CSSt./3.'/ C i> >, for N (z) maps in appendix A 22 7.2 Accuracy of ATV Maps. 23 Figure 8. Correlation of A TV: monthly mean TV-profiles versus monthly mean weather summary data 22 7.3. Accuracy of Gradient Maps 24 8. Conclusions 25 9. References 26 10. Appendix A. World Maps of N(z) Parameters 29 Table A-l. Cumulative distribution levels of surface refractivity 30 Figure A-l. Location of N(z) data stations 32 Figure A-2. Mean sea-level dry term, D„: February 33 Figure A-3. Mean sea-level wet term, W : February 33 Figure A-4. Dry-term tropospheric scale height in km, Hi : February 34 Figure A-5. Dry-term stratospheric scale height in km, H 2 : February 34 Figure A-6. Wet-term scale height in km, H w : February 35 Figure A-7. Mean density tropopause altitude in km, z t : February 35 Figure A-8. Mean sea-level dry term, D : May 36 Figure A-9. Mean sea-level wet term, W a : May 36 Figure A-10. Dry-term tropospheric scale height in km, Hi : May 37 Figure A-ll. Dry-term stratospheric scale height in km, H 2 : May 37 Figure A-12. Wet-term scale height in km, H w : May 38 Figure A-13. Mean density tropopause altitude in km, z t : May 38 Figure A-14. Mean sea-level dry term, D a : August 39 Page Figure A-15. Mean sea-level wet term, W : August 39 Figure A-16. Dry-term tropospheric scale height in km, Hi : August 40 Figure A-17. Dry-term stratospheric scale height in km, H 2 : August 40 Figure A-18. Wet-term scale height in km, H w : August 41 Figure A-19. Mean density tropopause altitude in km, z t : August 41 Figure A-20. Mean sea-level dry term, D„: November 42 Figure A-21. Mean sea-level wet term, W a : November „ 42 Figure A-22. Dry-term tropospheric scale height in km, Hi : November 43 Figure A-23. Dry-term stratospheric scale height in km, ff 2 : November 43 Figure A-24. Wet-term scale height in km, H w : November 44 Figure A-25. Mean density tropopause altitude in km, z t : November 44 Figure A-26. Standard prediction error of the exponential fit to the mean wet-term profile: February 45 Figure A-27. Standard prediction error of the exponential fit to the mean wet- term profile : May 45 Figure A-28. Standard prediction error of the exponential fit to the mean wet-term profile : August 46 Figure A-29. Standard prediction error of the exponential fit to the mean wet-term profile : November 46 Figure A-30. Areas of doubtful applicability of three-part exponential model of N(z) f or z < 6 km 47 11. Appendix B. World Maps of AN , 48 Table B-l. Mean surface refractivity. 49 Figure B-l. Location of AN data stations 52 Figure B-2. Monthly mean AN: January 53 Figure B-3. Monthly mean A N : February 53 Figure B-4. Monthly mean AN: March 54 Figure B-5. Monthly mean A N : April 54 Figure B-6. Monthly mean A N : May 55 Figure B-7. Monthly mean A N : June 55 Figure B-8. Monthly mean AN: July. 56 Figure B-9. Monthly mean A N : August 56 Figure B-10. Monthly mean AN: September 57 Figure B-ll. Monthly mean AN: October 57 Figure B-12. Monthly mean AN: November 58 Figure B-13. Monthly mean AN: December ._. 58 Figure B-14. Annual mean of sea-level refractivity, N 59 Figure B-15. Annual mean of refractivity gradient between surface and 1 km, AN. 59 Figure B-16. Slope of regression line o f AN versus N s , b 60 Figure B-17. Correlation coefficient of AN versus N s 60 Figure B-18. Standard prediction error of the regression line of AN versus N, _;_;_ 61 Figure B-19. Standard prediction error of the regression line of AN versus N, as a percent of AN 61 Figure B-20. Areas of doubtful applicability of using N s to predict AN 62 12. Appendix C. World Maps and Cumulative Distribution Charts of Gradients of Ground-Based Atmospheric Layers 63 Figure C-l. Percent of time gradient ^ (N/km) : February 64 Figure C-2. Percent of time gradient ^ (N/km) : May. 64 Figure C-3. Percent of time gradient ^ (N/km) : August 65 Figure C-4. Percent of time gradient ^ (N/km) : November 65 Figure C-5. Gradient (N/km) exceeded 10 percent of the time for 100-m layer: February 66 Figure C-6. Gradient (N/km) exceeded 2 percent of the time for 100-m layer: February 66 Figure C-7. Gradient (N/km) exceeded 10 percent of the time for 100-m layer: May 67 Figure C-8. Gradient (N/km) exceeded 2 percent of the time for 100-m layer: May 67 Figure C-9. Gradient (N/km) exceeded 10 percent of the time for 100-m layer: August 68 Figure C-10. Gradient (N/km) exceeded 2 percent of the time for 100-m layer: August 68 Figure C-ll. Gradient (N/km) exceeded 10 percent of the time for 100-m layer: November. ... 69 Figure C-12. Gradient (N/km) exceeded 2 percent of the time for 100-m layer: November 69 Figure C-13. Percent of time gradient f^ -100 (N/km) : February 70 Figure C-14. Percent of superrefractive layers thicker than 100 m: February 70 Figure C-15. Percent of time gradient f= -100 (N/km) : May 71 Figure C-16. Percent of superrefractive layers thicker than 100 m: May 71 vi Page Figure C-17. Percent of time gradient ^ -100 (N/km) : August 72 Figure C-18. Percent of superrefractive layers thicker than 100 m: August 72 Figure C-19. Percent of time gradient ^ -100 (N/km) : November 73 Figure C-20. Percent of superrefractive layers thicker than 100 m: November 73 Figure C-21. Percent of time gradient ^ -157 (TV/km) : February 74 Figure C-22. Percent of ducting layers thicker than 100 m: February 74 Figure C-23. Percent of time gradient ^ -157 (N/km) : May 75 Figure C-24. Percent of ducting layers thicker than 100 m: May 75 Figure C-25. Percent of time gradient ^ -157 (N/km) : August 76 Figure C-26. Percent of ducting layers thicker than 100 m : August 76 Figure C-27. Percent of time gradient ^ -157 (N/km) : November 77 Figure C-28. Percent of ducting layers thicker than 100 m : November 77 Figure C-29. Percent of time trapping frequency < 3000 Mc/s : February 78 Figure C-30. Percent of time trapping frequency < 1000 Mc/s: February 78 Figure C-31. Percent of time trapping frequency < 300 Mc/s: February 79 Figure C-32. Percent of time trapping frequency < 3000 Mc/s : May 79 Figure C-33. Percent of time trapping frequency < 1000 Mc/s: May 80 Figure C-34. Percent of time trapping frequency < 300 Mc/s: May 80 Figure C-35. Percent of time trapping frequency < 3000 Mc/s: August 81 Figure C-36. Percent of time trapping frequency < 1000 Mc/s : August 81 Figure C-37. Percent of time trapping frequency < 300 Mc/s: August 82 Figure C-38. Percent of time trapping frequency < 3000 Mc/s : November 82 Figure C-39. Percent of time trapping frequency < 1000 Mc/s: November 83 Figure C-40. Percent of time trapping frequency < 300 Mc/s: November 83 Figure C-41. Lapse rate of refractivity (N/km) exceeded 25 percent of time for 100-m layer: February 84 Figure C-42. Lapse rate of refractivity (N/km) exceeded 10 percent of time for 100-m layer : February 84 Figure C-43. Lapse rate of refractivity (N/km) exceeded 5 percent of time for 100-m layer: February 85 Figure C-44. Lapse rate of refractivity (N/km) exceeded 2 percent of time for 100-m layer: February 85 Figure C-45. Lapse rate of refractivity (N/km) exceeded 25 percent of time for 100-m layer: May 86 Figure C-46. Lapse rate of refractivity (N/km) exceeded 10 percent of time for 100-m layer: May 86 Figure C-47. Lapse rate of refractivity (N/km) exceeded 5 percent of time for 100-m layer: May 87 Figure C-48. Lapse rate of refractivity (N/km) exceeded 2 percent of time for 100-m layer: May 87 Figure C-49. Lapse rate of refractivity (N/km) exceeded 25 percent of time for 100-m layer : August 88 Figure C-50. Lapse rate of refractivity (N/km) exceeded 10 percent of time for 100-m layer : August 88 Figure C-51. Lapse rate of refractivity (N/km) exceeded 5 percent of time for 100-m layer : August 89 Figure C-52. Lapse rate of refractivity (N/km) exceeded 2 percent of time for 100-m layer : August 89 Figure C-53. Lapse rate of refractivity (N/km) exceeded 25 percent of time for 100-m layer: November 90 Figure C-54. Lapse rate of refractivity (N/km) exceeded 10 percent of time for 100-m layer : November 90 Figure C-55. Lapse rate of refractivity (N/km) exceeded 5 percent of time for 100-m layer: November 91 Fjgure C-56. Lapse rate of refractivity (N/km) exceeded 2 percent of time for 100-m layer : November 91 Table C-l. Median and minimum trapping frequency (Mc/s) of ducting layers 92 Figure C-57. (a) Cumulative probability distributions of dN/dh for ground-based 100-m layer : Aden, Arabia ( February, May) 93 Figure C-57. (b) Cumulative probability distributions of dN/dh for ground-based 100-m layer: Aden, Arabia (August, November) 94 vii Page Figure C-58. Cumulative probability distributions of dN/dh for ground-based 100-m layer : Amundsen-Scott, Antarctica 95 Figure C-59. Cumulative probability distributions of dN/dh for ground-based 100-m layer: Balboa (Albrook) , Panama C. Z 96 Figure C-60. Cumulative probability distributions of dN/dh for ground-based 100-m layer: Bangui, Central African Republic 97 Figure C-61. Cumulative probability distributions of dN/dh for ground-based 100-m layer : Bordeaux, France 98 Figure C-62. (a) Cumulative probability distributions of dN/dh for ground-based 100-m layer; Dakar, Republic of Senegal (February, May) 99 Figure C-62. (b) Cumulative probability distributions of dN/dh for ground-based 100-m layer: Dakar, Republic of Senegal (August, November) 100 Figure C-63. Cumulative probability distributions of dN/dh for ground-based 100-m layer: Denver, Colo 101 Figure C-64. Cumulative probability distributions of dN/dh for ground-based 100-m layer: Ezeiza, Argentina 102 Figure C-65. Cumulative probability distributions of dN/dh for ground-based 100-m layer: Fort Smith, Northwest Territories, Canada 103 Figure C-66. Cumulative probability distributions of dN/dh for ground-based 100-m layer : Hilo, Hawaii 104 Figure C-67. Cumulative probability distributions of dN/dh for ground-based 100-m layer : Long Beach, Calif 105 Figure C-68. Cumulative probability distributions of dN/dh for ground-based 100-m layer: Lourenco Marques, Portuguese East Africa 106 Figure C-69. Cumulative probability distributions of dN/dh for ground-based 100-m layer: Nandi, Fiji Islands 107 Figure C-70. Cumulative probability distributions of dN/dh for ground-based 100-m layer : New York, N. Y 108 Figure C-71. Cumulative probability distributions of dN/dh for ground-based 100-m layer : Nicosia, Cyprus 109 Figure C-72. Cumulative probability distributions of dN/dh for ground-based 100-m layer : Ostersund, Sweden 110 Figure C-73. Cumulative probability distributions of dN/dh for ground-based 100-m layer : Perth, Australia Ill Figure C-74. Cumulative probability distributions of dN/dh for ground-based 100-m layer: Saigon, Viet Nam 112 Figure C-75. Cumulative probability distributions of dN/dh for ground-based 100-m layer : San Juan, P. R 113 Figure C-76. Cumulative probability distributions of dN/dh for ground-based 100-m layer: Ship Station "C" 114 Figure C-77. Cumulative probability distributions of dN/dh for ground-based 100-m layer : Tashkent, U.S.S.R 115 Figure C-78. Cumulative probability distributions of dN/dh for ground-based 100-m layer: Vladivostok, U.S.S.R '. 116 13. Appendix D. World Charts of Tropopause Heights 117 Figure D-l. Tropopause heights (km), based on temperature lapse rate: February 117 Figure D-2. Tropopause heights (km) , based on temperature lapse rate: May 118 Figure D-3. Tropopause heights (km), based on temperature lapse rate: August 118 Figure D-4. Tropopause heights (km) , based on temperature lapse rate: November 119 14. Appendix E. Sample Listing of the Computer Output for San Juan, P. R., and Amundsen-Scott, Antarctica 120 Table E-l. Mean iV-profiles: San Juan, P. R 121 Table E-2. Mean 2V-profiles: Amundsen-Scott, Antarctica 123 Table E-3. Cumulative distributions of ground-based gradients: Amundsen-Scott, Antarctica. .. 125 Table E-4. Analysis of ground-based superrefractive and ducting layers: Amundsen-Scott, Antarctica 127 Vlll Abstract This atlas presents world maps and graphs of upper-air radio refractivity, N(z) (where z is the altitude), mean monthly AN (the difference between the refractivity at the surface and at 1 km above the surface), extreme values of gradients of refrac- tivity observed in the lowest layer of the atmosphere (including maps of minimum trapped frequency ducting gradients), and monthly mean tropopause heights. All refractivity values were derived from radiosonde data. The N(z) maps are presented in terms of a three-part exponential model, with separate exponentials for the water vapor and air density terms of N(z), with the latter separated into tropospheric and stratospheric terms. The A TV data were derived by interpolation from fixed pressure- level data. IX 1. Introduction There has been a need in radio engineering for a method whereby the radio refractivity, N, at some height, z, or the gradient of N with respect to height, dN/dz, could be accurately estimated for any world location during any season of the year. Previous studies have at- tempted to solve this problem by determination of the value of surface refractivity, N s , and the use of an exponential decay with height [Bean et al., 1960a] 1 , or by presenting seasonal means and distributions of N at fixed pressure levels in the atmosphere for various radiosonde stations [U. S. Navy, 1955-59; Michaelis and Gossard, 1958]. However, these results did not provide any means whereby N (z) could be obtained at any arbitrary location, i.e., places for which meteorological measurements were not avail- able. In addition, specific information on the gradient of the refractive index has not been available previously on a worldwide basis, espe- cially for the very important layers of the at- mosphere at or near the surface where the pres- ence of superref ractive or ducting gradients can produce anomalous propagation of microwaves. This atlas presents maps, charts, and discus- 1 Literature references on page 26. sions of the worldwide variations in the radio refractive index. With the aid of this atlas, estimates of the following parameters may be readily determined for any part of the world : the refractivity at any height, N(z) ; the average gradient of N over the first kilometer above the surface, AN ; and the gradient of iV in the lowest layer of the atmosphere (with emphasis on sub- refractive, superrefractive, and ducting layers and the probability of trapping of radio waves by ducting layers). The world distribution of N (z) is presented in the form of a three-part exponential model, with separate exponential terms for the water-vapor term, the density term in the troposphere, and the density term in the stratosphere; the parameters used to represent this N (z) model are the reduced-to- sea-level values of surface water vapor and den- sity terms, the scale heights of the three ex- ponential terms, and the transition height between the tropospheric and stratospheric density exponentials. Seasonal maps of mean tropopause heights, which were obtained in the course of the data reduction required for the three-part exponential model, are also presented. 2. Discussion of Basic Data The radio refractive index of the atmosphere, n, exceeds unity by at most 450 parts per mil- lion; it is therefore customary to utilize the radio ref ractivity, N, given by 2 N = (n-1) X 10 6 . (1) The radio refractivity of air for frequencies up to 30,000 Mc/s is given by Smith and Wein- traub [1953] : N = 77.6 ^-+3.73 X 10 5 -^, (2) where P is the total atmospheric pressure in millibars (mb), T is the absolute temperature in degrees Kelvin (K) , and e is the partial pres- sure of water vapor in millibars. [For the de- velopment of this equation from theory, c.f. Bean, 1962]. The P/T term in (2) is frequently referred to as the "dry term" (even though there is a small water vapor component in the total pressure) and the e/T 2 term, as the "wet term." The radiosonde is in general use throughout the world to measure the pressure, temperature, and relative humidity of the upper air. These data can be used to obtain the corresponding vertical profile of radio refractivity. However, there are a number of disadvantages in the use a, iOsonde data for the purpose of obtaining N -profiles; perhaps the most important of these is the relatively slow response (large lag con- stants) of the radiosonde temperature and hu- midity sensors [Bunker, 1953; Wagner, 1960, 1961; Bean and Dutton, 1961]. Also of some importance is the method of selecting levels for which data are reported. The procedure fol- lowed by most meteorological services consists of reporting temperature, humidity, and height at certain fixed pressure levels, called "manda- tory levels" (e.g., 850 mb), plus a sufficient number of additional "significant" levels to provide a profile of temperature and relative humidity such that linear segments between levels will not depart from the original data at any point by more than 1°C or 10 percent rela- tive humidity. Such tolerances, although ac- ceptable for most meteorological purposes, may result in errors of as much as 30 TV-units (under 2 Throughout this atlas, the term atmosphere should be understood to mean the nonionized atmosphere, i.e., excluding the ionosphere. 3 A list of these stations is included in appendix A. extreme conditions) in a linear-segment IV-pro- file constructed from radiosonde data. Some punched-card refractivity data are available which were calculated from significant levels chosen with an even wider tolerance, 2°C and 30 percent relative humidity [Bean and Cahoon, 1961a]. In spite of these deficiencies, this atlas is based entirely upon radiosonde data, since no other worldwide, long-term upper-air data are available. (More detailed measurements, ob- tained primarily from wiresonde and aircraft refractometer flights, are available only for a very few locations and for very limited periods of time.) The first step toward obtaining a broad sample of upper-air refractivity data was the selection (by geographic-climatic considerations and period of record available) of 112 radio- sonde stations from the worldwide network. 3 Wherever possible, a total of 5 years of data was obtained for each of the 4 representative "sea- sonal" months of February, May, August, and November. Five-year means were selected for use in the preparation of this atlas for two reasons : (a) a large number of stations, including all of those in the U.S.S.R., have available records dating back only to the International Geophysical Year (IGY), 1958; (b) 5 years seemed to represent the best compromise between the number of stations and the length of record, since the total amount of. data which could be processed was naturally limited. A large number of stations is desirable for mapping purposes (better cov- erage), while longer periods of record yield more stable (accurate) estimates of long-term means (of climatic variables) . For each radio- sonde ascent, the reported values of pressure, temperature, and humidity at each mandatory or significant level were converted by means of (2) to radio refractivity values (by the Nation- al Weather Records Center, Asheville, N. C). These data, when received at ITSA, were used to obtain four monthly mean N-profiles for the available period of record for each of the 112 stations. The procedure followed was to obtain for each profile the values of iV at a number of standard height levels by assuming separate exponentials for the dry and wet terms between each reported level. The mean iV-profile for the DISCUSSION OF BASIC DATA 3 standard height levels was then computed as the arithmetic mean of the individually interpolated values of N at each standard height for all of the profiles in the sample. In this way, 5-year mean values of refractivity were obtained for a large number of levels, ranging from the sur- face to 30 km (or more) above the surface, for a worldwide sample of stations. Over 18,000 in- dividual values of mean N were determined in this way. In addition to these calculations, the approxi- mate height of the tropopause was determined for each profile ; this was the height of the bot- tom of the lowest atmospheric layer which met the following criteria: (a) the layer thickness was ^ 2 km, (b) the temperature gradient ^ -2°C/km. The 2-km thickness could be made up of two or more consecutive layers from the radiosonde data. Mean monthly values of tropopause heights were obtained for the period of record for each station by averaging the individual profile tropopause heights ; maps of these tropo- pause heights are shown in appendix D. The monthly mean value of the average N- gradient between the surface and 1 km above the surface has been recognized as a radio- meteorological parameter of some importance 4 Data from these two publications (published by the National Weather Records Center, Asheville, N.C., under the sponsorship of the World Meteorological Organization [WMO] and the U.S. Weather Bureau) will hereafter be referred to as "weather summary data." [Saxton, 1951 ; Bean and Meaney, 1955 ; CCIR, 1965]. Therefore, maps are included of the mean value of this parameter for all 12 months, with a more comprehensive network of stations than was available from the complete radio- sonde data sample discussed above. For this purpose a sample of 268 stations was chosen from those available in the Monthly Climatic Data for the World and the National Summary of Climatological Data (U.S.A.). 1 These pub- lications list monthly mean values of pressure, temperature, and relative humidity or dew point for the surface and some of the mandatory pres- sure levels from radiosonde data. For stations near sea level, the 900-mb level is very close to 1 km above the surface, but for most stations outside of the U.S.A. the 850-mb level was the lowest reported ; the altitude of this pressure level varies between roughly 1.3 and 1.5 km above sea level. However, it was felt that inter- polation from the 850-mb data, using separate exponentials for the wet and dry terms, would yield fairly accurate values of monthly mean N at the required 1-km height. The radiosonde-derived data described in the preceding paragraphs constitute the basic data from which this atlas has been prepared. In the following sections the methods of reduction and presentation of these data are discussed, as well as the consistency and reliability of the results so obtained. 