively. <■ ) These very new results may be due to three-dimensional electron quantization effects on superconductivity in very tiny crystallites. V*' METALLURGICAL ASPECTS OF SAMPLE PREPARATION The sensitivity of superconductive properties to the material state is most pronounced and has been used on occasion in a reverse sense to study and specify the detailed state of alloys. The mechanical state, the homogeneity, and the presence of impurity atoms and other electron scattering centers are all capable of controlling the critical temperature and the current -carrying capabilities in high magnetic fields. Well annealed specimens usually show sharper transitions than those that are strained or inhomogeneous . This sensitivity to mechanical state underlines a general problem in the tabulation of properties for superconductive materials. The occasional divergent values of the critical tempera- ture and of the critical fields quoted for a Type II superconductor may lie in the variation in sample preparation. Critical tempera- tures "of materials studied early in the history of superconductivity must be evaluated in light of the probable metallurgical state of the material as well as the availability of less pure starting elements. It has been noted that, recent work has given extended consideration to the metallurgical aspects of sample preparation. 7 (a) B. W. Roberts "Superconductive Compounds" in Intettnetallic Compounds . Edited by J. H. Westbrook, John Wiley and Sons, New York (1967) pp. 581-613. (b) Cooper, A. S. et ♦ al , Proc. Nat. Acad. Sci. 67, 313 (1970). (c) Havinga, E. E. , Damsa, H. and VanMaaren, M. H. , J. Phys. Cttem. Solids 31, 2653 (1970). (d) Gamble, F. R. , Osiecki, J. H. and DiSalvo, F. J. To appear in J. Chem. Phys. Gamble, F. R. , DiSalvo, F. J., Klemm, R. A. and Geballe, T. H. , Science 168, 568 (1970). (e) Pauling, L., Proc. Nat. Acad. Sci. 60, 59 (1968). (£) Hake, R. R. , Phys. Rev. 158, 356 (1967). (g) Matthias, B. T., Inter. J. of Quantum Chem. Vol. HIS, 903 (1970). (h) Arrhenius, G. , et.al , Proc. Nat. Acad. Sciences 61, 621 (1968). (i) Andres, K. and Jensen, M. A., Phys. Rev. 165 , 541 (1968). (j) Pashitskii, E. A., Zh. Eksp. Teor. Fiz. 56, 662 (1969). Trans: Soviet Physics JETP 29, 362 (1969). (k) Carbotte, J. P. and Dynes, R. C, Physics Letters 25A, 685 (1967). i&) Alekseevski, N. E. , Tsebro, V. I. and Filippovich, E. I., ZhETF Pis. Red. 13, 247 (1971). (m) Parmenter, R. H. , Phys. Rev. 166, 392 (1968). Acknowledgments Preprints and courtesy copies of reports on superconductive materials and comments and suggestions have been kindly sent by many researchers in the field and found most useful and are grate- fully acknowledged. Thanks are extended to E. Bucher, J. Volger, Ch.J. Raub, B. R. Coles, K. Yasukochi, J. Muller, F. Galasso, N. E. Alekseevski, A. C. Rose-Innes, A. F. Rice, V. B. Compton, R. A. Hein, W. DeSorbo, G. T. Meaden, R. D. Blaugher, S. Geller, R. E. Jones, Jr., L. E. Toth, D. C. Hamilton, E. C. VanReuth, A. L. Giorgi, E. G. Szklarz, K. Noto, H.P.R. Frederikse, S.S. Schalyt, R. M. Waterstrat, G. V. Samsonov, F. Hulliger, G. L. Guthrie, D. R. O'Boyle, W. J. McDonald, S. Foner, B. T. Matthias, A.S. Cooper, A. P. Shepelev, T. H. Geballe, G. C. Carter, A. Echarri, H. Krebs, J. E. Cox, R. R. Hake, M. H. VanMaaren, and M. S. Lubell and to others inadvertently not included. The expert assistance of Mrs. Joan Wolfe, Mrs. June Falcone, Mrs. Barbara Fisher and S. L. Decker have contributed greatly to the monograph. The thorough coverage of the scientific literature is due to the library staff's fine efforts in seeking pertinent articles under the direction of Miss Vera 0. Chase. 8 NOTES CONCERNING THE DATA TABLES Table 1 lists the elements and some of their superconductive properties. The data have been selected generally from recent studies in which sample purity and perfection appear to have been seriously considered. Table 2 contains superconductive materials reported during the period plus all materials that have been reported to be tested speci- fically for a superconducting transition down to some temperature T n without discovery of a transition. All compositions are denoted on an atomic basis, i.e., AB, AB 2 or AB3 for compositions, unless noted. Solid solutions or odd compositions may be denoted as A Z B^_ Z , or A Z B. A series of three or more alloys is indicated as A^By or by actual indication of the atomic fraction range such as Aq_o.6 b 1-0 4* The critical temperature of such a series of alloys is denoted by* a range of values or possibly the maximum value. In many cases several references will be found for the same alloy. This usually denotes a separate measurement by each source, and in a few cases may even indicate a disagreement over the superconductive properties. In view of the previous discussions concerning the variability of the super- conductive properties as a function of purity and other metallurgical aspects, it is recommended that the appropriate literature be checked to determine the most probable critical temperature or critical field of a given alloy. Another point of difficulty lies in the selection of the critical temperature from a transition observed in the effec- tive permeability or the change in resistance, or possibly the in- cremental changes observed in frequency observed by certain techniques. Most authors choose the mid-point of such curves as the probable critical temperature of the idealized material, and others will choose the highest temperature at which a deviation from the. normal state property is observed. Often the choice is not specified. Table 3 lists high magnetic field superconductors. Review articles concerned primarily with the experimental and material aspects of superconductivity are appended. 9 PROPERTIES OF THE SUPERCONDUCTIVE ELEMENTS Table 1. Properties of the Superconductive Elements (New Data on the Elements are Referenced in Table 2 Along with Crystal Structure Data and Parameters for Non- superconductive Elements) Element T C (K) H Q (oersteds) 1 eo(K)t Y(mJ mole -1 deg. K 8 )* Al 1. 175 104.93 420 1.35 Be 0.026 0.21 Cd 0.56, 0. 518 29.6 209 0.688 Ga 1.0833 59.3 325 0.60 Ga(0) 6.2 Ga(Y) 7.62 HF* Hg(a) 4.154 411 87, 71.9 1.81 Hg(B) 3.949 339 93 1.37 In 3.405 281. 53 109 1.672 Ir 0. 14, 0. 11 19 425 3.27 La (a) 4.88 808 142 10.0 La (p) 6.0 1,600 139 11.3 Mo 0.916 90 460 1.83 Nb 9. 25 1970, HF 277 7.80 Os 0.655 65 500 2.35 Pa 1.4 Pb 7.23 803 96. 3 3.0 Re 1.697 188 415 2.35 Ru 0.493 66 580 3.0 Sb 2.6-2. 7** HF Sn 3.722 305 195 1.78 Ta 4.47 831 258 6.15 Tc 7. 79, 7. 92 Th 1.374 131, 162 163.3 4.31 Ti 0.39 56, 100 429 3.32 Tl 2.39 179 78.5 1.47 V 5.31 1100, HF 382 9.82 W 0.0154 1. 15 550 0.90 Note: Symbols explained on page 13« 10 Element T C (K) ^(oersteds) 1 6^(K)t MmJmole" 1 deg. K s ) 319.7 0.633 290 2. 78 Zn 0.875 55 Zr 0.53 47 Zr (u) 0.65 Al 1.30--5. 7 Be 5-8.2 with KC1 6.5-10.6 with Zn etio-porphyrin 10. 2 Bi 6. 154, 6. 173 Ga 8.4, 6.5 In 3.43-4.5 in Glass Pores 3.68-4. 17 La 5.0-6. 74 Mo 4-6.7 Nb 6. 2-10 Pb 7.7 Re -7 Sn 3.84-6.0 Ta 3.16-4.8 Ti 1.3 W 1.7-4. 1 Zn -1.9 Thin Films Condensed at Several Temperatures HF HF HF HF 11 DATA FOR ELEMENTS STUDIED UNDER PRESSURE Element T C (K) Pressure 2 As 0.31- 0.5 220-140 kbar 0.2-0 .25 -140-100 kbar Ba II ~1.3 55 kbar III 3.05 85-88 kbar III -5.2 > 140 kbar Bi II 3.916 , 3.90, 3.86 25, 25.2, 26. 8 katm III 6.55, 7. 25 -37 kbar, 27-28. 4 katm IV 7.0 43, 43-62 kbar V 8.3, 8.55 81 kbar VI 8.55 90, 92-101 kbar Ce 1.7 50 kbar Cs -1.5 > -125 kbar Ga II 6.24, 6.38 235 katm IP 7.5 235 katm Then P -0 Ge 4.85- 5.4 -120 kbar La -5.5- 11.93 to -140 kbar P 4. 7 >100 kbar 5.8 170 kbar Pb II 3.55, 3.6 160 kbar Sb 3.55 85 kbar 3.52 93 kbar 3.53 100 kbar 3.40 -150 kbar Se II 6.75, 6.95 -130 kbar Si 7.1 120-130 kbar SnII 5.2 125 kbar 4.85 160 kbar III 5.30 113 kbar 12 Element T c (K) Pressure Te II 2.05 43 kbar in 4.28 70 kbar IV 4.25 84 kbar Tl (CUB) 1.45 35 kbar (HEX) 1.95 35 kbar U 2.3 10 kbar Y ~1.2 ~2.7 120-170 kbar + For another data set see Mendelssohn, K. , Cryophysics, p. 178 (Interscience, New York, 1960) and Gschneidner, K. A. , Jr. in Solid State Physics 16, 275-426 (1964). f Parkinson, D. H. , Rep. progr. Phys. 21, 226 (1958). Also see Reference 572 and Gschneidner, K. A. , Jr. in Solid State Physi< 16, 275-426 (1964). S1CS HF See Table 3 for additional data on H c , H c and H c „. M equals maximum. FCC is face-centered cubic. HCP is hexagonal close -packed. ** Metastable To convert "oersteds" to ampere /meters, multiply by 79. 57. 2 To convert "atm" to "newton/meter ", multiply by 1. 013 x 10 5 . 13 TABULATION OF SUPERCONDUCTIVE MATERIALS Table 2. Tabulation of Superconductive Materials (including Proven Non-superconductors) with Critical Temperatures and Fields, Crystal Structure Data where determined, and References. Symbols used : * Eutectic alloy A Uncertain composition. R Resistance measurements. M Denotes maximum T c in series of specimens or compositions. ** Tp is the lowest temperature at which a material has been checked for a superconductive transition. HF In Hq column indicates that some information is available in Table 3 on high field magnetic properties. V On material or reference indicates a thin film study. °° All cell edges are intended to be quoted in Angstrom units rnj X C ( ) Denotes incremental changes in T~ from T c of pure metal. For example, T19 2.2-6.16 HF 2.05 HF D0 19 3.00 HF *19 4.00 HF D0 19 5.00 HF M 19 T c '(-0.018) T '(+0.003) 20.1-4.0-6.2 (annealed) 21.0 A15 19.1-17.8 HF 18.38 19. 04 (annealed) 18.45 18. 97 (annealed) 20.7 HF 20.2-6.1 20.2 1.2 1015 1.2 1015 1.2 1015 767 9664 1.15 711 1.15 711 953 976# 939 890 953 943 918 918 918 918 918 746 746 885 1019 823 859 859 876 885 885 20 Material T C (K) H (oersteds) Crystal Structure Ref. Al n £eGe n ,eNb, n vZr„ 18.5-5.1-6.1 (as cast) 0.65 0.35 3(l-y) 3y zo.^S.S-lO.S (anne aled) Al 0.65 Ge 0.35 Nb 3 20.1 Aln fc cGe n ,-Nb,,. „vTi,„ 18.50-1.37-1.8 (as cast) 0.65 0.35 3(l-y) 3y 20.1-4.7-6.2 (annealed) ^O.^O^!.* 19.6-20.1 HF Al 0.75 Ge 0.25 Nb 3 18.5 + 0.9 HF Al 0.75 Ge 0.25 Nb 3 18.5 + 0.9 Al 0.153 Ge 0. 057^0. 79 HF A15 Al x Ge l-x« b 3 11.4 A15 ^0.8^0. 2 Hb 3 (?000A) 10.7 A15 A1 x Ge l-x Nb 3 4.2-11.4 Al l-x Ge x V 3 6.5-12.3 A15 Al x Ge l-x V 3 5.9-13.9 A15 Al x Ge l-x V 3 5.9-12-9.8-11.15 A15 Al 0.212 Ge 0.036 V 0.751 10.65,6.42 A15 Al 0.175 Ge 0.072 V 0.753 10.98,7.0 A15 Al 0.125 Ge 0.121 V 0.754 6.67, 9.98 A15 Al 0.075 Ge 0.169 V 0.756 11.8 A15 Al 0.038 Ge 0.205 V 0.757 9.7 A15 A1 0.1 Ge 0.9 V 3 9.2-8.9 A15 Al 0.2 Ge 0.8 V 3 11.3-11.1 A15 Al 0.3 Ge 0.7 V 3 12.0-11.5 A15 Al 0.4 Ge 0.6 V 3 12.5-12.3 A15 A1 0.5 Ge 0.5 V 3 11.8-11.4 A15 AljLa 3.237 Al La 3 6.16 HF DO 1 Al.La 4 Al 2 La (Plus Ce, Pr, Nd, Sm, Gd, Tb. Dy, Ho, Er, 3.24 (all cases) 1.15 885 885 885 896 789 789 787 708 708 V 708 7 890 894 894 792 792 792 792 792 1015 1015 1015 1015 1015 953 943 711 794 21 Material T c (K) Crystal H Q (oersteds) Structure Ref. A1 Mg 0.0106 1.132 Al ! ' lg 0.0049 1.138 Al Mgg.OOOS' 1.17 Al n Mn 1-x X 1.17-0.12 Al 5 Mo Al 0.215 Nb 0.785 17.97,17.28 Al Nbu (diffusion wire) 17.14 Al Nb 3 18.52-18.9 Al Nt> 3 17.77-16.3 Al Nb 3 «18.7 Al 0. 8-0. l Nb 3 Sb 0. 