3. World Maps of N(z) 3.1. Development In order to prepare worldwide maps of upper atmospheric N from the 5-year mean iV-profiles described previously, it was decided to reduce the quantity of necessary N (z) maps by ab- stracting each mean profile in terms of a model atmosphere which would use three negative ex- ponential functions of altitude. The three func- tions which are used to represent each mean pro- file are a single exponential for the wet term, W, and two exponentials for the dry term, D. Two exponential functions are necessary for the dry term because of the change in the lapse rate of the temperature from the normal 6.5°C/km in the troposphere to the nearly isothermal strato- sphere where the temperature may increase with height. Least-squares fits were obtained for log W versus height over the interval to 3 km above the surface. The ranges to be covered by the two fits for the dry term were determined from the mean tropopause heights and their standard deviations which had been obtained during the analysis of the N-profiles in each sample. The tropospheric dry term, D 1} was fit over the interval to the tropopause height minus one standard deviation, and the strato- spheric dry term, D- 2 , was fit from the tropo- pause height plus one standard deviation to the upper limit of data for that profile. In both cases, log D was fit to height using least squares. The resulting model atmosphere is given by N(z) = D exp(~ -~- J + f„ exp ( — jj?- J . (3) Zt, N(z) = Do exp Zt (z-ZtY H, z >z t ; Hi + F exp (--!-), (4) D and W Q are the mean sea-level values of the dry and wet terms (reduced from the surface values using the free-atmosphere scale heights) , H w is the wet-term scale height, H^ is the tropo- spheric dry-term scale height, H 2 is the strato- spheric dry-term scale height, and z t is the altitude above mean sea level of the point of transition between the tropospheric and strato- spheric dry-term exponentials. The altitude, z t , may thus be thought of as an effective density tropopause. Examples of the application of this model to actual mean refractivity profiles are given in figures 1 and 2: a very good fit (Koror) and one of the worst fits encountered (Dakar). The good fit obtained in figure 1 is especially signifi- cant since Koror represents a climatic type (equatorial station with a very high mean sur- face refractivity, 387.6) for which exponential models of N were previously thought to be un- satisfactory [Mismeet al., I960]. Dakar (fig. 2) is an example of the climatic type (character- ized by a persistent low-level temperature in- version with dry subsiding air above) where this model (or any other simple model) of N versus z is inadequate to explain the iV-structure at low latitudes. It was found that the behavior of the wet term (measured on figs. 1 and 2 by S w , the rms error over the first 3 km) was a good indicator of whether or not the data would pro- vide a good fit to the profile. However, it can be noted in figure 2 that, even though the rms wet-term error below 3 km is 14.6 iV-units, the profile at Dakar above an altitude of 6 km is well represented by the three-part exponential. Maps were prepared for each of the 4 "sea- sonal" months of the parameters necessary to utilize the three-part exponential in estimating upper-air refractivity. These are the reduced- to-sea-level values, Do and W ; the three scale heights, H w , H lf and H 2 ; and the_transition alti- tude, z t . The surface values of N can be recov- ered by substituting the elevation of the surface above sea level at -the desired location in (3), which amounts to inverting the process used to reduce the surface values of N to sea level. The series of maps given in appendix A can be used to estimate the mean value of N at any desired altitude for each of the seasonal months at any world location except those areas outlined in figure A-30 (which summarizes the wet-term rms error values found in figures A-26 through A-29). 3.2. Discussion of N(z) Map Contours The world maps of N (z) parameters reveal a number of interesting trends. Some of these are: ( 1 ) The D x scale height, H, : (a) is smaller than average over the arctic seas in winter because of dense stratified air ; WORLD MAPS OF N(z) 5 (b) remains higher than average over land areas during their warm seasons due to a steep temperature lapse rate with height. (2) The D 2 scale height, H 2 : shows a minimum in the equatorial region because of the colder temperatures found above the tropical tropopause. (3) The wet scale height, H w : (a) is larger than average in the general area of the equatorial heat belt during all sea- sons. This indicates a steep temperature gradi- ent with a very small lapse of absolute humidity with height in the turbulently mixed deep layer of warm air. However, in some tropical areas 400 iOO 200 100 90 80 70 60 SO 40 50 20 10 1 8 1 b KOROR, CAROLINE ISLANDS 7°20'N, 134° 29' E, ELEV 29 m MAY - 141 PROFILES — SUM OF WET AND DRY EXPONENTIAL TERMS N s = 38 7.6 /• — N $w T t 0.27N (. ^D, (EX H, = 9. P) 38 km \ fv S <" - D z (E XR) 94 km fcA — \ \ — - V — — - r— W (EXP) H w = 2.66 km -^-D (N Z V Z T \ / V) — W — o\ < \ — o \ k - 10 12 14 IE Z - km !0 11 24 26 21 iO Figure 1. Three-part exponential fit to mean ~N-profile: Koror. definite changes may occur in H w because of seasonal shifting of small, but persistent, anti- cyclonic circulations which modify to a consid- erable vertical extent the normal zonal trans- port of water vapor in those latitudes. The seasonal differences of H w in the Coral Sea area seem to confirm the existence of such a cellular structure northeast of Australia [Hutchings, 1961]. (b) is larger than average over two types of convectively heated continental interiors: (1) high-latitude land masses where the sea-level wet term is less than 20 iV-units ; (2) temperate desert steppe regions where the sea-level wet term is between 20 and 60 N-units. (c) is lower than average in areas where subsidence or tradewind ducting persistently occurs below 3 km. (4) The dependence of the dry sea-level values, D , upon temperature (because D = 77.6 P/T) is revealed in such features as the 332 high in Siberia during February and the 260 low in the Sahara Desert during May and August. (5) The wet sea-level values, W , are also 6 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY very dependent upon temperatures because of the larger water content possible at high tem- peratures. There are two exceptions : (a) Large interior deserts, where moun- tains block the normal moisture flow, tend to have low wet-term values relative to their tem- peratures. (b) In August, when the monsoonal mois- ture is trapped south of the Himalayas, India shows unusually high wet-term values. (6) The intersection height, z t , is closely re- lated to the height of the tropopause, but in areas where an isothermal layer precedes the stratospheric increase of temperature, the D 2 101) OAKAR, SENEGAL , ~s I4°40' N, 17° 30' W, ELEV 40m J00 MAY - 246 PROFILES c\ ^^SUM OF WET AND DRY EXPONENTIAL TERMS N s = 357.5 200 /* S/Sd / ^N XT ^^x 100 90 SO 70 SO 50 ^D (EXP) •- 9 41 h m \ x ^-D 2 (E (P.) >.72 km 5 \ — \, — N\ — r ^ - \ >\ ~ \ 40 \ °\ !() v _^--W (EXP) 2 m -\ -n 20 o U 5 r 10 9 1 > o ZA — i — V — \ - V N 2 4 6 8 10 12 14 16 IB 20 22 24 26 28 30 Z - km Figure 2. Three-part exponential fit to mean N-profile: Dakar. . curve may intersect the D t curve as much as 2 km below the tropopause heights given in fig- ures D-l through D-4 (see appendix D) . 3.3. Reliability of Contours of N(z) Maps Although radiosonde stations are the only worldwide source of upper -air meteorological data, many areas of the world had few, if any, radiosonde reporting stations before 1957. As a result of the IGY, many new stations were established, especially in the lower latitudes; however, radiosonde data are still not available for a number of large areas, such as Brazil, China, and the Indian Ocean. High latitudes also show a noticeable sparsity of upper-air data; fortunately, there is a fairly small and uniform transition in most parameters at these far-south and far-north latitudes. Even in the U.S.A., where the first radiosonde network was established in 1938, radiosonde stations are still several hundred miles apart. The maps were hand-contoured by interpola- tion between the widely-spaced plotted data points, using a technique similar to that used in the analysis of synoptic weather maps. Each WORLD MAPS OF N(z> map was then carefully checked by another an- alyst to make certain all data points had been properly considered. The contours were modi- fied in some areas on the basis of other informa- tion or considerations not accounted for in the machine-analyzed radiosonde data. For in- stance, supplementary surface data [Knoll, 1941 ; Serra, 1955 ; Bean and Cahoon, 1957 ; UNESCO, 1958; Bean et al., 1960b; Air Min- istry, 1961 ; Dodd, 1965] were considered in the contouring of those parameters (D Q and W ) dependent upon surface observations. Also, if spurious "high" centers of the wet term (such as the isolated values found at Tananarive, Malagasy Republic) were produced at high ele- vation stations by reduction-to-sea-level pro- cedures, these values were smoothed to some extent. It was also found that the wet scale heights derived from mean N-profile data for stations at altitudes greater than 1 km tend to give more unrealistic sea-level wet terms than the average wet-term scale height of 3.0 km suggested by Hann [List, 1958]. When this "standard atmosphere" scale height was sub- stituted for Hw, the maximum error of N (z) values calculated from (3) or (4) for all sta- tions above 1 km which are listed in table A-l was 6.2 percent of the true 5-year mean value at Tananarive in August; the second largest error was 5.5 percent at Nairobi in February. Another contouring check was made of all modified contours ; a third analyst reviewed the smoothing to be sure it was consistent with the original plotted data as well as with the sup- plementary information. To further check the contouring, calculated N(z) values (using (3) and (4) with values read from figs. A-l through A-25) were com- pared with actual observed values at 32 repre- sentative stations. The results of this check (reported in detail in table 2 of sec. 7) em- phasize that, although some error undoubtedly results in N(z) values below 1 km due to con- touring, it is not a problem for N(z) values at 3 km or above. 3.4. Problem Areas of N(z) Maps The use of wet and dry scale heights in a bi- exponential radio refractive index model has proved to be a good indicator of climatic differ- ences [Bean, 1961; Misme, 1964]. The dry term, or atmospheric density component of re- fractivity, decreases with height in a uniform manner throughout the troposphere so that its scale height is an accurate indicator of the degree of density stratification, but the water- vapor component (the wet term) is not so well- behaved. Because the saturation vapor pres- sure, e s , is itself an exponential function of temperature (which generally decreases linearly with height), one of the best wet-term models is probably an exponential curve [Reitan, 1963 ; Dutton and Bean, 1965]. However, an exponen- tial model of the wet term must be used with discretion because humidity is extremely vari- able, both vertically and horizontally (because of its high dependence upon the temperatures within the different air masses, as well as var- ious terrain and land-water effects). To show actual physical changes in H w , the wet scale height, it would be desirable to pre- sent contoured values based not only on a large number of stations, but also on data representa- tive of various times of day. Figures A-6, A-12, A-18, and A-24 present the seasonal values of H w , but worldwide maps of the diurnal vari- ability of the wet scale heights are not yet avail- able. There are three specific areas of the world where the assumption of an exponential distri- bution of the wet term is largely invalid and can be used only with reservations. Two of the areas have one thing in common — a low sea- level wet term. At continental stations in high latitudes where strong temperature inversions persist during winter months, the wet term at 3 km may be as large as, or even larger than, that at the surface (because of the increase of water vapor "capacity" with temperature) , and the result is a negative or a very large positive value of the wet scale height, neither of which is physically realistic. At any tropical desert station where the sea level wet term is < 30 N-units, deceivingly high wet scale heights also may result. Fortunately, because of the small contribution of the wet term in these cases, the total iV-error remains small. The wet-term pro- files at nine stations with low values of W„ were examined, and the largest error at any height was 3.7 percent of the true 5-year N (z) value at Niamey (a desert station) in February (fig. 3) . In the arctic areas (represented by Barrow, Alaska, in this same figure) the maximum error never exceeded 1.5 percent of the total N(z) value. The third area presents a more serious prob- lem because it exists in a subtropical climate (15°-35° north and south of the equator) where the wet term contributes from 14 to Vs of the total N. The sharp decrease of humidity and increase of temperature which is found in at- mospheric layers between the surface and 3 km in the subsidence regions of semipermanent sub- tropical highs destroys the exponential distri- bution of the wet term. In fact, in regions such as this, the exponential fit may be valid only at two or three points. This can be noted in figure 4, where the mean wet term for May is graphed, and the H w value from the least-squares fit from 0-3 km of log W versus height is indicated, for 8 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY four dissimilar stations: Dakar (low-level sub- sidence), Antofagasta (intermediate subsid- ence-trade wind ducting) , Hilo (trade wind in- version), and Balboa (steep exponential gra- dient) . A check of figure A-30 reveals that the first three of these stations are located in areas where, because the rms of the wet-term error exceeds 5 N-units for at least 1 month, the three- part exponential model is not recommended. 90 80 70 60 50 40 30 20 - NIAMEY £H W = 4.95) \ \ \ \____ ^-^ *"--■■"■.. 10 5 IjO 1.5 2 2 5 HEIGHT ABOVE SURFACE IN KILOMETERS FIGURE 3. Five-year mean wet refractivity term: February. WORLD MAPS OF N(z) 9 B4LB0i (tV'2 83) '-^ ^LO (H W :2.I6) ^^^ "V-^, - «• ^ **■■ '■-.. ~~^^ 1 • ~».. ** ^^ ■\ "^^ \ s *»«. \ \ " - \ \ \^ 10 IS 20 25 HEIGHT ABOVE SURFACE IN KILOMETERS Figure 4. Five-year mean wet refractivity term: May. 4. World Maps of aN 4.1. Development Twelve maps of monthly mean AN were pre- pared from the 5-year mean values obtained by interpolation of mandatory pressure level radio- sonde data for the 268 stations listed in table B-l and located in figure B-l in appendix B. These maps, contoured in the same manner as the N(z) maps (sec. 3.3), are figures B-2 through B-13. Previous work has shown that a good corre- lation may exist between AN and surface N on a monthly mean basis [Bean and Thayer, 1959 ; Bean and Cahoon, 1961b; CCIR, 1965]. In fact, in many areas of the world this seasonal corre- lation is very high, and in such areas a regres- sion line might provide better estimates of monthly mean AN than the maps in appendix B (if the mean value of surface N were available for that particular month of that year for the desired location). This regression line could also be used with the N s distribution data from table A-l to provide estimates of the AN distri- bution. Correlations were therefore calculated for the 12 monthly mean values of AN and sur- face N for each of the stations in the sample. The equations resulting from these calculations were put into the form of deviations from the annual means : AN = b (N s - W s ) + aN ± S.E., (5) where N s is the surface value of N, the single bar represents a monthly mean value, the dou- ble bar represents the annual mean, b is the slope of the regression line, and S.E. is the standard error of estimate. The equations were put in this form because the intercept o f th e equations in the ordinary form is equal to AN - bN s , which is too unwieldy for contouring on maps. Maps, which appear in appendix B, were prepared of the slope (b) , the annual means (aN and N ) , and the standard error of pre- diction and correlation coefficient of the regres- sion lines. 5 4.2. Discussion of Contours and Reliability of a]V~ Maps The world AN maps of this atlas do not show as much detail as may be found in other publi- cations which consider only specific areas [Bean 5 N is an approximate sea-level value of N s , defined by the equa- tion N = N s e"- ,z , where z is the elevation above sea level in km. et al, 1960b; du Castel, 1961; Rydgren, 1963; CCIR, 1963]. It was necessary in this study to omit some of the available radiosonde data in areas with relatively dense weather networks (e.g., the U.S.A. and Europe) in order to obtain a more nearly uniform worldwide coverage. Even with this coverage, the map scale size pre- cluded the contouring detail which would be necessary if localized terrain effects were to be included ; for example, mountainous locations (higher than 1 km) probably have lower values of aN than those indicated in figures B-2 through B-13. Some dissimilarity in the con- tour patterns between the maps in appendix B and other AN maps may also be found because of the differences in the time period used in the samples ; such disagreements emphasize the fact that 5 years of data are not adequate for reliable means in many areas. The map contours of worldwide AN indicate that: (1) Low values of AN are characteristic of: (a) large desert and steppe regions such as the Sahara, the Australian interior, the south- western U.S.A., and the Asian region southeast of the Caspian Sea all year ; (b) high plateau areas during all seasons except winter. (2) High values of AN are found in: (a) all areas where large masses of subsid- ing air prevent the normal diffusion of water vapor, creating an unusually large iV-gradient between the moist surface air and the very dry air at 1 km. Specific examples are : (1) continental west coasts at latitudes 20°- 35° in the summer hemispher e an d 10°- 25° in the winter. In fact, the true AiV may be higher than indicated on the maps at locations such as Dakar, Senegal, where a very thick (~250 m) surface or near-surface ducting layer occurs much of the time ; (2) tropical ocean areas where a trade- wind inversion leads to a persistent elevated ducting layer below 1 km. [Note : In a few cases where the entire thickness of an elevated layer lies between 1 km and the height of the 850-mb level, the interpolation method gives a map value which may be 5 to 10 N-units too high.] (b) southeast Arabia and the Gulf of Per- sia during July and August, when orographic subsidence traps moisture from the southwest monsoon in the gulf and lowlands between the mountains. 10 (c) Siberia and the Canadian interior in winter because of the intense surface tempera- ture inversion. (d) the Mediterranean and Black Seas during summer when convective mixing greatly increases the near-surface humidity. (e) India in the spring, when increased heating over land produces a low-pressure re- gion which leads to onshore winds and humid WORLD MAPS OF AN 11 weather conditions until the onset of the mon- soon. In winter a combination of high and low a2V values appear near the tip of southwest Africa as the subsidence from the South At- lantic High causes a large moisture gradient to appear off the coast, whereas a small humidity gradient is characteristic of the dry plateau region inland. 5. World Maps of Extreme N- Gradients 5.1. Development The gradient of N near the surface of the earth is of particular importance in many appli- cations of telecommunications ; e.g., extreme values of these initial gradients are responsible for much of the unusual behavior of radio sys- tems. Superrefractive gradients (defined here as values between -100.0 TV/km and -156.9 N/km) are responsible for greatly extended service hori- zons, and may cause interference between widely separated radio circuits operating on the same frequency. Ground-based radio ducts (layers having a negative gradient larger in absolute value than 156.9 N/km) can cause prolonged spacewave fadeouts within the normal radio ho- rizon [Bean, 1954] and allow radar to track ob- jects many hundreds of kilometers beyond the normal radio horizon. On the other hand, subre- fractive gradients (zero or positive gradients) produce greatly reduced radio horizons, and may result in diffraction fading on normally line-of -sight microwave paths. In the process of obtaining the mean 2V-profile for each station and month, cumulative distri- butions were prepared of the gradients occur- ring between the surface and the 50-m and 100-m levels. Each gradient was calculated as the simple difference between the surface N and the value at 50 or 100 m above the surface, divided by the height interval. For 99 out of the 112 stations in the mean N sample, cumulative distributions were also prepared of the gradi- ents and thicknesses of all observed ground- based superrefractive or ducting layers, regard- less of the thickness of the layer (except that no layer less than 20 m thick was included, be- cause the gradients obtained in such cases are not considered to be reliable). In addition, cumulative distributions were prepared of the minimum trapped frequency for each of the ob- served ducts in the sample. (This sample size averaged 208 pieces of data for each month ; for all months the smallest sample was 30 and the largest, 620). The minimum trapped fre- quency refers to the approximate lower limit of frequencies that will be propagated in a duct in a waveguide-like mode, and is given by [Kerr, 1951] - 1.2 X 10 5 (c/s) ,_. clz r c/s, t is the total thickness of the duct in km, dn/dz is the average gradient over the duct (n/km) , and r is the radius of the earth in km. Equation (6) is derived under the assumption of a constant gradient throughout the duct, but moderate departures from this assumption do not seem to affect the results greatly. The / m in corresponds to an absolute attenuation of the guided energy of about 3 dB/km (5 dB/mile) [Kerr, 1951]. The maps in appendix C were prepared from the cumulative distributions discussed above. The distributions of gradients for the to 100-m layer were used to obtain maps of the positive (subrefractive) gradient exceeded for 10 and 2 percent of the observations at any lo- cation, and the percent of observations with or positive iV-gradients. Maps were also pre- pared of the extreme values of negative gradi- ents observed ; these are referred to as "lapse rates" of N (i.e., decrease with height, a term normally used in referring to atmospheric tem- perature gradients ; it is used here to avoid the awkwardness of referring to a very strong nega- tive gradient as being "less than" a given nega- tive value) . Included in appendix C are maps of the lapse rate of N exceeded for 25, 10, 5, and 2 percent of the observations for the 100-m layer. Cumulative probability distribution charts of the gradients at 22 representative world locations are also presented. Other maps in appendix C were prepared from the distributions of superrefractive and ducting layer gradients, thicknesses, and /min values for ducts. These include the percent of time that the lapse rate of N in the ground- based layer is equal to or larger than 100 N/km and equal to or larger than 157 N/km (ducting gradient) , the percent of superrefractive layers that were more than 100 m thick, and the per- cent of ducting layers that were more than 100 m thick (the last two refer to the percent of thick layers out of the number of observed lay- ers of that type). The distributions of /,„in values were used to prepare maps of the per- cent of all observations which showed ground- based ducts having an / m in value of less than 3000 Mc/s, 1000 Mc/s, and 300 Mc/s. 5.2. Discussion of Gradient Map Contours (Subrefraction) where / min is the minimum trapped frequency in Ground-based subrefractive layers may be 12 WORLD MAPS OF EXTREME N-GRADIENTS 13 found in the same tropical and subtropical loca- tions as superref ractive layers, because a small change in relative humidity at high tempera- tures produces a very noticeable change in ab- solute humidity, and the A/-change (either posi- tive or negative) with height is highly depend- ent upon the variation of absolute humidity. For instance, subrefractive gradients occur quite often during the afternoon at stations which experience superrefraction or ducting during the night and early morning. Other sta- tions may have nocturnal subrefraction during winter and superrefraction during the same hours in summer. However, subrefraction, un- like superrefraction, rarely occurs at surface temperatures below 10 °C (the only exception would be locations greater than 1 km above sea level). The surface conditions conducive to subre- fractive gradients are of two rather opposite types : (a) temperature > 30°C; relative humidity < 40 percent ; (b) temperature 10° to 30°C ; relative humid- ity > 60 percent. Type (a) is usually found during the day- light hours of months when intense solar heat- ing occurs at warm, dry continental locations and forms a very nearly homogeneous surface layer (no decrease of density with height) which may be several hundred meters thick. Since a moist parcel of air is less dense than a dry parcel at the same temperature and pres- sure, the intense convection which occurs with- in such a layer of absolutely unstable air tends to concentrate the available water vapor near the top of the layer, because a moist adiabatic upper boundary is formed where the super- adiabatic lapse rate changes abruptly to a sub- adiabatic or very stable lapse rate. The result is an increase (sometimes as large as 50 percent of the surface value) with height of the wet term through the ground-based layer. This in- crease, coupled with no change in the dry term, leads to a subrefractive (or positive) gradient. This layer may retain its subrefractive na- ture throughout the early evening hours at sta- tions where conditions are favorable for the development of a temperature inversion. As the ground cools rapidly, the air very near the ground cools and becomes more dense, but the water vapor which is trapped between the two stable layers causes the positive wet-term gradi- ent from surface to the top of the original layer to remain large enough to overbalance the slightly decreasing gradient of the dry term. This evening subrefraction is an outgrowth of type (a) ; however, it may resemble type (b) at the surface because it can be found with a temperature as low as 20 °C and a relative hu- midity as high as 60 percent. Type (b) occurs most often during night and early morning hours, and is characteristic of coastal trade-wind and sea-breeze areas where differential heating of land and sea results in the advection of air which is warmer and more humid than the normal surface layer. In this type, both dry and wet terms may increase with height, creating a surface layer of subrefrac- tion which is generally more intense in gradient than type (a) but not so thick. This form of subrefraction might also be found for short periods in any location where frontal passages or other synoptic changes create the necessary conditions. Type (a) subrefraction is hard to evaluate from figures C-l through C-4 because its per- centage occurrence at any specific location is so dependent upon the time of day represented by the radiosonde data at that location. For in- stance, because the local radiosonde observa- tion times in the southwestern U.S.A. were 0800 and 2000 for the data period used in this atlas, only the subtype (a) of evening subre- fraction is recorded. Because conditions are more suitable for inversions in February and May, these months appear to have surface- based subrefractive layers more often than Au- gust. However, a detailed check of midafter- noon observations near White Sands, N. Mex., reveals that midday subrefractive conditions are quite prevalent during much of August and Sep- tember. The same diurnal problem is found in northern Africa and the desert region south and east of the Caspian Sea, where many of the sta- tions take observations between 0300 and 0600 LST. Furthermore, even at those stations which do have midday data, the "motorboating" problem (i.e., humidities too low to be mea- sured by the radiosonde — see sec. 5.5) during the warmest seasons at very dry locations prob- ably masks out a large percentage of subrefrac- tive occurrences; e.g., the occurrence of subre- fraction recorded in November and February for the interior of Australia (where afternoon observations are included) is probably too low. Figures C-l through C-4 reveal that type (b) subrefraction can be expected 10 to 20 percent of the time in the western Mediterranean Sea and the Red Sea area, and also in the Indone- sian-Southwest Pacific Ocean region. These lo- cations seem to indicate a slight seasonal trend, with a higher probability of occurrence during winter months. Another region with a 10 to 20 percent level of subrefractive gradient occur- rence is the Ivory Coast and Ghana lowlands of Africa where onshore winds prevail all year. Occurrences of type (b) subrefraction exceed 5 percent at these locations and times of year: (1) Southeast coast of U.S.A. all months; 14 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY (2) Hawaiian Islands all months except May; (3) South Africa all months except Novem- ber; (4) Southeast coast of South America in No- vember and February ; (5) Southern California in November ; (6) North Indian Ocean in May ; (7) Isthmus of Panama in November. 5.3. Discussion of Gradient Map Contours (Superrefraction and Ducting) Superrefractive and ducting gradients in ground-based layers are most often associated with temperature inversions (temperature in- creasing with height within the layer) , not only because a positive temperature height-gradient causes a negative iV-gradient, but also because the low eddy diffusion qualities associated with a temperature inversion often lead to a steep negative gradient of humidity through the in- version. However, previous investigations [Bean, 1959] have shown that there are at least two other typical situations encountered in the formation of strong ground-based gradients : The first of these is the arctic situation, where, with surface temperatures below about — 20°C, a strong temperature inversion (typical of con- tinental arctic air masses) produces a superre- fractive or ducting layer, while the vapor pres- sure may actually increase with height. More often, in this case, the wet term is negligible throughout the layer. The second case is typical of very humid tropical areas when the surface temperature is 30 °C or greater. In these loca- tions (which are usually coastal) a common occurrence is a slight decrease of temperature with height, accompanied by a very strong lapse of absolute humidity. Such profiles may show only a slight decrease of relative humidify with height, but, because the saturation vapor pressure is nearly an exponential function of temperature, the resulting vapor pressure gra- dient may be very large, thus causing a steep ^-gradient. Figures C-41, C-45, C-49, and C-53 show that persistent ducting (D) or superrefractive (SR) initial gradients can be found more than 25 percent of the time for at least two seasons in seven general areas of the world : (1) Dakar -Fort Lamy transitional strip in Africa (D : all seasons) , (2) northern Arabian Sea including coastal areas of the Gulf of Aden and the Persian Gulf (D : all seasons), (3) India, Bay of Bengal, southeast Asia, Indonesia, and north tip of Australia (SR: all seasons), (4) southwest coast of North America, in- cluding portions of the North Pacific (SR : Feb- ruary, May, November) , (5) Gulf of Mexico and Caribbean region (SR: May, August, November), (6) northwest coast of Africa and western Mediterranean (SR: May, August), (7) Antarctica (D: May, August) . Area (1) : Tropical west coast locations in the vicinity of 15°-22°N or S are affected annually by three or four latitudinal weather zones [Tre- wartha, 1961]. In winter the Dakar-Fort Lamy region is under the influence of dry anticyclonic Saharan air, but even at the time of low sun, the prevailing surface air movement is onshore from the southwest. The vertical depth of this maritime current is more shallow than in sum- mer, but during the early morning hours, the surface relative humidity is 80 to 90 percent compared with 40 to 60 percent in the dry sub- siding air above. Even with radiational cooling, the night temperatures throughout the marine layer (from 50 to 600 m thick) still remain over 20 °C. This combination of temperature and hu- midity creates trapping conditions for frequen- cies below 300 Mc/s about 30 percent of the time in February (fig. C-31). The weather zones advance rapidly north- ward [Thompson, 1965], so that by July the Dakar-Fort Lamy strip is in the wet tropical regime associated with the fluctuating, unstable Intertropical Convergence Zone (ITC). The marine current of the westerlies becomes much deeper, but the ducting layers are shallower and can exist only intermittently between the turbulent, showery periods common to the re- gion. Figures C-22, C-24, C-26, and C-28 indi- cate that more than 30 percent of the ducting layers are over 100 m thick for all seasons ex- cept summer. Area (2) : The coastal areas of Arabia ex- perience high surface humidities all year from monsoonal and sea-breeze effects, but during May and August these values are reinforced by temperatures above 25 °C in a marine layer which may extend up to a height of 800 to 900 m before it meets the overrunning dry north- easterlies [Tunnell, 1964]. The percentage oc- currence of ducts at Bahrain seems much high- er than at Aden because all observations at Bahrain were taken at 0300 LST (when the surface humidity is at its maximum of 75 to 90 percent) , whereas the Aden observations, taken twice a day, include as many observations at 1500 LST (when the relative humidity value is much less) as at 0300 LST. For instance, 50 of the 66 ducts recorded in August at Aden were from early morning observations. However, the fact that ducting gradients at Bahrain trap fre- quencies below 300 Mc/s over 75 percent of the time as compared to 5 percent at Aden (fig. C-37) is due to another factor: the thickness of the moist marine layer, when ducting is present WORLD MAPS OF EXTREME A/-GRADIENTS 15 at Bahrain, is greater than 300 m over half the time. Area (3) : A moist surface layer is also found in the monsoonal areas. Its temperature is 25 to 30 °C and, during occurrences of ducting, the surface relative humidity ranges from 85 to 100 percent, but the trapping incidence is much less than in either area (1) or (2). The surface layer is shallower and its gradient is less intense because the humidity decrease between it and the air mass directly above it is only 10 to 20 percent. Because brief periods of stable weather occur even between surges of the summer mon- soon, the ducting incidence remains over 10 per- cent for all of area (3). Area (U) '■ Along the western coast of North America, from Southern California to Central Mexico, the most important month for unusual radio propagation due to surface conditions is February, when frequencies below 300 Mc/s are trapped 10 percent of the time. During the pe- riod studied, 30 percent of the superrefractive gradients were at least 300 m thick in all 4 months. Closer examination of the ducting structure in Mazatlan reveals that if near-sur- face layers (bases of 100-300 m) were included, the percentage of occurrence would be increased by 20 to 40 percent for all months except Au- gust. During February, May, and November the surface temperature of 20 to 30 °C remains nearly constant through the ducting layer, but the relative humidity decreases from a surface value of 70 to 80 percent to values ranging from 20 to 40 percent. The dry air in the upper layer results from subsidence in the eastern margin of the Pacific high pressure cell, which shifts northwestward in August, thus decreasing the ducting incidence in Mazatlan but increasing it in lower California and the Hawaiian Islands (figs. C-21, C-23, C-25, C-27). Area (5) : The center of most intense ducting in the Caribbean Sea and Gulf of Mexico changes with the seasons (figs. C-41 through C-56) . The smallest percentage of superrefractive ground- based gradients is found in February, with the stronger gradients concentrated near the east coast of Central America. By May the super- refractive area has shifted eastward into the Caribbean and northward into Florida. In Au- gust it includes parts of the eastern U.S. but is still most intense in the Swan Island area, and in November the area encompasses all of the Caribbean. The ground-based superrefractive layers are thicker than 100 m approximately 70 percent of the year, but the ducting layers are never intense enough to exceed the 1-percent trapping level for 300 Mc/s. Area (6) : The cause of superrefraction in the western Mediterranean and northwest Africa is very similar to that in area (4) . During the summer season, subsidence along the eastern edge of the Atlantic high-pressure cell superim- poses a dry layer over the marine surface layer ; during the winter season, the major subsidence area shifts southward, the temperatures throughout the surface layer are 5 to 10° C low- er, and the percentage of superrefraction and trapping incidence decreases. Area (7) : During the long Antarctic night, in- tense radiation from the snow-covered ground keeps the surface temperature much lower than that in the air several hundred meters above. This temperature inversion of 10 to 25°C is the cause of all the ducting gradients in May and August, which trap frequencies <1000 Mc/s at least 40 percent of the time (see appendix E). 5.4. Discussion of Cumulative Distributions of Ground-Based Gradients Data from 22 representative stations were selected as a sample of the kinds of ground- based gradient distributions from the surface to 100 m which occur in various climates and locations throughout the world. Interesting similarities which exist among the gradient distributions imply that the re- fractivity climate of any station may be related more to the season or month of the year than to any particular latitudinal location. For in- stance, consider the interesting relationships between Bangui (a tropical station), Bordeaux (temperate), and Amundsen-Scott (arctic). The gradient distribution at Amundsen-Scott in February resembles that of Bordeaux in February, but its August distribution slope re- sembles that of Bangui in May. However, Ban- gui's distribution slope and range in August resembles Bordeaux in May. Amundsen-Scott forms another interesting climatic triad with Saigon and Long Beach. In August the distri- bution slope and range of Amundsen-Scott is very similar to that of Saigon (a tropical sta- tion), but the negative gradient intensity is about 100 iV-units greater at all percentage lev- els. However, Saigon in May, before the mon- soon, resembles Long Beach in February. It was expected that a pronounced diurnal effect would exist in the gradient structure near the surface, so two stations, Aden, Arabia, and Nicosia, Cyprus, where data were available at two thermally opposite times of day — 2 and 3 a.m. and 2 and 3 p.m. (0000 and 1200 GMT 6 ) — were studied. Figures C-57 and C-71 in appen- dix C show the diurnal differences in the cumu- lative distribution of initial gradients from to 100 m for these two stations for the 4 months studied. Superrefractive conditions normally accom- pany nocturnal inversions. At Nicosia this 6 GMT (Greenwich Mean Time) is the same as UT (Universal Time). 16 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY proves to be the case for all seasons, with a very- definite maximum in August, when anticyclonic upper air circulation intensifies the humidity decrease aloft and radiational cooling lowers the surface temperature 15 °C below that found during the day. Aden, a coastal station with less change in its diurnal temperature cycle than Nicosia (an in- terior valley station on a fairly large island), exhibits superrefraction day and night for all seasons. During August and November initial gradients have a wide range of values, with the largest variation occurring at 0000 GMT, but in February and May the nocturnal stability apparently is seldom destroyed by convective mixing, and the 1200 GMT (1500 LST) initial ref ractivity gradient may exceed the 0000 GMT (0300 LST) gradient. However, the early morning inversion is usually more significant from a radio-meteorological viewpoint because 5 i ADEN - MAY OOOO GMT, H w =l.97, H|=9.95 1200 GMT, H W =2.08,H,=9.47 \\ \\ 1 \ \ \ 1 \l s V >«. — -10 ■50 -60 -70 N-GRADIENT -110 -120 Figure 5. Five-year mean vertical refractive gradient profile: Aden. the refractivity gradient is much more intense from 250 m to 750 m, thus affecting more radio frequencies. This can be noted in figure 5, rep- resenting a 5-year mean of the vertical gradient observed from to 4.5 km during May. Figure 6 presents the same data for Nicosia during a 5-year August period. Because scale heights are also a measure of stability and strat- ification, figures 5 and 6 not only give the differ- ences in the mean total N-gradient values in the lower atmosphere, but also the wet (H w ) and dry (.Hi) scale heights. Five-year mean values of N s at Aden in May were found to be 382 (surface wet term of 123) at 0000 GMT and 374 (surface wet term of 119) at 1200 GMT. The corresponding values at Nicosia in August were 341 (wet term of 83) and 310 (wet term of 62). The percentage of occurrence of subref raction (A7km>0) is larger at night (0000 GMT) in February and November at both locations. However, this diurnal trend is much more pro- nounced at Nicosia, particularly in November when the percentage of night subrefraction is over 30 percent larger than the daytime per- centage of occurrence. WORLD MAPS OF EXTREME N-GRADIENTS 17 5.5. Reliability and Limitations of Ground-Based Refractivity Gradient Data Because ground-based gradients are so sen- sitive to local effects, such as terrain and land- water relationships, it was impossible to contour figures C-l through C-56 for individual small areas. For instance, although Madrid (on the high interior plateau of Spain) experiences little ducting during the year, it is surrounded by areas of high ducting incidence, and no at- tempt was made to delineate this small region of nonducting. Also, refractivity gradients cal- culated from radiosonde observation levels sep- arated by less than 20 m may be seriously affect- ed by instrumental errors, so ground-based lay- ers less than 20 m thick were not included in the analysis. Consequently, very shallow duct- ing (such as that found at certain times over oceans, under dense jungle canopies, and in X o LU X -40 -50 -60 -70 N-GRADIENT 90 ■110 -120 FIGURE 6. Five-year mean vertical refractive gradient profile: Nicosia. mountain valleys) is not included in the con- toured data; however, such layers may be in- tense enough to create trapping conditions for frequencies down to 600 Mc/s [Jeske, 1964; Baynton et al., 1965 ; Behn and Duffee, 1965]. The time of day represented by the available observational data must also be considered for any variable which has a definite diurnal trend. Therefore, for a true comparison of worldwide gradient behavior, it would be desirable to use comparable data recorded at least twice a day at standard local or sun-referenced time. How- ever, because simultaneous data are needed for the preparation of synoptic maps, all stations in the U.S.A. and many in the European coun- tries schedule radiosonde observations at 0000 GMT and 1200 GMT. Many stations in other parts of the world take only one observation per day (usually at either 0000 GMT or 1200 GMT, but there are exceptions, e.g., 0600 GMT at Abidjan, Dakar, and Niamey). Even if all sta- tions had a common GMT hour for taking ob- servations, the diurnal problem would still exist because the local time for any designated GMT 18 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY time would be distributed throughout the day as one traversed the globe. For instance, the fol- lowing stations (in tropical areas where the occurrence of either subrefractive or superre- fractive layers is especially dependent upon the time of day) were used in this report: Station Local time GMT *Aden, Federation of South 0300 0000 Arabia * Curacao, Netherlands 2000 0000 Antilles Fort Lamy, Republic of Chad 0100 0000 *Hilo, Hawaii 1400 0000 Lae, Territory of New Guinea 1000 0000 Majuro Island, Marshall 1200 0000 Islands Singapore 0700 0000 Those stations marked with an asterisk also take observations at 1200 GMT. However, when evaluating the apparently low level of duct oc- currence at some locations (e.g., Majuro) and high occurrence at others (e.g., Fort Lamy), and when checking the subrefraction occurrence at warm, dry continental locations, such as Ni- amey (where no midday observation is taken), the local time of the radiosonde ascent should be considered. In addition to the spatial and temporal limita- tions imposed by the use of available radiosonde data, there are instrument recording limitations (see sec. 2) which must be considered when evaluating iV-gradients. Although the alternat- ing sequence system of observing the humidity and temperature can put a lower limit on the thickness and thus mask the true gradient of atmospheric layers which can be detected by radiosonde, the response of the radiosonde tem- perature and humidity elements is a more se- rious problem in the measurement of the in- tensity and number of superref ractive gradients at or near the surface. For example, in typical ducting situations during May in a tropical (Saigon) and in a temperate climate (Bor- deaux), correction of both humidity and tem- perature sensor time lags as suggested by Bean and Dutton [1961] would intensify gradients of —293 N/km (Saigon) and —212 N/km (Bor- deaux) to —377 N/km and —362 N/km, re- spectively. This type of correction also would have increased the percentage occurrence of superrefractive and ducting gradients in the majority of cases. Such extensive recalcula- tions were not possible in this study, but the possibility that more intensive gradients may occur in larger percentages at some locations (particularly in temperate, humid climates) should be kept in mind when applying values obtained from any of the figures in appendix C. Another limitation which applies primarily to the detection of subrefractive layers (figs. C-l through C-12) in hot, dry regions is the high electrical resistance of the lithium chloride hu- midity element at very low humidities which causes open-circuit signals ("motorboating"). At stations such as Aoulef, Algeria, where the daytime surface temperature often exceeds 30 °C, the relative humidity may be below the motorboating boundary at all levels from sur- face upward, and all relative humidity values (except the surface) are estimated, usually in values which are equal to, or less than, the sur- face value. However, it is quite probable in these highly convective conditions that the abso- lute humidity remains constant with height, instead of rapidly decreasing (as the estimated relative humidity values would indicate) . If it did remain constant, fairly persistent subre- fractive gradients would be found in such areas during the hours of most intense solar heating. 