2-0.9 16.74-3.92 A1 0.95 Nb 3 Sb 0.05 17.81 A1 0.9 Nb 3 Sb 0.1 18.06 A1 x Nb 4x Si l-x V 3(l-x) 16.5-4.0-16.7 Al 3 0s 2 Al 2 0s Al 2 0s Al 6 Re Al 12 Re Al. Sb V, 1-x x 3 Al. Si 1-x x Al. Si V, 1-x x 3 A1 0.0015 Sn 0.9985 Al Sn. x 1-x Al l-x Sn x V 3 Al 2 Th 3 A1 3 U 1.85 4.5-7.2 T'(-0.019) 5-14.5 3.72-3.692 4.5-6 2.6 HF HF HF S56# • 856# 856# 951 1.15 712 859 A15 880 A15 939 A15 801 A15 787 A15 801 A15 801 A15 801 A15 893 1.15 711 1.15 711 1.15 711 711 1.15 712 A15 890 746 A15 890 850 850 A15 890 Tet. 927 LI- 0.07 715 22 Material T C (K) Crystal H Q (oersteds) structure Ref. A1 0.24 V 0.76 Al V 3 Al V 3 A1 2 Y 3 Al Y„ Al Y 11.15 11.65 Al 3 Yb 0.94 Al, Zn 1-x X T (-0.037) c As f 220-140 kbar U140-100 kbar 0.31-0.5 0.2 -0.25 As As 2 Cd Ge(60-70 kbar) 2.84-3.02 As 2 Cd Sn(60 kbar) 1.79-2.29 As Ge (30-65 kbar) 3-3.5 As 0.04 Ge 0.15 Te 0.81< n * 1020 > 0.82R, 0.56 As 3 Sn 3 80 (n=3, ° * 1()22 ^ 1.23-1.19 As V 3 Au Al 2 0.095-0.074 Au 0.2 B 5 M °1.8 4.5, 3.6-2.5 Au 0.1 C 1.30 Y 0.9 10.1 Au Ga 2 1.12 Au Ga 2 1.12-1.05 Au 0.98 Ga 2 Pd 0.02 1.35-1.25 Au 0.95 Ga 2 Pd 0.05 1.79 Au 0.9 Ga 2 Pd 0.1 1.73-1.72 Au 0.85 Ga 2 Pd 0.15 1.75-1.73 Au Ge 2.7-2.25 A15 A15 LI, Tet. Bl A15 C32 D5 c CI CI CI Cl Au Ge Au In, 394 824 792 1.15 711 1.15 711 1.15 711 715 746 898 1.3 774 867 865 891 875 930 1.2 015 866# 767 870 1011 866# 866# 1011 866# 866 908 ^ 1.4 908 0.1 1011 23 Material T C (K) H (oersteds) J 1 ^ 8 ** 1 q v 7 Structure Ref. ,21, Au liu Au 09 In 2 Pd 01 Au Nb 3 Au Nt> 3 Au Nb 3 Au Nb, AW'l-x Au O.95 Pd 0.05 Ga 2 AuTa 4>3 Au Te 2 (n=2.5 x 10") Au Ti 3 Au Ti 3 Au V 3 Au 0.25 V 0.75 Au 0.25 V 0.75 Au 0.25 V 0.75 (a9 ca8t) Au n -.V n 7 c(as cast, v 0.25 0.75 levitated) Au n oa v n t>( &s cast, m 0.28 0.72 levitated) Au V 3 Au V 3 AuV 3 Au V 3 Au 0.23 V 0,77 Bl 0.36 0.051 0.015 0.35 0.90 0.015 866# 866 922# 707 707 707 934 922* 866# 1015 770 707 960 857 948# 948# 948# 707 707 707 707 707 707 707 987 966# 1006 2H Material T (K) H (oersteds) structure C : o_ T Ref. — n i B 6 Ce 0.01 Y 0.99 T^(-0.8) B 12 Ce x Zr l-x T^-0.15 K/ a / ) B 6 Dy 0.01 Y 0.99 T c '(-0.65) B 12 Dy x Zr l-x T^(-0.45 K/ a / ) B 6 Er 0.01 Y 0.99 T'(0.25) c B 12 Er x Zr l-x T,'(-0.25 K/ a / ) B 6 Eu 0.01 Y 0.99 T^(-0.3) B 12 Gd x Zr l-x T c '(-0.6 K/ a / ) B 5 Hf 0.2 Mo 1.8 8.7, 8.4-8.1 B 5 Hf 0.2 Nb 1.8 4.5, 3.6-2.6 B 6 Ho 0.01 Y 0.99 T^-0.4) B 12 Ho x Zr l-x T^C-0.3 K/ a / Q ) B 25 Mo 8.1, 7.45-5.2 BjMo B Mo 2 5.86 B 5 M °0. 2^1.8 4.9, 4.3-4.0 B 5 Mo 17 Mb 3 8.5, 8.3-8.2 B 5 M °1.8 Sc 0.2 9.0, 8.8-8.3 B 5 Mo 1.7 Ta 0.3 7.0, 7.0-5.9 B 5 M °1.7 Tl 0.3 7.4, 7.1-5.5 B 5 M °1.7 V 0.3 5.8, 5.5-5.0 B 5 M °1.9 Y 0.1 8.6, 8.0-7.5 Vl.A.1 9.0, 8.9-8.4 B 5 Mo 1.69 Zr 0.31 11.2, 10.3-8.5 B 2 Mo l-0.75 Zr O-0.25 <1 to 10.3 B 25 Nb 6.4, 4.0-3.0 B 2 Nb 3 BjNb 1014 782 1014 782 1014 782 1014 782 C32 767 C32 767 1014 782 C32 767 C32 1.0 767 1020 C32 767 C32 767 C32 767 C32 767 C32 767 C32 767 C32 767 C32 767 C32 767 767 C32 767 Tet. 0.1 927 C32 1.0 767 Material T< ,(K) H o (oersteds) gggg CT T R Ref. B 2 Nb 810# B 5 Nb x 8 Ru Q 2 6.0, 5.4-3.0 C32 767 BjNt^ 9 Sc Q L 6.6, 4.2-3.0 C32 767 B 5 Nb l 8 Th 2 7, °' 6 ' 1-4 ' 9 c32 767 B 5 Nb 1>g Ti 0<1 4.0, 2.9-2.2 C32 767 B 5 Nb 1.8 V 0.2 2 * 5 ' 2 * 2-1 - 1 C32 767 B 5 Nb l 9 Y 1 9 * 3, 8 * 2 " 5 - 2 c32 767 BjN^ 8 Zr Q 2 5.9, 5.1-2.6 C32 767 B 6 Nd 0.01 Y 0.99 T c '(-0.15) 1014 B 12 Nd x Zr l-x ^(-0.6 K/ a / ) 782 V r 0.01 Y 0.99 T c(-°' l> > 10U B 12 Pr x Zr l-x T £(- 13 R / a / > 782 B 6 Sm 0.01 Y 0.99 ^(-0.4) 1014 B 12 Stn x Zr l-x T;(-.0.6 K/ a / ) 782 B 2 Ta 3 Tet. 0.1 927 B 6 Tb 0.01 Y 0.99 T c<-°' 9) 10U B l2 Tb x Zr 1 . x r (-0.6 K/ a / ) 782 B 6 Tm 0.01 Y 0.99 ^(-0.4) 1014 B.JmZr. T'(-0.35 K/ a / ) 782 12 x 1-x c "' B 2 V 3 Tet. 0.1 927 B W 2 3.18 1020 1014 1014 Cub. 782 902 777 777 Tet. 715 26 B 6 Y 0.99 Yb 0.01 T'(-0.2) B 12 Yb 0.01 Zr 0.99 4.4 B 12 Zr 6.0 Ba (III)(Metastable, 85-88 kbar) 3.05 Ba (II) (at 55 kbar) ~ 1.3 Ba (III) (At or >140 kbar) ~ 5.2 Ba Bi« 5.80 Material T c (K) H Q ( Ba 0.075°3 Sr 0.925 Ti -0.5 Ba 0.025-°3 Sr 0. 975-0. 0.125 875 Ti 0.52-<0.10 Ba 3 Ti(n=1.3 x 10 20 ) (n = 0.05-34 x 10 19 ) Be (with KC1 at 4.2 K) 10.6, 8.3, 6.5 Be (with zinc etio- porphyrin) 10.2 Be (25-200A) 6.4-8.2-5 Be (>200-1000A) Be (~40 ppm impurity) 0.026 Be 5 Co Be 12 Co Be.,Fe Be 17 Hf 2 Be 13 Hf Be 12 Mn Be Mo- Be 2 Nb 3 2.3 Be 3 Nb Be.-Nb^ 1.47 Be 2 Nb 2.15 Be^b^^ gTa-L 5 1.7 Be 2 0s 3.07 Be 2 Rh 1.37 Be 17 Rv 3 Be 2 Ru 1.35 Be 2 Ta 3 1.0 Be 13 Th Be 13 Ti H (oersteds) Crystal ~* ' Structure Ref. HF Tet. Tet. Tet. 988# 1005 0.059 770 1028 V 1028? 899 7 1.3 899 7 783# 1.15 712 1.15 712 1.15 712 1.15 712 1.15 712 1.15 712 1.15 712 927 1.15 712 712 712 927 712 712 1.15 712 712 927 1.15 712 1.15 712 27 M^erlal T c (K) H o (oersteds) jjgggr. T n Ref. Be 12 Ti Be 21 W 5 Be 13 Zr Be 16 Zr Be..Zr, Bi (V) (Ref. 903 says BiVI) 8.55 Bl (VI) (90 kbar) 8.55 Bi (V) (68 kbar) 6.7 Bi (IV) (43 kbar) 7.0 Bi (V) (81 kbar) 8.30 Bi Bi (II) (26. A kbar) -320 Bi (690A at 1.5 K) 6.173 Bi (750A at 4.2 K) 6.154 Bi (III) (~37 kbar) 6.55 HF Bi 0.3 C l.45 Y 0.7 B1 0.1 C 1.45 Y 0.9 9 ' 35 D5 c Bi 0.015 In 0.985 Bi~ o/ i In n te? (also to 0.343 0.657 v 30 kbar) 5.55 Bi 0.015 In 0.985 3.725 B1 x In l-x 3.39-A.21 Bi 0.0l9 In 0.981 3.86 336 Bi,K (0 to 10 katm also) 3.57 Bi Pb, x 1-x HF Bi 0-0. 056 Pb l -0.44 HF Bl 0.38-.88 Pb 0.62-0.12 8.5-4.6 Bi 0.26 Pb 0.74 8.3 Bi 0.23 Pb 0.77 7.8 1.15 712 1.15 712 1.15 712 1.15 712 1.15 712 904 903 903 903 780 773 7 785 737 7 737* 973 4.0 870 870 822 7 843 842 799 722 897 750 7 855 851 851 851 28 Material T c (K) H (oersteds) Crystal Structure T n Ref. Bi 0-0.2 Pb l-0.8 7.25-8.0 Al 851 Bi n i-i pb n Q-n (deposited 6-7.1 851 Bi x Pb l-x 852 Bi 0.625 Pb 0.375 (a 8.05. 7.25 fter 30 kbar applied) 843 Bi Pb. x 1-x T / (+0.22) 861 Bi 0. 025-0. 40 Pb 0. 975-0. 60 t - 0.58-0.50 HF 949 Bi l-0.92 Pb 0-0.08 (500 - 1100A) 6.154-6.032 737 V Bi l-0.95 Sb 0-0.05 ( ~ 70 °- 900A) 6.154-6.374 737 7 Bi Sn 3.72, 4.20 (after 30 kbar) 843 Bi 3 Sr 5.70 Ll 2 715 Bi 2 Te 3 (n = 1.0 x 10 21 ) 0.019 770 Bi Ti 3 1.15 712 Bi Tl. x 1-x T^+0.16) Hex. 858 Bi 0.86 Tl 0.14 650 and at 30 kbar 843 Bi 0. 62-0. 18 T1 0. 38-0. 82 6.6-2.3 736 Bi l-0.87 T1 0-0.1 3 ( 550 - 820A > 6.154-6.220 737* Bi ~0.97 T1 ~0.03 (at 4 * 2 K) 6.1 990 7 Bi V 3 A15 4.2 825 C 1.35 Ca 0.1 Y 0.9 10.5-11.5 870 C 2 Ce 2.0 784 C 1.45 Cr 0.1 Y 0.9 12.4 D5 c 870 C 2 Dy 2.0 784 C 2 Er 2.0 784 C 2 Gd 2.0 784 C 1#5 Ge 3 La 5 3.3-3.7 Cub. 767 C 1.35 Ge 0.1 Y 0.9 10.6 D5 c 870 C 2.5 H 2.5 N 0.5 PdTe 2 1.65 Hex. 1027 C 2.5 H 2.5 N 0.5 S 2 Ta 3.5 HF 29 Hex. 1027 Material T (K) H (oersteds) ell 5 ^ 1 T Ref. c N ' oj ' Structure _n Hex. Hex. Bl C 2.5 H 2.5 N 0.5 Nb S 2 4.0 C 2.5 H 2.5 N 0.5 Se 2 Ta 1.5 C HfQ.Q^MO^Qg 14.3-11.7 C 2 Ho C 1.35 In 0.15 Y 0.85 C Ir 2 Mo 3 1.8 C Ir Mo- 3.2 C 2 Ir U 2 C Ir 2 W 3 2.1 C 2 La 1.61 C 3 La 2 5.9-11.0 C 2 La C 2 Lu 3.33 C 2 Lu C Mo 8.0 C Mo 2 2.9 C 0.42 MO 2.8 CMo 2 4.0 C 0.64 Mo 8.0 C 0.69 M ° 12.1 C Mo 14.3 C M°l- Nb 0-l 11.1-10.8-1 C M° 3 Pt 2 1.1 C Mo 3 Re 2 C 2 Mo Re 3.8 Cub. Cub. Tet. Cub. Tet. D5 c Tet. L ' 3 Ortho. HF Hex. HF Bl Bl Bl Cub. Hex. Cub. C Mo 0.90 Re 0.10 13 * 8 Bl C Mo 0.90 Ru 0.10 13 ' 6 Bl C Mo 1 _ Q Ta _ 1 10.1-8.3-14.3 Bl ' 30 1027 1027 1006 2.0 784 4.0 870 793 793 0.3 1018 793 863 869 2.0 784 863 2.0 784 815 815 966# 966# 966# 966# 1006 1006 793 1.0 793 793 1006 1006 1006 Material T c (K) C Mo l-0.8 Ti 0- ■0.2 14.3-12.0 C Mo l-0.8 V 0-0.2 14.3-12.7 C M°i- W 0-1 14.3-8.8-10.0 C 1.45 Mo 0. 1 Y 0. 9 13.8 C Mo l-0.8 Zr 0- ■0.2 14.3-10.9 C 0.48 Nb C 0.77 Nb 'o.ss 1 * 2.4 C 0.86 Nb 3.7 C 0.91 Nb 6.3 C 0.96 Hb 9.8 C Nb 11.1 C Nb l-0 Ta 0-l 11.1-8.9-10.1 C Nb l-0 W 0-1 11.1-13.5-10.0 C 1.35 Nb 0. 1 Y 0. 9 10.8 C 2 Nd C 2 Os U 2 C Os 2 W 3 2.9 C 2 Pr c 2 Pt u 2 1.47 c Pt 2 w 3 1.2 C 0.04 Re 0. 96 1.98 C Re 2 W 3 C 2 ReW 3.8 C 1.35 Re 0. 3 Y 0. 7 C 2 Rh U 2 C 2 Ru U 2 H (oersteds) -j* o ' Structure T n Ref. 1006 1006 1006 870 1006 1.6 967# 2.0 967# 967# 9670 967# 967# 1006 1006 1006 870 2.0 784 0.3 1018 793 2.0 784 Bl Bl Bl D5 c Bl Bl Bl Bl Bl Bl Bl Bl Bl D5 c Tet. Cub. Tct. 101 1 Cub. A13 Cub Tet. Tet. C 1.35 Ru 0.3 Y 0.7 712 1.0 793 793 4.0 870 0.3 1018 0.3 1018 4.0 870 31 C 3 Sc 4 C 1.35 Si 0. 1 Y 0, 9 C-Sra 2 • C l.35 Sn 0. 1 Y 0. 9 C 0.78 Ta C 0.47 Ta . C 0.95 Ta C 0.93 Ta C 0.83 Ta C Ta c Ta i-o W C -1 C 2 Tb M**** 1 * 1 T C (K) H o (oer 8 ted3) °g^g re T fl Ref. C 1.35 Ru 0,l Y 0.*9 U ' 2 D5 c C 10 Sc l3 (Ge 0.01 t0 Ge 0.16+ ) 7 '°- 8 ' 5 Cub ' Cub. 11.3 D5 10.2 D5 c Bl C6 6.2 Bl 5.4 Bl 1.8 Bl 10.1 Bl 10.1-10.2-9.0-10.0 . Bl C 1.55 Th 0.3 Y 0.7 17 '° D5 c C 1.35 Th 0.1 Y 0.9 12 '° D5 c C 1.35 Th 0.2 Y 0.8 U ' 7 D5 c C l.35 Th 0.3 Y 0.7 l6A E5 c C l.35 Th 0.35 Y 0.65 16 ' 8 D5 c «l.||*S^.|S l6 *° D5 c C 1.35 Th 0.5 Y 0.5 15 - 5 D5 c C U35 Th Q.6 Y 0.4 "- 1 «c C 1.35 Th 0.7 Y 0.3 14 ' 4 D5 c C 1.35 Th 0.8 Y 0.2 C 1.35 Th 0.9 Y 0.1 C 1.40 Th 0.3 Y 0.7 16 - 3 D5 c C 1.45 Th 0.3 Y 0.7 16 ' 3 ^c C 0.150 Th 0.25 Y 0.7 16 ' 8 ^c 32 870 871 1.0 871 870 2.0 784 870 1.6 967# 1.6 967# 967# 967# 967# 1006 1006 2.0 784 870 870 870 870 870 870 870 870 870 4.0 870 4.0 870 870 870 870 M»t» ial T c (K) H o (oersteds) jjg^. T R Ref. C 0.155 Th 0.7 Y 0.3 C 1.65 Th 0.4 Y 0.6 r tv, v 15.4-17.0 C l. 35-1. 55 T 0.40-0. 25*0. 60-0. 75 C 1.2-2.0 Th x Y l-x C 1.2-2.0 Th 0.3 Y 0.7 C Q 52 Ti 3.42 HF C 0.69 Ti C 0.S3 Ti C 0.91 Ti C 0.46 Ti 3 ' 32 HF C 1.55 Tl 0.1 Y 0.9 14,5 C 1.50 Tl 0.3 Y 0.7 12,9 C 1.45 Ti 0.1 Y 0.9 14 ' 2 C 1.35 Ti 0.1 Y 0.9 10 ' 7 C 2 Tm C 1.45 U 0.15 Y 0.85 C V C 1.45 V 0.1 Y 0.9 U ' 5 C W 2.5-4.21 C W 10.0 C 1.55 W 0.1 Y 0.9 14 / 8 C 1.45 W 0.1 Y 0.9 14,5 CY 3 CY 3 C 2 Y 3.75 C 1 55 Y 6.0 C 1.50 Y 6 " 8 C 1.45 Y U ' 5 4.0 870 4.0 870 D5 c 870 Tet. 4.0 870 Tet. 4.0 870 Cub. 790 Cub. 1.5 790 Cub. 1.5 790 Cub. 1.5 790 Cub. ' 790 D5 c 870 D5 c 870 D5 c 870 D5 c 870 2.0 7G4 D5 c 4.0 870 810# D5 c 870 815 Bl 1006 D5 870 c D5 c 870 1.15 711 1.4 863 Tet. 863 D5 c D5 • 870 870 870 33 Material T c (K) H (oersteds) Crystal Structure Ref. C 1.35 Y C 1.30 Y C 3 Y 2 C 2 Y C 1.35 Y 0.8 Zn 0.2 C 1.45 Y 0.9 Zr 0.1 C Yb Ca H. fl N, 18 o Ca 0.025-°3 Sr 0.975- Ti 0.30 Ca Pb„ 0.70 10.0 8.2 6.0-11.5 3.88 13.0 0.50 to <0.05 HF (n=0. 06-74.0 x 10 19 ) 0.65 + 0.4 Max. at 3.3, 3.7 1.58 2.04 Ca Pb_ Tl 0/1 N 3x 3(l-x) Ca Si„ Ca Si 2 Ca Tl 3 Cd Cd Cu Cd 0. 72-0. 07 Hg 0. 28-0. 93 Cd l-0.72 Hg 0-0.28 Cd 0.06-0 H8 0.94-1 Cd 0.02 Hg 0.98 Cd 0.015 Hg 0.985 Cd 0. 06-0. 6 In 0. 94-0. 4 (quenched) 3 ' 55 " 3 Cd Pb. x 1-x Cd Sn, x 1-x Cd V 3 Ce Co_ Ce Co„ T (-0.08) T c (-0.085) 0.53-1.44 1.5 HF D5 c D5 c D5 c CI la D5. Ll 2 LI, C c C12 1.3-3.3 Tet 0.5-1.35 Hex 4.09-4.15 HF HF 3.406-3.245 Tet 3.55-3.00 Cub A15 C15 C15 4.0 2.0 1.9 0.32 1.30 4.2 870 870 868 784 870 870 784 1010 1005 715 715 961 961 715 933 1009 732 732 732 978 978 728 728 861 804 825 776 776 31 Material T (K) H (oersteds) ^ ystal T Ref. c v / oj ' Structure n Ce l-x Co x Ru 2 T e '(-1.0 K /moU) 946 Ce. FeRu, T '(-9.5 K /moU) 946 1-x x 2 c Ce. Gd Ru„ 6.2 - «*3.8 946 1-x x 2 Ce In 3 Ll 2 0.07 715 Ce^In La 3 _ x 1012 Ce 0.001 La 0.999 3 ' 10 915 Ce Q 0Q7 La 993 (0-23 kbar) 4.7-6.2 1016 Ce 013 La 887* " 12 " 22 kbar * 3.2-3.5-2.3 Hex. 1016 Ce 013 La 887* " 12 " 23 kbar * 3 - 7 - 3 - 1 " 4 - 3 < as cast > 1016 Ce Q 013 La 88? (0-12-U40 kbar) 3.7-3.2-11.4 1016 Ce Q 02 La Q 9g (0-10-24 kbar) 2.6-<0.3-3 1016 Ce Q 16 La Q 84 (27-110 kbar) 4-8.7 1016 1012 6.2-6.3-<1.4-4.1 C15 1026 ? Ru 2 C15 1.4 1026 Ce x La l-x Ce l-0 La 0-l Ru 2 Ce 0.6-0.3 La 0. Ce l-x Mn x Ru 2 Ce l-x Ni x Ru 2 Ce Ru« Ce Ru„ Ce Sn, Ce Th, X I-X Ce Th. X 1-x t'(-ll«5 K /moU) 946 T'(-0.7 K /moU) 946 6.2 946 6.2 CIS 1026 Ll 2 0.07 715 886 1.36--0.07 951 Ce 0-0.09 Th l-0.91 l ' 35 to <0 - 5 l012 Co 0.02 Cu 0.98 Rh 2 S 4 ~ 3 ' 8 Hl l 984 Co 2 Cu S 4 Hlj_ 0.05 984 Co Fe, U, 3.85-2.4 920 x 1-x 6 Co Ge 2 0.051 770 Co 0.5 Mn 0.5 U 6 2 ' 55 92 ° 35 Material T (K) H (oersteds) ^ YSt f 1 c v ' o v ' Structure Ref. Co 0.002 Mo 0.815 Re 0.185 5.8 HF C °x Ni l-x U 6 2.4-0.41 Co 0.5 Ni 0.5 V 3 Co 0.3 Ni 0.7 V 3 Co 0.5 Ni 0.5 Zr 2 3.1 Co Ni, Zr x 1-x 2 5.0-5.9-1.3-1. Co 0.9 Rh 0.1 V 3 Co 0.5 Rh 0.5 V 3 Co 0.01 Ti 0.99 CoU 6 2.4 Co 0.25 V 0.75 Co V 3 Co Zr 2 5.0 Co 0-0.1 Zr l-0.9 Max., 3.7, 2.3 Cr Cr Cr 0.008 Cu Rh 1.992 S 4 ~3.9 Cr 0.75 Ga 0.25 Cr 0.75 Ge 0.25 Cr 3 lr Cr 0.835 Ir 0.165 Cr 0.75 Ir 0.25 Cr 3 lr Cr 0. 73-0. 92 M °0. 27-0.08 Cr 0. 06-0. 57 Mo 0. 94-0. 43 Cr 0.72 Os 0.23 Cr 0.72 Os 0.28 Cr 0.72 Os 0.28 0.168 0.77 0.17 0.17 0.71-0.030 3.86 3.95 4.25 HF 881 920 A15 2.0 1001 A15 2.0 1001 C16 914 C16 914 A15 2.0 1001 A15 2.0 1001 1.5 759 920 A15 0.015 948 A15 0.015 707 C16 914 717 788 0.015 788 Hl l 984 A15 0.35 945# A15 1.2 945# A15 707 A15 945# A15 945# A15 1023 0.015 788 788 A15 707 A15 707 A15 945# 36 Material T (K) H (oersteds) ^l 7 *** 1 T Ref. c oj Structure n Cr 0.72 Os 0.28 4 ' 03 Cr 0.67 Os 0.33 l ' 03 Cr 0.79 Pt 0.21 Cr 0.915 Pt 0.185 Cr 0.79 Pt 0.21 Cr 3 Rh 0.07 Cr 3 Rh 0.072 HF Cr 0.75 Rh 0.25 °' 07 Cr 0.72 Ru 0.28 3 - 42 Cr 0.72 Ru 0.28 3 ' 43 Lr 0.238 i>1 0.262 Cr Si Cr 0.75 Si 0.25 Cr 0.821 Sl 0.179 Cr-Si Cr 0.85 Ta 0.15 Cr x V l-x 1.3-5.1 Cr 0.1 V 0.9 3.21 Cr 0. 