6. World Maps of Mean Tropopause Altitudes Maps have been prepared of the mean tropo- pause altitudes which were calculated in the course of obtaining the mean iV-profiles for the 112 station sample, as discussed previously. The maps, for the 4 "seasonal" months, are shown in appendix D. The zone of maximum tropo- pause altitudes for each month seems to corre- spond quite well with the mean position of the Intertropical Convergence Zone. As stated earlier, the criterion for determin- ing the tropopause altitude for each radiosonde ascent was the altitude of the base of the first layer or layers which had a total thickness of at least 2 km and a temperature lapse rate of less than 2°C/km. The mean tropopause alti- tude for each station and for each month was determined by a simple average of all of the individual values for the profiles in the sample (usually of 5 years' length). The reliability or consistency of these maps is difficult to assess, since the results of determining tropopause alti- tudes depend to a great extent on the criteria used for selection of the first stratospheric layer. The criterion used here is the one in most com- mon usage [U.S. Weather Bureau, 1964], but other criteria may be applicable where the re- sults are intended for use in specific atmospheric problems. These maps supplement tropopause data presented in other reports and atlases [For example, Willett, 1944 ; U.S. Navy, 1955- 59 ; Smith, 1963 ; Smith et al., 1963 ; Kantor and Cole, 1965]. 19 7. Appraisal of Results 7.1. Accuracy of N(z) Maps The general accuracy of the 5 - year mean values used in the N(z) study was checked by computing the standard deviation of the year- to-year monthly means and dividing by the square root of 5. This should be a good estimate of the rms (standard) error of the 5-year mean values as compared to the true long-term mean (assuming there are no trends in the data). Table 1 shows the estimated standard error of the 5-year mean N s values for 40 stations, ar- ranged by climatic classification. The percent- age errors should be similar for the N (z) pa- rameters (with the possible exception of scale heights) at various altitudes. The combined (rms) standard error of 5-year mean N s for the 40 stations for February and August was 2.37 A/-units, or about 0.7 percent of the mean N s . It is significant that even the standard 30-year period recommended (e.g., by the WMO) for standard climatological normals would have a nominal standard error of about ± 1.0 A/-unit (2.37 divided by \/6), or about 0.3 percent of mean N s values. 7 The 30-year means would thus Table 1. Standard errors of 5-year mean values of monthly mean Ns for 1^0 stations. 12-month 12-month estimate rms as Number Febru- August* (rms of percent- Climatic type of ary* (/V-units) Feb. and age of stations (N-units) Aug.) (TV-units) mean Arctic 2 1.6 0.6 1.2 0.4 Subarctic 2 1.2 2.8 2.1 0.7 Marine west coast 4 1.5 1.9 1.7 0.5 Marine (ships) 4 2.2 1.5 1.9 0.6 Continental (cool) 2 1.0 2.9 2.2 0.7 Continental (warm) and subtropical 3 2.2 1.6 1.9 0.6 Semiarid cool, high altitude 2 1.4 3.5 2.7 1.0 Arid and semi- arid tropical 8 2.4 3.8 3.2 0.9 Monsoon 3 3.2 1.3 2.5 0.7 Equatorial 6 (seaso appli< ns not :able) 2.7 0.7 All (rms of above) 40 — — 2.37 0.7 *For stations in the Southern Hemisphere, months were reversed (February was combined with August for northern stations, etc.). 1 Thirty-year means are used because there are long-term trends in most climatological series ; thus a standard period is desirable for comparison between stations. have an advantage of only about 50 percent in rms error, as opposed to the 5-year means actually used. The overall accuracy of the three-part expo- nential model was checked in two ways. First, a che ck w as made of the accuracy of recovering the AA7 values using the three-part exponential. Here the value of AN was calculated, using the wet- and dry-term tropospheric exponentials, and th e va lue obtained was compared with the actual AA7 from the mean A7-profile. Figure 7 shows the results of such a comparison for 95 of the 112 stations in the original sample for which coincident data of s ever al types were available. The true value of AN from the mean A^-profile is the dependent variable, and the value recovered from the wet and dry expo- nentials is the inde pend ent variable. The rms error in recovering aA7 was 9.2 N-units ; how- ever, if those stations (points shown as crosses on fig. 7) which are in areas where the three- part exponential model is of questionable valid- ity (as shown in fig. A-30) are eliminated from the sample, the rms error is reduced to 6.4 AZ-units. The regression line shown in figure 7 is for this reduced sample. The deviation of the regression line from the 45° line (labeled "per- fect agreement" in fig. 7 : zero intercept and unity slope) is significant at the 5-percent level ; thus it would appear that this is not the best usage for t he three-part exponential model. Use of the AA7 maps in appendix B is recommended rather than the N (z) maps, for this purpose. The second check was to use the N(z) maps to recover the values of N(z) for some of the actual station locations, at different heights above the surface, and compare these with the actual values of mean N (z) . This would be a check not only on the three-part exponential model but also upon the contouring process. Table 2 shows the results of such an error an- alysis. Thirty-two of the original 112 stations were selected on an areal basis, and the correspond- ing three-part exponential model was construct- ed for each of these stations, for all 4 months, using the maps in appendix A. These exponen- tial models were then used to calculate N (z) for three heights (3, 8, 16 km) for each month, and the results were compared with the actual mean A/-profiles. The mean and maximum values of the absolute errors thus derived are shown in table 2. Stations and seasons in this sample 20 APPRAISAL OF RESULTS 21 which are characterized by a high (tropical- type) tropopause showed larger errors at 16 km than at 8 km, the reverse of the usual trend in table 2. It is apparent from inspection of table 2 that errors in recovering N (z) at alti- tudes of 3 km or more are likely to be small. POINTS AFFECTED BY LOW-LEVEL SUBSIDENCE REGRESSION LINE AN M • 14 64 + 6437 AN t ± 6 40 r = 795 50 60 70 80 90 100 AN S FROM EXPONENTIAL MODEL Figure 7. Correlation of AN; monthly mean N-profiles versus monthly mean exponential model. Table 2. Absolute errors in recovering mean N from map contours for 32 stations (in N-units) . Month 3 km X km 16 km Mean Max Mean Max Mean Max Feb. May Aug. Nov. Year 1.0 1.3 1.4 2.0 1.4 2.1 3.2 2.1 4.0 4.0 1.6 1.4 1.9 1.3 1.6 3.6 3.3 3.7 3.0 3.7 0.6 0.9 0.8 1.2 0.9 1.7 2.3 1.6 3.0 3.0 The total variance, o- T 2 , in using the maps of N(z) given in appendix A can be estimated in terms of the following error model : . (A-2) All three scale heights are required for equation (A-2), whereas only two, H x and H w , appear in the tropospheric equation. If the surface altitude of the location is greater than 1 km, it is suggested that the "standard atmosphere" value of 3 km be substituted for H w (see sec. 3.3). To illustrate the step-by-step procedure for determining refractivity from the N (z) parameters, the following example (assuming heights of 2 km and 20 km above the surface at a location 200 m above sea level, at latitude 15°N and longitude 0°, in August) is given : (a) Refractivity at 2 km above the surface: (1) At the assumed location, interpolate linearly between contours on figures A-19 to obtain z t (13.8 km) to see whether the altitude above sea level, z (2.2 km) , is above or below the z t value. It is below, so equation (A-l) should be used. (2) The map values at 15°N and 0° of the parameters needed to calculate (A-l) are: D = 267.5 iV-units (fig. A-14) Wo = 105.0 xV-units (fig. A-15) H t = 9.35 km (fig. A-16) H w = 2.19 km (fig. A-18) (3) If these values are substituted in (A-l), N(z) is found to be 249.9 iV-units at 2 km above the surface. (Probable errors due to contouring and data restrictions would suggest the use of only three significant figures, i.e., 250 iV-units.) (b) Refractivity at 20 km above surface: (1) Check to see whether the assumed altitude (z = 20.2 km above sea level) is above or below the z t value. Since it is above, (A-2) should be used. (2) All the parameters are needed for this calculation. In addition to the four values listed in calculation (a) above, these are required: H 2 = 5.90 km (fig. A-l 7) Zt =13.8 km (fig. A-19) 29 30 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY ifltCH CO CO rH X Ol CM rH Hl> HMQO(D^ WHOiNH CD uO iO X rH fc- t- CO OS lO X X OS © X WOiflC-CJ X UO OS CM X fc- tH lO fc- X X XCM X TH lO rH CD oi oi co x rH OS 03 J rH X CM rH X wyJOMH X CM X X X rH C3 CO U0 rH OC CD i-H O CO CM CM X XX co to 0C CO CD iO OS CD iH fc- X CM CM X CM 0C> iH lO CO CO CM Nt-MOC- CO CM CO rf rH CO CO CO CM CM O CD t> CO CM CM lO fc- CD CO CM CM rH CD CM X rH O 0C CO CD O CO CM CO CM CO «Dt-«MO O CD 00 CM X X CM 03 X CM t-iflXOH c- ia co co cd CO CO CO CO 04 CD 00 r* rH CO rH rH rH CM rH OJ^HOtI* CO fc- 00 CM r* CD CO OS Ol OS CM CD CD CM fc- COCD t> Ol 03 OS OS WX^OX OS rH rH X X Lfl CD U0 CD fc- 03 CO © X rH CO CM CO CO CO 01 03 CD CO CM CO CD fc- CO O CO CO CO CD CD CM rH CO CM CO CO CO X X rH LO Ol m cd o i-i oo CO CM CO CO CM CO i-H CD O CC CD fc- CM CO CD CO CO rH LO CO CO CO CM CM 01 CD X CO 03 CI O CM O C- C0 CM iH O CO O O CO CO CO CO CO O CD iH fc- CO ■i-t CD CD CO 00 CO CM CM CO CM O rH 0C lO ^ X CD rH X © CO CO CO CO CO rH 03 C3 CMCD 00 * C* Tt if CM rH OS rH CDCDCDOOCO rH fc- OS OS CD fc- fc- rH rH CD N m W H 3C 03 03 fc- © rH CO CM © u0 Ol W CO CO OO r# X X lO © CM lO © © X r* CD fc- CD N O Ol CO rH X CD © X x x n 10 x CO CM CO CO CO LO CO t> CD rH fc- lO LO rH CO CO CM CO CO X fc- HOCJfO CO CO CO CO CO CD t- LO rH rH CD O CM CO CD CO CO COCO CM OH CO CD lO O X LO tj< CC -fl" fc- CD CC lO CD CO COCO CM CM CM rH Ol ^ CD CO CO CO CO CO CO CD 03 X rH lO CO CQ O 00 rH CO CO CO CO CO LO CD CO X rH CD CD fc-rH rH CO CO COCO CO rH CO OS fc- CD CDOXCM-cf CD CO »H CDCD CD OS CM X © ^OOt-O^ 1 © fc- X X CO CD CD rH OS "H X CM CM CO X fc- ■h CO rH CD LO CO CO CO CO CO I- CO CO CO CD CM CO CM fc- CM CD rH CO X CO CO CO CO CO X rH fc- X X X CO CD rH © CO CO COCO CO rH©CO X X CO CO CO CO rH X rH X CD CD X CD CD X CO CO CO CM CM 01 0) CM CO CO CO CD LO X CD CM HrJ" COCO CO COCO rH CO LO rH CM TH CO © CD CM CO CO CO CO CO CD CD XrH CD CD i-< t- lO rH CO -H- CO CO CO t- CO rji C) X Tf H CM CD IN © X LO t- CD LO CO LO fc- CD COX H i-l CO rH X © LO CD fc- ■> rH LO CO CD CD CM CO 03 CO rH fc- © © CD fc- LO CO CD HNHNO CM CM CO CM CO CO CO rH lO XCD CD ©CM l- o. H '" COCO © X TH© CO CO © CO TH tH CO © CD CM LO t- CO CM CO CO CO © -# t- rn fc- CD © CO © C- CO CO CO CO 03 L- CO © rH iO rH lO X © rH LO CD lO X rH lO CO CO 01 CM CM rH CO LO rH CD LO CO CM CO lO © CD CD CM CM CO OS 05 rH tH © OS rH CD © CO CM CO CO CO CD CD C- X X X © fc- LO OS CM CO CM CO CM X CO H CM CM cm" LO t^ x" CO fc- iO rH CM rH CO CO CO CO CO rHXCDCD© fc- CO CM lO OS CD X tH X LO © X fc- rH X COX rH © LO r rH t- LO Tj< co oxm-^t- CD CO X CD © CO CO CO CO CI CO CD LO t- CO I- rH tO CD X CO © CI cc. CD © CM rH CO rH t- CM CO rH CO CM CO CO CO X rH CNI CO CO CO ■h^ CM ^rH CO CO rH Tf CM t» LO rH ©CO CD X CO CO CO CO CO CO © rH © CD CD rH LO rH CO CO CO CO CO CM X C- Cr- iO tO rH OJ Tf LO © "HH t> CD X LO CD CO CO CM CM CM 0) 01 X rH © lO CO CO CO LO LO © CD CO CM © © X © CD rH © Tf [- © CO CO COCO CO t- CD CD C- -hh © rH X CD CO CO CO CM CO CO X Ohh © t- CD LO CO CO CO CO CO CO CO CD CD iO CD rH © LO XrHiHCMcO CDCOCDCOCD CO 00 ^ "^ CM ^f L- t> CO U5 CMCOCO COX C-iOrHXCD "^LOt-CDCO CM-^CDCD^ tPCM CM CO X iO t> CD CM CM O CO ^ CO CO Ol CO CO CO lO CD CO CO CD CO lO rH CO CO X X TH rH CD CM rH Tj< X CD CO CO CO CO CO LO t> CO CM CD t- CM tr- CM © CO CO CO CO CO CM COT* t> X -* CO CO X CM rH rH CO T* 00 00 rh Cr- OS CO CO CO CM CM X OS OS CM rHCO X CO X © CO CM CD X CM tH © Tf LO f- CM CO CD X rH XX CO X X rH CM t- CM iO rH tJ* © X LO X X X X X t- X CD X OJ CD LO rH t- rH -hh X CD CO X © fc- CO CD X © CD X CD CM t-t-t- rH X CD rH CO CD CD X CM t- rH © CO X X CD XXX co co LO X CM CO LO CM t- t> t- CO © iO lO LO X X X X X 01 X t> CM X tH CO CD CD- CI X X fc- CM CD rH CO rH X LO CD © X X X X rH © rf CD rf fc- CX LO X X CM t> LO X X CD CD- CO X CD' CD X CD CD CD CD rH CO X X CM X X C) L^- CO CO t- X X X X X X © lO X LO CD rH CD t-- CD N X X X X X CM CD CM CD CD X X X X X CD CD CM t~ X X t> CO X -rH X X X X X fc- fc- CD X LO CO rH LOrH CO CD X fc-^H LO X X XXX CM rH CD 03 CD -TJ<©XrH© rH-H/cOiOCM rHiOCM X CM fc-CMXCMfc- Cl'0 03 ©-rH CDCJrHfc-t- COHOffiH XwXXX -t rH © y. x © X X -* © X fc- C3 rH "^ rH CD CO CO X X X X X CD rH CD X X X fc- CD CD CD Ol LO X CO CD rH x x x x rH x rH fc- lo lo CD CO CD X X XX X X X LO CM LO CD © t- t- X © rH rH CD CD X © CM X X X X X © CO X rHCO fc- CM © X 03 X ^ XX ©X X X X rH X CD rH CD Tf Tf CM CD 03 © t- X X X ^ X CO Tf CD CM rH CD CD t- rH CD X X X X X rHCOC- XX CO r(« CO -rH CO XCO O CD iO CM rH rH © fc- CM © fc- X fc- © CD X lO CM rH fc- CO CM X CD "Hi ©rH X t- CD LO CD X CD CD © X C-3 X fc- 01 C3 CD 03 CI CM fc- CD LO rH CM CD CD X rH X N 03 X X CDCD X 03 03 X X X X © X X LO CD CM iO rH CD CO rH Cv) iO CM CM X X X X ©CD fc- CD CD CD © CD LO X CM X CM CM X rH X CD rHLO ^CMCM CO X CM X X X X X CM CM Tl< © rH XXX 03 C3 03 LO lO X CD CM CM © CM CO CO fc- rH CD X X © X 03 X X X ©CMCD XCM -^THOJrHt ©"H<©03X X X CD T-t 03 © X © X 03 CO CD iO CO rH CO rt< © LO CD © CD t- X IO X CM CM X CM CD rH © CD rH fc- 1- 01 fc-© rH XXX X CO X CD cm a ^xio-^t- CM CD © T* rH CO CM X X X CD rH 0> rH CM x rH © tH n X X rt< CD © X CO © X CM X CD X 03 X X X CD -rH © fc- X CD CD 03 © CO X CM X X 03 X CD rH "HH LO t- lO XX CD X X XX CM Tf CO X LO CO X rH © -^HX© XXX CO CO fc- oo CO co rH oa co co X X X CM CM CM X LO CD © X CM X X X t- rH CO 00 rH © © fc- rH co X X CM X CM CD X fc- fc- © fc- CD XX n X X X CO X rH © CM LO rH ©rHiOfc-CM fc- CM CD CD CM X rH rH CD © CO CD © CD rH © CO rH iO © fc- rf rH X 0) X "# X rf © 03 X rH LO LO X rH CO t- rH IO CO X C3 X X X © X rr tr- X X CM © C3 03 LO CM © X fc- CD XX X X X CD fc- CD rH i-H fc- © LO CM X co co co co oa CO X CD © CD fc- LO lO CO LO X X X 03 CM X 03 rH C3 C rH 03 O ©© XX LO © X XCM CM CM LO fc-CM CO X X X X X CD X X rH rH rH CD fc- X X X CM X CM X CM LO"H*rH X X lOtHcO X X XX X © CD fc- 03 rH CO CD CM*tfiOiO© CO 00 t* 00 CO rHLOiO X rH ©"HHXiOCD XX03 CMfc- rHCDiOX© X-^XlOCD CM CD lO OS CD CO © fc- fc- X LO rH CM X X © CD © X X CDCM fc- rH X CM XX X ©CO CD CD X 00 t> X iO CD rH XrH Tf X rH X X X X ^H i-1 t> X fc- LO CD CM fc- X CD X X X X CM 03 lO rH X X lO © X © fc- X CD fc- CD fc- CO X X X CM 03 lOXX XLO LOOIXXCD rHCM m rH© iO t- fc- fc- OS CMrHiOXrH CDCMCM rH XXX LO fc- X X X LO CD © © t* rH ■^ rH fc- OS X X X X X X OS CD CD fc- CD rH ■»# o X X X X X X X lO 03 lO r- 1 © OS OS CD iO tJ X X X X X rH © iO CO CD fc- OS rH OS rH rH 03 CI CD 03 C3X OS CO X LO OS X CD X t- rH X CM X X X X OS X X © tJ* i-t lO OS 0-3 X X XX rH LO CO ^H OS OS OSX X X OS CO X X X 03 rH X CD CM CO OS C- OS X OS X X X CM C3 tH CO LO CD 03 CD © fc- 03 C3 X X CO © X © fc- rH iO fc- ©X X X X rJ CM tJ< CO CO X X CD rH © X X X fc- © © fc- CM X CO Xt-HT?0 Tf HO CM CM OS OS ©CD C^ LO X rH OS X rH CD X CM CM X CM CO LO CO I- CO X X 03 X CO OH © rH fc^ OS rH LO XXX CM © CD COOS rHOS 0) CI tJ* OS © fc- CD X CO © rH © X 03 X X X OS ^H tH o CO XX XOS fc- X X -^H CM CD X © rH CM CM 03 X X X rH fc- TH © fc- CO OS © CM X X CM XX CM 'tH'**''^ Xfc-LOCM' os fc- rp 03 rHOS X X CM OS OS LO rH © LO rH LO Tf LO X X X CM CM lO rH © CM OS X X 03 01 rH © ©fc- XCM © fc- X X CM CM OS CO © rH X CM X X X fc- rH rH rH X rH © OS CM fc- XXCMXCM X lO rHrH 03 CO rH 03 rH OS X X X X CM rH OS X X CO rH iO ©' CD* CD* fc- iO X rH OS X X X X CM X © OS OS CD © fc- rH CD X X CM X CD X©CDXrH X © X LOfc- rHCMCDfc-X XrHXCMX CD fc- CM © 03 X CO iO rH t> XrH CM CO CD © rH rH OS © fc- rH X © CO rH X 03 X X X r S X ©X X X 01 X iO 03 X X X OS © rH X © OS CM LO rH X CM X XX rH LO CC OS fc- fc- © 03 X OS X X X X CM X rH X rH rH © XXX X CD fc- rH X CD rH fc- lO CD X X X CM CM CO rH fc- rHrn OS X X 03 CO rH -i OS XCM CM fc- --I CM fc- X n LO CO CM X X X X CO X X CO OS rH X © CD iO X X X CM X CM CO © n fc- CD rf t> rH t> CO X C^ LO LO rH X X XX X X fc- X CD CD X LO X© 03 03©CDrH 03XX03X LO rH rH CO rH fc- X OS LO X COX' rH CO fc- © rH C- rH X X CM X CO "-I © LO © 03 fc- X X X X X X CD rH O] CM 'X CD- X CDrH X X OS LO 01 rH CM rH © CO fc- fc- XX X XX 03 X 03 CD fc- X rH LO LO © X XX XX X fc- OS CO CD rH XXX X X CM OS rH fc- CD © iO X X X rH CM C3 © lO CD fc- X CM XXX XrH ©rHfc-LOX rHCMXCDrH X fc- X CD 03 5 CO lO rH CO X LO X X rH © rH fc- iO fc- LO LO CM CD CD rH X X X X X CC CD lO CD LO rH rH © t> OS X X X X 03 CM X X X rH CD X CD CD CO X X X X X OS 01 X 01 03 X fc- CD OS X iO lO CM CM fc- X X X X X CO X CD -t< CD COX LO X fc- LO CD Ol © X fc- C^ XX X XX LO OS X fc- © X rH lO lO rH X X X X X LO CM rH t - t - X LO rH rH © CM © X CO rH CD OS X X rH CM CM CD 03 03 fc- rH CO | XrHrH CO fc- LO XXX LO OS ©CM fc- LO rH rH X © X X X X X rH X Xfc- CM OS © CO fc- rH X rH X X X CD LO rH LO CO © £ £w££rH! IO X 03 X fit wis Hw&^w ^r-t^i^w wf^^ fs f$ ^f$H>$^ i$^a ££ t^w^ww r^^w^w wa^^ps lO CD © rH LO LO ©© © rH LO XX X rH 03 LO rH lO LO cr, X' X rH zzzzz t-t-HiOOS rH LO iO LO X ; £ Z 00 2 rH rH X © rH LO 2 fc fcfcooZfc rH rH CD CD X rH rH CM rH rH ooZfc © OS X iO rH © rH fc- rH X LO CM© rH rH CM zzzzz fcooZoofc © lO OS CD OS CM rHLO©rH CO rH CM X CD X CD CD rH CD rH CMX X CM fc- LO rH CM CM CM CD CO rH OX© CMX © rHCO X OS © LO CM X rH OS LO X LO x fc- lo X rH LO X 2 C 3 < e C O t- rfi -fcJ cSgcSao J2^:£ a c 3 t — ". ". i — i r^ ~* ~ ■2 tS 2 » & o> .t: o i- a fflfflfflBU •c.5 CO MJ=J=J= UUUUU El«|lp| J2Ph o o of- oZ O UUO O gjn Z cP-. 3 cd ci cg_ OQQQia ■I s fc<:o^ ^ , rt cci ss? 3 5 £ * M ■6 e* 5 Ew 3? Ub^CXH PIH ;TJ to E ca c o 3 cu ri J> o >— i *-s*£ a >*£ ■O 3 s '5 : - I°c12^ CZ - - w O % cd" 6C os!.§§ o ■oZ " cm* d "* os -# -* t>" cd r-5 co O O m O ir- LO OS OS X t— O CO O CO O C-- OS lO -3* O O OS OS X CO CM CM CM COCOCOCOCO CO CM CM CM CO CO CO CM CM CM O O LO CO CO t— CD CO O LO Tf OS LO CO O Ol OS OS OS OJNOod CD ■* i-H CM CO CO CO t— CO OS iflOO'l'W moaiai t>o^cMco o x os co "* ohoojoj COCOCMCM COCOCOCOCO COCMCMCMCO CO CO CO 00 CJ CO LO O CO CM CO CO CO X OO CO t— -<# b- O CO LO CO lO riddai t- cc ^J i-H 06 cd as cd cd rH i-h ■* co ci ^ IT- HHC5 00 i-H CD lO IO HOOOlt- CM CM >-l CM 1-1 CO CO CO CM COCOCOCOCO CO CO CO CM CO COCOCOCOCO oo^Oi-h aiooaiooo ajoioat^ co ■* co as t> co r-3 i-H od tj! ■* i-I io* as co x co ci rt* w o ohd c- 00 CM CM O OS CO 'X tr- tr- i-H »— * 01 O X 1 tF ■* CO LO CO CO CO CO CO COCOCOCOCO COCOCOCOCO COCOCOCOCO b- CO CO ■■# CD i-h CI lO CO O OS 00 rH CO CO CO CO 00 iH d id cd ai oai^Dx'co r-5 co* cd x> os c- ■■* as i-h as COINMO O CM X I- 00 C0CMCMOX rfiOiOCDT)' COCOCOCO t# CO CO CO CO COCOCOCOCO COCOCOCOCO Oif^Dt-Tj* lOOMW 0> tH fc- 00 CO CI LO lO O m t>* d d co co I d lo t-5 as i" ci ci x lo •* -* id ci i-5 o o as as oo ' OHHj] o Tt X"i< o aitDOi^o CO CO CO CM CJ COCOCOCO CO CO 1 CO CO CO CO 00 00 CO O OS CO b- CM CO CO b- OS fc- O CO CO CO OS ■* 00 CD O CO co ai cm" co ai ci cd ai cd ci ai co x id co fc*- ■*' rH »h co i-4 O O CS 00 Oi r< h C-] -^ © IO 00 IO rH Olt-OWO COCOCOCMCM CJ CO CO CO CO COCOCMCOCO CI CO CO CO CO X X CD OS X O OS CO O Tf X X LO CO CO CJ -* X LO CO co .-5 i-5 co lo o t- o co no ai ai t> ci co d cm* id ai co WCJHOH O CO CO -* CO HhWNCl O X rH tr- i-H COCOCOCOCO COCOCOCOCO COCOCOCOCO COCOCOCOCO X 1 - tMO O CO O lO LO O CO OS i-t CJ O t* o X X o t- x* d ai o i>" t> co d c-i 'i* as i-5 d id co oox'-^ho •# CO iH i-H CO H m Tf CO X CO OS Tf OO CO rH C© CO OS CO COCOCOCOCO COCOCOCOCO COCOCOCOCO COCOCOCOCO CO ^ CO rH Tj< ^ CO CO tH lO tr- O ">* CI tr- t- LO CM b- r-5 ** cm cm o I co co id -i" u: io d d co ci r-5 .-5 id ad io^mhio i iotcxio) -* as io as co ci as oo as ci COCOCOCOCO COCOCOCO COCOCOCOCO COCOCOCOCO x ->* as os co tr- oo as ■># cd r-( oo o oo -rf to co © tj< co x t-" co d ^ ci x" o ai cd i>" i-5 d as --i" tr- o cd b- lo OOOlfflOl OHHO^ CJ tr- CO lO i-h ocooi>o CO CO CO CO CO COCOCOCOCO COCOCOCOCO COCOCOCOCO t- b~ CO CO CO CM OS CO CO iH N H Tf t- O 00 CO CO "^ CO ci cd -*■* --5 cdaiidco'ai cdxidcdcd lo d id ai x HHHOO O N H H tJ CO tr- CO CD CO Ht-Ot-O COCOCOCOCO COCOCOCOCO COCOCOCOCO COCOCOCOCO X CM i-H tr- LO rfcOCDLOCO H05C0O0) CO o o t- o t- t>" CO CD O CO CD CO* H to Ht-OSOSCO CO CO Tj* CD tH CM CO CO i— I CI CO LO CM CO CO LO X *^f t- CO CM X i-t X CM COCOCOCOCO COCOCOCOCO COCOCOCOCO COCOCOCOCO ■^T^cocoas co ■* as i-h lo oo io rH © os as as io o as oi>ioq6c6 ^fCM'-'idco' idtdasoco d ci d cd x ** co -# eo co io tr- co m co co as lo os ^h co as ci as -* COCOCOCOCO COCOCOCOCO COCOCOCOCO COCOCOCOCO o rt< os CO co TfTf cdloio TfnOHH lo lo lo os co lo" ci t> io" id x" d id d co" rH OS *<-)5 ""l" 00 CO Tj5 i-J Tj5 CO *<# tr- "# co ** lo t- co co as t> os co os ^ -^ as cm as LO COCOCOCOCO COCOCOCOCO COCOCOCOCO COCOCOCOCO OCOtPLOtP CO t- CO OO OS CCH^OICO CCOCOt"* -jDininoscd wed'-iaied i-nidio't^os asx'oicdcM" OOOSXOS GOOlHHTf HMJi^C: OS CO © ""tf OS CO CO OJ CM CM OJ OJ CO CO CO CO CO CO CO CO 03 CO CO CO CM LOOiOXLO t>X"^COt> OS -^* CO rf CO OSXX-"#OS ■^CMXcdx ^dini>'cdx iocdLdt>cd co co co co ua HHOVOSOS X"Hr- 1 OJ LO H00HIOO Ot-OiOOS COCOCMO-3CM CMCOCOCOCO COCOCOCOCO COCOCOCOCM co th t> b- i-t co os W co oo lo x t- o] cm ^^oiom cm as co co i-I as x co co co ^ cd ci tp oi r-5 od ■*# © os CO C3 H O W OCOCM^t- CMOSCOOCM rHXi-HXO COCOCOCOCO COCOCOCOCO COCOCOCOCO COCOCOCOCO CO as CO CO LO GO © CO CO CO CO tH CO rH CO CM lO CO 00 ■<# co co ci ri" lo id t> as t> ci co as ci -^ cd as cd -^ © t-h u) tj p.] h tji coiococoas coos-^xco hci c j as ci COCOCOCOCO COCOCOCOCO COCOCOCOCO COCOCOCOCO as co -^ i— (co xhichco cccohioh co © iH co © lo tp ci ci ci as co id ci x co co cd t> t-5 co *-J co to od L£3 lO CO CO tO CO CO -+ L- OS CO O -rf X -^ C] O C] OS C3 COCOCOCOCO COCOCOCOCO CO^COCOCO CO'rfCOCOcO X O X CO LO LO Ttf <& rH "rf OS t> LO 7-H t- OS O CO ^ © co ^ od od i-5 aiidLo^Ld i-Hcdcd^ci to t> as co od i-ioasxx i> os i-t co -^ ocoascoo os co os co os CO CO CJ CO CJ CO CO CO CO CO CO CO C] CO CO CO CO C3 CO C3 LO r-J tJJ t> b- COI>XCMCO COCOC0l>CM "^OXXCD t- L> CO rH rj rj5 to i-5 lO CD LO* CO t- © CO CO OS CO tH ©" 1-hooosx xocicoio o^o-^o as'-oo-^o COCOCOCOCO CJCOCOCOCO COCOCOCOCO COCOCOCOCO t>LOcot--^ t-iocoo^H ocoasoas cmloo-^o co Tf id as cd id x" id ci co cm" t> co oi t> co x* od x x Tf i— IHOIH OS CO CO lO O H CO W "S H Ot>i-fCDO COCOCOCJCO CMCOCOCOCO COCOCOCOCO COCOCOCOCO tO OS OS 00 CO 00 tO LO OS "^f COCOlOOi-h CM^XOCO lo ci cd x -rf i-5 cd as t> ai »h co os th t- to lo *h oo oo CDCMCOO"^ i-H^-^C-X COXCOt-CJ HCOMt-H COCOCOCOCO COCOCOCOCO COCOCOCOCO COCOCOCOCO OS "^ tO CO © TfCOt-t-X COLOLOCOCM tr-Ot-TFLO "^cdaicici ■^ostj5cocd lo" id cd cd o © ad -^ ci od t> CM CO rH tO H Tf m ■» Ci CI X tJ* t> CO CO X CO X CM COCOCOCOCO COCOCOCOCO COCOCOCOCO COCOCOCOCO CD O LO O fc- X CD OS CI CO LO i-H CD OS -f OS tO CO CO iH X t- O O X CO CO CO CO CO o co os as co O i— I t-~ lO iO as o o as lo CO CO CO CO CO -# CO X CO o OS O O OS i-( CO CO CO C 1 CO t-x J. f-i CO co OtCCOHH OS X CO CO OS t- iH CO OS O f~ 00 O t-rH©rH CO CO CO CO CO CO -1* «t O H O O i-i o to CO CO COCO CO t- 'f H lO lO CiOHHH CM CO CO CO CO O OS i-h t- CD' C ] CO C) O LO CO US CO CI CO i-h as cd o -^ iH as co CO lo CO CO CO CO CO OS as CD CO CD tNHCOOt- CO CO CO CO CO O i-h C] CO CO CO CO CO CO CO osc-oloti* cot>t*Hos xi>-^f>io O CI CO CO CO CO c ^ t- OS -rf LO CO i-h O Tj< CO C- CO CO CO CO CO i-H 00 HHCO LO CO LO ci X CO CO CO CO CO CD LO LO irj< l> CJ CO LO Tf -# COCO CO CO CO ■IOSO CJ CO OS OS CO OCOHHCS O CI O O CO CO i-h LO -■* or CO CO CO CO CO t}< CO CO CI CO CD tJ* lO CJ OS CO CO CO CO CO O X CJ CO i-H CO CO CD Tin LO CO CO CO CO CO t- LO CO t- CO CO oo dai CO t> CO CO i— ( XOOSt- X i— I CO "^ CD COXXCJi-H t^ 00 OS CO ^ CJi-HXCJCD OXX-tfO C-COt-CDCO l«LO OlO^H co o as co CO CO CI CO as CJ t- t- CM CD O CD LO LO CO CO CO CO CO co b- cj "* as H OS O LO CJ CO CJ CO C] CO os co os as t"- i-H CO O i-H CD CO CO CO CO CJ CD O i-H OS LO C- X LO CJ X CO CO CO CO CO i-l CJ t> ■-* -* r-i OS OS iH tO CO CO CJ CO CO CC CC CO / iO t- t-< CO iH CO CJ CO CO CO CO — ro CO CO OSOCJLO COOSOi-HCO ^ O CO X Tf cjxlogccj i-h o cj cj t- as cc o x x lo co x w i-h co co LO CD O CJ CO i-H o b- CO COCO CI LO CO i-H i-H b- t- O b- CD iO CO CO CO CO CO O CO i-h CO b- CJ O i-H CD CO CO CO CO CJ CO OS O CO CJ i— I CJ O rH tO 00 CO CO CO CO CJ CI X CO i-H CO OS 00 LO CO o CO CJ CO CO CO O X CO o o COOSOCON CO CJ CO CO CO WMHTJO i-H i-h CO 01 CO CO CO CO CO CO CO i-H iH LO CO CO *"* b-COCOLO t>OStr^COCJ XXXXOS X CO OS X OS CO OS b- OS © C] "* lO T)i H OSOLOCOLO CO-* OSOShas otr-XTt<^- 00 © O C- CO OS O X CO CO CJ CO CO CO CO os as cj lo as -* X CO CO CO CC'HHlO X CO CO CO CO CO "* CM 00 LO OS CI CO LO -h* iH CO CO CO CO CO b-X CM tr- ee CO i-h t- O CO CD Htjjo^h IT- CO CJ Tj* LO Tf CM CJ CO CO CO CO COCOOOSTf OS CO O 00 CO CO CO ■* CO CO CJ CO i-H ■* CD LO TP CO OS b- CO CO CO CO CO CD CD OS CO LO i> OS fc- X CO CO CO CO CO CO C- LO «tf ■* CD O i-H OS Tf LO CO CO CO CO CO t> CO LO i-H i-H OO CO CO b- OS CO CO CO CO CO cox x tr- co CO Tf Cr- LO CD CO CO CO CO CO X o CO OS CO CO COOS^LO Ht-OSCJO XCOOOCJ TjHtr-Oi-HCJ X -HH -rf oo CD X -# X OS CO X 01 CJ lO LO OS o i-H CD ■* CD CD Tt< CM CJ CO CO CO CO X OS lO ■* OS as cj o as x CO CO "* CO CO © b- W CO rH CO Tt L>- OS 00 CO CO CO CI CO COXLO -tf -hh x as x x tr- ee co co co co rH t> tr-COCJ rH CM OS "# CO CO CO CO CO CO LO CO O CD LO os ■* ^ t- as CO CO CO CO CO lo in co as i-h CO LO X LO tr- CO CO CO CO CO 1-H CO: -f OS coco cocococo cocococoir- cocoasLnt- ioi-hlolot^ :oscoi-h* -^locococi t>ascoxLO loo X CO b- b- CM as o xcm «* oosx CO CO CJ CJ i-h as ■* o ci tr- os -* co ci CO CJ CO CO CO x co co as x OS OS OS LO CO CM CO CO CO CO CJ O ■«* CD O o x as os c~ CO CJ CI CJ CM O CO CO i-H LO os oo o i-h as CI CJ CO CO CJ X X X OS Tl* CJ CO CJ CJ CO CM LO X X -* CO O O O i-H CO CO CO CO CO -f I- OrH CO CO COCOCDCMO CJOCOXCO CJCOXlOtJ* ">H*XCr-OCO TfWXHH t> CD i-H C- CM b-OS b- CO CO i-H X t- O LO -h* CJ CO COCO CO CO CO LO LO i-H OS OOSOSt>"# CO CO CI CM CO X LO OS ^ o o as as o x CO CM CO CO CJ Tf OS CO b- CO CXCOHHH CO 01 CO CO CO t-OOSXHi o os x as io CO CO OJ CJ CO OS X CM CJ OS OO I-H r-< 1-H CO CO CO CO CO t-O^tr- CO co b- © O cDXOOStr- XHtHXIt- LO"*tr-'rfCJ COXC1XCO COXX'LOiO Xb- "«* -HHCJ CJ CO i-H i-H O CO CO CO CO CO i-H * CO X CO CJ i-H CO CO CO CO CD CO LO C— i— I CO i-H CO CD LO CO CO CO CO CO tH CJ i-H CD b- i-H i-H i-H OS CO CO CO CO CO CO CO OS CO CJ CO CJ i-t CI LO i-H CO CO CO CO CO CJ CD i-H CO CO O O ^1< 01 * CO CO CO CO CO CO O O CO' CO -# O O i-h tr- CO CO CO CO CO X O OS rH CD --I CO CO CJ CO CO CO CO CO CO COXCOXCO XCDCOC-"* as OJ *# tr- OS oo to CO OS © CO CO X i-H O OCOrPCOCO OSCO tj< n* co co co as cj b- x c- co eo co eo co O CJ CO CO O CO CO CO O CO CO CO CO CO CO rH CO CO rH rH Tf -* LO C- "* CO CO COCO CO CJ i-H ■* CO o •-H CJ CD CO b- CO CO CO COCO i-h o as o Tt» CO r-i O CO 00 CO CO CO CO CO t- lO LO OS o CJ CO LO CO LO CO CO CO CO CO o o CO b- CDCOCO-* TjiOt-LOas COCOOCOO OS CD OS X o H X rf O CO OS CJ X CO LO O b- CJ X X X LO tr- -# x as X CO CI i-H CO CO CO CO X X tP CD CD as cm x x tr- ee co co co co X CO OS O CO CJ CO CO i-H X CO CO CO CO CO b- L0 00 ^t* CO ■* T# lO C- 1* CO CO CO CO CO CO i-H i-H CD X ci co i- co tr- ee co co co ce b- cd i-h ■* tr- CO i-h i-h CO 00 co co eo co eo O OS X O CJ CO CO LO tH LO eo co co co co CO' f CO b- CO CO co as xce TfXCSX CO CM CI CJ CJ CO i-h rt* LO OS O X CO CJ CO CM x co io as CO Oi-HOS eo co co co CO CO rH CM tr- od io* id d cd CO O i-H i-H iH eo co co eo eo CjiOiOCDCJ LOCJCDCJCD ■ ^ co x -^ rHi#as-*o i-Hcot>cox tH o tr- co LO o x as ■•* co eo co cj co co o c- io as t- O OS OS fc- oo CO CI CJ CJ 01 os cd lo os as m [— as os co CM CJ CO CJ CO LO i-H rr Tt* o cc- o i-h as co CI CO CO CM CO ci x eo tr- x as os o as o ci cj eo cm eo CM X c o CO CO ■* oo ■* as H H CI US CO &^^&& c o © © 01 ~v '~.- CD OS OS O X * T(» CO CO £ W £ £ Iz; io co i-h as ce OlClHTjtH co as co x lo lo lo os as os rH CO CO CJ O c/i z :z z c£ O OS CM i-h tr- LO CJ CJ i-H LO o x os lo tr- ee i-h co i-t o Z'ziZZ'z; ZZaiZZ: ^ZZw ^22^2 ZZZZZ o o C C: Tl* CO LO CO X rH rH CO i-H CJ coco eo o os as lo o x tr- co ■* i-h CI CM CO CO -tf - < < CO ■V H M 3 ■± cd bo Sfa C CP > *Tr{5 ocin sis >«^ c a cd c3 3.g c7 cl sss •2^S o o *5 -9 — 05 u S p-o ° ° a] rt S £ s cd"0 MS So a is 22 ^ be Q, is .a ZZ2 1. ■ • Jfl , ■ I— ' -co £ OOOCh '-■ — o"S •.So ^J oil „- g«-B =^= -M tn 0) O O -t^ O 3 rt QJ > g - o --S ■g-s >| 0) o 1- 1 ^ ■*-> e-a c c « cfl rt cd rf J2 "3 CCI-C2 01 OS M M C > J.^ rt Dh b! CO •. in a is ri o c. a. aa a d. a t- rJ U; — I si Sg§S§ <"Q^W S> 32 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY 180 150 120 90 60 30 60 90 120 150 180 60 70 60 70 180 150 120 90 60 30 30 60 90 120 150 180 Figure A-l. Location o/N(z) data stations. (3) If these values are substituted in (A-2), N (z) is found to be 20.7 iV-units at 20 km above the surface. Figures A-26 through A-29 are seasonal maps of the standard prediction error of the exponential fits to the mean wet-term profiles used in the N (z) parameter maps. An rms error in the wet term of more than 5 A7-units was considered to be a reasonable limiting criterion for locations where the N(z) model should be used with caution, if at all. Figure A-30 delineates these areas; the cross-hatched areas indicate that the error was in excess of 5 iV-units for 2 or more of the seasonal months (February, May, August, and November) and the single-hatching depicts areas where only 1 of the 4 months showed such large errors. Further discussion of the uncertainty in these areas can be found in section 3.4. APPENDIX A 33 Figure A-2. Mean sea-level dry term, D : February. 180 150 120 90 60 30 30 60 90 120 150 180 Figure A-3. Mean sea-level wet term, W : February. 34 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY 2 8.0 7 8 7,8 M | ^-^ 180 150 120 90 60 30 60 90 120 150 180 Figure A-4. Dry-term tropospheric scale height in km. Hi: February. Figure A-5. Dry-term stratospheric scale height in km, Ho: February. APPENDIX A 35 180 150 120 90 60 30 60 90 120 150 180 150 120 90 60 30 60 120 150 180 Figure A-6. Wet-term scale height in km, H w : February. Figure A-7. Mean density tropopause altitude in km, z t : February. 36 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY 90 60 30 30 60 90 120 150 180 Figure A-8. Mean sea-level dry term, D : May. Figure A-9. Mean sea-level wet term, W : May. APPENDIX A 37 180 150 120 90 60 30 30 60 90 120 150 180 70 180 150 120 90 60 30 30 60 90 120 150 180 Figure A-10. Dry-term tropospheric scale height in km, Hi: May. Figure A-ll. Dry-term stratospheric scale height in km, Ho: May. 38 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY Figure A-12. Wet-term scale height in km, H w : May. 180 150 120 90 60 30 30 60 90 120 150 180 Figure A-13. Mean density tropopause altitude in km, z t : May. APPENDIX A 39 180 150 120 801 90 60 30 60 120 150 180 150 30 60 90 120 150 180 Figure A-14. Mean sea-level dry term, D : August. 180 150 120 90 30 60 90 120 150 180 Figure A-15. Mean sea-level wet term, W : August. 40 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY Figure A-16. Dry-term tropospheric scale height in km, Hi: August. Figure A-17. Dry-term stratospheric scale height in km, H2: August. APPENDIX A 41 Figure A-18. Wet-term scale height in km,, H w : August. 180 150 120 90 60 90 150 180 Figure A-1.9. Mean density tropopause altitude in km, z t : August. 42 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY 180 150 120 150 Figure A-20. Mean sea-level dry term, D : November. Figure A-21. Mean sea-level wet term, W : November. APPENDIX A 43 Figure A-2'2. Dry-term tropospheric scale height in km, Hi: November. Figure A-23. Dry-term stratospheric scale height in km, H 2 : November. 44 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY 180 150 120 90 60 30 30 60 90 120 150 180 180 150 120 90 60 30 Figure A-24. Wet-term scale height in km, H w : November. Figure A-25. Mean density tropopause altitude in km, z t : November. APPENDIX A 45 180 150 180 150 120 90 60 30 60 90 150 180 Figure A-26. Standard prediction error of the exponential fit to the mean wet-term profile: February. 90 120 150 180 180 150 120 90 60 30 Figure A-27. Standard prediction error of the exponential fit to the mean wet-term profile: May. 46 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY 180 150 120 90 60 30 60 90 120 150 180 180 150 120 90 60 30 60 90 120 150 180 Figure A-28. Standard prediction error of the exponential fit to the mean wet-term profile: August. 30 60 90 120 150 !80 50 120 90 60 30 30 60 90 120 150 180 Figure A-29. Standard prediction error of the exponential fit to the mean wet-term profile: November. APPENDIX A 47 150 120 90 120 60 70 I I rms WET TERM ERROR >5N FOR 1 MONTH K-'^l rms WET TERM ERROR >5N FOR 2 TO 1 MONTHS 60 70 180 150 120 90 60 30 30 60 90 120 150 180 Figure A-30. Areas of doubtful applicability of three-part exponential model of N(z) for z < 6 km. 11. Appendix B. World Maps of aN. The weather stations from which data were obtained for this study are shown in figure B-l. Their locations, elevations and the 5-year mean surface refractivity for each month of the year are alphabetically listed in table B-l. The monthly AN values between the surface and 1 km above the surface are pre- sented in figures B-2 through B-13. If the AN at a specific location is desired for a cer- tain month and year for which a monthly mean surface refractivity value, N s , is avail- able, the following relationships may be used : AN = b (W.-W.) + aN, (B-l) where N s = N exp -°' 1( ^ ; z — elevation above sea level in km. World maps of N (the yearly sea-level value of refractivity), b (the slope of the regression line (B-l) ), and aN (the mean annual value of the refractivity difference be- tween surface and 1 km) are presented in figures B-14 through B-16. If the AN value were required at a station with an elevation of 300 m and a location of 30°N and 30°E, here is the procedure which would be used. Available surface wea- ther reports indicate that the mean N s was 314 for a recent month for which a value of AN is needed. Therefore, at the assumed location, these values are interpolated linearly from the figures : Wo = 320 (fig. B-14) W = 48 N-units (fig. B-15) b = 0.60 (fig. B-16) NT = 320 exp_- 01(0 - 3) = 311 Using the value of 314 for N s , aN is found to be 50 N-units. In some areas of the world (e.g., where the assumption of an exponential distribution of the wet term is largely invalid ; see sec. 3.4) , the use of the regression method to predict AN has definite limitations. To delineate these locations, figures B-17, B-18, B-19, and B-20 are presented. The first two figures are world maps of the correlation coefficient and the standard error of estimate of the regression line of AN versus N s for the 60 months of station data, and figure B-19 gives the percentage of this standard error to the AN value. Areas with correlation coefficients < 0.5 (fig. B-17), standard errors > 5 N-units (fig. B-18), and standard errors > 12 percent of AN (fig. B-19) are shaded, but the use of equation (B-l) for any location in these shaded areas may still be valid if: (a) a low correlation coefficient occurs with a small standard error (typical of sta- tions with a small seasonal range of variability in both N s and AN) , or (b) a large error is found with a good correlation (typical of stations with distinct wet-dry seasons). However, if the coefficient is less than 0.7 (reducing the variance of AN to ~ 50 per- cent) and the standard error is greater than 10 percent of AN (as discussed in sec. 7), it would be reasonable to assume that the yearly dependence of AN upon N s is not sufficient to justify the regression prediction method. Areas represented by these criteria are shaded in figure B-20. 48 Table B-l. Mean surface reft 'activity. APPENDIX B 49 Station Abidjan, Ivory Coast Adelaide, Australia Aden, Arabia Albrook (Balboa), Panama C.Z Albuquerque, N. Mex Aldan, U.S.S.R Alert, Northwest Territories Alexander Bay, South Africa Alger/Maison, Algeria Alice Springs, Australia Allahabad, India Alma Ata, U.S.S.R Amundsen-Scott, Antarctica Anadyr, U.S.S.R Anchorage, Alaska Ankara, Turkey Antofagasta, Chile Aoulef, Algeria Argentia, Newfoundland Arkhangelsk, U.S.S.R Ashkabad, U.S.S.R Aswan, United Arab Republic Athens, Ga Athinai, Greece Auckland, New Zealand. Bahia Blanca, Argentina Bahrain Island Baker Lake, Northwest Territories. . Bangkok, Thailand Bangui, Central African Republic. . . . Barrow, Alaska Beer Ya Aqov, Israel B-Elan, U.S.S.R Beni Abbes /Colomb, Algeria Benina, Libya Beograd, Yugoslavia Bismarck, N. Dak Bjornova Island Blagoveshchensk, U.S.S.R Bloemfontein, South Africa Boise, Idaho Bombay, India Bordeaux, France Brest, France Brisbane, Australia Broken Hill, Zambia Brownsville, Tex Bruxelles, Belgium Bukhta Tikhaya, U.S.S.R Bukhta Tiksi, U.S.S.R Byrd Station, Antarctica Cairo, United Arab Republic Calcutta, India Camaguey, Cuba Canton Island Cape Hatteras, N. C Caribou, Maine Charleville, Australia Chatham Island Chiangmai, Thailand Chita, U.S.S.R Christchurch, New Zealand Clark Field, the Philippines Cloncurry, Australia Cocos Island Columbia, Mo Coppermine, Northwest Territories. . Coral Harbour, Northwest Territories Cordoba, Argentina Curacao Island Dakar, Senegal Dar Es Salaam, Tanzania Darwin, Australia Denver, Colo D.F. Malan (Capetown), South Africa Dijarbakir, Turkey Djakarta, Indonesia Dodge City, Kans Douala, Cameroon Durban, South Africa Elevation (meters) 16 11 4 9 1620 680 62 22 28 546 98 851 2800 62 40 902 122 290 17 13 230 196 246 1(17 49 72 2 9 16 385 4 49 23 498 125 139 506 14 137 1422 871 11 48 103 41 1206 6 100 6 8 1500 68 6 122 3 3 191 299 49 313 671 8 170 188 5 239 9 59 479 16 22 58 27 1625 49 652 8 791 13 14 Latitude 05 15N 34 56S 12 50N OH 58N 35 03N 58 37N 82 30N 28 34S 36 43N 23 48S 25 27N 43 14N 90 00S 64 47N 61 ION 39 57N 23 28S 26 58N 47 18N 64 35N 37 58N 23 58N 33 57N 37 58N 36 51S 38 44S 26 16N 64 18N 13 44N 04 23N 71 18N 32 00N 46 57N 30 08N 32 06N 44 48N 46 46N 74 31N 50 16N 29 07S 43 34N 18 54N 44 51N 48 27N 27 28S 14 27S 25 55N 50 48N 80 19N 71 35N 80 00S 30 08N 22 39N 21 25N 02 46S 35 16N 46 52N 26 25S 45 58S 18 47N 52 05N 43 32S 15 08N 20 40S 12 05S 38 58N 67 49N 64 12N 31 19S 12 UN 14 44N 06 52S 12 26S 39 46N 33 55S 37 55N 06 US 37 46N 04 01N 29 58S Longitude 03 56W 138 35E 45 01E 79 33W 106 37W 125 22E 62 20W 16 32E 03 14E 133 53E 81 44E 76 56E 00 00 177 34E 149 59W 32 53E 70 26W 01 05E 54 00W 40 30E 58 20E 32 47E 83 19W 23 43E 174 46E 62 11W 50 37 E 96 00W 100 30E 18 34E 156 47W 34 54E 142 43E 02 10W 20 16E 20 28E 100 45W 19 01E 127 30E 26 HE 116 13W 72 49 E 00 42W 04 25W 153 02E 28 28E 97 28W 04 'J IK 52 48E 128 55E 120 00W 31 24E 88 27E 77 52W 171 43W 75 33W 68 01W 146 17E 176 33W 98 59E 113 29E 172 37E 120 35E 140 30E 96 53E 92 22W 115 15W 83 22W 64 13W 68 59W 17 30W 39 16E 130 52E 104 53W 18 36E 40 12E 106 50E 99 58W 09 43 E 30 57E Jan. 383 316 365 366 254 297 326 342 326 283 327 284 221 314 307 284 338 294 .'ill 312 307 299 308 316 339 320 338 329 366 348 323 324 312 294 323 310 296 310 318 283 284 347 320 319 351 319 337 314 326 332 253 314 337 351 374 319 307 325 330 338 300 334 345 338 373 305 327 324 328 372 342 376 380 251 337 293* 382 285 382 365 Feb. 389 321 364 360 251 296 327 34 I 323 287 312 283 229 317 307 283 341 288 310 312 305 287 308 :si4 345 323 339 333 377 347 325 322 312 289 322 311 296 310 311 284 284 352 323 316 357 322 341 313 320 327 257 312 338 353 372 323 305 335 339 332 294 335 344 :s:s!> 380 305 329 324 331 368 342 376 382 249 341 292 383 286 382 367 Mar. 389 321 371 365 248 289 :i:so 340 327 288 303 285 243 319 305 283 337 283 310 311 305 280 312 316 341 328 342 326 385 359 325 323 311 283 319 308 310 304 288 279 362 322 318 351 315 346 315 321 324 259 313 346 357 377 324 303 329 336 336 287 337 345 333 372 306 328 322 332* 372 348 382 387 250 337 293 382* 287 383 365 Apr. 387 321 380 368 245 284 32 1 336 329 290 291 287 246 321 306 284 333 280 313 .-ill 311 280 321 317 339 320 348 316 393 362 315 327 311 275 324 312 289 312 299 277 280 371 323 321 343 309 359 317 316 317 261 313 366 363 381 337 305 324 330 349 281 334 351 311 378 312 318 312 32V 376 351 379 372 249 333 297 383 291 382 356 May 387 322 385 375 253 283 312 330 337 290 299 293 246 310 308 290 330 279 320 air, 305 278 335 325 339 319 361 312 393 361 313 332 314 274 324 324 296 8 1 5 304 270 286 380 330 326 328 293 366 324 313 312 267 318 381 370 377 349 310 316 327 368 279 326 362 310 379 327 313 310 318 380 358 370 359 257 333 298 382 306 382 345 June 382 323 386 375 251 292 313 327 346 287 338 294 245 312 318 292 327 277 323 324 305 276 352 325 331 315 365 314 391 363 316 339 326 276 338 331 306 316 325 264 285 386 337 332 323 285 377 333 312 316 266 329 389 377 377 364 325 314 323 371 297 324 367 305 376 343 318 313 305 380 367 362 338 259 330 289 376 316 380 333 July 377 322 379 372 267 305 313 326 354 289 385 299 246 325 324 290 325 274 335 331 303, 285 360 326 327 316 381 31X 390 361 318 351 339 269 350 335 313 320 336 265 283 389 343 338 319 282 375 338 314 319* 263 341 394 378 379 376 332 309 322 375 310 323 366 307 374 353 318 317 303 382 371 359 344 264 329 289 367* 322 379 338 Aug. 373 319 378 381 274 304 315 325 355 281 391 295 247 321 324 286 327 278 339 333 306 288 361 323 329 312 386 320 391 362 319 355 3 11 273 349 331 308 320 339 259 281 388 342 337 320 278 377 337 315 320 267 347 395 379 376 374 330 302 324 377 308 323 369 299 3 72 352 322 319 298 384 377 357 338 269 327 282 366 3 IS 379 336 Sept. 380 318 376 382 259 293 310 328 354 2X2 379 286 244 313 316 287 326 287 33 1 324 300 291 3 17 326 328 317 382 314 393 361 315 347 331 284 343 320 299 317 318 264 278 384 343 336 325 279 370 334 313 314 262 338 394 379 373 366 323 303 322 376 293 324 366 295 372 330 316 311 300 384 381 361 360 256 328 276 368 308 380 313 Oct. 384 313 372 379 256 287 313 329 311 284 353 285 236 308 306 288 328 291 320 316 305 294 325 327 326 321 370 312 390 363 311 337 317 291 339 318 293 312 305 267 283 375 332 331 326 282 357 328 311 311 259 334 379 376 373 347 313 304 327 369 288 320 363 300 370 316 312 309 314 382 379 366 373 252 330 284 375 294 379 349 Nov. 387 313 361, 378 251 291 320 334 333 285 325 285 226 311 307 286 333 294 318 314 305 299 316 329 329 320 353 317 374 362 318 324 312 291 331 317 294 311 307 2 ',9 285 364 324 323 337 305 345 321 314 322 254 331 346 365 373 332 308 303 329 358 291 321 357 308 369 306 318 313 318 379 360 372 374 252 330 297 380 285 381 357 Dec. 383 314 369 375 251 297 324 338 328 284 324 284 220 314 307 287 334 299 312 312 309 305 308 322 331 319 341 325 363 354 324 323 311 296 326 312 295 310 314 285 285 355 321 324 347 317 339 318 319 327 253 322 341 360 372 326 306 310 332 345 295 327 349 321 369 306 323 317 327 376 342 375 385 251 33! 