58-0. 945 V 0. 42-0. 055 Cr 0.1-0.48 V 0.9-0.52 3.21-0.10 Cs(V)(>U25 kbar) -1.5 Cu Cu Cu 0-60 w /o Nb 100-40 w 7o Cu Pb. x 1-x 7.2-~1.5 K Cu Rh„S, 4.80-4.65 Cu Rh S.Ti 2-x 4 x -3.0 Cu Rh 2 S, 4.35 HF HF A15 707 D8 b 707 A15 0.015 945# A15 1.2 945# A15 0.015 707 A15 1023 A15 707 A15 945# A15 945# A15 707 A15 1.2 945# A15 0.015 945# A15 1.2 945# A15 1.2 945# 0.015 707 Al 0.024 963 A2 441# 788 0.015 788 788 781 756 71 3# 960 756 ^ Hl l 984 Hl l 984 HI, 983 37 Material T c (K) H (oersteds) Crystal Structure Ref. Cu Rh 2 _ t 5 Se 4 Sn _ 0>5 Cu Rh 2 Se, Cu Rh Se.Sn 2-x 4 x Cu Rh 2 Se^ Cu Rh Se. Cu S 4 Ti 2 Cu S 4 V 2 Cu 0.810 Sb 0.190 Cu 0.845 Sb 0.155 Cu 0. 844 S b 0. 156 Cu 0.786 Sb 0.214 Cu 0.76 Sb 0.24 Cu 0.676 Sb 0.324 Cu Zn D 0.018 Nb 0.982 Fe Mn, U, x 1-x 6 3.47-~0 3.47 3.7 to <0.050 3.49-3.45 3.50 4.45-3.95 0.045-0.070 0.127-0.184 0.067 0.028-0.047 0.037-0.041 0.085 ~9.23 2.4-2.25-3.85 .Re. Fe 0.0008 Mo 0.725 Nb 0.061 Ke 0.187 Fe 0.0008 Mo 0.725 Nb 0.061 Re 0.187 Fe x Mo 0.565 Re 0.135 Fe . 0006 Mo . 865 Re . 1 35 Fe x Mo 0.87 Re 0.13 Fe 0.05 Nb 0.38 Ti 0.57 Fe 0.75 Ni 0.25 U 6 Fe 0.5 Ni 0.5 U 6 Fe 0.25 Ni 0.75 U 6 Fe Np 6 Fe 0.02 Re 0.98 Fe 0. 05-0. 70 Ru 0. 95-0. 30 1.85 2.1-6.1 1.4 2.3 3.0 1.60 HF HF HF HF HF HF Hl l Hl l HH Hl l Hl l Hl l Hex. L2 1 A3 Hex. Ortho. C38 0.05 1.30 0.5 0.015 924 924 714# 984 983 984 984 769 769 769 769 769 769 1009 190 920 881 881 881 881 982 905 920 920 920 920 712 788 38 Material T C (K) H o (oers t eds) %£*„ Ref. Fe 0. 018-0. 04 2 Ru 0. 982- 0.957 0.165-0.018 Fe 0.02 Sc 0.05 Zr 0.93 0.35 Fe 0.0005 Ti 0.9995 -0.42 FeU 6 FeU 6 3.85 Fe U,(3 x 10 12 " eUt f.-6V sec ^ l " 6 6 V 4 x 10 -6 bum-up) Ga (Isotope study) 1.0845 Ga (4.2 K, warmed to 70 K) 6.5 Ga (4.2 K) 8.4 Ga (II') (35 katm then to 0) 7.5 Ga (II)(>35 katm) 6.38 Ga Ga 1.0833 Ga (II) 6.24 620 Ga (I) 1.08 59.3 Ga (AT =10^5 k) 1.083 Ga Ge. V- 5.9-13.9 Ga„La Ga La Ga-Lu Ga^Mi^MOj^ •X Ga 3 Nt> 5 Ga P (n=l .0 x Ga.PC. Ga 2 Ta 3 Ga^Ta^ Ga 2 Th 1019) Ga V, 2.30 8.0-4.0 1.35 Ga V 3 (sintered rod) 2.56 13.87 14.1 HF HF 788 744 Hex. 962 920# 920 907 938 779 v 779 7 779 779 773 V 803 791# 791# 1003 A15 894 1.4 863 1.15 711 Ll, 715 753 927 0.051 770 1.1 1008 Tet. 0.1 927 Tet. 0.1 927 711 A15 1013 877 39 Material T c (K) H (oersteds) Crystal Structure Ref. Ga V, Ga V, Ga 0. 30-0. 03 V 0. 70-0. 97 Ga V, Ga 0.143 V 0.856<~ U °2> Ga 5 V 6 Ga V 4.5 Ga V- 14.83 2-13.7-10.0 8.6 14.0 Ga 2 Y 1.68 Ga Y Ga 3 Zr 5 3.85 Ga-Zr, (Quenched) 2.5-4.0 Ga 2 Zr 3 Gd 0.005 La 0.995 3.60 Gd La, x 1-x 3.9-2.8 Gd 0.014 La 0.986 Gd 0.021 La 0.979 Gd Pb. x 1-x Gd 0-0.028 Y l-0.972 Ge„La 2.24 Ge 1.78 La 1.57 Ge 1.78-2.0 La 1.57-2.24 Ge-La 2.2 Ge P (30-65 kbar, 400-900°C) 1.8-4.2 Ge P Ge P 3 Ge Sn (Two films) T'(-O.OS) Ge Te HF HF HF HF A15 A15 Cub. A15 A15 Tet. Tet. c Tet. Rhomb. Rhomb . 4.2 4.2 1.15 0.1 2.0 2.0 2.0 1.25 1.25 HF 872 880# 901 957 958 958 787 787 863 711 711 711 927 915 947# 812 812 748 V 812 91 6# 91 6# 916# 808# 891 891 891 9897 770 40 Material T c (K) H (oersteds) o v ' Crystal Structure T n Ref. Ge 0.950 Te 81 3# Ge l 03 Te ( n=1, 52 x 1021) 0.172 • 807# Ge Te. Q2 (n=1.16 x 1021) 807# Ge Te x Q1 (n=1.05 x 10 21 ) 807# Ge 0.976 Te < n=8 ' 6 x 1020) 0.07 710 Ge 0.963 Te ( n=9,3 x 10 20 ) 0.17 710 Ge 0.950 Te ( n=U - 8 x lo2 °) 0.24 710 Ge Q 937 Te (n=15.4 x 10 20 ) 0.31 710 Ge 1.006 Te (n=7 ' 5 x 10 20 ) 0.04 710 Ge 2 Th 3 Tet. 0.1 927 Ge Tl (Two films) T^C+0.11) 989V Ge V 3 6.104 A15 1013 Ge Vg (13.000A) 6.7 HF 719 v Ge 0.96 V 3.04 5.9 A15 894 Ge 0.24 V 0.76 5.88 A15 792 Ge V 3 (220,000A) 6.7 HF 719 7 Ge V 3 6.9 HF 719 Ge V 3 6.3-6.1 A15 1015 Ge 1.62 Y 2.4 C c 808# Ge Y 1.15 711 H 12 Li N 4 1.9 1010 H 0.036 Nb 0.964 ~9.22 190 Hf 0.015 942 Hf 0.91-0.33 Mo 0.09-( ).67 2.1-2.9-1 Cub. 956 Hf Mo 2 ~1 Cub. 956 Hf Mo 2 C36 0.05 956 Hf Mo 2 0.07 C15 956 Hf 0.15 Nb 0.85 9.85 885 i»l Material T (K) H (oersteds) JlP^? 1 T Ref. c N ' pj ' Structure *n Hf Nb. X 1-x 9.22-9.85-6.5 Hf x Nb l-x HF Hf 3 Si 2 Hf 0. 26-0. 11 W 0. 74-0. 89 H£ 0.33 W 0.67 Hf W 2 Hf 0. 92-0. 66 W 0. 08 -0.34 2.3-2.8-2.5 H 6 x In 0.02 T1 l-x T^ -0.145) Hg x In 0.01 Tl l-x T c '(-0.18) Hg x Pb l-x T'(-0.085) c Hg x Sb 0.0008 Tl l-x T c '(-0.12) Hg x Sb 0.0004 Tl l-x T c '(-0.14) Hg Ti 3 Hg Tl. °x 1-x T'(-0.14) Hg *,0.0045 Tl 0.9955 T '(+0.05-0.12) (0-24 kbar) c H S«0.009 T1 0.991 (0 - 25 katm > T.'(-0.02 + 0.02 - 0.14) Hg Zr 3 Hg 3 Zr 3.28+ 0.3 In 3.402 In 3.405 (calO 285 In (pressure study) 3.407 192-270 In ~4.5 max. In ( 200-200, 000A) 270 In T „ X600-800A. in l 3600A > 3.47 3.42 5 In 3.41 293 In (Pores: 65-250A) 3.68-4.17 HF In (Pores: 70-250A) 3.4-4.2 In, Fe 1-x X 885 A15 441 Tet. . o.i 927 1.2 956 0.05 956 C15 0.35 956 956 Hex. 858 Hex. 858 861 Hex. 858 Hex. 858 A15 0.35 980 Hex. 858 998 998 A15 0.35 980 715 765 749# 829 837* 888 7 932 800' 791# 738 986 748* U2 Material V*) ^(oersteds) structure T n Ref< In He 3.16 ' ^T In 3 La 0.70 Ll 2 715 In 3(l-x) La Sn 3x Max. 1.2, 6.0 LI, 765 In Lu 3 0.24, 0.14 LI., 715 In 0.998 Mn 0.002 3 ' 129 765 In 0.9995 Mn 0.0005 3 ' 281 765 In. Mn T'(-0.13) 754 1-X X c v In. Mn Pb T y (-0.045) 754 1-x-y x y c N In. Mn Sn T '(-0.025 + 0.115) 754 1-x-y x y c v In 0.0593 Pb 0.9407 7A5# In 0.0176 Pb 0.9824 745# In Pb. HF 750 V x 1-x 861 888 v 844 949 936 919 809 Tet. 969 1025 Ll 2 715 711 A5 761 718# A5 761 A5 761 1007 13 In 0-0.65 Pb l-0.35 7.2-6.05 ln 99 Pb Q Q1 (200-200,000A) 290 In 0.063 Pb 0.937 HF In 0. 18-0. 89 Pb 0. 82-0. 11 t = 0.59-0.91 HF In Pb x y In 0.035 Pb 0.965 HF In 0.6 Pb 0.4 6.36 HF In l-0.89 Pb 0-0.11 3.367-4.85 In 0.961 Pb 0.039 3.64 HF In,.. vPb. Y 3(l-x) 3x Max. 4.7,1.2 • In.Ru 2.68 In Sb (Met as table; 25 kbar) 1.85, 1.6-2.1 In Sb (Metastable: 27 kbar) 1.89 ~10 In l-0 Sb l-0 Sn 0-l* 25 kbar ) 1.8-3.7 In Sb Sn 2.5 In.Sb Te- -0.9 Material T c (K) H (oersteds) Crystal o N ' Structure Ref. In Sc, In. Si V, 1-x x 3 In Sn. x 1-x In l-0.94 Sn 0-0.06 3.4-3.82 In l-0.942 Sn 0-0.058 3.4-3.9 275-360 In Sn, x 1-x HF *1n a rv^Sn. A Q/ HF In x Sn l-x In x Sn l-x In. Sn l-X X In./. \Sn_ Th 3 (1-x) 3x In,/. \Sn_ Y 3 (1-x) 3x In Te In Te In 3 Th In x Tl l-x In 3 U In V, In V. In 3 Y In 3 Yb Ir Ir Ir Mo 3 ^o.s^o.is lr 0.9 Mo 0.1 Ir 0.953 Mo 0.047 Ir 0.973 Mo 0.027 Ir 0.987 Mo 0.013 0.78 + 0.21 0.11-0.10 8.11 0.50-0.40 0.29 0.168-0.156 0.133-0.125 0.107-0.105 HF B8, 3.44-3.90 3.9 max. Ll 2 1 . 5 max . Ll 2 2.2 800 + 50 Bl Ll 2 T'(+0.39) c Hex Ll 2 13.9 A15 LI, LI. A15 4.2 0.05 0.07 0.05 853 824 814# 763V 763 750? 854 7 912 910# 799 715 715 761 770 715 858 715 825 824 715 715 963# 963 707 963 963# 963 963 963 Uil Material T c (K) ^(oersteds) gg^^ T p R«f. Ir Mo-Nb Pt (as cast) 5.82 A15 Ir Mo 3 Nb> 3 Pt 6.13 A15 Ir 0.1 Nb 0.9 2 ' 3 Ir Nb 3 1.3 A15 Ir Nb 3 1.76 A15 Ir Q 9 Nb Q l 0.060-0.049 Ir 0.925 Nb 0.075 0.172-0.16 Ir 0.965 Nb 0.035 0.138-0.11 Ir 0.98 Nb 0.02 0.115-0.082 Ir 0.99 Nb 0.01 0. 102-0. 08A Ir 0.9 0s 0.1 Ir 0.7 Os 0.3 Ir 0.65 Os 0.35 Ir 0.6 Os 0.4 °- 73 Ir Q 7 0s Q 3 0.48-0.40 Ir 0.75 Os 0.25 0.40-0.37 Ir 0.1 Os 0.2 Rh 0.7 Ir 0.75 Os 0.05 Rh 0.2 Ir 0.55 Os 0.15 Rh 0.3 Ir 0.6 Os 0.1 Rh 0.3 Ir 0.76 Os 0.09 Rh 0.15 Ir 0.54 Os 0.1 Rh 0.36 Ir 0.1 Os 0.2 Rh 0.7 Al Ir 0.07 Os 0.86 Rh 0.07 0.064-0.030 Ir 0.088 Os 0.825 Rh 0.088 0.095-0.080 Ir Q ^Sq 8 Rh Q t 0.140-0.070 Ir 0.135 Os 0.73 Rh 0.135 0.22-0.20 Ir 0.165 Os 0.67 Rh 0.165 0.35-0.25 15 707 707 592 922# 707 963 963# 963 963 • 963 963# 963# 963# 963 963# 963 0.015 963 0.015 963 0.015 963 0.015 963 0.015 963 0.015 963 0.014 963 963 963 963 963 963 "- Matggial ___ T c (H) H o (oersteds) ggg^ T n Ref. Ir 0.18 Os 0.47 Rh 0.35 0.55-0.48 963 Ir 4 0s 3 Rh 3 0.37-0.28 963 Ir 0.125 0s 0.375 Rh 0.5 0.46-0.3 , 963 Ir Q 725 0s 175 Rh Q x 0.16-0.13 963 Ir 0.6 Os 0.2 Rh 0.2 0.22-0.15 963 Ir 0.765 Os 0.085 Rh 0.15 0.096-0.075 963 Ir Q 55 0s Q 15 Rh Q 3 0.095-0.070 963 Ir 0.1 Os 0.3 Rh 0.6 0.21-0.15 963 Ir 075 Os 005 Rh 2 0.055-0.047 963 Ir 06 Os 01 Rh 3 0.055-0.044 963 Ir 0.1 Os 0.25 Rh 0.65 0.10-0.07 963 Ir Q 54 0s Q jRhg 36 0.038-0.026 963 Ir O.125 Os 0.2 Rh 0.675 0.05-0.03 963 Ir Q 41 0s 17 Rh Q 42 0.095-0.080 963 Ir 0.49 Os 0.21 Rh 0.3 0.27-0.15 963 Ir 0.56 0s 0.24 Rh 0.2 0.28-0.25 963 Ir 0.63 Os 0.27 Rh 0.1 - 4 " - 3 963 Ir Q 73 0s 17 Ru Q l 0.34-0.31 963 Ir 0.825 0s 0.1 Ru 0.075 0.16-0.13 963 Ir 0.8 Pd 0.2 °- 015 963 Ir 0#6 Pd 0<4 0.015 963 Ir 0.3 Pd 7 0, ° 15 963 lr 0.2 Pd 0.8 °- 015 963 Ir 0.88 Pd 0.12 0.035-0.022 963 Ir 9 Pd 1 0, ° 32 963 Ir 0.91 Pd 0.09 0.047-0. 033 963 Ir 095 Pd 0>()5 0.050-0.035 963 Ir 0.96 Pd 0.04 0.069-0.057 963 1»6 Material T c (K) H o (oersteds) gg** T n Ref. Ir 0.1 Pd 0.9 ^0.8^,04^0.125 0.037-0.030 Ir 0.2 Pd 0.2 Rh 0.6 Ir 0.1 Pd 0.5 Rh 0.4 Ir 0.5 Pd 0.2 Rh 0.3 Ir 0.25 Pd 0.5 Rh 0.25 Ir 0.4 Pd 0.4 Rh 0.2 Ir 0.02 Pt 0.98 Ir 0.04 Pt 0.96 Ir 0.1 Pt 0.9 Ir 0.8 Pt 0.2 Ir 08 Pt 0>2 0.046-0.032 Ir Q 9 Pt Q x 0.066-0.053 Ir 0.3 Pt 0.2 Rh 0.5 Ir 0.775 Pt 0.175 Rh 0.05 0.032-0.025 ^o.y^o.os^o.ao 0.030-0.025 Ir 0.7 Re 0.3 1.7-lA Ir 0.80 Re 0.20 °* 66 Ir 0.85 Re 0.15 0.61-0.445 Ir Q 9 Re Q l 0.34-0.28 Ir 0.93 Re 0.07 0.220-0.197 Ir 0.96 Re 0.04 0.142-0.130 Ir 0.98 Re 0.02 0.112-0.109 Ir 0.4 Re 0.1 Rh 0.5 0.08-0.06 Ir 0.46 Re 0.U5 Rh 0.425 O* 13 " ' 1 Ir 0.56 Re 0.14 Rh 0.3 0.25-0.17 Ir 0.64 Re 0.16 Rh 0.2 °' 55 - - 4 Ir 0.72 Re 0.18 Rh 0.1 °- 6 - ' 5 0.015 963 963 0.015 963 0.015 963 0.015 963 0.015 963 0.015 963 963# 963# 963# 963# 963 963 0.015 963 963 963 963 963 963 963 962 963 963 963 963 963 963 963 47 Material V K > H o (oersted8) jjg^, T fl Ref. Ir Q 9 Rh Q L 0.015 963 Ir 08 Rh 0#2 0.015 963 Ir 0.75 Rh 0.25 . °- 015 963 Ir Q 5 Rh Q>5 0.015 963 Ir Q 7 Rh Q 3 0.015 963 963 963 963 963 963 0.015 963 963 963 963 963 963 963 963 Al 963 963 963 963 Al 963 963 963 963 963 Cub. 717 Cub, 717 Ir 0.75 Rh 0.25 0.026-0.020 Ir 0.80 Rh 0.20 0.03-0.02 Ir 0.815 Rh 0.185 0.028 Ir 0.89 Rh 0.11 0.06-0.05 Ir 0.95 Rh 0.05 0.075-0.055 Tr 0.3 Rh 0.5 Ru 0.2 Ir 0.2 Rh 0.5 Ru 0.3 Ir 0.7 Rh 0.5 Ru 0.25 Ir 0.7 Rh 0.2 Ru 0.1 0.055-0.045 0.033-0.028 0.05-0.04 Ir 0.8 Rh 0.15 Ru 0.05 Ir 0.3 Rh 0.5 Ru 0.2 Ir 0.8 Ru 0.2 0.064 0.02-0.01 0.13 Ir 0.765 Ru 0.235 0.14 Ir 0.71 Ru 0.29 0.18 Ir 0.845 Ru 0.155 Ir 0.89 Ru 0.11 Ir 0.925 Ru 0.075 0.11 0.105 0.11 Ir 0.9 Ta 0.1 0.067-0.050 Ir 0.925 Ta 0.075 0.125-0.11 Ir 0.94 Ta 0.06 0.150 Ir 0.97 Ta 0.03 0.127 Ir 0.99 Ta 0.01 0.116-0.096 Ir 0.10 Ti 0.90 4.3 Ir 0.04 Ti 0.96 1.6 Ir 0-0.135 Ti l -0.865 3.9 max. 717 48 Material T< ,(K) H o (oersteds) jjg^*.. T n Raf. Ir Ti 3 4.63 A15 Ir Ti 3 (as cast) 4.18 A15 Ir 0.37 V 0.63 l ' 71 Al5 Ir 0.31 V 0.69 °' 91 Al5 Ir 0.25 V 0.75 Al5 Ir V 3 A15 Ir 0.85 V 0.15 0.26-0.123 Ir 0.965 V 0.035 0.147-0.135 Ir 0.98 V 0.02 0.115-0.082 Ir 0.99 V 0.01 0.11-0.086 Ir 0.85 W 0.15 0.41-0.25 Ir 0.9 W 0.1 0.23-0.20 Ir 0.953 W 0.047 0.162-0.147 Ir 0.973 W 0.027 0.125-0.123 Ir 0.987 W 0.013 0.107-0.105 Ir 0-0.1 Zr l-0.9 Max. , 5.4,3.3 K 0.1°3 Sr 0.9 Ta 0.1 Ti 0.9 (n=0.48 x 10 20 ) La <4.8-5.78 La 4.88 La (95% Hex. Phase) 4.9 La (957. Cub. Phase) 6.0 La La (with S10 2 and Nb) 4.9-1 La (0-17 kbar) 4.88-6.8 La 4.90 La 4.5 La 5.6 La 4.9 La (23-40 kbar) 8.2-9.2 808 Al Hex. HF Al Hex. Hex. Al Hex. Al 707 707 948# 948# 0.015 948# 0.015 707 963 963 963 963 963 963# 963 963 963 717 0.051 770 764 747 806# 806# 925 923 1016 915 812 81 2# 808# 729# 49 Material T c (K) „ , , v Crystal H (oersteds) _, } . o v _ Structure Ref. La (1-23 kbar) 5.2-8.2 La (0-~140 kbar) 5.9-11.93 La 0.01°3 Sr 0.99 Ti (n = 3.1 x 1020) La In, 0.71 La Pb 3 4.07 La Pb 3 4.10 La l-x Pb 3 Pr x 4.07-<0.3 La Pb 3(l-x) Sn 3x Max. 6.0, Min.3.5 La. Pb-Th 1-x 3 x Max. 4. 2, 5.6 La Pb« Tl,,. v 3x 3(l-x) La, Pr Tl, 1-x x 3 1.51-0.55 La Ru 4.1 La S La 3 S 4 La 3 Se 4 La Si„ La-Sn- La Sn, La Sn, La. Sn Pr 1-x 3 x La. SiuTh 1-x 3 x La l-x Sn 3 Tm x La 3 Te 4 La Tl, La 11. La Tl 3(l-x) Sn 3x La 0.15 Y 0.85 La 0.35 Y 0.65 La 0.48 Y 0.52 8.25 2.3 6.55 6.02 6.55-<0.3 6.3 max. 6.55-4.2 3.75,2.45 1.51 1.63 Max. 1.8,6.0 0.1 0.4 1.0 HF Hex. Ll 2 Ll 2 Ll 2 Ll 2 LI, u 2 L1 2 LI, C15 D7. LI, LI, LI, LI, LI, D7 3 LI, Ll 2 LI, Hex. Hex. Rhomb. 