294 380 2.-4 382 360 50 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY Table B-l. (Continued) Station Elevation (meters) Latitude Longitude Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. 113 31W 290 287 287 286 287 298 307 308 296 288 288 52 52W 311 311 310 309 310 314 318 318 311 309 307 23 55E 314 312 312 314 322 330 337 343 336 329 322 106 24W 266 261 258 255 260 266 284 289 272 271 263 114 51W 249 249 248 247 251 249 248 249 248 249 249 32 27E 320 321 323 325 326 323 321 320 322 320 318 85 56W 332 335 338 325 313 315 316 316 314 317 327 58 32W 340 349 344 338 331 326 325 326 328 333 335 147 52W 314 309 304 301 304 315 322 322 311 305 308 128 06E 311 319 319 313 315 313 313 316 317 309 300 15 02E 288 279 282 298 316 337 353 360 358 336 297 122 35W 306 302 296 294 295 307 314 313 305 298 299 111 58W 315 311 306 302 301 307 316 317 310 305 305 11 37W 302 301 300 304 305 311 308 313 312 310 309 16 54W 329 329 324 329 336 345 352 352 349 344 335 91 45E 336 332 333 348 368 385 392 394 388 377 356 128 18E 292 293 287 283 294 288 287 284 279 286 281 60 25W 310 310 309 308 309 315 324 324 315 310 308 09 54W 334 334 332 328 328 324 324 324 322 324 326 111 21W 272 271 270 269 271 277 278 273 271 270 270 88 08W 306 305 306 308 316 329 338 342 327 316 306 51 55E 315 314 315 314* 315 331* 325 326 320 320* 317 43 34E 320 318 317 317 311 302 303 306 310 309 321 24 58E 309 311 311 312 316 325 333 334 327 319 314 155 04W 350 349 349 353 358 359 361 367 362 361 358 147 20E 319 323 323 317 315 313 314 314 314 312 312 114 10E 331 334 348 363 378 385 391 391 383 360 348 93 23W 301 300 297 296 300 313 323 323 311 303 298 29 05E 317 317 318 323 333 342 352 354 342 333 329 27 10E 317 316 314 319 326 332 334 332 324 328 325 73 01E 301 290 292 284 297 339 355 368 359 310 297 169 31W 363 361 365 371 366 376 375 375 378 376 371 66 59E 324 341 355 370 384 394 391 391 387 368 350 73 08E 296 297 295 295 296 304 312* 311 296 294 296 23 53E 310 311 310 313 322 327 337 336 327 320 316 22 37W 309 310 311 313 317 321 325 323 322 316 313 135 10E 316 311 306 306 310 329 346 346 328 310 307 36 17E 309 308 308 308 311 321 325 325 317 317 314 32 33E 287 284 283 285 286 305 328 341 329 302 296 102 28E 331 328 320* 316 312 314* 321 317 313 313 325 108 07E 318 312 306 299 301 314 324 324 311 304 306 12 40E 314 314 315 316 319 325 333 333 329 324 321 82 54E 316 313 311 309 308 317 333 330 320 311 312 134 29E 385 383 383 387 391 385 388 387 388 386 388 92 53 E 309 305 304 301 300 310 327 327 315 305 304 63 37E 310 309 308 305 304 321* 328 320 311 307 307 30 30E 308 307 306 307 313 320 324 328 319 314 314 08 22W 320 321 323 324 331 334 340 342 341 334 324 147 00E 378 377 379 381 382 377 377 377 377 376 380 03 20E 377 382 382 384 385 378 373 372 379 382 381 93 09W 325 328 330 346 362 375 382 380 369 350 333 115 09W 283 279 274 269 267 264 279 284 271 275 278 30 LsE 312 312 312 312 318 327 334 334 327 320 315 15 19E 369 368 368 367 368 355 345 346 352 360 364 01 11W 314 315 315 316 320 324 329 330 329 324 318 77 02W 354 357 356 350 343 339 336 338 336 340 342 14 07E 311 313 312 313 319 325 336 332 326 322 317 09 08W 325 328 328 324 329 330 335 336 341 330 326 32 34E 371 370 366 361 348 341 339 341 345 356 357 13 13E 375 374 377 380 369 356 351 352 359 367 375 23 57E 302 306 301 307 315 322 330 327 318 312 309 158 57E 320 319 319 317 316 314 315 316 315 314 312 80 HE 364 363 368 379 379 367 369 376 380 384 379 03 41W 296 296 296 291 300 304 298 299 305 304 300 171 23E 383 378 381 385 387 381 383 383 383 383 384 31 39E 298 292 299 320 337 353 358 362 363 358 329 52 44E 311* 315 312 312 311 316 322* 321* — 312* 314* 67 39W 339 335 336 345 354 352 353 353 354 355 350 37 52E 317 317 319 316 313 313 313 314 313 314 314 23 25E 323 324 319 301 284 279 275 271 274 282 308 62 53E 299 298 300 303 305 306 306 306 303 300 298 106 26W 346 339 342 351 360 374 379 380 384 377 354 166 40E 302 301 310 307 310 311 312 315 308 304 299 122 52W 305 303 301 300 304 307 306 305 306 307 307 144 58E 328 328 330 326 321 324 322 319 320 319 324 89 31W 350 349 354 363 369 376 379 378 381 370 357 27 13E 319 319 321 323 336 348 361 361 345 340 334 80 17W 341 343 347 357 367 375 379 379 380 362 352 09 17E 313 315 315 319 330 340 346 348 340 329 319 37 37E 307 306 305 306 314 322 332 327 318 313 310 Dec. Edmonton, Alberta Egedesminde, Greenland El Adem, Libya El Paso, Tex Ely, Nev Entebbe, Uganda Eureka, Northwest Territories Ezeiza, Argentina Fairbanks, Alaska Forrest, Australia Ft. Lamy, Chad Ft. Nelson, British Columbia Ft. Smith, Northwest Territories Ft. Trinquet, Mauritania Funchal, Madeira Gauhati, India Giles, Australia Goose Bay, Labrador Gough Island Great Falls, Mont Green Bav, Wise Guryev, U.S.S.R Habbaniya, Iraq Helsinki, Finland Hilo, Hawaii Hobart, Tasmania, Australia Hong Kong International Falls, Minn Istanbul, Turkey Izmir, Turkey Jodhpur, India Johnston Island Karachi, West Pakistan Karaganda, U.S.S.R Kaunas, U.S.S.R Keflavik, Iceland Khabarovsk, U.S.S.R Kharkov, U.S.S.R Khartoum, Sudan Khatanga, U.S.S.R Kirensk, U.S.S.R Kobenhavn, Denmark Kolpashev, U.S.S.R Koror, Palau Islands Krasnoiarsk, U.S.S.R Kustanay, U.S.S.R Kyev, U.S.S.R La Coruna, Spain Lae, New Guinea Lagos, Nigeria Lake Charles, La Las Vegas, Nev Leningrad, U.S.S.R Leopoldville (Kinshasa), Democratic Republic of the Congo Lerwick, United Kingdom Lima, Peru Lindenberg, East Germany Lisboa, Portugal Lourenco Marques, Portuguese East Africa Luanda, Portuguese West Africa Lvov, U.S.S.R Macquarie Island Madras, India Madrid, Spain Majuro Island Malakal, Sudan Malye-Karmakuly, U.S.S.R Maracay, Venezuela Marion Island Maun, South Africa Mawson, Antarctica Mazatlan, Mexico McMurdo Sound, Antarctica Medford, Oreg Melbourne, Australia Merida, Mexico Mersa Matruh, United Arab Republic. . . Miami, Fla Milano, Italy Moscow, U.S.S.R 676 48 157 1194 1908 1146 2 20 138 160 300 375 203 359 110 51 514 44 40 1115 210 -21 45 58 11 54 66 360 40 25 224 5 4 555 75 50 72 153 385 24 258 6 76 29 194 171 182 57 8 40 5 664 4 290 82 is;, 105 103 44 70 329 6 16 657 3 389 16 442 26 945 14 78 45 ■10!, 44 22 25 4 120 156 53 34N 68 42N 31 51N 31 48N 39 17N 00 03N 80 00N 34 50S 64 49N 30 51S 12 08N 58 50N 60 01N 25 14N 32 38N 26 UN 25 02S 53 19N 40 19S 47 30N 42 29N 47 07N 33 22N 60 19N 19 44N 42 53S 22 18N 48 34N 40 58N 38 24N 26 18N 16 44N 24 48N 49 48N 54 53N 63 59N 48 31N 49 56N 15 36N 71 59N 57 46N 55 38N 58 18N 07 20N 56 00N 53 13N 50 27N 42 23N 06 44S 06 35N 30 13N 36 05N 59 58N 04 19S 60 08N 12 06S 52 13N 38 46N 25 55S 08 49S 49 49N 54 30S 13 00N 40 24N 07 05N 09 33 N 72 23N 10 15N 46 53S 19 59S 67 36S 23 UN 77 51S 42 23N 37 49S 20 58N 31 20N 25 49N 45 28N 55 49N 287 306 317 262 249 319 333 338 314 310 294 303 311 303 330 344 289- 309 332 269 306 316* 322 311 356 319 334 299 321 322 303 366 330 297 312 306 313 309 293 328 314 316 314 387 310 310 308 320* 379 379 329 280 313 367 313 349 313 327 362 374 304 320 366 301 383 304 314* 344 313 321 299 340 299 307 322 353 323 346 316 307 Table B-l. {Continued) APPENDIX B 51 Station Elevation (meters) Latitude Longitude Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. 331 330 332 322 314 314 316 317 312 313 323 309 309 308 308 310 315 324 325 317 313 311 328 326 326 318 314 315 317 316 314 312 320 319 321 318 314 313 316 321 327 314* 314 315 322 326 325 318 313 317 318 318 316 312 315 319 .300 297 305 308 343 370 369 361 341 321 277 278 277 289 289 282 281 280 277 276 284 380 382 381 379 373 367 364 362 367 367 371 311 312 312 318 327 340 355 354 347 330 320 313 313 313 312 313 315 325 325 318 313 313 309 311 311 324 338 351 363 361 340 326 313 309 308 307 308 307 307 309 306 307 307 307 296 303 305* 310* 304 300 304 302 299 300 297 313 311 308 299 306 334 373 379 362 332 318 286 281 285 308 331 351 362 369 369 343 308 317 315 313 314 315 325 326 331 325 318 320 298 296 293 291 293 299 311 307 301 296 293 313 315 315 313 313 320 326 326 318 311 312 352 357 349 348 336 336 331 334 335 337 340 322 321 317 310 308 314 327 325 315 309 315 282 281 281 282 295 307 317 314 294 289 283 302 303 303 309 309 311 313 313 309 305 301 340 339 336 335 332 324 327 328 325 328 330 323 324 324 326 329 334 337 337 335 330 323 312 313 312 315 327 334 337 336 326 323 321 316 314 311 309 312 320 332 337 321 307 310 315 312 311 309 305 316 331 328 316 307 311 344 350 355 332 327 330 321 317 322 316 325 299 299 299 299 301 310 313 314 310 304 303 325 327 325 317 312 315 316 317 316 313 319 324 323 318 315 313 315* 320 320 314 311 316 375 376 378 377 375 368 366 362 363 368 373 330 330 333 330 327 326 325 323 323 324 320 303 301 309* 312 304 305 347* 365* 373* 318 311 303 304 305 305 309 320 326 331 320 311 306* 379 380 380 384 385 386 384 384 384 384 384 364 365 369 371 385 384 382 386 384 382 378 351 350 350 339 331 328 329 328 332 335 339 319 318 317 312 313 315 321 322 317 313 310 301 300 298 287 275 270 270 266 276 282 294 336 337 331 328 326 328 326 324 325 326 326 263 258 267 269 262 276 282 276 270 261 256 368 361 363 369 370 374 377 379 380 377 374 349 352 353 346 342 334 331 331 333 335 338 356 362 362 353 346 332 329 332 337 345 342 325 328 330 319 311 313 315 315 310 310 319 314 317 316 319 328 334 338 339 335 326 321 363 362 369 375 384 386 384 386 384 383 373 313 311 311 312 314 320 326 326 322 315 311 302 305 295 288 279 277 271 270 274 275 288 270 268 265 264 268 267 270 272 265 268 270 316 312 311 309 310 321 330 329 318 311 314 311 313 316 320 330 343 346 347 337 329 322 320 325 325 328 332 339 346 350 346 337 323 358 358 359 363 371 376 378 378 378 374 370 309 309 310 310 318 332 349 353 337 323 313 304 306 303 305 307 315 322 318 314 307 305 307 F06 304 305 309 325 333 332 323 315 307 308 308 311 315 318 321 327 327 324 316 310 375 377 382 385 387 384 383 382 382 382 380 306 306 306 304 305 309 319 320 313 307 307 317 316 318 316 313 312 313 311 312 312 314 311 310 310 311 311 318 328 329 324 321 315 303 303 304 306 313 319 322 325 319 312 306 306 303 302 300 302 314 324 319 309 303 305 368 364 371 377 382 386 387 387 388 383 375 311 309 308 308 310 317 325 324 318 312 311 249 247 242 247 252 263 265 266 265 258 254 338 342 349 357 372 381 384 384 380 364 357 246 248 244 243 243 252 251 252 255 251 252 312 311 312 307 299 295 291 289 290 294 305 296 295 298 304 308 301 302 304 297 297 300 318 321 317 321 328 332 336 340 336 328 324 299 297 298 305 314 320 331 330 321 311* 308 310 305 302 301 304 316 326 326 312 305 303 365* 366 372* 382* 385* 383* 385* 390* 389* 386* 376* 376 378 371 363 351 339 333 336 339 356 361 362 364 370 380 385 382 382 380 379 380 378 307 309 311 310 316 321 328 328 321 313 312 334 324 307* 304 301* 313 324 318 310 306 316* Dec. Mould Bay, Northwest Territories. . . Murmansk, U.S.S.R Mys Cheliuskin, U.S.S.R Mys Kamenny, U.S.S.R Mys Schmidt, U.S.S.R Nagphur, India Nairobi, Kenya Nandi, Fiji Islands Nantucket, Mass Naryan-Mar, U.S.S.R Nashville, Tenn Naval Orcades Island Neuquen, Argentina New Delhi, India Niamey, Niger ' Nicosia, Cyprus Nitchequon, Quebec Nome, Alaska Norfolk Island Norman Wells, Northwest Territories North Platte, Nebr Norway Base, Antarctica Nouvelle Amsterdam Island Oakland, Calif Odessa, U.S.S.R Okhotsk, U.S.S.R Omsk, U.S.S.R Onslow, Australia Ostersund, Sweden Ostrov Chetyrekhstolbovoy, U.S.S.R. . Ostrov Dikson, U.S.S.R Papeete, Tahiti Island Perth, Australia Peshawar, West Pakistan Petropavlovsk Kamcatskij, U.S.S.R... Ponape, Caroline Islands Port Blair, India Port Elizabeth, South Africa Port Harrison, Quebec Pretoria, South Africa Puerto Montt, Chile Quetta/Samungli, West Pakistan Raizet, Guadaloupe Island Raoul Island Resistencia, Argentina Resolute Bay, Northwest Territories. Roma, Italy Saigon, Viet Nam Saint Paul, Alaska Salisbury, Rhodesia Salt Lake City, Utah Samarovo, U.S.S.R Samsun, Turkey San Diego, Calif San Juan, P. R Sapporo, Japan Saratov, U.S.S.R Sault Ste. Marie, Mich Shemya, Alaska Singapore Sodankyla, Finland Stanley, Falkland Islands Stockholm, Sweden Stuttgart, Germany Sverdlovsk, U.S.S.R Swan Island Syktyvkar, U.S.S.R Tacubaya, Mexico Taipei, Taiwan Tamanrasset, Algeria Tananarive, Malagasy Republic Tashkent, U.S.S.R Tatoosh Island, Wash Tbilisi, U.S.S.R The Pas, Manitoba Tourane, Viet Nam Townsville, Australia Trivandrum, India Tromso, Norway Tura, U.S.S.R 15 50 13 7 7 310 1798 16 14 7 184 4 270 216 226 218 515 14 110 64 850 50 28 6 Ii4 7 94 4 809 6 20 2 60 359 7 37 79 til 20 1368 3 1601 8 49 52 64 181 10 6 1480 1288 37 44 9 19 is 185 221 37 18 179 53 52 316 284 10 96 2306 8 1378 1310 478 26 404 272 7 4 64 9 147 76 14N 68 58N 77 43N 68 28N 68 55N 21 06N 01 18S 17 45S 41 15N 67 39N 36 07N 60 45S 38 57S 28 35N 13 29N 35 09N 53 12N 64 30N 29 03S 65 18N 41 08N 70 20S 37 50S 37 44N 46 29N 59 22N 54 56N 21 40S 63 UN 70 38N 73 30N 17 33S 31 57S 34 01N 52 58N 06 58N 11 40N 33 59S 58 27N 25 45S 41 28S 30 15N 16 16N 29 15S 27 28S 74 43N 41 48N 10 49N 57 09N 17 56S 40 46N 60 58N 41 17N 32 44N 18 26N 43 03N 51 34N 46 28N 52 43N 01 21N 67 22N 51 42S 59 2 IN 48 50N 56 50N 17 24N 61 40N 19 24N 25 02N 22 48N 18 54S 41 20N 48 23N 41 43N 53 58N 16 02N 19 15S 08 29N 69 42N 64 16N 119 20W 33 03E 104 17E 73 36E 179 29W 79 07E 36 45E 177 27E 70 04W 53 01E 86 41W 44 43W 68 07W 77 12E 02 10E 33 17E 70 35W 165 26W 167 56E 126 51W 100 42W 02 00W 77 34E 122 12W 30 38E 143 12E 73 24E 115 07E 14 37E 162 24E 80 14E 149 37W 115 49E 71 35E 158 45E 158 13E 92 43E 25 36E 78 08W 28 14E 72 56W 66 53E 61 31W 177 55W 58 59W 94 59W 12 36E 106 40E 170 13W 31 05E 111 58W 69 04E 36 20E 117 10W 66 00W 141 20E 46 00E 84 22W 174 06E 103 54E 26 39E 57 52W 18 04E 09 12 E 60 38E 83 56W 50 51 E 99 12W 121 31E 05 32E 47 32E 69 18E 124 44W 44 48E 101 06W 108 HE 146 46E 76 57E 19 01E 100 14E 328 309 321 322 320* 317 286 373 313 315 312 307 296 313 294 319 295 315 348 318 281 302 339 321 315 314 313 337 298 324 320 375 324 304 303 378 367 346 314 299 33 1 259 369 346 354 320 318 370 312 300 271 315 313 317 365 309 305 306 307 381 306 314 312 302 304 371 311 251 343 250 311 300 321 303 305 363* 866 368 308 329 52 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY Table B-l. (Continued) Station Elevation (meters) Latitude Longitude Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec. Turukhansk, U.S.S.R Ushuaia, Argentina Valentia, United Kingdom Valparaiso, Chile Vera Cruz, Mexico Verkhoyansk, U.S.S.R 37 6 14 41 16 135 3 138 118 7 4 20 698 203 12 1728 t t t t t t t t t t t t 65 47N 54 48S 51 56N 33 OlS 19 12N 67 33N 17 43N 43 07N 59 17N 37 23N 19 17N 38 51N 60 43N 48 15N 66 15S 22 34S 62 OON 56 30N 52 45N 44 OON 35 OON 59 OON 52 30N 45 OON 66 OON 30 OON 50 OON 34 OON 87 57E 68 19W 10 15W 71 39W 96 08W 133 23E 83 14E 131 54E 39 52E 136 54E 166 39E 77 02W 135 04W 16 22E 110 35E 17 06E 33 00W 51 00W 35 30W 41 00W 48 00W 19 00W 20 00W 16 00 W 02 OOE 140 00W 145 OOW 164 OOE 324 311 320 345 361 345 357 308 309 314 356 310 291 306 301 263 307 310 317 327 339 315 322 329 312 340 316 328 318 312 319 346 367 341 356 305 308 314 359 311 287 307 302 269 312 310 315 323 336 315 319 322 314 339 318 331 312 307 321 343 370 320 369 304 307 316 363 309 284 307 300 267 312 312 315 324 337 316 321 327 315 335 318 335 308 308 322 334 380 307 391 307 308 322 367 320 282 309 303 265 315 312 321 328 341 319 323 329 316 338 317 340 305 t08 325 332 382 301 392 314 312 332 371 328 282 316 303 248 317 318 322 334 351 321 324 335 319 340 324 350 311 310 332 333 386 308 391 329 325 348 378 342 287 325 306 247 323 321 328 340 366 327 333 342 321 344 328 359 323 310 337 331 386 316 384 347 335 369 380 354 292 332 307 245 326 326 332 356 374 330 337 348 327 349 333 379 324 308 336 332 387 314 386 350 330 371 384 352 293 333 303 241 324 325 333 360 374 328 337 348 327 351 336 381 316 309 335 332 383 307 389 332 319 355 383 343 289 322 303 237 320 320 330 348 368 324 333 345 326 350 335 369 310 305 329 334 379 310 380 311 314 336 380 328 284 317 301 240 314 315 323 336 357 320 327 338 318 348 325 366 316 305 324 335 368 331 358 304 311 324 373 316 284 312 299 256 311 311 319 330 349 318 326 330 318 345 319 355 324 303 320 338 361 345 Vishakhapatnam, India Vladivostok U.S.S.R Vologda, U.S.S.R 353 306 309 318 368 Washington, D. C Wien/Hohe-Warte, Austria Wilkes Stn., Antarctica 313 289 308 302 250 Ship A 306 Ship B 309 Ship C Ship D. . 315 330 Ship E 346 Ship I Ship J Ship K Ship M Ship N 315 319 332 312 342 Ship P 317 Ship V 337 * Less than 3 years of data. I No elevation given. 180 150 120 90 60 30 30 60 90 120 150 180 180 150 120 90 60 30 60 90 120 150 180 Figure B-l. Location of AN data stations. APPENDIX B 53 90 60 60 90 120 150 Figure B-2. Monthly mean AN: January. Figure B-3. Monthly mean AN: February. 54 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY Figure B-4. Monthly mean AN: March. Figure B-5. Monthly mean AN: April. APPENDIX B 55 Figure B-6. Monthly mean AN: May. 180 150 120 90 60 90 150 180 Figure B-7. Monthly mean AN: June. 56 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY 180 150 120 90 90 120 150 180 180 150 120 90 60 30 90 120 150 180 Figure B-8. Monthly mean AN: July. Figure B-9. Monthly mean AN: August. APPENDIX B 57 180 80|— 180 150 120 90 Figure B-10. Monthly mean AN: September. 180 150 120 90 90 120 150 180 Figure B-ll. Monthly mean AN: October. 58 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY Figure B-12. Monthly mean AN: November 180 150 ISO 150 120 90 150 180 Figure B-13. Monthly mean AN: December. APPENDIX B 59 180 150 120 90 60 60 90 120 150 180 180 150 Figure B-14. Annual mean of sea-level refr activity, N„. 180 150 120 90 60 30 30 90 120 150 Figure B-15. Annual mean of refractivity gradient between surface and 1 km, .AN. 60 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY 30 60 90 120 150 180 180 150 120 90 60 30 30 60 90 120 150 180 Figure B-16. Slope of regression line of AN versus N B , b. Figure B-17. Correlation coefficient of AN versus N a APPENDIX B 61 180 150 120 90 90 120 150 180 180 150 120 90 60 30 60 90 120 150 Figure B-18. Standard prediction error of the regression line of AN versus N s . Figure B-19. Standard prediction error of the regression line of AN versus N 3 as a percent of AN. 62 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY Figure B-20. Areas of doubtful applicability of using N s to predict AN. 12. Appendix C. World Maps and Cumulative Distribution Charts of Gradients of Ground-Based Atmospheric Layers Initial gradient data, obtained (see sec. 5) for 99 of the 112 stations listed in table A-l, are presented in groups of seasonal world maps which illustrate various aspects of the percentage distribution of gradients in ground-based layers. The specific map groups are given below. Figures C-l through C-4: Percent of time gradient ^ (N/km) . Figures C-5 through C-12 : Gradient exceeded 10 and 2 percent of the time for 100-m layer. Figures C-13 through C-20 : Percent of time gradient ^ -100 (N/km) and percent of superrefractive layers > 100 m thick. Figures C-21 through C-28: Percent of time gradient ^= -157 (N/km) and percent of ducting layers > 100 m thick. Figures C-29 through C-40: Percentage of time trapping frequency is below 3000 Mc/s, below 1000 Mc/s, and below 300 Mc/s. Figures C-41 through C-56: Lapse rate of refractivity (N/km) exceeded 25, 10, 5, and 2 percent of the time for 100-m layer. Cumulative probability distribution charts were prepared for 22 climatically diverse locations for the months of February, May, August, and November (figs. C-57 through C-78) . The alphabetical listing of these stations in table C-l includes seasonal median and minimum trapping frequency values when these were available. Distribution data for two separate times of day at Aden and Nicosia are shown in figures C-57 and C-71. The nega- tive gradient of 50 iV-units/km, which is generally considered to be a good normal value for ground-based layers, has been indicated on each of the distributions by a dashed line to provide a common reference for the vertical scale. The circled value on the distribution line represents the mean ground-based gradient (of any layer thickness greater than 20 m) for each month. 63 64 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY 180 150 120 90 60 801 60 -60 70 1 — 180 J70 150 120 90 60 30 30 60 90 120 150 180 Figure C-l. Percent of time gradient > (N/km): February. 90 120 150 180 Figure C-2. Percent of time gradient > (N/km): May. APPENDIX C 65 180 150 60 90 150 180 Figure C-3. Percent of time gradient > (N/fcm): August. 180 150 90 60 180 150 120 90 60 30 60 90 120 150 Figure C-4. Percent of time gradient > (N/km): November. 66 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY 180 150 120 90 60 90 150 180 Figure C-5. Gradient (N/km) exceeded 10 percent of the time for 100-m layer: February. 180 150 90 60 180 150 120 90 60 90 120 150 Figure C-6. Gradient {N/km) exceeded 2 percent of the time for 100-m layer: February. APPENDIX C 67 180 150 120 90 180 150 120 90 60 90 120 150 FIGURE C-7. Gradient CN /km) exceeded 10 percent of the time for 100-m layer: May. 90 120 150 180 Figure C-8. Gradient (N/km) exceeded 2 -percent of the time for 100-m layer: May. 68 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY Figure C-9. Gradient (N/fcm) exceeded 10 percent of the time for 100-m layer: August. 180 150 120 90 90 120 150 180 180 150 120 90 60 30 150 180 Figure C-10. Gradient (N/km) exceeded 2 percent of the time for 100-m layer: August. APPENDIX C 69 180 150 120 90 60 30 30 60 90 120 150 180 180 150 120 90 60 30 60 90 120 150 Figure C-ll. Gradient (N/fcm) exceeded 10 percent of the time for 100-m layer: November. 