0.078 1.4 729 1016 770 768# 768# 715 768# 715 715 715 768 1026 730 730 770 808# 863 768# 715 768 715 768 1024 768# 715 715 808# 808# 808# 50 Material T C (K) H La 0.60 Y 0.40 1.3 Ls 0.75 Y 0.25 2.0 La 0.85 Y 0.15 2.7 Li Mg Mn Pb. x 1-x ""o^Vso Mn Ti. x 1-x Mn 0.14 Ti 0.86 2.55 oersteds) Cr y stftl T Ref. H^oersceosj structure n , Mn 0.002 Ti 0.499 Zr 0.499 Mn 0.0043 Zn 0.9957 Mn U 6 2.4 Mo 0.916 Mo (with Si0 2 and Y) 1.7-6.5-2l (Clad) 17.98 HF A15 Nb 2.70 Sn Zr 0.30 18.01 HF A15 Nb, Ta 1-x X Nb l-0.803 Ta O-0.197 9.25-7 Nb 0.803 Ta 0.197 7.50 Nb 0.9378 Ta 0.0622 8.42 HF Nb 0.9575 Ta 0.0425 8.55 HF Nb 0.9844 Ta 0.0156 8.76 HF Nb 0.9913 Ta 0.0087 8.87 HF Nb l-0 Ta 0-l 9.18-4.33 HF Nb 0.96 Ta 0.04 8.87 HF Nb l-0.6 Ta 0-0.4 9.23-6.56 HF Nb 0.87 Ta 0.13 8.15 HF B2 Nb 0.79 Ta 0.21 (Clad) 7.51 HF B2 Nb 0.67 Ta 0.33 6.81 HF B2 831 831 877 880# 880# 880 964 964 787 816 970 977 880 880 880 834 833 864# 864# 864# 864# 864# 940# 928# 928# 911 911 911 56 Material T (K) H (oersteds) ^ ySt f 1 T Ref. c ' o x Structure n Nb 0.54 Ta 0.46 Nb 0.37 Ta 0.63 Nb 0.17 Ta 0.83 Nb 0.95 Ta 0.05 Nb 0.44 Ta 0.56 Nb 0.29 Ta 0.71 Nb 0.08 Ta 0.92 Nb- Ta 1-x x ^O.S^O.S Nb ~0.04 Ta ~0.96 Nb Ta Ti Nb Te 2 (Solid j (Vapor transport] Nb Te 2 Nb 3 Te A Nb Te 2 Nb Q 55 Ti 45 Nb o 4 Ti 0.6 Nb Q 22 Ti 78 ^0 Ti 22 i3 -0 78 Nb o Ti 36 i:L 64 Nb Q 56 Ti 44 6.25 HF B2 5.31 HF B2 4.65 HF B2 8.58 B2 5.85 B2 4.94 B2 4.38 B2 HF A2 6.25 1220 0.50-0.74 0.60-0.66 0.6 1.49 9.4 HF HF 7.8 HF 7.5 HF Nb 66w7o Ti 33W7o (Impurities) 10,3 Mb 5(F7o T1 50 w 7o 9 - 3 Nb 0.44 Ti 0.56 8 ' 99 HF Nb, Ti 9.22-10.02-7.6 1-x x ^O.IS^O.ZS 10 ' 02 Nb 06 Ti 0#4 9.8 max. ^O.lS-l^O.lS-O 7.2-9.7-9.2 Cub. 57 911 911 911 911 911 911 911 441 722 981 860 797 796# 711 992 830 830 991 991 991 818 841 841 374 885 885 592 901 Matertal T C (K) H o (oersted3) ggg^ T n Ref. Nb 0.26 Ti 0.74 (aS cast) 8.15-7.31 965 Nb Q 2Q Ti 8Q (as cast) 6.6-6.15 HF 965 Nb 1-x Ti x 1-0.98-1. HF A ^0.63^0.37 9 ' 2 725 \tt«0.S6 8.15-7.31 6.6-6.15 HF t, 1-0.98-1.0 HF 9.2 9.0 5.8-7 7.72 6.92 HF HF 9.7 HF Nb Q 25 Ti 75 999# Nb 0.22 Ti 0.78 Nb 0.22 Ti 0.78 Mb 0.48 Ti 0.52 * 968 " b 0.33 Tl 0.67 HF 968 Nb 0.75 Ti 0.15 Zr 0.10 9 ' 7 w 830 Nb 0.62 Ti 0.14 Zr 0.24 9 ' 6 830 "•o.tt^^^o.ae 83 ° 830 830 830 830 830 830 830 830 830 830 965 965 965 965 965 58 Nb 0.53 Ti 0.18 Zr 0.29 9.1 Nb 0.57 T1 0.33 Zr 0.10 9.6 Nb 0.62 Ti 0.14 2r 0.24 9.7 HF Nb 0.35 Ti 0.15 Zr 0.50 8.6 HF Nb 0.43 Ti 0.27 Zr 0.30 8.6 HF Nb 0.48 Ti 0.30 Zr 0.22 8.9 HF Mb 0.47 Ti 0.48 2r 0.05 8.7 HF Nb 0.52 T1 0.16 Zr 0.32 9.4 HF Nb 0.65 Ti 0.15 Zr 0.20 9.8 HF Mb 0.41 Ti 0.15 Zr 0.44 8.7 HF Nb 0.36 Ti 0.56 Zr 0.08 10.05 Nb 0.19 T1 0.51 Zr 0.30 10.05 HF Nb 0.19 Ti 0.74 Zr 0.07 9.1 HF Nb 0.22 Ti 0.25 Zr 0.53 9.30 HF **0.2l T1 0.61 tt 0.18 7.21 Material T C (K) ^(oersteds) gg^. T n Ref. 441 441 847 847 347 847 885 885 441 739 970 971 971 975 991 920 707 1023 948# 1023 707 1023 707 914 0.044 770 884 884 884 59 Nb. V 1-x X t, 0.47 A2 ">l~fx t, 0.25 HF A2 "Vl^l-O HF Nb 0.06-0.88 Zr 0.< J4-0.12 10-10.5 ^0. 0125-0. 6 Zr 9875-0.94 3.2-10.0 Nb 0-0.0125 Zr l- ■0 9875 1.2-3.2 A3 Nb- Zr 1-x X 9.22-10.98-8.7 ^o.es^o.ss 10.98 " h i-4>.73 lt o-o. 25 t, 1.20 HF A2 Nb Zr 10.8 HF Nb Zr (0-3.8 katm) V Hb 0.25 Zr 0.75 10.45 max. ^o^o^o.so 8.5 max. ■^.w^o-m HF ^o^o^o.so HF NiU 6 0.41 Ni 0.20 V 0.80 0.57 A15 Ni 0.20 V 0.80 0.57 A15 Ni 0.22 V 0.78 0.35 A15 Ni 0.225 V 0.775 0.30 A15 N1 0.225 V 0.775 0.30 A15 Ni 0.175 V 0.825 0.78 A15 Ni 0.175 V 0.825 0.78 A15 Ni Zr 2 1.6 C16 0,Nb Sr(n=2.7 X 10 21 ) 3 Sr Ti(n=2.2 X 10 20 ) 0.30 3 Sr Ti(n=2.5 X 10 19 ) 0.27 0,Sr Ti(n=6.3 X 1019) 0.27 Material I (K) H (oersteds) Crystal Structure Ref. OgSr Ti(n=2.7 x 10 19 ) 0,Sr Ti(n=2.5 x 10 19 ) 0.24 0.1S5 20> o Sr Ti(n=0.13-2.2 x 10^ u ) <0. 08-0. 4-0. 3 OgSr Ti 0,Sr Ti(n=6.9 x 10 J J 5.5 x 10- •° to <0. 05-0. 295 JO) OjSr Ti(n=1.7-23 x 10 1 *) 0.10-0.30 Ta, x 1-x t, 0.72 °l-x Ti l-x D x<°- 90 kbar > 0.6-2.3 Ti 2.3 V, x 1-x t, 0.35 Os Os 0.67 ° S 0-0.12 Re l-0.88 (0 ' -20 kbar) 1.694-1.93-1.79 Os 0.055 Re 0.945 1.93 Os 0.2 Rh 0.8 Os 0.5 V 0.5 5.15 Os 0.55 V 0.45 5.04 Os 0. 20-0. 33 Zr 0. 80-0. 67 4.1-<2 Os 0.267 Zr 0.733 P (>100 kbar) 4.7,5.3,6.1 P (170 kbar) 5.8 P S Ta P 2#65 Sn 4 (n=2.2 x 10 22 ) 1.24-1.10 Pb Pb Pb -7.1 Pb (3600A.) 7.7 Pb (0, 3.445 kbar) 7.24, 7.11 Pb (II) (160 kbar) 3.6 Pb (0-110 kbar) 7.2-4.2 HF HF HF HF Bl 0.015 A15 A15 Cub. Ortho. 1.2 1.25 884 884 935 770 709 1005 441 835 835 441 963# 97 2# 952 952 963 948# 707 955 955 775 786 892 930 752 7 821? 837 7 941 v 926 904 904 60 Material T (K) H (oersteds) ^ ySt f 1 T Ref. c oj ' Structure n Pb (II) (160 kbar) 3.55 780 Pb Pb (2500-7000A) Pb (2000-6760A) HF Pb Pt 7.2—1.5 Pb SgTa 3.07 Tet. Pb S 3 Ta 3.11, 3.07 Tet. Pb S 3 Ti Tet. Pb S 3 Ti Pb. Sb T'(+0.52) 1-x X c v ' Pb l-x Sn x T^(+0.08) Pb 0. 10-0. 18 Sn 0. 90-0.82 5.6-7.2 Pb 3 Sr 1.85 Tet. Pb Te (n=5.0 x 10 20 ) Ll 2 Pb 3 Th 5.55 Pb. Tl 1-x X T'(-0.15) c Pb 0.965 Tl 0.035< ' 3 katm) HF Pb Tl Pb l-0 T1 0-1 7.22-<1.24-2.67 Pb 0.99 Tl 0.01 820, HF Pbv 3 Pb 3 Y 4.72 Pb 3 Yb 0.23 + 0.10 Pd Pd Pd 0.4 Pt 0.1 Rh 0.5 Pd 0.25 Pt 0.25 Rh 0.5 Pd 0.75 Rh 0.25 Pd 0.5 Rh 0.5 A15 Ll 2 Llo 773* 735V 985 7 756 7 778 778# 0.05 778# 0.05 795 861 861 900 715 0.009 770 715 861 919 798 7 736 979 4.2 825 715 715 963 963# 0.015 963 0.015 963 0.015 963 0.015 963 61 Material T c (K) H (oersteds) Crystal Structure T n Ref. Pd Rh Q .509 963# Pd Rh Q 409 * 963# Pd Rh Q 308 963# Pd Rh o, 015 963# Pd Rh o. 104 963# Pd Rh 0.0537 Pd n c-,Sb n , Q (with <0.01 of 1.67-<0.3 u.3i u.^y twelve elements) Pd 0.49-0.52 Sb 0.51-0.48 1-67-1.44 Pd Te„ 1.45 Pd Th Pd 0.25 V 0.75 PdV 3 Pd V, Pd V 3 Pd l-0.75 W 0-0.25 Pd 0. 74-0. 56 W 0. 26-0. 44 Pr Th- x 1-x Pt Pt Pt 1.15 Pt 0.2 Rh 0.8 x20. Pt Sb 2 (n=3.7 x 10 zu ) Pt 0.15 Ta 0.85 Pt Ti 3 PtgTi Pt 0.46 U 0.54 Pt 0.222 V 0.778 Pt 0.25 V 0.75 Pt 0.28 V 0.72 0.08 0.082 0.08 0.1-1.6 1.37-0.3 0.40 0.48 0.98 3.20 1.50 A15 A15 A15 A15 Al Al Cub. 0.35 0.2 HF 756 ' 963 963# 0.015 963 0.037 770 A15 1023 A15 707 1.15 711 0.3 1018 A15 948# A15 948# A15 948# 62 Material T c (K) H (oersteds) -_/ o v Structure Ref. Pt V- (as cast) Pt V 3 (800°C/1 hr.) Pt V 3 (1100°C/120hr./ quenched) Pt V„ Pt 0.29 V 0.71 Pt 0.27 V 0.73 Pt V rc 0.25 v 0.75 Pt 0.23 V 0.77 "0.2l'0.79 %-^.j Pt l-0.73 W 0-0.27 Pt 0. 72-0. 33 W 0. 28-0. 67 Rb (0—150 kbar) Re Re Re Se Re Si, Re Q 2 Ta 0.8 Re o. 15 Ta 0.85 Re o. l Ta 0.9 Re o. 075 Ta 0.925 Re o. 05 Ta 0.95 Re Q 025 Ta 0.975 Re Q 3 Ta 0.7 Re Q 25 Ta 0.75 Re Q 4 Ta 0.6 Re 2 Th 2.53 2.86 3.19 2.61 1.72 3.27 3.25, 2.75 1.76 0.2-3.0 1.694 1.70 0.21 0.75 1.49 2.08 2.77 3.458 232 342 460 613 A15 A15 A15 A15 A15 A15 A15 A15 A15 Al Al 1.086 0.2 1.2 1.15 1.15 0.06 0.06 Probably <0.06 5.05 Rh 707 707 707 707 707 707 707 707 707 846 846 781 952 97 2# 711 712 71 3# 71 3# 713# 71 3# 71 3# 71 3# 71 3# 71 3# 71 3# 711 96 3# 63 Material T. (K) H (oersteds) £ rySt ? 1 T Ref. h x ' oj ' Structure n Rh. Ru Se_ 4.5-<0.050 T.-x x 2 Rh 0. 005-0. 03 Ti 0. 995-0. 97 1.8-3.2 A3 Rh 0.88 Ti 0.12 4 *° Cub " Rh 0.04 Ti 0.96 2 '° Cub - Rh 0.04 Ti 0.96 2 '° Cub ' Rh 0.12 Ti 0.88 4 *° Cub ' Rh 0-0.135 Ti l-0.865 4 ' 3 max - Rh 0.25 V 0.75 A15 Rh V 3 A15 Rh V 3 A15 E9 3 A3 Cub. Cub. Rh Zr 3 11.0 Rh 0. 005-0. 027 Zr 0. 995-0 .973 3.5-4.8 Rh 0. 035-0. 09 Zr 0. 965-0. < )1 5.0-11.0 Rh 0.12 Zr 0.88 11.0 Ru 0.48 Ru 0.493 + 0.0015 Ru 0.47 Ru Sb 1.27 Ru_Sc 2.24 Ru 2 Y 2.42 S 2 Ta 0.7 S 2 Ta 1.6, 1.5 S 2 Ta 1.90, 1.99-1.82 S 2 Ta (Solid ) (Vapor transport) 1.3-2.1 0.6-0.8 sv 3 Sb (III) (93 kbar) 3.52 Sb (85 kbar) 3.55 Sb x Sn l-x T* (-0.034) Sb Ta 3 0.72-0.59 Sb Te (n=5.0 x 10 20 ) Cl$ C15 Hex. Hex. A15 714# 766 766 766 717 717 717 0.015 948# 0.015 707 2.0 1001 766 766 766 766 920 816 972# 711 1026 1026 1027 796# 778 797 1.13 711 902 774 817 1015 0.051 770 64 Material T C (W ».<«"^) ZSZL. Ref. Sb 0. 12-0. 3l T1 0. 88-0. 69 (Quenched) Sb Ti, (Annealed) Sb 0.25 Ti 0.75 (A"" 6316 * 1 ) Sb 0.25 T1 0.75 Sb Ti 0-3 V (Quenched) (Annealed) Sb Tl. x 1-x Sb 0.25 V 0.75 Sc Sc 0.01 Zr 0.99 Sc 0.05 Zr 0.95 Sc 0.07 Zr 0.93 Sc 0.1 Zr 0.9 Sc 0.15 Zr 0.85 Sc 0.2 Zr 0.8 Sc 0.25 Zr 0.75 Sc 0.4 Zr 0.6 Sc 0.5 Zr 0.5 Sc 0.8 Zr 0.2 Se 4 Nb 3 Se 2 Ta Se 2 Ta Se 2 Ta Se 2 Ta Se 2 V l + x Si 2 Sr Si 3 Sr 2 si 2 Th 3 2.3-5.3-4.4 A15 1002 2.0-6.5-5.8 A15 1002 6.5, 5.7 A15 1002# 5.3, 5.0 A15 1002# 6.5-0.8 5.3-0.8 A15 1002 T '(+0.21) Hex. 858 A15 1.0 1002# 0.032 744# 0.32-0.25,0.17-0.12 744# 0.11-0.08 744# 0.08-0.04 744# 0.024 744# 0.036 744# 0.036 744# ? 744# 0.04 744# 0.022 744# ? 744# 1.61 711 0.2 1027 0.13-0.15 797 0.16-0.22 797 0.2 796# 0.05 797 Cub. 0.32 961 -0.55 C c 961 Tet. 0.1 927 65 Material T c (H) H (oersteds) Crystal Structure Ref. si 2 u 3 si v 3 Si V, (Wire core) Si V, Si V, Si V, Si 0.25 V 0.75 Si 0.20 V 0.80 <5i V a 0.30 0.70 Si 0.25 V 0.75 Si V 3 (Polycr ystalline) Si V 3 (Single crystal) Si Y Si 1.90 Y Si 2 Zr 3 3.733 ~6 max. 3.794,3.847,3.840 5.30 3.724 Sn (11,000A) Sn Sn (1000-27, 000A) Sn (0-31.6 kattn) Sn (Up to ~200A) Sn (850, 1580, 34 20A) Sn (III) (P=113 kbar) Sn Sn (II) (240, 270 kbar) Sn (II) (125 kbar, 160 kbar) 5.2, 4.85 Sn Sn Sn (1400A) 3.84 Sn (1950A) 3.87 Sn (2600A) 3.92 Sn (Plus Au, Cu) HF 306 Tet. 0.1 16.9 HF 16.86 HF A15 14.5 A15 16.8 HF A15 14.85-~16.6 HF 17.01 A15 7.51 A15 16.95 A15 16.65 A15 16.83 A15 16.85 A15 1.15 c c 0.1 " Tet. 0.1 400,375 305 + 5 HF HF HF 927 877 880# 890 787 716 7 707 707 707 707 1013 1013 711 808# 927 757 v 749# 750? 829 837 7 862 7 780 804 785 785 785 814# 723 v 723 7 723 734 v 66 Material T c (K) H (oersteds) Crystal Structure Ref. Sn (Whiskers, strained) T'(+0.45) c Sn Te HF Sn 0.975 Te 1.000 Sn Te(n=7.5-20 x 10 20 ) 0.34-0.214 HF Sn 3 Th 3.33 Sn 0.65 Tl 0.35 6-7.1 HF Sn 3 V 2 Sn 3 Y 5 Sn 3 Y 5 Sn Y 2 1 Sn- Q1 Zn. nQ (Laminar u.yi u.uy structure ) Sn Zr, 3.668-3.722 0.92-0.79 Sr Ta 4.31 Ta 4.463 831 Ta (300, 9850, 1640A) 3.16,4.15,4.8 HF Ta Te 2 Ta Te- Ta 0.52 Ti 0.48 7.86 HF Ta, Ti T.-X X Ta V, x 1-x Ta l-x W x t, 0.12 Ta, Zr H.-X X HF Tc (0-15 kbar data given) 8.00 + 0.01,]_ n 7.924 + 0.0lj r ~ u Tc 7.79 + 0.02 Tc 7.73 Te (III) (70 kbar) 4.28 Te (II) (43 kbar)(n=l-4 x 10 18 ) 2.05 Te (IV) (84 kbar) 4.3 Te 3 Tl 5 974 770 81 3# 1022 Lij 715 900 1.15 711 1.4 863 1.15 711 1.15 711 726 A15 1015 1.2 781 B2 911 71 3# 719? 0.05 797 0.05 796# 874 A2 441 A2 441 A2 441 A2 441 836 712 712 909 909 909 849 67 Material T C W H (oersteds) Te 3 Tl 5 (n > 2 : K 10 21 ) 2.20, 2.U HF Te 2 V l + x Th 1.374 + 0.001 Th Th Tl 3 0.87 Th, Tm 1-x X 1.37-0.67 Th. U 1-X X 1.36-0.068 Ti Ti (0-25 katm, T c t) Ti 0.39 Ti 4 Tl Ti 0.80 V 0.20 3.65-3.37 Ti 0.6 V 0.4 7.0 HF Ti 0.42 V 0.58 7.52 HF Ti V. X 1-x 5.2-7.5 HF Ti 0.5 Zr 0.5 1.60 TI 179 + 5 TI (0-27 katm) T ' (+0.02-0.25) TI V 3 T1 3 Y 1.52 TI Zr 4 U (0-12 kbar) 1.2-2.1 U U (10 kbar) 2.3 U 1,0-0.5 V 4.68 HF V 5.06 HF V 5.17 HF V 5.31 V V 5.379 V 5.414 + 0.01 Crystal Structure Ref, Cub. LI. A3 A15 A2 A3 Al A15 Ll 2 A15 0.05 0.35 4.2 0.35 0.6 848 797 802# 791 715 768 951 759# 997 1002# 980 838 878 874 441# 759# 760 S98 825 715 980 879 802# 724 724 917# 917# 91 n 788# 727 742# 742# 68 Material T C (K) ^(oersteds) Structure Ref. V 5.30 V 26W7 Zr 74"7o «=5.9 HF V 0.4 Zr 0.6 -7.8 HF V 0.6 Zr 0.4 8.3 V 0. 1-0. 9 Zr 0. 9-0.1 6.5-8.3-7.6 HF W 0.0154 1.14 W 0.0154 1.15 w 0.0154 1.15 w ~3 W x Zr l-x 2.9-3.9-2.0 W 2 Zr 2.2-2.7 WjZr Y Y (120-170 kbar) -1.2—2.7 Y (-160 kbar) -2.7 Y Y 0.03 Zn (0-26.2 katm) Ko"776- yoTu 55-19 Zn Zn ~1.9 max. Zn (Isotope study) 0.85 ZnJSr (Ta impurity) Zr 0.53-0.51, 0.52-( ).51 Zr (Isotope study) 0.487 Zr ~1.5 (Extrap.) Pseudo BCC Cub. C15 A3 C15 1002# 678 889 889 889 840# 88 2# 887# 921? 956 956 0.35 956 0.006 781 781 781 81 2# 808# 829 820# 837V 1000 0.1 741 744# 97 2# 956 69 HIGH MAQN JgTTr; mu m SUPffiCONDPCTlVE MATffilALfl AND 90ME O P THEIR PROPaV TTEg Table 3. High Magnetic Field Superconductive Materials and Some of Their Properties. (Note: All fields are quoted in kilo-oersteds. T 0DS indicates temperature of measurement in degrees Kelvin. See text for discussion of field nomenclature.) Material H cl H H c2 H c3 L obs Ref. Al A1 2 C Mo 3 Al 3 . x Gd x La A1 2.968 Gd 0.032 La Al 2.966 Gd 0.034 La A1 2.98 Gd 0.02 La A1 2.988 Gd 0.012 La Al, Ge Nb, 1-x x 3 Al 0.66 Ge 0.33 Nb 2.5 Al 0.75 Ge 0.25 Nb 3 AL 0.153 Ge 0.057 Nb 0.79 A1 0.8 Ge 0.2 Nl °3 Al La, Al La 3 Al Nb 3 Al Nb 3 A1 0.0015 Sn 9985 AuV 3 AuV 3 AuV 3 AuV 3 B C Mo, 9.2 2.2-6.16 3.00 2.05 4.00 5.00 17.8-19.1 Data given 20.7 19.6-20.1 18.5 10.7 6.16 6.16 17.14 «18.7 2.55 2.980 1.785 0.86 7.1 Hl/H given 101 1.3-13.6 2.09 1.30 7.96 13.55 ~ 200 380 (Estimated) 420 410 130 7.92 11.57 246 295 0.0175 ~9 22-37 22-37 22-37 28 4.2 14 4.2 4.2 4.2 4.2 3.595 2.25 4.2 888? 966 918 918 918 918 918 823 876 896 789 787 708' 943 918 880 787 850 857 707 707 707 966 70 Material T c H C 1 He H c2 H c3 T obs Ref. Ba O-Sr. Ti x 3 1-x 0.50 0.0039 1005 Bi 6.55 11.75 (Upper) 973 Bi 2 K Bi 0-0.56 Pb l-0.44 3.57 Data 897 given 0.53-13.8 4.2 750,855 Bi 0.025-0.40 Pb 0.97f >-0.60 0.44- 0.105- 0.141 0.57-0.909 0.94- 17. 7 4.2 949 C 2.5 H 2.5 N 0.5 S 2 Ta 3.5 Data given 1027 C 0.64 Mo 8.0 47 4.2 966 C 0.69 Mo 12.1 98 4.2 966 C 0.52 Ti 3.42 48 1.6 790 C 0.46 Ti 3.32 45 1.6 790 Ca x°3 Sr l-x Ti 0.50 0.0019 1005 CaSi 2 1.58 1.0 0.32 0.35 1.0 961 Cd 0.02 Hg 0.98 Data Given 978 Cd 0.015 Hg 0.985 Data Given 978 Co 0.002 Mo 0.815 Re 0.185 5.8 6.1 881 Cr„Ir 0.168 10.5 707 Cr 3 Rh 0.072 9.1 707 Cr V. x 1-x 1.3-5.1 Data Given 441 Cu 0-60v/o Nb 100-40w? 'o Data Given 960 Fe 0.0008 Mo 0.725 Nb 0. 061 1.85 1.3 881 Re 0. 187 Fe x Mo 0.865 Re 0.135 2.1-6.1 3.6-1.7 881 Fe 0.0006 Mo 0.865 Re 0. 135 0.408 1.44 1.53 881 Fe x Mo 0.87 Re 0.13 1.7-3.1 5.55 982 ^ e n nt^n -aoTirt ct 83 Max. 4.2 905 71 Material 1 i cl *c2 c3 l obs Ref. G W°l-« 8.0-4.0 74-25 Ga V 3 14.1 208 Ga V 3 215 Ga V 3 14.83 236 Ga V 4.5 8.6 95 Ga V 3 14.0 200 GeTe 1.03 0.172 0.095 GeV 3 6.7 73 GeV 3 6.7 51 GeV 3 6.9 31 "^l-x 1 Data given In (In pores) 3.68-4.17 11.6-58.4 In 0.063 Pb 0.937 0.43 2.3 In 0. 18-0. 89 Pb 0. 82-0. 11 0.170- 0.028 0.52- 0.052 3.0-4.1-0.15 In 0.35 Pb 0.965 0.6 0.85 1.75 In 0.6 Pb 0.4 6.36 0.362 0.630 3.250 In 0.961 Pb 0.039 3.64 Data Given Data Given Data Given In Sn, x 1-x Data Given La Data Given La 3 Te 4 3.75 2.45 0.060 0.020 12.5 8 Mo Nb. x 1-x I Data Given c Mo 0.725 Nb 0.061 Re 0.187 5.0 2.65 Mo 0.815 Re 0.185 8.27 7.0 Mo 0.865 Re 0.135 6.1 0.471 1.57 753 877 4.2 872 880 4.2 787 4.2 787 807,770 1.3 719* 1.3 719 V 1.3 719 441 738 1.2 844,750V 4.2 949 919 3.9 809 1025 750', 854' 910 925 1.4 1.4 1024 441 881 881 4.2 881 72 Material cl ^2 *c3 obs Ref. Mo 0.16 Ti 0.84 4.246 0.905 60-66 59.3 N Q93 Mb 15.85 158 H 0#92 Hb 16.30 130 B 0.91 Kb 0.99 Ta 0.01 15.62 135 N 0. 91^0. 974 Ta 0. 026 15.09 135 N 0.92 Kb 0.946 Ta 0.054 14.41 135 N 0.91 Nb 0.82 Ta 0.18 10.9 100 N Nb Ti >136 N 0.85 Nb 0.66 Ti 0.34 17.61 119 N 0.88 Nb 0.256 Ti 0.744 14.72 104 B 0.90 Hb 0.114 Ti 0.886 10. 1 100 NNbZr >136 N 0.74 Mb 0.9 Zr 0.l 14.42 136 "o^e^o.ss^o.is 14.16 132 "o.ss^o^'o.zs 12.96 116 "0. 73^*0. 95 Zr O.05 15.42 146 irb Nb (Rods and tubes) Nb (Irradiated) Nb 9.1 (lb 9.3 lib 6.4-9 Nb 10.0 Nb Nb (Foils) 2.80 (Outgassed) 4.70 (As prepared) 4.2 2.5-4.3 53 68 >30 40 3.87 Hl/tiooj 4.33 H|| LlllJ 4.02 H|| £110J 1.18 805 880,873 880 880 880 880 880 4.2 839* 880 880 880 4.2 839 v 880 880 880 880 4.2 895 4.2 751 832 1.3 719 V 1.3 719 V Various 913 V 719 7 1.2 827 883 73 Material cl H l c2 H 1 o c3 obs Ref. Nb 9.1 3.82, 6.69 (at 16 k bar) 995 Nb 9.20 1 .8 4.00 18.3 , 994,1021 Nb 9.20 1 .8 4+ 8 .1 994 Nb 9.23 4.20 928 Nb.. 1-x X Data given 441 Nb 0.9926°0.0084 7 ' 7 4 ~' L3 4.2 772 Nb O.993°0.O07 Nb0 (200 ppm) 8 - 7 8 7 11 8.0 8.5 .1 (cold 4.2 worked) 42 771 771 Nb 0.985°0.0152 8 '°4 9.6 11 .5 4.2 771 Nb, 1-x X Data given 944 Nb 3 0s 0.943 1.26 707 Nb 0.339 Se 0.661 6.1 Data given 996 Nb 0.338 Se 0.662 6.75 Data given. 996 NbSe 2 7.0 Data given. 996 Nb_Sn (Layer on Nb core i) 18.1 245 877 Nb_Sn (Core wire) 18.04 260 880 Nb-Sn (Clad) 18.00 260 880 Nb,Sn (multiwire) 18.21 280 880 Nb 3 Sn 18.0 235 4.2 787 Nb 2 85 SnZr 15 ( Clad ^ 18.07 260 880 Nb 2 79 SnZr Q 21 (Clad) 17.98 260 880 Nb 2.70 Sn Zr 0.30 (C1 .ad) 18.01 260 880 Nb 0.9378 Ta 0.0622 8.42 1 12 1 8 9 5.56 864 Nb 0.9575 Ta 0.0425 8.55 1 37 1 9 8 5.30 864 Nb o.9844 Ta o.oi56 8.76 1 70 2 °3 4.50 864 Nb 0. 991 3 Ta 0. 0087 8.87 1 75 2 °5 4.40 864 Nb l-0 Ta 0-l 9.18-4. 33 Data given. 940 Material t h h h u ~ — r* J> cl H c H c2 ^c3 T obs Ref - Nb 0.96 Ta 0.04 8 ' 87 ^l-O.e^O-O^ 9.23-6.56 ^o^Via 8 - 15 °- 91 !- 69 ^O.J^^.H 7 - 51 °- 83 1-65 Nb 0.67 Ta 0.33 6 ' 81 °- 55 U37 ■"b.54 I- 0.4« 6 ' 25 °' 48 U27 Nb 0i37 Ta 0i6 3 5.31 0.37 1.04 Nb Q 17 Ta 83 4.65 0.33 0.83 Nb, Ta 1-x x Nb 0.55 Ti 0.45 9A Nb 0.4 Ti 0.6 Nb Q 21 Ti Q y9 7.8 1.125 3.572 ^o.ao^o.ao 7 - 5 l - 12 3 - 57 Nb 0.44 Ti 0.56 8 ' 99 ^Q.aO^O.SO 6.6-6.15 Nb 0.22 Ti 0.78 6 - 92 Nb 0.48 Tl 0.52 Nb 62 Ti 14 Zr 24 9.6 Nb Q 75 Ti 15 Zr 10 9.7 Nb Q 53 Tl 18 Zr 29 9.1 9.0 Nb Q 57 Ti 33 Zr 10 9.6 ""o. 62 Ti 14 Zr 24 9.7 6.14 928 4.2-9.2 928 7.08 911 7.93 911 8.73 911 8.60 911 6.75 911 4.26 911 Data given. 441,981 108 4.2 830 107 4.2 830 77 4.2 991 80 4.2 991 Data given. 874 Data given. 965,441 30.1 45 5.54 993 I vs H given. 968 I vs H given, c 968 69 4.2 830 57 4.2 830 81 80 (after anneal) 4.2 4.2 830 78 4.2 830 76 4.2 830 75 Material *cl *c2 *c3 l obs Ref. ^o.ss^o.is^o.so 8.6 9.3 ^o^^o^^o.so 8.6 9.1 Nb 0.48 Ti 0.30 Zr 0.22 8.9 9.0 Nb 0.47 Ti 0.48 Zr 0.05 8.7 Mb 0.52 Ti 0.16 Zr 0.32 9.4 9.5 Nb 0.65 Ti 0.15 Zr 0.20 9.8 ^O^l^O.lS^O^ 8.7 9.3 ^O.l^^.Sl^O.SO 10.05 ^O.W^O.T^O.O? 9.1 9.30 Nb l-x W x Nb O-l Zr l-0 "Vx^x Nb Zr 10.8 *"»(>. 75 2r 0. 25 (10.6) (11.1) Nb 0.20 Zr 0.80 3 Sr Ti 3 Sr Ti 0.30,0.2 P (170 k bar) 5.8-3.6 Pb Pb TI 0.965* 0.035 PbTi 3 0.486 siv 3 16.9 SiV- (Core wire) 16.86 1.12 3.57 0.8 1.2 79 77 (after anneal) 75 77 (after anneal) 78 80 (after anneal) 89 71 72 (after anneal) 65 77 76 (after anneal) I vs H given c I vs H given Data given < 1-42-3 Data given. 92 81.9 (Abrikosov) 83.4 (Gorkov) 80 J».8->10 H c (||) andH (1) given. 1.5 3.45 235 230 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 830 830 830 830 830 830 830 965 965 441 847 441 739 975 991 770 1005 786 752 V ,985 V 919 707 877 880 76 Material SiV 3 SiV 3 Sn SnTe Sn 0.65 Tl 0.35 Ta Ta 0.52 Ti 0.48 cl \2 c3 Ta l-r Zr x x Te 3 Tl 5 Ti 80w/o V 20w/o Ti 0.6 V 0.4 Ti 0.42 V 0.58 Ti x V l-x V (Impure) V 26w/o Zr 74w/o V 0.4 Zr 0.6 V 0.l-0.9 Zr 0. 9-0.1 16.8 228 -105 3.84-3.92 0.034- 0.214 0005- 0019 .001- 0105 ~0. 005-0. 09 6-7.1 3.46 3.16 26 7.86 Data given. I vs H given 2.20 ~1.7 3.65-3.37 I c vs H given 7.0 7.52 86 109 110 Data given. 5.2-7.5 Data given. 4.68 5.06 5.17 36 70 72 1 1 1 16 33 .34 8.0 5.50 4.58 *>5.9 0. 165 185 227 238 ~7.8 -110 6.5-8.3- 7.6 28-100-62 obs Ref. 4.2 787 10 716 V 723 7 ,750 V 770 4.2 900 1.3 719 V 874 441 1.2 848 838 4.2 2.18 118 878 874 441 917 917 917 3.5 3.04 1.78 1.05 678 4.2 889 4.2 889 77 BIBLIOGRAPHY 678. Echarri, A., Phys. Letters 20, 619 (1966). 707. Blaugher, R. D. , Hein, R. E. , Cox, J. E. , Waterstrat, R. M. , J. Low Temp. Phys. 1_, 539 (1969). 708. Janocko, M. A., Gavaler, J. R. , Hulm, J. K. , Jones, C. K. , J. Vac. Sci. Technol. 7, 127 (1970), 709. Koonce, C. S., Cohen, M. L, Schooley, J. F., Hosier, W. R. , Pfeiffer, E. R. , Phys. Rev. 163 , 380 (1967). 710. Hein, R. H., Gibson, J. W. , Mazelsky, R. , Miller, R. C, Hulm, J. K. , Phys. Rev. Letters 12, 320 (1964). 711. Bucher, E. and Staudenmann, I. L., Unpublished-results, Univ. of Geneva . 712. Bucher, E. and Zambelli, A., Unpublished work, Univ. Geneva. 713. Mamiya, T., Nomura, K. , Masuda, Y. , J. Phys. Soc. JAP 28, 380 (1970). 714. VanMaaren, M. H., Harland, H. B., Havinga, E. E. , Solid State Comm. 8, 1933 (1970). 715. Havinga, E. E. , Damsma, H. and VanMaaren, J. Phys. Chem. Solids 31, 2653 (1970). 716. Hauser, J. J. and H. C. Theverer, Phys. Rev. 129, 103 (1963). 717. Raub, Ch.J. and Hull, G. W. , Jr., Phys. Rev. 133, A932 (1964). 718. Stromberg, T. F. and Swenson, C. A., Phys. Rev. 134, A21 (1964). 719. Hauser, J. J. and Theuerer, H. C, Phys. Rev. 134, A198 (1964). 720. Van Der Hoeven, B. J. C, and Keesom, P. H. , Phys. Rev. 134, A1320 (1964). 721. Leupold, H. A. and Boorse, H. A., Phys. Rev. 134, A1322 (1964). 722. McConville, T. and Serin, B. , Phys. Rev. 140, A1169 (1965). 723. Mydosh, J. and Meissner, H. , Phys. Rev. 140, A1568 (1965). 724. Smith, T. F. and Gardner, W. E. , Phys. Rev. 140, A1620 (1965). 725. Shapira, Y. and Neuringer, L. J., Phys. Rev. 140, A1638 (1965). 726. Lutes, 0. S., Clayton, D. A., Phys. Rev. 145, 218 (1966). 727. Gardner, W. E. and Smith, T. F. , Phys. Rev. 144, 233 (1966). 728. Merriam, M. F. , Phys. Rev. 144, 300 (1966). 729. Smith, T. F. and Gardner, W. E. , Phys. Rev. 146, 291 (1966). Guthrie, G. L. and Palmer, R. L., Phys. Rev. 141, 346 (1966). Gibson, J. W. and Hein, R. A., Phys. Rev. 141, 407 (1966). 730 731 732. Claeson, T., Luo, H. L. and Merriam, M. F. , Phys. Rev. 141^, 412 (1966). 733 Hauser, J. J., Theuerer, H. C. and Werthamer, N. R., Phys. Rev. 142, 118 (1966), 734. Duffy, R. J. and Meissner, H. , Phys. Rev. 147, 248 (1966). 735. Seidel, T. and Meissner, H. , Phys. Rev. 147, 272 (1966). 736. Claeson, T. , Phys. Rev. 147, 340 (1966). 78 737. Shier, J. S. and Ginsberg, D. M. , Phys. Rev. 147, 384 (1966). 738. Watson, J. H. P., Phys. Rev. 148, 223 (1966). 739. Neuringer, L. J. and Shapira, Y. , Phys. Rev. 148, 231 (1966). 740. Cape, J. A., Phys. Rev. 148, 257 (1966). 741. Falge, Jr., R. L. and He in, R. A., Phys. Rev. 148, 940 (1966). 742. Radebaugh, R. and Keesom, P. H. , Phys. Rev. 149, 209 and 217 (1966). 743. Finnemore, D. K. , Stromberg, T. F. and Swenson, C. A., Phys. Rev. 149, 231 (1966). 744. Jensen, M. A. and Maita, J. P., Phys. Rev. 149, 409 (1966). 745. Van Der Hoeven, Jr., B. J. C. and Keesom, P. H. , Phys. Rev. 137, A103 (1965). 746. Joiner, W. C. H. , Phys. Rev. 137, A112 (1965). 747. Finnemore, D. K. , Johnson, D. L. , Ostenson, J. E. , Spedding, F. H. , Beaudry, B. J., Phys. Rev. 137, A550 (1965). 748. Woolf, M. A. and Reif, F., Phys. Rev. 137, A557 (1965). 749. O'Neal, H. R. and Phillips, N. E. , Phys. Rev. 137, A748 (1965). 750. Burger, J. P., Deutscher, G. , Guyon, E. and Martinet, A., Phys. Rev. 137., A853 (1965). 751. Cline, H. E. , Tedmon, C. S., Jr., and R. M. Rose, Phys. Rev. 137, A1767 (1965). 752. Kratzig, E. and Keller, J., Phys. Stat. Sol. 42, 725 (1970). 753. Fischer, 0., Jones, H. , Bongi, G., Frei, C, Treyvaud, A., Phys. Rev. Letters 26, 305 (1971) 754. Merriam, M. F. , Liu, S. H. and Seraphim, D. P., Phys. Rev. 136, A17 (1964). 755. Claiborne, L. T. and Morse, R. W. , Phys. Rev. 136., A893 (1964). 756. Hauser, J. J., Theurerer, H. C. and Werthamer, N. R., Phys. Rev. 1.36, A637 (1964). 757. Douglas, D. H., Jr. and Meservey, R. , Phys. Rev. 135, A19 (1964). 758. Meservey, R. and Douglass, D. H. , Jr., Phys. Rev. 13_5, A24 (1964). 759. Hake, R. R. and Cape, J. A., Phys. Rev. 135, A1151 (1964). 760. Saunders, G. A. and Lawson, A. W. , Phys. Rev. 135, A1161 (1964). 761. Tittman, B. R. , Darnell, A. J., Bommel , H. E. and Libby, W. R. , Phys. Rev. 135, A1460 (1964), Also see A1453. 762. Caplan, S. and Chanin, G., Phys. Rev. 1_38, A1428 (1965). 763. Toxen, A. M. , Burns, M. J. and Quinn, D. J., Phys. Rev. 138, A1145 (1965). 764. Gardner, W. E. and Smith, T. F. , Phys. Rev. 138, A484 (1965). 765. Martin, D. L. , Phys. Rev. 138, A464 (1965). 766. Raub, Ch. J. and Anderson, C. A., Z. Physik 225, 105 (1963). 767. Cooper, A. S., Corenzwit, E. , Longinotti, L. D. , Matthias, B. T. and Zachariasen, W. H. , Proc. Nat. Acad. Sci. 67, 313 (1970). 768. Bucher, E. , Andres, K. , Maita, J. P. and Hull, G. W. , Jr., Helevtica Physica Acta 41, 723 (1968). 769. Andres, K. , Bucher, E. , Maita, J. P. and Cooper, A. S. , Phys. Letters 28A , 67 (1968). 79 770. Hulra, J. K. , Ashkin, M. , Deis, D. W. and Jones, C. K. , Prog, in Low Temp. Phys. 6, 205 (1970), 771. Desorbo, W. , Phys. Rev. 134, A1119 (1964). 772. Desorbo, W. , Phys. Rev. 135, A1190 (1964). 773. Glover, R. E. , III, Prog, in Low Temp. Phys. 6, 291-332 (1970). 774. Wittig, J., J. Phys. Chem. Solids 30, 1407 (1969). 775. Wittig, J. and Matthias, B. T. , Science 160, 994 (1968). 776. Luo, H. L., Maple, M. B. , Harris, I. R. and Smith, T. F. , Phys. Letters 27A, 519 (1968). 777. Wittig, J. and Matthias, B. T. , Phys. Rev. Letters 22, 634 (1969). 778. Schmidt, L., Physics Letters 31A, 551 (1970). 779. Buckel, W. and Gey, W„ , Z. fur Phys. 176, 336 (1963). 780. Wittig, J., Z. Physik 195, 228 (1966). 