180 150 90 60 180 150 Figure C-12. Gradient (N/fcm) exceeded 2 percent of the time for 100-m layer: November. 70 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY 180 150 801 180 150 120 90 60 30 30 60 90 120 150 180 Figure C-13. Percent of time gradient < — 100 (N/fcm): February. 180 150 120 90 60 30 30 60 90 120 150 180 180 150 120 90 60 30 30 60 90 120 150 180 Figure C-14. Percent of swperrefractive layers thicker than 100 m: February. APPENDIX C 71 180 150 120 90 60 90 150 180 Figure C-15. Percent of time gradient < —100 (N/fcm): May. Figure C-16. Percent of superrefractive layers thicker than 100 m: May. 72 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY 180 150 120 90 60 30 60 90 150 180 Figure C-17. Percent of time gradient < —100 (N/fcra): August. 180 150 80 Figure C-18. Percent of su-perrefr active layers thicker than 100 m: August. APPENDIX C 73 Figure C-19. Percent of time gradient < —100 CN/km): November. Figure C-20. Percent of superrefractive layers thicker than 100 m: November. 74 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY 180 150 Figure C-21. Percent of time gradient < — 157 CN/ km): February. 180 150 120 90 Figure C-22. Percent of ducting layers thicker than 100 m: February. APPENDIX C 75 180 150 80 Figure C-23. Percent of time gradient < —157 (N/Am): May. 180 80 120 90 60 30 60 90 120 150 Figure C-24. Percent of ducting layers thicker than 100 m: May. 76 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY 180 150 120 90 60 30 30 60 90 120 150 BO 60 -60 70 180 A —170 180 150 120 90 60 30 Figure C-25. Percent of time gradient < — 157 (N /km): August. Figure C-26. Percent of ducting layers thicker than 100 m: August. APPENDIX C 77 180 150 30 60 90 120 150 180 Figure C-27. Percent of time gradient < — 157 (N/ km): November. 60- 60 70 70 L 180 150 120 90 60 30 30 60 90 120 150 180 Figure C-28. Percent of ducting layers thicker than 100 m: November. 78 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY FIGURE C-29. Percent of time trapping frequency < 3000 Mc/s: February. 180 150 120 90 60 30 60 90 120 150 180 90 120 150 180 Figure C-30. Percent of time trapping frequency < 1000 Mc/s: February. APPENDIX C 79 Figure C-31. Percent of time trapping frequency < 300 Mc/s: February. Figure C-32. Percent of time trapping frequency < 3000 Mc/s: May. 80 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY 180 150 120 90 60 30 30 60 90 120 150 180 Figure C-33. Percent of time trapping frequency < 1000 Mc/s: May. 180 150 120 90 30 60 90 120 150 180 60 70 -60 —170 180 180 150 120 90 60 30 30 60 120 150 Figure C-34. Percent of time trapping frequency < 300 Mc/s: May. APPENDIX C 81 180 150 30 30 60 90 120 150 180 60- 60 70 70 L 180 150 120 90 60 30 180 Figure C-35. Percent of time trapping frequency < 3000 Mc/s: August. 60- 60 70 70 L 180 150 120 90 60 30 30 60 90 120 150 180 Figure C-36. Percent of time trapping frequency < 1000 Mc/s: August. 82 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY 60 ■60 70 180 150 — 170 150 180 120 90 60 30 30 60 90 120 Figure C-37. Percent of time trapping frequency < 300 Mc/s: August. 60 70 -60 A -170 180 150 120 90 60 30 30 60 90 120 150 180 Figure C-38. Percent of time trapping frequency < 3000 Mc/s: November. APPENDIX C 83 180 150 120 90 60 30 Figure C-39. Percent of time trapping frequency < 1000 Mc/s: November. 180 150 120 80| 60 60 70 70 180 150 120 90 60 30 30 60 90 120 150 180 Figure C-40. Percent of time trapping frequency < 300 Mc/s: November. 84 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY 180 150 120 90 60 30 30 60 90 120 150 180 Figure C-41. Lapse rate of refractivity (N/km) exceeded 25 percent of time for 100-m layer: February. 180 150 120 90 60 30 60 90 120 150 60 70 60 70 180 150 120 90 60 30 30 60 90 120 150 180 Figure C-42. Lapse rate of refractivity (N/km) exceeded 10 percent of time for 100-m layer: February. APPENDIX C 85 180 150 180 150 120 90 60 90 120 150 Figure C-43. Lapse rate of refractivity (N/fcm) exceeded 5 percent of time for 100-m layer: February. 180 150 120 90 60 60 60 70 70 A 180 150 120 90 60 30 30 60 90 120 150 180 Figure C-44. Lapse rate of refractivity (N/fcm) exceeded 2 percent of time for 100-m layer: February. 86 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY 180 150 30 60 90 120 150 180 60 70 60 70 180 150 120 90 60 30 30 60 90 120 150 180 Figure C-45. Lapse rate of refractivity (N/Am) exceeded 25 percent of time for 100-m layer: May. 180 150 90 60 60 70 60 70 180 150 120 90 60 30 30 60 90 120 150 180 Figure C-46. Lapse rate of refractivity (N/km) exceeded 10 percent of time for 100-m layer: May. APPENDIX C 87 Figure C-47. Lapse rate of refractivity (N/fcm) exceeded 5 percent of time for 100-m layer: May. 180 150 150 180 Figure C-48. Lapse rate of refractivity (N/fcm) exceeded 2 percent of time for 100-m layer: May. 88 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY 180 150 120 90 60 70 60 70 180 150 120 90 60 30 30 60 90 120 150 180 Figure C-49. Lapse rate of refractivity (N/km) exceeded 25 percent of time for 100-m layer: August. 180 150 120 90 60 30 90 120 150 180 Figure C-50. Lapse rate of refractivity (N/km) exceeded 10 percent of time for 100-m layer: August. APPENDIX C 89 60 70 f-,0 70 180 150 120 90 60 30 180 Figure C-51. Lapse rate of refractivity (N/A-m) exceeded 5 percent of time for 100-m layer: August. 180 150 Figure C-52. Lapse rate of refractivity (N/fcm) exceeded 2 percent of time for 100-m layer: August. 90 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY 180 150 90 120 150 180 FIGURE C-53. Lapse rate of refractivity (N/fcm) exceeded 25 percent of time for 100-m layer: November. 180 150 180 150 Figure C-54. Lapse rate of refractivity (N/fcm) exceeded 10 percent of time for 100-m layer: November. APPENDIX C 91 180 150 120 90 30 30 60 90 120 150 180 Figure C-55. Lapse rate of refractivity (N/km) exceeded 5 percent of time for 100-m layer: November. 180 150 180 150 120 90 60 90 120 150 Figure C-56. Lapse rate of refractivity (N/km) exceeded 2 percent of time for 100-m layer: November. 92 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY Table C-l. Median and minimum trapping frequency (Mc/s) of ducting layers. Station Feb. Med Min May Med Min Aug. Nov. Med Min Med Min Aden, Arabia 0000 GMT 1200 GMT Amundsen-Scott, Antarctica Balboa (Albrook), Panama C. Z. . Bangui, Central African Republic . Bordeaux, France Dakar, Senegal Denver, Colo Ezeiza, Argentina Fort Smith, Northwest Territories . Hilo, Hawaii Long Beach, Calif Lourenco Marques, Portuguese East Africa Nandi, Fiji Islands New York, N.Y Nicosia, Cyprus 0000 GMT . . . 1200 GMT. . . Ostersund, Sweden Perth, Australia Saigon, Viet Nam San Juan, P. R Ship Station "C" Tashkent, U.S.S.R Vladivostok, U.S.S.R * Less than 5 ducting layers during month. t No ducting. % Trapping frequencies not computed. 478 475 2503 743 280 1300 328 X 681 872 862 t 554 t t 1143 t t 4864 532 671 320 t t 82 82 311 66 190 56 123 9 482 245 155 51 865 767 531 676 569 565 409 t 181 430 801 X t 307 290 X 709 610 631 843 t. 499 40 51 266 270 247 99 43 346 125 326 41 582 495 663 265 402 848 t 383 145 467 X 2334 t 1 137 680 t 799 904 595 1028 334 584 41 41 272 242 176 89 162 43 253 44 122 403 227 50 485 522 t 657 369 442 378 X 1403 1345 1035 X 2404 X X 398 1223 t 649 539 535 308 774 1253 114 122 314 294 186 35 496 430 264 53 APPENDIX C 93 ° | y ° si 3 |i * 1 o 1 •' 1 1 j&'~' Q s * O •* / < .<$ a * _/ s ji O GC A i' £ * 1 .■J/^ | ..-•" 1 .••"*" i £ " 1 s Z. "a H313HCniX M3d SlINfl-N I a3d SlINfl-N 94 A' WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY ■ ' | 11 NOVE - 1200 z 1 ° I |/ |J // ' j / / / y X / I S u, «3i3HO~HX «3d S1INH-N s = i ' ! h I! ! 1 Si » > 2 a * I /. * 'BGf Jf / * # / j, S o J3 T3 ■a s o P f I s ° s s M313W01IX M3d SilNfl-N APPENDIX C 95 o 3 s _ z 3t m '-r. a3i3HO~ll* y3d Sll NH -N a3J.3ttO"llX 83d SUNn- 55 T3 | 5 / £ / i / i i / / \1 1 1 \ i a ! i i i i a313MOTIX H3d SlINfl-N cu ^ / i / | 1 i / \j i i % 3 ij a : ft w x p o a3l3no~nx «3d siiNn-N 96 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY i H313WOTD1 U3d S1INO-N H3i3Hcni>i a3d siiNn-N s M T3 fc T3 „ < ° l I 3 1 i s 1/ 1/ s s / s I \ 7 1 i 8! / 1 1 1 a / 1 1 1 / 1 | 1 1 S 1 1 » \f \\ 1 1 J /I / 1 1 1 | 1 Si s O o H p o ? s H313H03t)4 «3d SlINfl-N H313H03IH M3d SlINfl-N APPENDIX C 97 / / / i 3 I J „ t 1 ? ? - ? H313H01I* «3o SlINfl-N :,- 1 3 1 [ *' ' 1 \f 9 — \-d- S — ■- -4 £ 1 s 1 8 4 -I IZ '< «313M01I1* M3d SI T3 S S 1 I \ / ,/ - £ S S J U3l3NO")l» H3d SlINfl-N s O S3 98 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY 2 ' a _i I / s — j- K — — — ■ Vj — — S -J| a — 1\ — g ■ ■]— I pq "8 S S | s s a313WO")IH «3d S1INTI d313HO~ll>» a3d SlINn-N. 13 T3 " 1 i „- SI » s s i I / / / i 1 8 a s s 8 / / 1 HI a s 5 5 5 S I t 1 1 5 ! ? ■ ? ! s ~ ■ 1 / 1 / V 5 1 Q = 3 . 1 O * a . A I \ f \J s £ e i- s * s St /j j\ / 1 / / ^ * 1 s s ' f i 1 5 ! 1 i s s s HUlflOU* H3d SlINfl-N M313H0TDI y3d SlINn-N APPENDIX C 99 50 ^ H313NO~ll>l «3d SlINO-N 53 — §§>§§§ «313WOTI)l H3d S1INO-N o H 100 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY Q O ^ IE 2 z < < 8 § § 8 M313WOTIX M3d SlINfl-N s 111 o ^~. cc 8313W01I* U3d SilNn-N H313WOTt>l 83d SilNfl- s 3 1 ** J I 3 o B **■ < Q " e z 1 "■ 1 „ _ / „ * I \ % ! i i i ! ; , « 3 Q 1- | Z o K * Z „ E fe ? 1 \ l\ / „ / s 8 ! 5 -\~ =t= •> S 13 H313H0-1IH 83d S1INH-N a313*0"IIH 83d S1INH-N 104 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY ■ J Ul_ L/_ * i f I e 4 — — — — s fl — — —I s 1\ I I 1 l I i/ i | I g llil «3J.3HO~llX H3d SilNfl-N «3l3HO"ll>( Bid SilNO -N -a X — " E a a K 3 E a 8 a a ■ S — a s a s U313N01M a 3d S1INO-N *"* i 3 i i I 5 I 1 i 1 i 3 \j / 1 1 J-\ a i t i „ i 1 i s O a X p o § S a M313W01IM d3d Si'Nn-N APPENDIX C 105 * ' i | s 1 a a / 1 1 " 1 Q y" O S UJ u X 2 h- _ I o z 9 H z o " o ' 111 K o 1- z UJ „ a a. ^ 1 t Oq -J 8313HOTIX U3d SlINn-N U3d S1IND-N ^ T3 3 1 " 1 > I I 1 * i J5 1 | S | / / 3 \ ' 1 1 1 s ! a 1 3 U313N01IX 83d SlINn-N § 1 1 -J 1 i i ; -f 1 5 ? s ! | ! | I | g T3 * g c O H313WCnix H3d S1IN0-N 106 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY 3 1 g i H313W01IW H3d SJ.INH-N £) H313WOTIX H3d SlINO s s J3 73 • 1 5 / / / f / \ \ / ■ i / / / / i "5 § 6 S • f g a3i3«o-ii>t U3d silNn-N 1 1 o g . 1 / / J "* / » »ll 5 ? 5 3 5 ! i 3 u « 13 O 8313W01IX H3d SlINn APPENDIX C 107 ■* ° a * | 1 o 7 '/ z 5 S 3 i/ / / fe /i ,2 ™ ^ ™ ^ " ; | i i l i ! i c HU-IHOHM MJd SXINn-N 8313HOTIX d3d S1INH -5 s s o — ° | 3 1 n 8 ! s. s 1 « ! 1 S : | 1 5 | 5 f ° ° / / ui / 3 t " S J " y / s 5 1 1 i : \ i i . ! - ! 1 M3J.3HO II* U3d S1INH-N U3l3N0"ll* M3d SlINfl-N 108 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY WM ° ° a a ' z | i! / / r i „ 1 2j 1 s i | ! g 1 1 5- o H313H01IM H3d S1IND-N H313W01I* U3d SlINn-N T3 « i D / 3 / s i i K !/ o £ / UJ * 1 z | i Si z s X o i z i i °" li /: " / 8 / 1 i b r i i ■ i i | s = 1 1 " 1 1 / 3 / , B 1 1 1 § s i / 1 / 1 / 1/ 5 " ° s I £ ll \ / 1 / 1 1 $ 1 1 * 1 * 1 * 1 1 1 1 O H « P O U313n0~ll» H3d SlINn-N USISHCni* H3d S1INO-N APPENDIX C 109 • 3 • _t i § i 1 s £ x = ^ £ o £ z °- if g " a *• i § s I i i 1 £ | « i 3 1 1 -ISi ill 1 1 / 1 / '•/ . 9) ■1 = fl ? f . / 1 i 1 /I 1 | ., | „, | | i 1 '":" § i s 8 8 i 8' B3d SIINO N «313WO~IIM «3d Si Xi | ! S \ 1 § 8 — 7 ■' s a o U313H01I)* H3d SlINfl-N a313WO-|l* H3d SlINn-N 110 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY 2 1 S (I j\ ) 1 / i i : ° I I 1 / 1/ -;- \l 1 III /! 1 1 8 | i \ i s CO d313N01IM H3d S1INH-N H313H01IX a3d SilNfl- -a w S 3 H " ,. 7- 1 / Q g 1 £ ' o < 5 a I o t- z °- ^ 2 s s d113M0TIX H3d S1IN0-N " 1 j ,_ J § 1 i | i l 1 1 1 J 1 / 1 „, 1 ; 1 *! 5 ! ! S ! ; i t , ': § -a u H X O U313H01IM «3d SlINfl-N APPENDIX C 111 J S* -J- jl / / ' /] / / / / / ; % i s « \ % „ d3i3wo-ii* u3d SliNn -k a3i3WO~llx «3d SlINn-N 7, ** 3 1 o o * Q s O 5 Q DC o s z "■ 5 5; ; 1 ! s I $ l s s s 1 I 1~ 1 III I I jjgSSS°8g-88 c u U313H01IM U3d S1IN0- U3d SlINn-N 112 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY a / ° s / Q I Q _ | t- 2 S o Q i 1 / 1 / J ^ ~ r 8! 3 / % 1 S > / e £ "8 g a3l3woniH y3d si y3i3HOTiw a3d siiNn- s si T3 i 5» o a x P o H313H03IX U3d SltND-N APPENDIX C 113 1 ■ : f. — ZfIZZZJZZZ~L _i I /__ _ i i / a a E/3 uBisncnix «jd siiNn n H3i3WCni* M3d SlINfl s s o liiijiiii ii 111 *> I I I I I 1 I I I / 1 / 5 S / I / i j / 1 ! s i i i s .. '-_ o x P a H313H01IX U3d SlINfl-N H3i3ncnix 83d Simn-N 114 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY | | / / , '/ »• '/ l 1 1 1 1 1 ! ' / 1 / 1 J u , ! ', 1 1 s J k; if ; o .g. -S CO M313M01IM «3d SlINn-N d313W0TIX H3d SJ-INO-N "T3 s J 1 i y "• :/ £ / \ i , i 1 : ! < 1 5 8 = 1 ° 1 a » K s o « s Z a £ " X £ 1 1 ll 1 " / | t . / i S ! 3 I ; 5 ; 1 1 o H313HOH* H3d S1INH-N d313WOTlJI «3d SlINfl-N APPENDIX C 115 ° 1 " / 1 / s „ 1 o I a < \ l/ ° S 3 O c 7i s ll a / 1 / i 1 i „ i £ i 1 gj ! i '. | ! i ! • ? s i 1 < / \) 1 1 ! ! ! /: 1 i i ; i X i i I s OS H313W01IX «3d SlINfl-N a313H01IX H3d SlINfl-N is " - I ^t-/ - - I UJ IHiligi z s ! £ 1 -1 - ! / I / i I A H M3d SlINfl-N 116 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY 111 "T~ M j ^ZLZZ j | I -i — | 1 1 — i 1 1 I -H a3J !H0"1IX a3d SlINn- aaiawonix a3d silNn-N "a £ s si -a b_ , - \- -f- 1 1 j r / I i I 1 ', 8 ^ i | i — 1 Si P, 3 o H a d3i3WCnix a3d SlINn • a313HO"llx d3d SlINn- N 13. Appendix D. World Charts of Tropopause Heights Five-year mean tropopause heights obtained in the process of computing N(z) parameters for February, May, August, and November at the 112 stations listed in table A-l were plotted and contoured. Maps of these heights, given in figures D-l through D-4, represent the average of all of the individual altitudes which marked the base of the first layer which had a thickness of at least 2 km and a temperature lapse rate of less than 2°C/km (see sec. 6). 180 150 120 90 60 30 30 60 90 120 150 180 180 150 120 90 60 30 30 60 90 120 150 180 Figure D-l. Tropopause heights (km), based on temperature lapse rate: February. 117 118 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY 180 150 180 150 60 90 150 180 Figure D-2. Tropopause heights (km), based on temperature lapse rate: May. 180 150 90 60 90 120 180 150 90 120 150 180 Figure D-3. Tropopause heights (km), based on temperature lapse rate: August. APPENDIX D 119 180 150 120 90 Figure D-4. Tropopause heights (km), based on temperature lapse rate: November. 14. Appendix E. Sample Listing of the Computer Output for San Juan, P.R., and Amundsen-Scott, Antarctica A sample listing of the complete computer output of the mean N-profiles for February, May, August, and November at a subtropical and an arctic station is given in the first section of this appendix. For instance, at station 11636 (San Juan, P. R.) in February (table E-l) , the heading gives the number of pieces of data used to compute two types of tropopause height (based on two types of temperature criteria) : (a) the mean heights where the extreme minimum temperature occurred in 320 indi- vidual profiles was 17.56 km ± a standard deviation of 0.65 km, (b) the mean height of the bottom of the lowest atmospheric layer with a thickness ^ 2 km and a temperature gradient ^ — 2°C/km in 307 temperature profiles was 16.44 km ± 0.96 km. This February profile also gives refractivity information at 40 height levels ranging from to 30 km. Following each height level is a listing of the values of total refractivity, gradient, dry and wet terms, and their respective standard deviations at that height above surface. For example, at 1 km, 383 radiosonde profiles were examined, and the refractivity was found to be 306.7 with a standard deviation of 8.22 iV-units ; the gradient at that level was — 47.66 iV/km with a standard deviation of 17.38 iV/km ; the dry term was 242.4 ± 1.19 iV-units, and the wet term was 64.3 ± 8.52 iV-units. The correlation coefficients for the data fit, within various height ranges, of the wet term (W) and the tropospheric (L^) and stratospheric (D 2 ) dry terms to the line represented by a computed regression equation are found at the bottom of each month's listing. In this example, for the dry term equation (-Di), with a surface value of 271.9 and an exponential decay coefficient of — 0.1088, the correlation coefficient is 0.999 and the standard deviation is 3.01 iV-units. (These figures were based on 5 years of data from the surface to 15 km.) At station 90001 (Amundsen-Scott, Antarctica) the wet-term value is so small at all heights during the months studied that the regression equation from to 3 km becomes meaningless. Because the South Polar region is not shown on the ground-based gradient maps (figs. C-l through C-56) , a complete computer listing for Amundsen-Scott is included in this appendix. This also illustrates the form of the original station data which were used to plot the various values needed for the gradient maps. All gradients are in iV-units/ km and all frequencies are Mc/s. The "profiles skipped" represents the number of profiles which had gradients > — 100 iV/km. 120 APPENDIX E 121 co o +1 h- t> H (Mira CO i-H 0) 9 3 O. ed a l- H o w ti C cd «* rt a u fl c o> -n J= IB M Ch I O u 3 ^ £ Q, 9 o a 1- Eh U3 J= -*-> C Q 2* CG £ CO CD ^ e a o 3 GU at § 7] HOOOOiCOOlONNHffil ■C0»niTfCQ(NCN'~'^-(T-(OOOOOOOOOOOOOOOOO I I I I I I I I I I II I I 0!«5N^OW(DN05t'X , HVwd l Xt0^nNciHHddoOOOOOOOOOOOOO OOOOlOlXt-W^WWWHHH ■oai^MXxc']aHox , ^tn'fioin Ni>cdV^oi*^iHcd^^oc^w©oS©iJcdidodiHidcfttot£i^^cji^aicD^c v JOo^oot^^u^Trc>oc i ]'^r^oc7)0^ i Xc^tcinio^co(roc]C , i •-<'-' n«COCO«n«?i:-lC-K)NHHHHHHHHHHH «COCOM«COCO«MCOCO«N'-'010iX»Tj'!MiH010il> r J!«NHt-' CO GO CO COOT CO CO CO CO CO CO CO CO CO N o o m O'J'f co oi © -H-H-H co co 01 co o e- ■*! "~: ^i odd I I I 1-H tO CD i-H OJ '-D tSQQ HCOO cr ai t- os co ya -T os as odd 3 a, ho"H rt a. PS 1& 3 O is Cd 3 wmxHaioc-jaicoc-^ai^Hioair-it-cjDcrf^cocoiMH N0>05(NOHi0OHiOOOa^T)mTjc0NO ^ddc^^'doddiCT^tH x'^^cooj o-j'-H'-^ddddododddddddddddddd «HrH1H*HrH,H 'HI-f^'H I I I I I I I I I I I 1 I I WCninNHNMXCOXNCO^tCMNCOCDOinHXifiMHO Ndt*wdoT|iHit)NiflHxdift^coNNHHddddddddddddddddddd OiOOXMC-t-COWCOINHH CO H Tf W X X O) 05 Tf 05 -^ 'O iO « :/: -t f X *t H iO CO OJ C) JJ Oi MC H CO Tf H H (£ C, H U5 H OJ CO CO'tNHHHHNCDiflTlicONHOOffiXXXt-^C^t'CCCO'-OCCcDmiflifiWTl'cONHHOO i^iHrHWrH^^^H^HWrH^Hf-HrH^HrHooooodododddddddooododoo COH01^NHT}«rH^cO>OTtcJ30COCOC^COf-Ht-iOCOC^iOO]XOC^ini>iOt-mXiiOCOTj''fCT) id ^* n os co cd oa r-J os t> cd ed i c-"- d ^ t> oi c* th* «d wd cd co* NHHi-iHHodddddddddddddddd ^P^e0O)iHrHrHeOt->C0NtHi-H NNOH^COCOXH^O[-rfTj^^HTfX'OiOTl«TfXHa!ffiCCaiOXXXNONCOCOt-H COCOMCOOWCOHt'^Tt^a}X'*NI>iO^I>McOOMOCJOT)tt--0 , «)'a!COOOint-NXcO WTfMcJcocoL^ddddcoNdx'^ccinT'cowdNrHHo'oixV^ ^t-t-^TfTfTj^UOCOCOOJWtMHHrtHHHHHHHH I I I I I I I I I I J I I I I I I II I I II I II I II I I I II I II I I I ' I I I I I mTft^irtXt-NO^C l K]»nMO>^O^NWiOX^HNCeX01t-WHCO^HHCCOiHirtrtO-,CD moaioc^t^woauoo^c^ooom'OXTrHooiX't-trcocococcLOic^icrfnojiHHoo ^^dc^ddx'oidid^xdidTtcoc^^THrHTHdoooddododddodddddd XqcOCOMCONOJffiHt^^^COXXNNNC'XCOHNWNMOOiin^ifi^COXWn'f^Oi t>r*d^dx'dc>"^Oi^t^idTJrjiioJ^di^W't^^iddcdM wiom^NHOX'iccoHfliXMOiCTi'cocoNHHOoiojxt-cC'iO'i'TfnMo^jHH COCOCOtOCOCOCOIMWNOlHHHHHHHHHHHH CO«COCO«COCOCOCOCOCOOOa>t^CDCDiO't--fO-]OJ 01 :■■] H H Ji 51 CO m m C ^ CD CN I- CM OJ OS CO X X XX XX XX XX X X Xl>C-t-t>t-[-l>C~l>t-t-C-Ir-CDCOCOinirJ'cOi-Hait-OJCDt^--( cococococococooocomcocowcomcocococococococococococococococoM OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO mOiOOuOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OTHOJiOL^-OiOOiOOLOOiCOiOOiOOvnOlCOLOOOOOOOOOOOOOOOOO dddddd^^oioJco'cd^T^uo"idddt>c^ccx'dddrHc>jc" ffiffiS TfHlO UO r-t CO OOlO CD CO d -H-H-H Kffiffi COtXH X X OJ COON lOHH odd I I I OS t-H OJ OS t- CD OJ CD ?QQ o- 1 CO i-O lOlOX X CI CO oj x Ob x a-- on os OS OS odd 122 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY .© « O ■u © to CO H V ■/. 3 U, rt -; o H © w -H a d © 3 ee cd a. U H O) H Tl V c _ a ep ■4-> -1 j NNNMHHodHcoHn^ttio'nNNHHHodooodo'dcJooooo'ooooddo ^^^H^^^^^W^^. I I I I I I I I I I I I I 1 I I I Mco^ooHoiHcoHtocccD^i^o^in^occaj^^w raioNVdcotocJoiui^t-cQdb-d^eoNNHododdddddooooddoooooo ■(OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO oj"i-*d©-^in©xo©in©©t>"©wcd©©'o:'©©TfVx"cdcdT^ cDcccDinirt-i'mM'HOO)Xi>T i o»0"*cociwHHoa.aiXt> r iioiOTi'ncoM'MHH OJ OJ 01 01 01 01 01 C4?]CJ«-*HHr^HrtrHHiHf-lr-(H>H rf cr r r ^ t~ a a; ai o ci c n cc a ^ Tf ^ (B ti- t> ^ in h io w x f- c in o /: - x in -f •- x c i' c -i< re h Ol^HffimX'MOXXa'XiHf]iOOHij.ONHCJ100^^'e0^ t MliD(OtC«D(fiU3WHHOOOOO lOlOOHHfMCOHIMCOWHHH !CK)fl)HrO)C']Ol03l>XO)'^Ki001C'TifiTj'ci3iMHHOO)XXt*t-(fl©l0^teOMHHOOOO X X ^ m T)< Tl" *fi Tf tJI Tf CC N M N N H H iH H -H -H H H H H I I I I I l I I I I I I I I l I I I I I I I I II I I I ! I I I I I I I ' I I I I I I iO'itooi^NTit-Hoa L . oocitr.in /.ari-tHxcJHt-io-r x c-WN"*coO'*Hinxcoco'i , xrtHHcoc , -MHa>x[-ininininmtDintio^nH rfn o o O o c4 c4 oi e4 t-"i t-h o" o ih cd o5 ©' od cd id ^ co ess t-h w i-i o" © © ©' o" o" © ©" © © ©©'©"©© d ©"©©.©* © iHX^t-oint-t-t-rj t- en cr m -t m h a; c t c i o a> i- x m -f re co oj nnooia aot» OJ fc- © © OJ i-H> CO x o Tf ©X© cocao Tf CM* © -H-H-fi — — ~ iO ** CO iO Tf CO [- ,-< ,-H OJ © O do © I 1 1 a a a OJ©) X O CO CO oi o Tf iH tD © II II II o P* o c o oU a m©o ON© X © © ©©"© o -H _ r ?l i - LO :c o _i a -►J a o © H © bl il .- rt CO 3 to cfl u = - ,- ■d .- _ s _ c CC bt> : U CL, -M u 3 — a £ 0. j o Z Ei ' J3 S o ^* s c CO a, X c H 3 rt ^(ZJ X X X O © l> t> © CO ' loxt-tciOTiinwHHHHooooooooooococccco I I I I I I I 1 I I I I II ■-D CO CO t> O OJ Tf © LO ^H Tf Tf © © -rf Oi © <© -t © l~ OJ X lO CO O :©— 1©00©©©00©00000©©©©00000©©0000©0 OXNHr?t-HO)t>HO^WC'ri -f © OJ CO t- CO OJ US © t> X © O X * ixooo©x©c-t J O © © O TfH © tr- © © © © i> x © •-! CO © © Ol © © Tf © CO CO 'f © C- © 1 © © HO O Tjn O O LO Tf © © uO UO UO Tf CO OJ i-h © © X t-^ © iO IO -rf CO OJ J >— I •— ' © © © X O © iO UO Tf CO CO OJ OJ i-i «H 01 OJ OJ OJ C) :] CJ :i TJ 7J H H H H r-i H H H r-( H M H H LO Tf O Tf rH CJ CO 01 © "-I OJ © t- "0 OJ O X © »C Tf CO OJ -h ^h © © X X X t- C- © IO Tf CO CJ r-i i-l © © I I I I I I I I I I I I I I I II I I I II I II '' ' l ' © © m i-i o o © x i> © © oj Tf © Tf Tf © co co "O uo x © OJ © oi © co t~- io Tf © -f m c- x co © x Tf COin©COCOCO©OJt-COOX©©C-©©t^OiCCOOXt>©TfTfTfU5©»niOTfcOC^i-'i-J©©© t> t> x c-" © t> i> © cd oJ d x" c-" ©' in" Tf co oj oj" rA ih i-h ©©©<©©©"©'© d ©"©©"©' o' ©" d o' d © oj © x Tf © in x oj T-i Tf oo oj i-h i-h co © x t- oj © >n co in © x © o x i-i x © © © © x © t> © i-i XTf©dt^Tfdcd©coTfocinoJd©©doj>nxi4in©TfcdTf^ t- c~ © © Tf co oj © © Tf tj o © x t- m Tf -f co oj •-' i-" o © © x c- © m m -f co co OJ oj i-< i-< 00 CO CO CO CO CO CO J 1 O J 1 OJ ^^h^h-h^h^h^h^hi-i^^h Sin W TfTfTfTfTfTfTfTfTfTfTfcococO'-HOOxxx©©©©minojot>xojin©coco©in©©co CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO- CO CO OJ 0-J 01 01 01 01 01 01 01 01 01 i-h © © © -f CO OJ © © X Tf CJ TfTfTfTfTfTfTfTfTfTfTfTfTfTfTfTfTfTfTfTfTfTfTf^TfTfTfTfTfTfCOCOCOOT ©©■©©© © © o o © © © c © © © © © © © © © © © © © © © © ©©©©■©©©©© o m o m o m © © © © © © © © ©■©©©■©©■© c ©©©©©■©©■©©©© o o © © © o © o th cj m t- © in © m o m o m o in © m © io © ic o m © © © © © c © © © © © © © © © © ©©©©©©i-HrHOJOJCOCOTfTfi ffiffiffi 1— C- Tf © C~ CO © X c- i-i X © X CO Tf CO OJ o 4,-H-H ESS m h © c Tf © © ©mx m o © rt Tfr-IH ooo D" 1 1 1 H C CO. KWH X t-i-« Tf .