781. Wittig, J., Phys. Rev. Letters 24, 812 (1970). 782. Fisk, Z. and Matthias, B. T. , Science 165, 279 (1969). 783. Falge, R. L. , Jr., Phys. Letters 24A, 579 (1967). 784. Giorgi, A. L. , Szklarz, E. G. , Krupka, M. C. , Wallace, T. C. and Krikorian, N. H., Jour. Less Common Metals 14, 247 (1968) (And private communication). 785. Brandt, N. B. and Berman, I. V., Zh. Eksp. Teor. Fiz. , Pisma Red. ]_, 198 (1968), Trans: JETP Letters 7, 152 (1968). 786. Berman, I. V. and Brandt, N. B. , Soviet Phys. JETP Letters 7, 323 (1968). 787. Foner, S., McNiff, E. J., Jr., Matthias, B. T., Geballe, T. H. , Willens, R. H. and Corenzwit, Phys. Letters 31A, 349 (1970). 788. Andres, K. , Bucher, E. , Maita, J. P. and Sherwood, R. C., Phys. Rev. 178, 702 (1969). 789. Yasukochi, K. , Akihama, R. and Usui, N. , Japan. J. Appl. Phys. 9, 845 (1970). 790. Klimashin, G. M. , Neshpor, V. S., Nikitin, V. P., Novikov, V. I. and Shalyt, S. S., Zhetf Pis. Red. 1_2, 147 (1970). Translation: JETP Letters 12, 102 (1970). 791. Palmy, C., Olsen, J. L. , Flach, R. and DeTrey, P., Coll. Inter. Du CNRS 188, 95 (1970). (Grenoble Meeting 8-10 Sept. 1969). 792. Surikov, V. I. Borzhitskaya, M. K. , Shtolts, A. K. , Zagriazhsky, V. L. and Geld, P. V., Phys. Metals and Metallography (USSR). 30, 1167 (1970). 793. Lawson, A. C, Jour. Less-Common Metals 23, 103 (1971). 794. Maple, M. B., Solid State Commun. 8, 1915 (1970). 795. Schmidt, L. , McCarthy, S. L. and Maita, J. P., Solid State Commun. 8, 1513 (1970). 796. VanMaaren, M. H. and Harland, H. B., Physics Letters 29A, 571 (1969). 797. VanMaaren, M. H. and Schaeffer, G. M. , Phys. Letters 24A, 645 (1967). 798. Tomasch, W. J., Phys. Rev. 139, A746 (1965). 80 799. Lindenfeld, P. and Rohrer, H. , Phys. Rev. 139, A206 (1965). 800. Chardbari, R. D. and Brown, J. B. , Phys. Rev. 139, A1482 (1965). 801. Rothwarf, F. , Schmitz, J. A., Dickson, C. C, Thiel , R. C. , Boiler, H. and Parthe, E. , Phys. Rev. 152, 341 (1966). 802. Gordon. J. E. , Montgomery, H. , Noer, R. J., Pickett, G. R. and Tobon, R. , Phys. Rev. 152 , 432 (1§66). 803. Gregory, W. D. , Sheahen, T. P. and Cochran, J. R. , Phys. Rev. 150, 315 (1966). 804. Gueths, J. E. , Reynolds, C. A., and Mitchell, M. A., Phys. Rev. 150, 346 (1966). 805. Barnes, L. J. and Hake, R. R. , Am. Acad. Sci. Finnical A VI #210, 78 (1966). 806. Finnemore, D. K. and Johnson, D. L., Ref. 805, p. 84. 807. Goodman, B. B. and Marcucci, S. G. , Ref. 805, p. 86. 808. Ohtsuka, T. and Satoh, T. , Ref. 805, p. 92. 809. Otter, F. A., Jr. and Yntema, G. B. , Ref. 805, p. 98. 810. Ukei, K. and Kanda, E. , Ref. 805, p. 104. 811. Veal, B. W. and Hulm, J. K. , Ref. 805, p. 108. 812. Bonnerot, J., Caroli, B. and Coqblin, B., Ref. 805, p. 120. 813. Finegold, L. , Hulm, J. K. , Mazelsky, R. , Phillips, N. E. andTriplett, B. B. , Ref. 805, p. 129. 814. Wilkes, W. R. and Mapother, D. E. , Ref. 805, p. 135. 815. Samsonov, G. V. and Neshpor, V. S. , J. Exptl. Theoret. Phys. (USSR) 30, 1143 (1956). Trans: Sov. Phys. JETP 3, 947 (1957). 816. Lazarev. B. G., Lazareva, L. S., Ovcharenko, 0. N. and Matsakova, A. A., J. Exptl. Theoret. Phys. (USSR) 43, 2309 (1962). 817. Lazarev, B. G., Lazareva, L. S. and Makarov, V. I., J. Exp. Theor. Phys. (USSR)43, 2311 (1962), 818. Neal, D. F., Barber, A. C., Woolcock, A. and Gidley, J.A.F., Acta Metal 19, 143 (1971). 819. Keskar, K. S., Yamashita, T. and Onodera, Y., Jap. J. of Applied Phys. 10, 370 (1971). 820. Mizutani, U. , Jap. J. of Applied Phys. 10, 367 (1971). 821. Hauser, J. J., Hamann, D. R. and Kammlott, G. W. , Phys. Rev. B3, 2211 (1971). 822. Cape, J. A. and Silvera, I. F., Phys. Rev. Letters 20, 326 (1968). 823. Ageev, N. V., Alekseevski, N. E. , Mikhailov, N. N. and Shamrai, V. F. , ZhETF Pisma 6, 901 (1967), Trans: JETP Letters 6, 329 (1967). 824. Alekseevski, N. E. and Mikhailov, N. N. , Zh. ETF Pisma 6, 584 (1967), Trans: JETP Letters 6, 92 (1967). 825. Savitskii, E. M. , Baron, V. V. and Efimov, Yu. V., Dokl. AN SSSR 171 (1966). Trans: Sov. Phys. Doklady 11, 988 (1967). 826. Galkin, A. A. and Svistunov, V. M. , Phys. Status Solidi 26, K55 (1968). 827. Gough, C. E., Solid State Commun. 6, 215 (1968). 81 828. Walmsley, D. G. , Campbell, C. K. and Dynes, R. C, Can. J. Phys. 46, 1129 (1968). 829. Berman, I. V., Brandt, N. B. and Ginzburg, N. I., Zh. Eksp. Teor. Fiz. 53, 124 (1967), Trans: Sov. Phys. JETP 26, 86 (1968). 830. Lazarev, B. G., Ovcharenko, 0. N. , Matsakova, A. A. and Volotskaya, V. G. , Zh. Eksp. Teor. Fiz. 54, 1031 (1968). Trans: Sov. Phys. JETP 27, 549 (1968). 831. Sahm, P. R. , Pruss, T. V. and Gandolfo, D. A., Trans. AIME 242, 603 (1968). 832. Berndt, H. , Kartascheff, N. and Wenzl , H. , Z. Angew. Phys. 24, 305 (1968). 833. Ikushima, A., Mizusaki, T. and Odaka, T. , Phys. Letters 26A, 582 (1968). 834. Ogasawara, T. , Thesis (Ninon Univ. 1967). 835. Doyle, N. J., Hulm, J. K. , Jones, C. K. , Miller, R. C. and Taylor, A., Phys. Lett. 26A, 604 (1968). 836. Chu, C. W. , Gardner, W. E. and Smith, T. F. , Phys. Letters 26A, 627 (1968). 837. Strongin, M. and Kammerer, 0. F., J. Appl. Phys. 39, 2509 (1968). 838. Vetrano, J. B. , Guthrie, G. L. , Kissinger, H. E. , Brimhall, J. L. and Mastel, B. , J. Appl. Phys. 39, 2524 (1968). 839. Bell, H., Shy, Y. M. , Anderson, D. E. and Toth, L. E. , J. Appl. Phys. 39, 2797 (1968). 840. Black, W. C, Jr., Phys. Rev. Letters 21, 28 (1968). 841. Leksina, I.Y.E., Motulevich, G. P., Fedotov, L. N. and Shubin, A. A., Fix. metal, metalloved. 23, 511 (1967), Trans: Phys. Metals Metallog. (USSR) 24, 116 (1968). 842. Cape, J. A. and Silvera, I. F. , Phys. Letters 27A, 13 (1968). 843. Gordon, D. E. and Deaton, B. C, Phys. Letters 27A, 116 (1968). 844. Essmann, U. and Trauble, H. , Phys. Letters 27A, 156 (1968). 845. Ocken, H. and VanVucht , J.H.N. , J. Less-Common Metals 15, 193 (1968). 846. Luo, H. L., J. Less-Common Metals 15, 299 (1968). 847. Corsan, J. M. , Williams, I., Catterall, J. A. and Cook, A. J., J. Less-Common Metals 15 , 437 (1968). 848. Juodakis, A. and Kannewurf, C. R. , J. Appl. Phys. 39, 3003 (1968). 849. Ishida, K. , Masters Thesis, Northwestern Univ. (USA) (1968). 850. Sulkowski, C. and Mazur, J., Acta Phys. Polon. 33, 827 (1968). 851. Hasse, J. and Seiberth, J., Z. fur. Phys. 213, 79 (1968). 852. Baier, P., Z. fur Phys. 213, 89 (1968). 853. Hines, W. A. and Harris, I. R. , Jour, of Phys. F Metal Physics 1, 93 (1971). 854. Davies, J.P.N. , Robinson, G. , and Tilley, D. R. , J. Phys. (Proc. Phys. Soc.) CI, 699 (1968). 855. Voigt, H., Z. fur Phys. 213, 119 (1968). 856. Cheeke, J.D.N, and Ducla-Soares , E. , Phys. Letters 27A, 264 (1968). 857. Ancher, L. J., Poulis, N. J., Wulffers, L.A.G.M. and Diemer, E.A.P. , Physica 51, 605 (1971). 858. Ignateva, T. A., Makarov, V. I. and Tereshina, N. S., Zh. Eksp. Teor. Fiz. 54, 1617 (1968), Trans: Soviet Physics JETP 27, 865 (1968). 859. Hartsough, L. D. , Zackay, V. F. and Parker, E. R. , Appl. Phys. Letters 1_3, 68 (1968). 82 860. Komata, T., Hasimoto, Y. and Hirata, I., Cryogenic Eng. (Tokyo) 3, 2-8 (1968). 861. Nembach, E. , J. Phys. Chem. Solids 29, 1205 (1968). 862. Meissner, H. and Tholfsen, P., J. Low Temp. Phys. 4, 141 (1971). 863. Green, R. W. , Thorland, E. 0., Groat, J. and Legvold, S., J. Appl. Phys. 40, 3161 (1969). 864. Ikushima, A. and Mizusaki, T. , J. Phys. Chem. Solids 30, 873 (1969). 865. Katzman, H. , Donohue, T. , Libby, W. F. , Luo, H. L. and Huber, J. G., J. Phys. Chem. Solids 30, 1609 (1969). 866. Wernick, J. H. , Menth, A., Geballe, T. H. , Hull, G. , and Maita, J. P., J. Phys. Chem. Solids 30, 1949 (1969). 867. Katzman, H. , Donohue, T. , Libby, W. F. and Luo, H. L., J. Phys. Chem. Solids 30, 2794 (1969). 868. Krupka, M. C, Giorgi, A. L. , Krikorian, N. H. and Szklarz, E. G., J. Less-Common Metals 17, 91 (1969). 869. Giorgi, A. L., Szklarz, E. G. , Krupka, M. C. and Krikorian, N. H. , J. Less-Common Metals 17, 121 (1969). 870. Krupka, M. C, Giorgi, A. L. , Krikorian, N. H. and Szklarz, E. G., J. Less-Common Metals 19, 113 (1969). 871. Krikorian, N. H. , Giorgi, A. L. , Szklarz, E. G. and Krupka, M. C, J. Less-Common Metals 19, 253 (1969). 872. Tachikawa, K. and Iwasa, Y., Appl. Phys. Letters ljj, 230 (1970). 873. Maxwell, E. , Schwartz, B. B., Wizgall, H. and Hechler, K. , J. Appl. Phys. 39, 2568 (1968). 874. Neuringer, L. J. and Shapira, Y. , Phys. Rev. Letters 17, 81 (1966). 875. Sample, H. H. , Gerber, J. A. Neuringer, L. J. and Kaufman, L. A., Phys. Letters 33A , 119 (1970). 876. Foner, S., McNiff, E. J., Jr., Matthias, B. T. and Corenzwit, E. , J. Appl. Phys. 40, 2010 (1969). 877. Otto, G., Saur, E. and Wizgall, H. , J. Low-Temp. Phys. 1, 19 (1969). 878. Hackett, W. H. , Jr., Maxwell, E. and Kim, Y. B., Phys. Letters 24A, 663 (1967). 879. Gordon, J. E. , Gardner, W. E. , Smith, T. F. , Chu, C. W. and Maple, M. B., Phys. Rev. 176 , 556 (1968). 880. Hechler, K. , Horn, G. , Otto, G. and Saur, E., J. Low Temp. Phys. 1, 29 (1969). 881. Hoenig, H. E. and Barth, N. , J. Low Temp. Phys. 1, 355 (1969). 882. Black, W. C, Johnson, R. T. and Wheatley, J. C, J. Low Temp. Phys. 1, 641 (1969). 883. Huebener, R. P., Kampwirth, R. T. and Seher, A., J. Low Temp. Phys. 2, 113 (1970). 884. Pfeiffer, E. R. and Schooley, J. F., J. Low Temp. Phys. 2, 333 (1970). 885. Cadieu, F. J., J. Low Temp. Phys. 3, 393 (1970). 886. Huber, J. G. and Maple, M. B. , J. Low Temp. Phys. 3, 537 (1970). 887. Thorp, T. L. , Triplett, B. B. , Brewer, W. D. , Cohen, M. L. , Phillips, N. E. Shirley, D. A., Templeton, J. E., Stark, R. W. and Schmidt, P. H. , J. Low Temp. Phys. 3, 589 (1970). 83 888. Brandt, B. L., Parks, R. D. and Chaudhari, R. D. , J. Low Temp. Phys. 4, 41 (1971) 889. Yasohama, K. and Usui, N. , Japan. J. Appl. Phys. 7, 1128 (1968). 890. Asada, T., Horiuchi, T. and Uchida, M. , Japan. J. Appl. Phys. 8, 958 (1969). 891. Donohue, P. C. and Young, H. S., J. Solid State Chem. 1, 143 (1970). 892. Donohue, P. C. and Bierstedt, P. E. , Inorg. Chem. 8, 2690 (1969). 893. Newkirk, L. R. and Tsuei, C. C, Phys. Stat. Sol. a4, 387 (1971). 894. Kodess, B. N. , Phys. Stat. Sol. a4, K109 (1971). 895. Karasik, V. R. , Niselson, L. A., Petrusevich, I. V., Shalnikov, A. I. and Shebalin, I. Yu. , Zh ETF Pis. Red. 8, 479 (1968), Trans: JETP Letters 8, 294 (1968). 896. Alekseevskii, N. E. , Ageev, N. V., Mikhailov, N. N. and Shamrai, V. F. , Zh. ETF Pis. Red. 9, 28 (1969), Trans: JETP Letters 9, 16 (1969). 897. Alekseevski, N. E. , Zh. ETF Pis. Red. 9, 571 (1969), Trans: JETP Letters 9, 347 (1969). 898. Berman, I. V. and Brandt, N. B. , Zh. ETF Pis. Red. 10, 88 (1969), Trans: JETP Letters 10, 55 (1969). 899. Alekseevski, N. E. and Tsebro, V. I., Zh. ETF Pis. Red. 10, 181 (1969), Trans: JETP Letters 10, 114 (1969). 900. Rabinkin, A. G. and Tonkov, E. Yu. Zh. ETF Pis. Red. 10, 289 (1969), Trans: JETP Letters 10, 183 (1969). 901. Golovashkin, A- I»j Levchenko < „I. _S,» , Xfiksina, !■ E. , Motulevich, G. P. and Shubin, A. A., Pis. ma Zh. Eksp. Teor. Fiz. 10, 515 (19697. 902. Il'ina, M. A. and Itskevich, E. S., Zh. ETF Pis. Red. U, 26 (1970), Trans: JETP Letters 11_, 15 (1970). 903. Il'ina, M. A. and Itskevich. E. S., Zh. ETF Pis. Red. 11_, 328 (1970), Trans: JETP Letters 11 , 218 (1970). 904. Eichler, A. and Wittig, J., Z. angew. Phys. 25, 319 (1968). 905. Prokoshkin, A. F. and Puzei, I. M. , Zh. ETF Pis. Red. 11, 493 (1970), Trans: JETP Letters 11, 336 (1970). 906. Boiko, L. G. and Popova, S. V., Zh. ETF. Pis. Red. 1_2, 101 (1970), Trans: JETP Letters 12, 70 (1970). 907. Voronova, I. V., Mikhailov, N. N. and Skvortsov, A. I. Zh. ETF Pis. Red. 1_2, 209 (1970), Trans: JETP Letters 12, 145 (1970). 908. Alekseevski, N. E. , Zakosarenko, V. M. and Tsebro, V. I., JETP Letters 12, 157 (1970). 909. Il'ina, M. A. and Itskevich. E. S., Zh. ETF Pis. Red. 13, 23 (1971), Trans: JETP Letters 13, 15 (1971). yiO. Aomine, T. and Shibuya, Y. , J. Phys. Soc. Japan 25, 1289 (1968). 911. Ogasawara, T. , Kubota, Y. and Yasukochi, K. , J. Phys. Soc. Japan 25, 1307 (1968). 912. Aomine, T. , J. Phys. Soc. Japan 25, 1585 (1968). 913. Asada, Y. and Nose, H. , J. Phys. Soc. Japan 26, 347 (1969). 914. Yamaya, K. , Sambongi, T. and Mitsui, T. , J. Phys. Soc. Japan 26, 866 (1969). 915. Tsuda, N. , J. Phys. Soc. Japan 27, 1075 (1969). 84 916. Satoh, T. and Asada, Y. , J. Phys. Soc. Japan 27, 1463 (1969). 917. Usei, N., Ogasawara, T. , Yasukochi, K. and Tomoda, S., J. Phys. Soc. Japan 27, 574 (1969). 918. Kuwasawa, Y. , Sekizawa, K. , Usui, N. and Yasukochi, K. , J. Phys. Soc. Japan 27, 590 (1969). 919. Takata, M. , J. Phys. Soc. Japan 27, 615 (1969). 920. Hill, H. H. and Matthias, B. T. , Phys. Rev. 168, 464 (1968). 921. Crow, J. E., Strongin, M. , Thompson, R. S. and Kammerer, 0. F. , Phys. Letters 30A, 161 (1969), 922. Spitzli, P., Flukiger, R. , Heiniger, F. and Muller, J., Phys. Letters 30A, 170 (1969). 923. Hanak, J. J., Gittleman, J. I., Pellicane, J. P. and Bozowski, S. , Phys. Letters 30A, 201 924. VanMaaren, M. H. and Harland, H. B. , Phys. Letters 30A, 204 (1969). 925. Takata, M. , Phys. Letters 30A, 244 (1969). 926. Wu, T. M., Phys. Letters 30A, 347 (1969). 927. Havinga, E. E. , VanMaaren, M. H. and Damsma, H. , Phys. Letters 29A, 109 (1969). 928. Kimura, Y. , Ohtsuka, T. , Matsui, T. and Mizusaki, T. , Phys. Letters 29A, 284 (1969). 929. Ho, J. C. and Collings, E. W. , Phys. Letters 29A, 206 (1969). 930. VanMaaren, M. H. , Phys. Letters 29A, 293 (1969). 931. Collings, E. W. and Ho, J. C, Phys. Letters 29A, 306 (1969). 932. Dummer, G. , Phys. Letters 29A, 311 (1969). 933. Palmy, C, Phys. Letters 29A, 373 (1969). 934. Flukiger, R. , Spitzli, P., Heiniger, F. and Muller, J., Phys. Letters 29A, 407 (1969). 935. Pfeiffer, E. R. and Schooley, J. J., Phys. Letters 29A, 589 (1969). 936. Ehrat, R. and Rinderer, L. , Phys. Letters 29A, 712 (1969). 937. Leger, A. and Klein, J., Phys. Letters 28A, 751 (1969). 938. Fassnacht, R. E. and Dillinger, J. R. , Phys. Letters 28A, 741 (1969). 939. Sahm, P. R. and Pruss, T. V., Phys. Letters 28_A, 707 (1969). 940. Corsam, J. M. and Cook. A. J., Phys. Letters 28_A, 500 (1969). 941. Komenou, K. , Yamashita, T. and Onodera, Y. , Phys. Letters 28A, 335 (1968). 942. Cox, J. E., Phys. Letters 28A, 326 (1968). 943. Yasukochi, K. , Kuwasawa, Y. and Sekizawa, K. , Phys. Letters 28A, 12 (1968). 944. Jones, K. A. and Rose, R. M. , Phys. Letters 27A, 412 (1968). 945. Flukiger, R. , Heiniger, F. , Junod, A., Muller, J. Spitzli, P. and Staudenmann, J. L. , J. Phys. Chem. Solids 32, 459 (1970). 946. Wilhelm, M. and Hillenbrand, B. , J. Phys. Chem. Solids 31, 559 (1970). 947. Vieland, L. J., J. Phys. Chem. Solids 31, 1449 (1970). 948. Spitzli, P., Flukiger, R. , Heiniger, F. , Junod, A., Muller, J. and Staudenmann, J. L. , J. Phys. Chem. Solids 31, 1531 (ly70). 949. Evetts, J. E. and Wade, J.M.A. , J. Phys. Chem. Solids 31, 973 (1970). 85 950. Geballe, T. H. , Matthias, B. T., Caroli, B., Corenzwit, E. , Malta, J. P. and Hull, G. W. , Phys. Rev. 169, 457 (1968). 951. Huber, J. G. and Maple, M. B., Solid State Commun. 8, 1987 (1970). 952. Chu, C. W. , Smith, T. F. and Gardner, W. E., Phys. Rev. Letters 20, 198 (1968). 953. Maple, M. B. and Smith, T. F. , Solid State Commun. ]_, 515 (1969). , 954. Smith, T. F., Physics Letters 33A, 465 (1970). 955. McCarthy, S. L. and Schmidt, L. , J. Less-Common Metals 23, 241 (1971). 956. Rapp, 0., J. Less-Common Metals 21, 27 (1970). 957. Tachikawa, K. and Tanaka, Y., Jap. J. Appl. Phys. 5, 834 (1966) and 6, 782 (1967). 958. Fischer, J. J. and Probst, H. B., J. Less-Common Metals 9, 416 (1965). 959. Claeson, T. and Merriam, M. F. , J. Less-Common Metals 11, 186 (1966). 960. Catterall, J. A. and Williams, I., J. Less-Common Metals 12, 258 (1967). 961. McWhan, D. B. , Compton, V. B. , Silverman, M. S., and Soulen, J. R. , J. Less-Common Metals 12, 75 (1967). 962. Raub, E., Raub, Ch.J., Roschel, E. , Compton, V. B. , Geballe, T. H. and Matthias, B. T., J. Less-Common Metals 12, 36 (1967). 963. Andres, K. and Jensen, M. A., Phys. Rev. 165, 533 (1968), also 165, 545 (1968). 964. Charlesworth, J. P., Phys. Letters 21, 501 (1966). 965. Zwicker, U. , Meier, T. and Roschel, E. , J. Less-Common Metals 14, 253 (1968). 966. Toth, L. E. and Zbasnik, J., Acta Met. 16, 1177 (1968). 967. Toth, L. E., Ishikawa, M. and Chang, Y. A., Acta Met 16, 1183 (1968). 968. Pfeiffer, I. and Hillmann, H., Acta Met. 16, 1429 (1968). 969. Preece, C. M. and King, H. W. , Acta Met. \J_, 21 (1969). 970. Itskevich, E. S., Il'Ina, M. A. and Sukhoparov, V. A., J. Exptl. Theoret. Phys. (USSR) 45, 1378 (1963, Trans: Sov. Phys. JETP 18, 949 (1964). 971. Bychkov, Yu. F. , Goncharov, 1. N. and Khukhareva, I. S., J. Exptl. Theoret. Phys. (USSR) 48, 818 (1965), Trans: Sov. Phys. JETP 21, 543 (1965). 972. Bucher, E. , Muller, J., Olsen, J. L. and Palmy, C, Phys. Letters 15_, 303 (1965). 973. Compy, E. M. , Phys. Letters 18, 228 (1965). 974. Davis, J. H. , Skove, M. J. and Stillwell, E. P., Solid State Commun. 4, 597 (1966). 975. Neuringer, L. J. and Shapira, Y., Solid State Commun. 2, 349 (1964). 976. DuChatenier, F. J. and Goedemoed, S. H. , Phys. Letters 7, 108 (1963). 977. Buckel, W. , Gey, W. and Wittig, J., Phys. Letters 11, 98 (1964). 978. Cardona, M. and Rosenblum, B. , Phys. Letters 11, 112 (1964). 979. Rosenblum, B. and Cardona, M. , Phys. Letters 9, 220 (1964). 86 980. Vielhaber, E. and Luo, H. L., Solid State Commun. 5, 221 (1967). 981. Lowell, J., Solid State Commun. 5, 323 (1967). 982. Barth, N. , Hoening, H. E. and Fulde, P., Solid State Commun. 5, 459 (1967). 983. Robbins, M. , Willens, R. H. and Miller, R. C, Solid State Commun. 5, 933 (1967). 984. VanMaaren, N. H., Schaeffer, G. M. , and Lotgering, F. K. , Phys. Letters 25A, 238 (1967). 985. Maldy, J., Santamaria, E. and Donadieu, L., Phys. Letters 25A, 318 (1967). y86. Watson, J.H.P., Phys. Letters 25A, 326 (1967). 987. VanReuth, E. C. and Poulis, N. J., Phys. Letters 25A, 390 (1967). 988. Colwell, J. H. , Phys. Letters 25A, 623 (1967). 989. Naugle, D. G., Phys. Letters 25A, 688 (1967). 990. Glover, R. E., Phys. Letters 25A, 542 (1967). 991. Karasik, V. R. and Vereshchagin, V. G. , Zh. Eksp. Teor. Fiz. 59, 36 (1970), Trans: Sov. Phys. JETP 32, 20 (1971). 992. Antonova, E. A., Kiseleva, K. V. and Medvedev, S. A., Zh. Eksp. Teor. Fiz. 59, 54 (1970), Trans: Soviet Physics JETP 32. 31 (1971). 993. Karasik, V. R. , Vasilev, N. G. and Ershov, V. G. , Zh. Eksp. Teor. Fiz. 59, 790 (1970), Trans: Soviet Physics JETP 32, 433 (1971). 994. Karasik, V. R. and Shebalin, I. Yu., Zh. Eksp. Teor. Fiz. 57, 1973 (1969), Trans: Soviet Physics JETP 30, 1068 (1970). 995. Brandt, N. B. and Papp, E. , Zh. Eksp. Teor. Fiz. 57, 1090 (1969), Trans: Soviet Physics JETP 30, 595 (1970). 996. Antonova, E. A., Medvedev, S. A. and Shebalin, I. Yu. , Zh. Eksp. Teor. Fiz. 57, 329 (1969), Trans: Soviet Physics JETP 30, 181 (1970). 997. Brandt, N. B. and Ginzburg, N. I., J. Exptl. Theoret. Phys. 49, 1706 (1965), Trans: Soviet Phys. JETP 22, 1167 (1966). 998. Brandt, N. B., Ginzburg, N. I., Ignateva, T. A., Lazerev, B. G., Lazareva, L. S. and JETp"^' 61 (1966) ^^ The ° ret ' PhyS * (USSR) ^-' 85 (1965) • Trans: Soviet Physics 999. Sukharevskii , A. V., Alapina, A. V. and Dushechkin, Yu. A., Zh. Eksp. Teor. Fiz 54 1675 (1968), Trans: Soviet Physics JETP 27, 897 (1968). ' — 1000. Fassnacht, R. E. and Dillinger, J. R. , Phys. Rev. Letters 17, 255 (1966). 1001. Zegler, S. T. and Downey, J. W. , Trans. AIME 227, 1407 (1963). 1002. Junod, A., Heiniger, F., Muller, J. and Spitzli, P., Helvetia Phys. Acta 43, 59 (1970). 1003. Gregory, W. D., Phys. Rev. 165, 556 (1968). 1004. Harris, E. P., and Mapother, D. E., Phys. Rev. 165, 522 (1968). 1005. Schooley, J. F. , Frederikse, H.P.R., Hosier, W. R. and Pfeiffer, E. R. , Phys. Rev. 159, 301 (1967) . B7 1006. Willens, R. H. , Buehler, E. and Matthias, B. T. , Phys. Rev. 159, 327 (1967). 1007. Volger, J., Personal communication. 1008. Hulliger, F. , Private communication. 1009. O'Boyle, D. R. , Personal communication. 1010. McDonald, W. J., Personal communication. 1011. Menth, A., Wernick, J. H. , Geballe, T. H. , Hull, G. and Maita, J. P., Bull. Amer. Phys. Soc. 14, 382 (1969). 1012. Maple, M. B. , Huber, J. G. and Kim, K. S., Solid State Commun. 8, 981 (1970). 1013. Smith, T. F. , Phys. Rev. Letters 25, 1483 (1970). 1014. Fisk, Z., Matthias, B. T. and Corenzwit , E. , Proc. Nat. Acad. Sci. (USA) 64, 1151 (1969). 1015. Luo, H. L., Vielhaber, E. and Corenzwit, E. , Z. Phys. 230, 443 (1970). 1016. Maple, M. B. , Wittig, J. and Kim, K. S., Phys. Rev. Letters 23, 1375 (1969). 1017. Webb, G. W., Phys. Rev. 181, 1127 (1969). 1018. Matthias, B. T. , Chu, C. W. , Corenzwit, E. and Wohlleben, D. , Proc. Nat. Acad. Sci. (USA) 64, 459 (1969). 1019. Arrhenius, G. , Corenzwit, E. , Fitzgerald, R. , Hull, G. W. , Jr., Luo, H. L. , Matthias, B. T. and Zachariasen, W. H., Proc. Nat. Acad. Sci. (USA) 61, 621 (1968). 1020. Engelhardt, J. J., Phys. Rev. 179, 452 (1969). 1021. Webb, G. W. , Solid State Commun. 6, 33 (1968). 1022. Hein, R. A. and Meijer, P.H.E., Phys. Rev. 179, 497 (1969). 1023. Hein, R. A., Cox, J. E. , Blaugher, R. D. and Waterstrat, R. M. 381 (1969). 1024. Zhuze, V. P., Shalyt, S. S., Noskin, V. A. and Sergeeva, V. M. 1025. Noto, K. , Sci. Rep. Ritu A20, 129 (1968). 1026. Hillenbrand, B. and Wilhelm, M. , Phys. Letters 33A, 61 (1970). 1027. Gamble, F. R. , Disalvo, F. J., Klemm, R. A. and Geballe, T. H. , Science 168, 568 (1970). 1028. Alekseevskii, N. E., Tsebro, V. I. and Filippovich. E. I., Zh. ETF. Pis. Red. 13, 247 (1971). 1030. Collings, E. W. , Hedgcock, F. T. and Muto, Y. , Phys. Rev. 134, A1521 (1964). 1031. D'Yakov, I. G. and Shvets , A. D. , J. Exptl. Theoret. Phys. 49, 1091 (1965), Trans: Soviet Physics JETP 22. 75y (1966). Solid State Commun. 1_, Zh. ETF Pis' ma 3, 217 (1966), REVIEW ARTICLES AND BOOKS ON SUPERCONDUCTIVITY Onnes, H. , Kamerlingh, Commun. Kamerlingh Onnes Lab. 13_, Supplement 34b (1913-14). Crommelin, C. A., Physik. Zeitschr. 21, 274, 300, 331 (1920). Meissner, W. , Metallwirtschaft 15, 289 (1930). Schultze, A., Z. Ver. duet. Ing. 74, 149-52 (1930). Bates, L. F., Science Progress 24, 565-72, (1930). Meissner, W. , Metallwirtschaft 10, 289, 310 (1931). DeHaas, W. J. and Voogd,J., Commun. Kamerlingh Onnes Lab. 20, Supplement 73a (1932). Clusius, K. , Zeits. Elektrochem. 38, 312-26 (1932). Meissner, W. , Erg. Der Exakt. Naturw. U, 219 (1932). McLennan, J. C, Nature 130, 879 (1932). McLennan, J. C, Pharm. J. 1_28, 470 (1932). Kikoin, I. and Lazarev, B., J. Tech. Phys. (USSR) 3, 237-54 (1933). Meissner, W. , Physik. Zeitschr. 35 , y31 (1934). Tammann, G. , Z. Metallkunde 26, 61 (1934). Burton, E. F. (Ed.), "The Phenomenon of Superconductivity," Univ. of Toronto Press, Toronto (1934) McLennan, J. C, Reports on Prog, in Physics 1_, 206 (1934). McLennan, J. C, Roy. Soc. Proc. 152A , 1-46 (1935). Meissner, W. , "Handbuch der Experimental Physik XI," Part 2, 204-262 (1935). Smith, H. G. and Whilhelm, J. 0., Rev. Mod. Phys. 1_, 237 (1935). Darrow, K. K. , Rev. Sci. Instr. 7, 124 (1936). Ruhemann, M. and Ruhemann, B., "Low Temperature Physics," Cambridge Univ. Press (1937). Steiner, K. and Grassmann, P., "Supraleitung," Vieweg und Sohn, Brunswick (1937). Silsbee, F. B. , J. Wash. Acad. Sci. 27, 225-44 (1937). Shoenberg, D. , "Superconductivity," Cambridge Univ. Press (1938). Shoenberg, D. , Uspekhi Fiz. Nauk. 19, 448-91; 20, 1-28 (1938). Jackson, L. C, Reports on Prog, in Physics 5, 335-44 (1939). Burton, E. F., Grayson Smith, H. , and Whilhelm, J. 0., "Phenomena at the Temperature of Liquid Helium," Reinhold Publishing Corp., New York, pp. 87-123 (1940). Casimir, H.B.G. , Nederland. Tijdschr. Natuurkunde 8, 113-23 (1941). Laue, M. Von, Ber. 75B, 1427-32 (1942). Laue, M. Von, Physik. Z. 43, 274-84 (1942). Mendelssohn, K. , Reports on Prog, in Physics 10, 358-77 (1944-45). Itterbeek, A. van, Soc. Roy. beige ing. ind. , Mem. Ser. B 1, 47-51 (1945). 89 Justi, E., Naturwiss. 33, 292-7, 329-33 (1946). Ginsburg, V. L. , "Superconductivity," Academy of Science USSR, Moscow, Leningrad (1946). Hewlett, C. W. , G.E. Rev. 49, 19-25 (1946). Andronikashvili, E. L. and Tumanov, K. A., Uspekhi Fiz. Nauk. 33, 469-532 (1947). Justi, E. , "Leitfahigkeit und Leitungsmechanismus fester Stoffe," Gottingeh, Vandenhoeck and Ruprecht, pp. 187-270 (1948). Laue, M. Von, Ann. Physik. 3, 40-2 (1948). Meissner, W. and Schubert, G. V., Fiat Rev. German Science (1939-46); Physics of Solids Pt. II, 143-62 (1948). Gorter, C. J., Physica 15, 55-64 (1949). Mendelssohn, K. , Reports on Prog, in Physics 1_2, 270-290 (1948-49). Vick, F. A., Science Progress 37, 268-74 (1949). Wexler, A., Research, Lond. 3, 534 (1950). Shoenberg, D. , Nuovo Cimento 10, Ser. IX, 459-89 (1953). Unknown, Physica 19, 745-54 (1953). Eisenstein, J., Rev. Mod. Phys. 26, 277 (1954). Buckel, W. , Naturwiss. 42, 451 (1955). Serin, B. , Handbuch Der Physik, Band XV Kaltephysik II, Springer-Verlag, Berlin, pp. 210-73 (1956). Zavaritskii, N. V., Priroda 45, 37-44 (1956). Wexler, A., Metal. Progr. 69, 89 (1956). Abrikosov, A. A., Vestnik Akademii Nauk SSSR #4, 30-36 (1958). Boorse, H. A., Amer. Jour, of Physics 27, 47 (1959). Buckel, W., Metall. 13, 814 (1959). Cooper, L. N. , Amer. Jour, of Physics 28, 91 (1960). Schoenberg, D. , "Superconductivity," (2nd Ed., 1960 Printing), Cambridge Univ. Press (1960); (1st Ed., 1938; 2nd Ed. 1952). Bardeen, J. and Schrieffer, J. R. , Prog, in Low Temp. Phys. Vol. III. Kropschot, R. H. and Arp, V., Cryogenics 2, 1 (1961). Jones, W. H., Milford, F. J. and Fawcett, S. L. , J. of Metals 14, 836 (1962). Also Battelle Technical Review, (Sept. 1962). Tanenbaum, M. and Wright, W. V. (Ed.), "Superconductors," John Wiley & Sons, New York (1962). Bardeen, J., "Critical Fields and Currents in Superconductors," Rev. Modern Phys. 34, 667 (1962), Bowen, D. H. , "Effects of Pressure", in High Pressure Physics and Chemistry, Vol. I , R. S. Bradley (Ed.), Academic Press, London, New York, pp. 355-73 (1963). Bardeen, J., "Superconductivity" in Advances in Materials Research in the NATO Nations , MacMillan, New York, pp. 281-90 (1963). Matthias, B. T. , Geballe, T. H. and Compton, V. B. "Superconductivity (Compounds)", Rev. Mod. Phys. 35, 1 (1963). 90 Geballe, T. H. and Matthias, B. T. , "Superconductivity" in Annual Review of Physical Chemistry Vol. 14 , pp. 141-160 (1963). Anderson, D. E. , "Superconductivity" in Magnetic Materials Digest 1964 , M. W. Lads, Philadelphia, pp. 196-217 (1964). "Proc. Inter. Conf. on Science of Superconductivity, Hamilton, N. Y., Aug. 1963", Rev. Mod. Phys. 36 (1964). Lynton, E. A., "Superconductivity," Metheun & Co., London; John Wiley & Sons, New York (1964). 2nd and 3rd Editions have issued. Yasukochi, K. and Ogasawara, T. , Metal Physics (Tokyo) 10, 137, 197 (1964). Livingston, J. D. and Schadler, H. W. , "The Effect of Metallurgical Variables on Superconducting Properties." Progress in Materials Science 12, 183-287 (1964). Klose, von W. , "Harte Supraleiter ," Natur wissenschaften 51, 180-186 (1964). Abrikosov, A. A., "The Present State of the Theory of Superconductivity," Usp. Fiz. Nauk 87 , 125-42 (1965); Soviet Physics Uspekhi 8, 710 (1966). F. Block, "Some Remarks on the Theory of Superconductivity," Physics Today 19, 27 (May) (1966). deGennes, P. G. , "Superconductivity of Metals and Alloys" (Theory), Frontiers in Physics, Benjamin, New York (1966). Ralls, K. M. and Wulff, J., "The Electronic Structure of Transition Metal -Interstitial Atom Alloy Superconductors," J. Less Common Metals 11_, 127-34 (1966). Roberts, B. W. , "Superconductive Properties" in Intermetallic Compounds , Edited by J. H. Westbrook, John Wiley and Sons, New York, pp. 581-613 (1967). Savitskii, E. M. and Baron, V. V., Editors "Physics and Metallurgy of Superconductors", Proc. 2nd and 3rd Conf. on Metallurgy, Physical Chemistry and Metal Physics of Superconductors, Moscow, May 1965 and May 1966, Translation: (Consultants Bureau, New York, London, 1970). Goodman, B. B. , "Type II Superconductors", Repts. Progress in Physics 29 (Part 2), 445-487 (1966). Heaton, J. W. , "High Field, High Current Superconductors", Sci. Progr. (Oxford) 54, 27-40 (1966). Douglas, D. H. , Jr. and Falicov, L. M. , "The Superconducting Energy Gap", Prog, in Low Temp. Phys. 4, 97-193 (1964). Chester, P. F. , "Superconducting Magnets" , Repts. Progr. Phys. 30, Part II, p. 561 (1967). Kuper, C. G., An Introduction to the Theory of Superconductivity, Clarendon Press, Oxford (1968). Ginzburg, V. L., "The Problem of High Temperature Superconductivity" Contemp. Phys. 9, 355-374 (1968). Alekseevskii, N. E. , "New Superconductors", Usp. Fiz. Nauk 9jj, 253-266 (1968), Trans: Soviet Physics Uspekhi 11 , 403 (1968) . Ginzburg, V. L. , "The Problem of High Temperature Superconductivity," Usp. Fiz. Nauk 95, 91-110 (1968) Muller, J., "Supraleitende Materialen" in Vortrage Uber Supraleitung , (Birkauser, Basel and Stuttgart, 1968), pp. 95-116. Fishlock, D. , Editor, "A Guide to Superconductivity", (American Elsevier: New York 1969). Parks, R. D. , Editor "Superconductivity", Vols. I and II (Marcel Dekker: New York 1969). 91 Matthias, B. T. , Amer. Scientist 58, 80 (1970) "Superconductivity and the Periodic System" Glover, R. E. , III "Superconductivity Above the Transition Temperature", Prog, in Low Temp. Physics 6, 291-332 (1970). Hulm, J. K. , Ashkin, M. , Deis, D. W. and Jones, C. K. , "Superconductivity in Semiconductors and Semi-metals", Prog, in Low Temp. Physics Vol. VI, Chap. 5, pp. 205-242 (1970). Boughton, R. I., Olsen, J. L. and Palmy, C, "Pressure Effects in Superconductors", Prog, in Low Temp. Physics 6, 163-203 (1970). Weis, 0., "The Physical Properties of Superconductive Metals", Chemiker-Zeitung 95, 168 (1971), 92 FORM NBS-1I4A d-71) 2. Gov't Accession No. 3. Recipient's Accession No. U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET PUBLICATION OR REPORT NO. NBS-TN-724 4. TITLE AND SUBTITLE Properties of Selected Superconductive Materials 5. Publication Date June 1972 6. Performing Organization Code 7. AUTHOR(S) B. W. Roberts 8. Performing Organization 10. Project/Task/ Work Unit No. 9. PERFORMING ORGANIZATION NAME AND ADDRESS NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20234 11. Contract/Grant No. NBS 32-70-5 12. Sponsoring Organization Name and Address Same as No. 9 13. Type of Report & Period Covered NA 14. Sponsoring Agency Code 15. SUPPLEMENTARY NOTES Supersedes and extends NBS Technical Note 482 16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here.) This is a noncritical compilation of data on superconductive materials with the exception of data on the elements that has been extracted from a portion of the literature published up to early 1971. The properties concerned are composition, critical temperature, critical magnetic fields, crystallographic data, and the lowest temperature tested for materials specifically explored for superconductivity. The compilation also includes, bibliography, general reference review articles and a special tabulation of high magnetic field superconductors. 17. KEY WORDS (Alphabetical order, separated by semicolons) Bibliography; compilation of data; composition; critical field; critical temperature; crystallographic data; low temperature; superconductivity. 18. AVAILABILITY STATEMENT Pn UNLIMITED. I I FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NTIS. 19. SECURITY CLASS (THIS REPORT) UNCLASSIFIED 20. SECURITY CLASS (THIS PAGE) UNCLASSIFIED 21. NO. OF PAGES 100 22. Price $1.00 USCOMM-DC S6244-P71 NBS TECHNICAL PUBLICATIONS PERIODICALS JOURNAL OF RESEARCH reports National Bureau of Standards research and development in phvsics, mathematics, and chemistry. Comprehensive scientific papers give complete details of the work, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Illustrated with photographs, drawings, and charts. Includes listings of other NBS papers as issued. Published in two sections, available separately: • Physics and Chemistry Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a year. Annual subscription: Domestic, $9.50; $2.25 additional for foreign mailing. • Mathematical Sciences Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemis- try, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription: Domestic, $5.00; $1.25 additional for foreign mailing. TECHNICAL NEWS BULLETIN The best single source of information concerning the Bureau's measurement, research, developmental, co- operative, and publication activities, this monthly publication is designed for the industry-oriented individual whose daily work involves intimate contact with science and technology — for engineers, chemists, physicists, research managers, product-development managers, and company executives. Includes listing of all NBS papers as issued. Annual subscription: Do- mestic, $3.00: $1.00 additional for foreign mailing. Bibliographic Subscription Services The following current-awareness and literature- survey bibliographies are issued periodically by the Bureau: Cryogenic Data Center Current Awareness Service (weekly), Liquefied Natural Gas (quarterly), Superconducting Devices and Materials (quarterly), and Electromagnetic Metrology Current Awareness Service (month- ly) . Available only from NBS Boulder Labora- tories. Ordering and cost information may be obtained from the Program Information Office, National Bureau of Standards, Boulder, Colo- rado 80302. N0NPERI0DICALS Applied Mathematics Series. Mathematical tables, manuals, and studies. Building Science Series. Research results, test methods, and performance criteria of building ma- terials, components, systems, and structures. Handbooks. Recommended codes of engineering and industrial practice (including safety codes) de- veloped in cooperation with interested industries, professional organizations, and regulatory bodies. Special Publications. Proceedings of NBS confer- ences, bibliographies, annual reports, wall charts, pamphlets, etc. Monographs. Major contributions to the technical literature on various subjecfs related to the Bureau's scientific and technical activities. National Standard Reference Data Series. NSRDS provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated. Product Standards. Provide requirements for sizes, types, quality, and methods for testing various indus- trial products. These standards are developed co- operatively with interested Government and industry groups and provide the basis for common understand- ing of product characteristics for both buyers and sellers. Their use is voluntary. Technical Notes. This series consists of communi- cations and reports (covering both other-agency and NBS-sponsored work) of limited or transitory interest. Federal Information Processing Standards Publications. This series is the official publication within the Federal Government for information on standards adopted and promulgated under the Public Law 89-306, and Bureau of the Budget Circular A-86 entitled. Standardization of Data Elements and Codes in Data Systems. Consumer Information Series. Practical informa- tion, based on NBS research and experience, cover- ing areas of interest to the consumer. Easily under- standable language and illustrations provide useful background knowledge for shopping in today's tech- nological marketplace. CATALOGS OF NBS PUBLICATIONS NBS Special Publication 305, Publications of the NBS. 1966-1967. When ordering, include Catalog No. CI 3. 10: 305. Price $2.00; 50 cents addi- tional for foreign mailing. NBS Special Publication 305, Supplement 1, Publications of the NBS, 1968-1969. When order- ing, include Catalog No. C13.10:305/Suppl. 1. Price $4.50; $1.25 additional for foreign mailing. NBS Special Publication 305, Supplement 2, Publications of the NBS, 1970. When order- ing, include Catalog No. C13.10:305/Suppl. 2. Price $3.25 ; 85 cents additional for foreign mailing. Order NBS publications (except Bibliographic Subscription Services) from: Superintendent of Documents, Government Printing Office Wash- ington, D.C. 20402. PENN STATE UNIVERSITY LIBRARIES 7137D ADDDQ71A U.S. DEPARTMENT OF COMMERCE National Bureau of Standards Washington. D.C. 20234 OFFICIAL BUSINESS Penalty for Private Use. $300 POSTAGE AND FEES PAID U.S. DEPARTMENT OF COMMERCE 215