-1 © O O Tf OJ © !-< i-l OJ © &QQ > c Pw o OJ X i-H CO © © © CO © c >-< © © © APPENDIX E 123 v. «-H O Cuffi Cy cS £ 2 ooooooooooooooooooooo: ©©©©©©ooooo ooooo CO i(0 •"* CO CD CO X t- t- -tf X X O N t- X O CO H H N O X -H M H iB O ^ Ol CO CJ'C m CO CO H C£) rjHcDaJt^'t^©coTH©©©THco^©x'THc^cDasoit^T-4^ ^ CO W H O O Ol X h 'J iO ^ CO (M H O O Ol X t- !■- ^ !5 K3 IO ^ n CO 01 N 01 H i-H r-l i-H 01 01 Ol 0-1 Ol 0-1 •-* t-I »-t i-H r-H i-H rH ^H t-H rH tH HWHHHOOOOOOOOOOOOOOOO Tft-irjoHt-iocoHoxt^t-ccmm't^coNOCJiOiXt-'jirt^mcoN cm oi t— i ^h o o tOTj"MWCOCJ«(NN(NHHHHHHHHHHHH | j | | | | | | | | | j | [ | | t- O CO CO t- CO t- ■«# t> OJ CO U0 t-i © C- Ol X O h CO I" H / CD t- 01 CO OS OS CO t~ © CD tH (O t> N mXHNir'inTjiTtMCOINHHH 01 tD OS 01 01 X CO O CD "# 01 C X C iO hO Tf yf CO CO OJ -^ o cd lo" ire CO CM CM CM CM* CM CM* oi Ol oi CM o4 Ol CM CO CO OJ CM oi I oin^Tfot'-NHaiioxxoc-i-xocoHHNOXHXHaoHa'MojiocowcoH^ •^ c£> as t- x' © n" oi © o © fh co ^ cd x' --* co cd oi oi t> --h t> oi ire x' co x co d c- ■* oi d i^ >o co TfnNHOOffiXt-tCmTjiMNHOOOJ X O l- © J © lO i-0 Tf CO CO 01 Ol 01 i-< i-t >-H --H OlWINOJOJClHrHHiHr^HriHHHH o o o o © o © © o © o o © © o © o o © o © o © o ©■ © © © © —■ © © o © © © © ire © io © ire ooooo c ©©■©©■©©© o © © © © © © © © ©■ © © © © © © © o o o i-H cm ire t> © ire © ire © ire o ire o ire © ire o ire o ire © ire © © © o © © © © © © o © © o bo ffiffiffi 03 II II II « ooo rH © t-T-t © Ol © OHCJ O C- Ol O Ol t> © cm ire t^CO © -H-H-H XXX i-i ire ire ex C CD U0 iH t- *«* CO ooo cr 1 1 W aaa WWW © o© ©r-© rHOirH oi os CM CM &QQ JM o o CO CO CO t- t> a-, as t! * aios c r 9 ou *s s oo 3 a F*d o-H 'd » "3 £■ o £ V .SH 5.g tag *J o "J £w oS t. 3 J> ft *=£ l £ 2 C c.2 00©0^-i^Hi-i^O©©©©©©©©©0©©©©©©©©©©©©©000©< I I I I I I I I I I I I I I I I I I I I I I I o o ©© I I I I OHHXiOXt-^HOCCHO ©©©'©^^*^^rH©©o'©©©^©^© 1 ©^C;^©©©©© 1 ©^©©©0©©©© 1 ©©© ire Tf CO CO OJ CM CM » ■lOOOOO©© ©©©ooooo© x oi r x> tj* Tt t> ire © ire co oi co t— ire oi m x 'X ^ t~ ^ rj< h os ire ai a: ire cd © x as as o ai t-- 1> © ire cm x' i-J co oo ©" as x" x' as © --J co ire cd t-^ as cm o © ire ©' © oi ire x' co x" ^ r-* cc cc co --' x' cc ^ co oi oi oi cm H iH © as as t- cd ire -^« ^ co cm i-h © as x x t- t- © x ire ire ^r co co o i o i cm <-i i-t i-h ^h OlCMOJO-lCM^H^Hr-^t-H^-I^HrH^H^H^r-! soooooooooooooooooo cd ire cm co x ire ■-# oi © as x c~ cd cd cc c^ t— ire co *-* © as as x t> co ire lo -* co co oi oi cm i-t t-i © © © © © BCOCDCOtNOJClMMHHHrHr.HrHH^HH^ | J | | [ | | | , | | | | j | , | | j | I I I I I I I I I I I I I I I I I ire -^ co cm oi <■ ■<©©©©©©©©©©©©©©©© WNI>'COOlftW^WCM^^XireCMirexXCDCOt'^t , -'^ , 'tJ*WOSlOOSOSlO«OOCX)OSOaCDOlt-l>0 ire cm x oi ire x cm' © as as as © »h co ire cd t^ as o j cc © ire © cd oi ire x" co x ■«* >-h x' cd co ^ x' cd -^ c6 cm" cm cm cm >-h i-i © as as x © i.o -ri* Tt co oi ■— < © as /: x i- t— © © ire ire -rr co co oi o-i oi >-< >— i t-i .-h NNNNNhhhhhhhhht-ih 3 ooooo© ©ooo© ©ooooo ©©©ooooooooooooooooooo 5 o ire © ire © © o o © o © © ©■ © © © © © © © o o © © © © © © © o o ©■©■©©©©© © j— 'cMiret— ©ire©ire©ire©ire©i.re©ire©ire©Lre©Lre ©ooo© ©©©ooo© ©©©■©© ^ I CO TfCM XXX II II II © ©© -v c- as © oi © I ire e-j cm | C-COX CO t-CO x ire © © oi © -H-H-H XXX CO © T-I ao ^ © ire co c- ©© c- ai co "* © ©01 CM CM CM CM &QQ co ire t- ire co as m 1 ©■ as (D L— Ol © as as co as as ©'©'©" 124 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY O -H 2 J iBmS 1 O Oj £ 5. a o Erf OOOOOi-HOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO II I II I I I I I II I I I II I I ! I I I I I I I I I ooHt*ooo»(DnHo OOOO^T^rHOOOOOOOOOOOOOOOOOOO i -■* co co cm cm cm * JXCD^CD00^THC<]aSi^CDU3Xi-ICDCMOOiOCDT-<.-i ^ t- r4 OS OS OS OS tH o4 •«£ ID OStH t* t- O CO t-s-CSi t> 03 ^ t> W fc- CO OS (O -^W O t> U3 -«* CM CM* --H WClClNNHHHHHrlHHHHtHH ■•ooooooooooooooooooooo cocdcm^u^cmiocoiOcd^co^xcocmocdt^u^co^^^xu^cmwcoc^ NOrJt>odco'^NtHOS001>*DlOu5'U3^^^COINWOCftc6^<0 (OlOtOCONNNNNHHHHHHHHHHHHHH I I I I I I I | | I I I I I I I | I I I I I I II I I I I I II I I I I I I I I I ' ' ' lO^COCJNW^IHHHHrtHHrtHClWOJN' ■IOOOOOOOOOOOOOOOO t-NWM^'tcnirtto^oiH^ioxiHtoNOOkntt'HHifl'^iociiHHt-oiTc: ^m0ilX)^X'WO0iC10iHM^a)CJH'rft-'OC0t-C']f-ei , ^ , t-Ht>WCTitD'*NOC- NNHHOOO) X 'X- 'O 'I* rf M f ] H C O CJ X -X t> CD CD lO lO -tf CO CO CM CM i— I i-H H r- 1 i- I CICIMCIflHHHHHHHHHHHH CD O OS CM OS U5 Tj5 CM CM rA oooooooooooooooooooooooooooooooooooooooo iCOiOOLOOOOOO O'O OOOOOOOOOOOOOOOOOOOOOOOOOOOO Oi-HO]^'t>OijOOu-omomOiOOLOOUOOiOOiOOOOOOOOOOOOOOOOOO OOOOOOt-It C 1 1 ro CO -# tP I CO^CM CO II II II II II II o o o omoo co cm as cm oas iC CD lO o cm' o* -H-H-H irt tF CO t- >-i CO 0.-H rj< CD O uO t-CO iHi COHH ooas CM CO CM CM &QQ iO to <■# X UOCO co t> as coos as cm as as © © o CM ,Jj V 1> bfl"H ^K 0> rt rQ a £ 2 «e " o P4 ~< 14 a c o OJ rt oooooooooooooooooooooooooooooooooo II I I I I I II I I I I I II I I I I I II I I I O O ^ 0? [■- N Oi H CD X H N H m lO Oi O C H CD C r X CI X iC t- X O t- T O N Ol HHioioinmHHoaiOiCT>ojoJOHcoM'i | «wO'X'ioc30xt~iCTj'ccww UWuiOTNNNNNHHHHrtMNNNNNNNHHHHO^ddo^ I t-OOiOONHOlOXNW-'I'OOCOXt-XCOOHiOTl't-in'J'COCM'XOOiHX to*odot>o6o^»^wo^Nco"iOt^asrH^t>rHioascoocc^ ^wrtHooaixt-^m^ccNHOoaixxt-cotjDio^^comcjcjHrtHH CMCMCMCMCMCM'-t^HiHT-(^H^H I -H^H^-(r-i^-« OiNO)OCCC-«l"X>cMOW«nt'TfHHXX(MiOOtD'i l C^HHt-M05« t-Xt-OTf^NifiOOHOCTiOOmaiXCCt-t-Mt-^iDtOTfniNHHOO COt>OC^CDCMCM'— (r- IHf It— i O t— t i— iOOOOOOOOOOOOOOOOOOO l> CD CD CM i N^CO^WI>'^XTt<-*XOI>LO^tCW'^XOC'HLOO»OXCOOI>NiniJOOC71 irtC-NOtDC'JtOOHt-(DOS'HCO'-fiCl"50COaiHUScOXC ! )tD(DtDt-0^ l O)^ , 01 LO^^CM^^-"uOcO^"asOCl^t>CDLOlCrP^COCMCM"wO ^CDCIIOCOCJOCICIHHHHHHHHHHHHHH I I I I I I I I I I I f?*t I I I I I I I I I I I II I I I I I I I OO^HtO'tMCO'CiXHMHiOiOOiOOHCDtCtDCJMirtt-XOt'CDOlClOl rHr^inu^LOcocM^oasasasasasOi-icoco^cooiO'X^coococ^ui^cococ-] WU!lOO!WNN'NNHVHHHNNNNNNNNHHHH'ddddd I t>OO©HC0NOOtX3NN^OOm00t>00«OHW^t«l0^e0NC0O0JH00 cD'o6d^eod^'Nr3dtHNco^^aiTHTft>H^c^Mxm^xd ■^cOCOHOOffliXf-COiOTjtmWHOOOJXXt^O^iOUSTliCOCOINNHrtHH C']ClClCMCMCMT-lT-(T-^xxdddHNn^wd^oQoJ KffiW II II II o oo 1-1 O -^ CM OOCM O "# tH o C- O OH OS O -— I CO rUDO -H-H-H ffiKffi O uO Tf o C o "# 10 CD C- CO t- O OO a- 1 1 W a ao, WWW o o o O OJ CD H OS CM CM CM CM CO &QQ i-t tr- io as as as as as APPENDIX E 125 Table E-3. Cumulative distribution of ground-based gradients: Arnuudseu-Scott, Antarctica (gradient followed by percentage level). 0- -50 METERS, STATION 90001, MONTH 2 -20.7 0.51 -20.8 1.52 -22.3 2.53 -23.1 3.54 -24.8 4.55 -28.5 5.56 -28.7 6.57 -28.9 7.58 -30.5 8.59 -31.0 9.60 -32.8 10.61 -35.0 11.62 -37.2 12.63 -40.0 13.64 -41.6 14.65 -42.9 15.66 -43.3 16.67 -44.2 17.68 -44.2 IX. 69 -45.3 19.70 -46.9 20.71 -47.1 21.72 -47.7 22.73 -49.7 23.74 -50.1 24.75 -50.2 25.76 -50.3 26.77 -51.0 27.78 -51.3 28.79 -51.7 29.80 -52.8 30.81 -53.8 31.82 -54.0 32.83 -54.2 33.84 -56.0 34.85 -56.6 35.86 -57.5 36.87 -57.6 37.88 -61.5 38.89 -61.7 39.90 -62.4 40.91 -63.0 41.92 -63.5 42.93 -63.6 43.94 -63.9 44.95 -65.4 45.96 -67.6 46.97 -67.7 47.98 -67.8 48.99 -68.3 50.00 -68.4 51.01 -69.1 52.02 -70.7 53.03 -71.6 54.04 -72.5 55.05 -73.5 56.06 -73.8 57.07 -74.1 58.08 -74.5 59.09 -75.3 60.10 -75.7 61.11 -76.6 62.12 -76.7 63.13 -77.9 64.14 -79.5 65.15 -81.1 66.16 -81.9 67.17 -82.8 68.18 -83.9 69.19 -84.0 70.20 -84.4 71.21 -85.1 72.22 -85.4 73.23 -85.8 74.24 -86.1 75.25 -87.1 76.26 -89.2 77.27 -91.3 78.28 -93.7 79.29 -95.6 80.30 -97.9 81.31 -101.0 82.32 -102.4 83.33 -104.4 84.34 -107.2 85.35 -107.4 86.36 -107.5 87.37 -107.5 88.38 -109.7 89.39 -113.6 90.40 -114.6 91.41 -123.7 92.42 -125.1 93.43 -133.7 94.44 -137.2 95.45 -146.9 96.46 -154.4 97.47 -166.7 98.48 -171.8 99.49 0- -50 METERS, STATION 90001, MONTH 5 -33.8 0.30 -41.3 0.91 -42.4 1.52 -43.9 2.13 -45.1 2.74 -45.4 3.35 -45.6 3.96 -47.4 4.57 -48.7 5.18 -52.5 5.79 -53.3 6.40 -56.4 7.01 -57.4 7.62 -59.5 8.23 -63.1 8.84 -64.8 9.45 -65.2 10.06 -66.6 10.67 -68.1 11.28 -68.3 11.89 -69.5 12.50 -70.2 13.11 -70.8 13.72 -72.3 14.33 -73.1 14.94 -77.1 15.55 -78.2 16.16 -78.9 16.77 -80.6 17.38 -80.8 17.99 -82.0 18.60 -83.0 19.21 -83.7 19.82 -83.7 20.43 -89.5 21.04 -91.5 21.65 -92.0 22.26 -93.7 22.87 -94.1 23.48 -94.6 24.09 -97.6 24.70 -99.0 25.30 -102.3 25.91 -102.4 26.52 -105.8 27.13 -108.9 27.74 -110.4 28.35 -110.7 28.96 -111.4 29.57 -111.5 30.18 -113.9 30.79 -116.0 31.40 -116.7 32.01 -118.3 32.62 -119.7 33.23 -119.7 33.84 -120.7 34.45 -127.9 35.06 -131.9 35.67 -132.2 36.28 -132.2 36.89 -132.8 37.50 -134.4 38.11 -135.6 38.72 -137.1 39.33 -137.2 39.94 -137.4 40.55 -137.8 41.16 -138.1 11.77 -139.0 42.38 -140.7 42.99 -141.2 43.60 -144.5 44.21 -146.1 44.82 -147.3 45.43 -148.6 46.04 -150.3 46.65 -150.3 47.26 -150.4 47.87 -152.4 48.48 -153.3 49.09 -153.4 49.70 -153.6 50.30 -156.6 50.91 -157.1 51.52 -159.6 52.13 -164.0 52.74 -164.7 53.35 -165.1 53.96 — 166.6 54.57 -166.7 55.18 -167.0 55.79 -168.4 56.40 -168.7 57.01 -170.5 57.62 -171.6 58.23 -172.4 58.84 -173.5 59.45 -173.6 60.06 -174.6 60.67 -175.1 61.28 -176.7 61.89 -177.4 62.50 -178.0 63.11 -178.5 63.72 -179.6 64.33 -180.1 64.94 -180.5 65.55 -183.4 66.16 -183.6 66.77 -183.7 67.38 -186.3 67.99 -186.9 68.60 -187.3 69.21 -189.7 69.82 -193.8 70.43 -197.3 71.04 -199.0 71.65 -199.7 72.26 -204.3 72.87 -204.9 73.48 -207.6 74.09 -208.9 74.70 -209.1 75.30 -210.1 75.91 -210.9 76.52 -211.2 77.13 -214.2 77.74 -214.4 78.35 -216.3 78.96 -217.0 79.57 -222.3 80.18 -226.8 N0.79 -227.7 81.40 -229.2 82.01 -232.7 82.62 -233.4 83.23 -236.8 83.84 -238.9 84.45 -241.1 85.06 -244.1 85.67 -247.3 86.28 -247.6 86.89 -251.5 87.50 -255.0 88.11 -260.8 88.72 -263.3 89.33 -268.2 89.94 -270.8 90.55 -270.9 91.16 -275.0 91.77 -275.8 92.38 -282.8 92.99 -285.1 93.60 -297.8 94.21 -299.3 94.82 -299.8 95.43 -310.0 96.04 -311.1 96.65 -312.5 97.26 -341.2 97.87 -383.6 98.48 -429.0 99.09 -481.2 99.70 0- -50 METERS, STATION 90001 MONTH 8 -37.9 0.27 -39.3 0.81 -45.5 1.35 -47.9 1.89 -48.4 2.43 -49.5 2.97 -49.6 3.51 -58.3 4.05 -59.3 4.59 -59.3 5.14 -69.3 5.68 -74.6 6.22 -74.7 6.76 -74.9 7.30 -75.1 7.84 -80.4 8.38 -80.7 8.92 -82.9 9.46 -85.7 10.00 -89.9 10.54 -90.8 11.08 -92.6 11.62 -94.9 12.16 -95.4 12.70 -96.2 13.24 -96.6 13.78 -99.0 14.32 -100.4 14.86 -100.5 15.41 -100.6 15.95 -101.7 16.49 -105.6 17.03 -106.5 17.57 -108.2 18.11 -110.1 18.65 -112.4 19.19 -112.9 19.73 -114.7 20.27 -114.9 20.81 -115.1 21.35 -115.2 21.89 -116.0 22.43 -117.5 22.97 -118.6 23.51 -121.6 24.05 -123.9 24.59 -126.3 25.14 -126.3 25.68 -129.2 26.22 -129.6 26.76 -130.8 27.30 -131.9 27.84 -132.3 28.38 -132.7 28.92 -134.3 29.46 -134.8 30.00 -135.2 30.54 -135.5 31.08 -135.9 31.62 -137.3 32.16 -137.5 32.70 -137.6 33.24 -138.0 33.78 -138.7 34.32 -139.1 34.86 -139.3 35.41 -141.7 35.95 -143.6 36.49 -143.7 37.03 -143.7 37.57 -146.0 38.11 -146.6 38.65 -147.1 39.19 -147.2 39.73 -147.5 40.27 -149.8 40.81 -150.2 41.35 -151.4 41.89 -152.6 42.43 -154.7 42.97 -156.6 43.51 -156.8 44.05 -156.9 44.59 -157.6 45.14 -161.1 45.68 -163.3 46.22 -164.4 46.76 -164.6 47.30 -166.7 47.84 -166.9 48.38 -168.1 48.92 -169.2 49.46 -170.1 50.00 -171.3 50.54 -171.5 51.08 -171.8 51.62 -173.0 52.16 -174.4 52.70 -176.0 53.24 -176.2 53.78 -176.3 54.32 -177.8 54.86 -178.4 55.41 -180.4 55.95 -180.5 56.49 -180.9 57.03 -180.9 57.57 -183.8 58.11 -183.8 58.65 -184.4 59.19 -185.9 59.73 -186.3 60.27 -186.4 60.81 -189.5 61.35 -190.2 61.89 -191.7 62.43 -191.8 62.97 -192.0 63.51 -193.0 64.05 -193.8 64.59 -197.1 65.14 -198.3 65.68 -199.3 66.22 -200.8 66.76 -203.1 67.30 -204.5 67.84 -206.0 68.38 -208.6 68.92 -208.8 69.46 -211.2 70.00 -211.8 70.54 -212.0 71.08 -212.5 71.62 -215.4 72.16 -216.1 72.70 -216.1 73.24 -217.1 73.78 -218.3 74.32 -219.3 74.86 -221.4 75.41 -221.7 75.95 76.49 -225.7 77.03 -227.7 77.57 -230.6 78.11 -230.7 78.65 -232.5 79.19 -238.2 79.73 -239.9 80.27 -240.9 80.81 -242.2 81.35 -242.6 81.89 -244.8 82.43 -245.4 82.97 -246.9 83.51 -249.6 84.05 -252.3 84.59 -252.9 85.14 -254.6 85.68 -262.2 86.22 -265.4 86.76 -266.3 87.30 -267.0 87.84 -267.1 88.38 -269.1 88.92 -272.4 89.46 -275.7 90.00 -277.6 90.54 -279.1 91.08 -279.2 91.62 -280.0 92.16 -289.3 92.70 -290.5 93.24 -290.7 93.78 -292.7 94.32 -293.7 94.86 -296.5 95.41 -298.7 95.95 -302.6 96.49 -305.8 97.03 -306.4 97.57 -314.4 98.11 -336.0 98.65 -346.2 99.19 -419.4 99.73 126 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY Table E-3. (Continued) 0- -50 METERS, STATION 90001, MONTH 11 -9.1 0.31 -16.1 0.93 -18.1 1.55 -21.3 2.17 -22.5 2.80 -24.9 3.42 -25.1 4.04 -25.8 4.66 -27.3 5.28 -27.6 5.90 -27.6 6.52 -27.7 7.14 -27.8 7.76 -28.0 8.39 -28.2 9.01 -29.1 9.63 -31.7 10.25 -35.1 10.87 -37.2 11.49 -38.4 12.11 -38.6 12.73 -39.5 13.35 -39.6 13.98 -39.7 14.60 -40.4 15.22 -40.7 15.84 -42.7 16.46 -43.6 17.08 -44.3 17.70 -45.4 18.32 -45.5 18.94 -46.5 19.57 -46.5 20.19 -46.6 20.81 -46.7 21.43 -4Y.3 22.05 -48.3 22.67 -49.1 23.29 -49.3 23.91 -49.3 24.53 -49.8 25.16 -49.9 25.78 -50.3 26.40 -51.7 27.02 -53.7 27.64 -53.7 28.26 -53.9 28.88 -54.6 29.50 -55.1 30.12 -55.4 30.75 -55.7 31.37 -55.9 31.99 -56.1 32.61 -56.3 33.23 -56.4 33.85 -56.8 34.47 -58.3 35.09 -58.6 35.71 -58.7 36.34 -58.8 36.96 -59.1 37.58 -59.7 38.20 -59.9 38.82 -60.2 39.44 -60.5 40.06 -61.1 40.68 -61.4 41.30 -61.9 41.93 -62.0 42.55 -62.3 43.17 -62.8 43.79 -62.8 44.41 -63.2 45.03 -64.1 45.65 -64.5 46.27 -65.0 46.89 -66.3 47.52 -66.3 48.14 -66.5 48.76 -67.2 49.38 -67.5 50.00 -67.7 50.62 -67.8 51.24 -68.2 51.86 -68.5 52.48 -68.6 53.11 -69;2 53.73 -69.7 54.35 -70.2 54.97 -73.0 55.59 -73.2 56.21 -73.4 56.83 -73.9 57.45 -74.2 58.07 -74.3 58.70 -74.6 59.32 -76.0 59.94 -76.3 60.56 -76.8 61.18 -77.1 61.80 -77.2 62.42 -77.2 63.04 -77.4 63.66 -77.8 64.29 -78.7 64.91 -79.0 65.53 -79.0 66.15 -79.5 66.77 -79.8 67.39 -80.5 68.01 -81.6 68.63 -81.8 69.25 -82.3 69.88 -84.0 70.50 -84.5 71.12 -84.7 71.74 -85.1 72.36 -86.0 72.98 -86.0 73.60 -86.0 74.22 -86.1 74.84 -86.6 75.47 -86.8 76.09 -87.3 76.71 -87.7 77.33 -88.9 77.95 -89.8 78.57 -90.2 79.19 -91.3 79.81 -92.4 80.43 -92.6 81.06 -96.0 81.68 -97.6 82.30 -98.9 82.92 -99.2 83.54 -99.4 84.16 -100.0 84.78 -100.7 85.40 -100.8 86.02 -100.9 86.65 -102.1 87.27 -102.3 87.89 -102.9 88.51 -103.7 89.13 -105.3 89.75 -106.1 90.37 -108.4 90.99 -110.2 91.61 -111.8 92.24 -111.9 92.86 -119.1 93.48 -119.1 94.10 -119.3 94.72 -122.4 95.34 -123.8 95.96 -124.1 96.58 -128.8 97.20 -139.4 97.83 -147.0 98.45 -155.9 99.07 -161.3 99.69 0- -100 METERS, STATION 90001 , MONTH 2 -20.6 0.51 -20.7 1.52 -22.1 2.53 -23.0 3.54 -24.7 4.55 -28.4 5.56 -28.6 6.57 -28.8 7.58 -30.3 8.59 -30.4 9.60 -32.7 10.61 -34.7 11.62 -37.1 12.63 -39.8 13.64 -41.1 14.65 -42.6 15.66 -43.0 16.67 -44.0 17.68 -44.0 18.69 -45.1 19.70 -46.6 2 .71 -46.7 21.72 -46.8 22.7< -47.4 23.74 -48.9 24.75 -49.9 25.76 -50.0 26.77 -50.7 27.78 -51.0 28.79 -51.4 29.80 -52.5 30.81 -53.5 31.82 -53.6 32.83 -53.8 33.84 -55.6 34.85 -56.2 35.86 -57.1 36.87 -57.3 37.88 -61.1 38.89 -61.3 39.90 -61.3 40.91 -62.6 41.92 -63.1 42.93 -63.1 43.94 -63.5 44.95 -64.9 45.96 -67.1 46.97 -67.2 47.98 -67.3 48.99 -67.8 50.00 -67.9 51.01 -68.5 52.02 -70.2 53.03 -71.1 54.04 -71.9 55.05 -72.9 56.06 -73.2 57.07 -73.5 58.08 -73.8 59.09 -74.7 60.10 -75.0 61.11 -76.0 62.12 -76.1 63.13 -77.3 64.14 -78.8 65.15 -80.3 66.16 -81.1 67.17 -82.0 68.18 -83.1 69.19 -83.2 70.20 -83.6 71.21 -84.3 72.22 -84.6 73.23 -85.0 74.24 -85.3 75.25 -86.2 76.26 -88.3 77.27 -90.4 78.28 -92.7 79.29 -93.0 80.30 -94.6 81.31 -96.8 82.32 -99.9 83.33 -101.3 84.34 -103.2 85.35 -106.2 86.36 -106.2 87.37 -106.2 88.38 -108.4 89.39 -112.2 90.40 -112.8 91.41 -113.1 92.42 -122.1 93.43 -131.8 94.44 -135.2 95.45 -144.6 96.46 -151.9 97.47 -163.8 98.48 -168.8 99.49 0- 100 METERS, STATION 90001 MONTH 5 -42.2 0.30 -43.7 0.91 -44.9 1.52 -45.2 2.13 -45.4 2.74 -47.2 3.35 -49.2 3.96 -56.1 4.57 -56.6 5.18 -57.1 5.79 -59.1 6.40 -62.7 7.01 -64.7 7.62 -66.1 8.23 -67.6 8.84 -70.2 9.45 -70.8 10.06 -71.8 10.67 -72.5 11.28 -74.0 11.89 -74.2 12.50 -77.3 13.11 -77.6 13.72 -79.9 14.33 -80.1 14.94 -83.0 15.55 -83.6 16.16 -86.1 16.77 -87.1 17.38 -90.3 17.99 -90.6 18.60 -91.1 19.21 -92.7 19.82 -93.2 20.43 -93.7 21.04 -96.6 21.65 -97.0 22.26 -98.0 22.87 -101.2 23.48 -101.3 24.09 -104.6 24.70 -107.6 25.30 -109.1 25.91 -109.5 26.52 -109.7 27.13 -110.1 27.74 -110.2 28.35 -110.8 28.96 -112.6 29.57 -114.7 30.18 -114.7 30.79 -115.0 31.40 -115.3 32.01 -116.8 32.62 -118.2 33.23 -118.2 33.84 -119.2 34.45 -126.3 35.06 -130.0 35.67 -130.4 36.28 -130.4 36.89 -131.0 37.50' -132.6 38.11 -134.6 38.72 -134.9 39.33 -135.2 39.94 -135.5 40.55 -135.9 41.16 -136.2 41.77 -138.7 42.38 -139.1 42.99 -141.0 43.60 -142.5 44.21 -144.0 44.82 -146.0 45.43 -146.5 46.04 -148.0 46.65 -148.1 47.26 -149.4 47.87 -150.0 48.48 -150.9 49.09 -151.2 49.70 -153.9 50.30 -154.6 50.91 -157.7 51.52 -158.8 52.13 -160.5 52.74 -161.2 53.35 -162.1 53.96 -162.3 54.57 -163.7 55.18 -163.8 55.79 -165.7 56.40 -165.8 57.01 -166.3 57.62 -168.2 58,23 -168.3 58.84 -169.6 59.45 -170.5 60.06 -170.6 60.67 -171.3 61.28 -171.5 61.89 -172.1 62.50 -173.1 63.11 -173.5 63.72 -174.2 64.33 -174.9 64.94 -175.3 65.55 -176.4 66.16 -177.2 66.77 -180.1 67.38 -180.3 67.99 -180.4 68.60 -182.8 69.21 -183.4 69.82 -183.7 70.43 -186.1 71.04 -186.2 71.65 -186.3 72.26 -193.4 72.87 -194.5 73.48 -195.1 74.09 -195.7 74.70 -196.1 75.30 -197.3 75.91 -197.4 76.52 -198.8 77.13 -200.1 77.74 -200.7 78.35 -203.3 78.96 -204.9 79.57 -205.5 80.18 -206.7 80.79 -208.9 81.40 -209.6 82.01 -209.7 82.62 -210.2 83.23 -212.0 83.84 -212.5 84.45 -217.3 85.06 -220.1 85.67 -221.1 86.28 -221.7 86.89 -222.6 87.50 -225.0 88.11 -227.5 88.72 -227.9 89.33 -229.4 89.94 -230.3 90.55 -234.0 91.16 -238.6 91.77 -239.8 92.3K -245.3 S2.99 -248.1 93.60 -250.6 94.21 -252.3 94.82 -252.8 95.43 -263.5 96.04 -264.9 96.65 -270.7 97.26 -271.5 97.87 -277.4 98.48 -288.5 99.09 -290.9 99.70 APPENDIX E 127 Table E-3. (Continued) 0- -100 METERS, STATION 90001 , MONTH 8 -37.7 0.27 -39.1 0.81 -45.2 1.35 -47.7 1.89 -48.2 2.43 -49.4 2.97 -57.9 3.51 -74.0 4.05 -74.2 4.59 -74.3 5.14 -79.5 5.68 -79.7 6.22 -80.0 6.76 -82.2 7.30 -84.2 7.84 -84.9 8.38 -89.1 8.92 -89.9 9.46 -91.7 10.00 -93.9 10.54 -94.4 11.08 -95.6 11.62 -97.9 12.16 -99.4 12.70 -99.6 13.24 -99.9 13.78 -105.3 14.32 -107.0 14.86 -108.9 15.41 -109.1 15.95 -111.1 16.49 -113.3 17.03 -113.6 17.57 -113.7 18.11 -113.8 18.65 -114.6 19.19 -115.1 19.73 -116.1 20.27 -116.9 20.81 -117.2 21.35 -120.1 21.89 122.3 22.43 -124.7 22.97 -124.7 23.51 -126.8 24.05 -127.4 24.59 -127.9 25.14 -130.2 25.68 -130.4 26.22 -131.9 26.76 -132.1 27.30 -132.4 27.84 -132.9 28.38 -133.3 28.92 -133.6 29.46 -134.0 30.00 -135.4 30.54 -135.5 31.08 -135.5 31.62 -135.6 32.16 -136.7 32.70 -136.7 33.24 -137.1 33.78 -139.6 34.32 -139.8 34.86 -140.8 35.41 -141.5 35.95 -141.6 36.49 -141.7 37.03 -143.9 37.57 -145.0 38.11 -145.1 38.65 -145.3 39.19 -147.0 39.73 -147.6 40.27 -149.1 40.81 -150.3 41.35 -150.6 41.89 -152.2 42.43 -154.0 42.97 -154.5 43.51 -154.6 44.05 -156.0 44.59 -157.4 45.14 -158.1 45.68 -158.5 46.22 -161.1 46.76 -161.6 47.30 -161.8 47.84 -163.6 48.38 -164.1 48.92 -165.2 49.46 -166.3 50.00 -168.6 50.54 -169.3 51.08 -169.9 51.62 -170.7 52.16 -170.7 52.70 -170.9 53.24 -171.4 53.78 -172.9 54.32 -173.3 54.86 -175.5 55.41 -176.2 55.95 -177.2 56.49 -177.3 57.03 -177.7 57.57 -180.4 58.11 -180.5 58.65 -181.1 59.19 -182.5 59.73 -182.8 60.27 -182.9 60.81 -183.4 61.35 -183.5 61.89 -185.7 62.43 -185.9 62.97 -186.2 63.51 -186.5 64.05 -187.9 64.59 -188.4 65.14 -188.5 65.68 -189.2 66.22 -190.0 66.76 -190.4 67.30 -192.7 67.84 -192.8 68.38 -192.8 68.92 -196.1 69.46 -196.7 70.00 -198.7 70.54 -199.2 71.08 -203.3 71.62 -204.3 72.16 -204.4 72.70 -206.6 73.24 -207.4 73.78 -207.4 74.32 -207.6 74.86 -208.0 75.41 -210.6 75.95 -210.8 76.49 -211.4 77.03 -211.5 77.57 -213.7 78.11 -214.4 78.65 -215.8 79.19 -216.1 79.73 -218.3 80.27 -218.9 80.81 -219.3 81.35 -219.4 81.89 -220.0 82.43 -221.1 82.97 -221.2 83.51 -221.2 84.05 -222.5 84.59 -225.3 85.14 -231.0 85.68 -232.9 86.22 -233.5 86.76 -235.2 87.30 -235.6 87.84 -236.3 88.38 -238.5 88.92 -243.9 89.46 —244.8 90.00 -248.1 90.54 -252.9 91.08 -253.2 91.62 -255.4 92.16 -257.3 92.70 -260.0 93.24 -260.1 93.78 -260.2 94.32 -261.8 94.86 -262.9 95.41 -265.7 95.95 -271.5 96.49 -279.1 97.03 -279.7 97.57 -282.1 98.11 -293.5 98.65 -319.1 99.19 -328.5 99.73 0- 100 METERS, STATION 90001, MONTH 11 -9.0 0.31 -9.9 0.93 -17.9 1.55 -21.3 2.17 -22.5 2.80 -25.0 3.42 -25.7 4.04 -27.2 4.66 -27.5 5.28 -27.6 5.90 -27.7 6.52 -27.9 7.14 -28.1 7.76 -29.0 8.39 -29.8 9.01 -31.6 9.63 -34.9 10.25 -37.0 10.87 -38.2 11.49 -38.4 12.1 -39.4 12.73 -40.3 13.35 -40.5 13.98 -42.4 14.60 -44.1 15.22 -45.2 15.84 -46.3 16.46 -46.3 17.08 -46.3 17.70 -46.4 18.32 -48.1 18.94 -48.8 19.57 -49.0 20.19 -49.0 20.81 -49.5 21.43 -49.6 22.05 -50.0 22.67 -51.0 23.29 -51.1 23.91 -51.3 24.53 -51.4 25.16 -53.4 25.78 -53.4 26.40 -53.6 27.02 -54.3 27.64 -54.6 28.26 -54.7 28.88 -55.1 29.50 -55.3 30.12 -55.8 30.75 -56.0 31.37 -56.0 31.99 -56.5 32.61 -57.3 33.23 -57.9 33.85 -58.3 34.47 -58.4 35.09 -58.7 35.71 -58.8 36.34 -59.3 36.96 -59.5 37.58 -59.8 38.20 -60.1 38.82 -60.7 39.44 -61.0 40.06 -61.5 40.68 -61.6 41.30 -61.8 41.93 -62.4 42.55 -62.4 43.17 -62.8 43.79 -63.7 44.41 -64.0 45.03 -64.5 45.65 -65.6 46.27 -65.8 46.89 -66.0 47.52 -66.7 48.14 -67.0 48.76 -67.3 49.38 -68.1 50.00 -68.7 50.62 -69.2 51.24 -69.6 51.86 -72.4 52.48 -72.8 53.11 -73.3 53.73 -73.3 54.35 -73.5 54.97 -73.6 55.59 -73.7 56.21 -74.8 56.83 -75.4 57.45 -75.7 58.07 -76.1 58.70 -76.4 59.32 -76.5 59.94 -76.6 60.56 -76.7 61.18 -77.0 61.80 -78.0 62.42 -78.1 63.04 -78.3 63.66 -78.3 64.29 -78.8 64.91 -79.2 65.53 -79.8 66.15 -80.7 66.77 -80.8 67.39 -80.9 68.01 -81.1 68.63 -81.6 69.25 -83.2 69.88 -83.2 70.50 -83.8 71.12 -84.0 71.74 -84.1 72.36 -84.2 72.98 -84.3 73.60 -85.2 74.22 -85.2 74.84 -85.2 75.47 -85.3 76.09 -85.5 76.71 -85.8 77.33 -86.0 77.95 -86.0 78.57 -86.5 79.19 -86.9 79.81 -88.0 80.43 -88.9 81.06 -89.3 81.68 -89.8 82.30 -90.4 82.92 -91.6 83.54 -95.1 84.16 -96.6 84.78 -96.8 85.40 -98.2 86.02 -98.3 86.65 -98.9 87.27 -99.6 87.89 -99.7 88.51 -100.7 89.13 -100.9 89.75 -101.2 90.37 -101.7 90.99 -102.5 91.61 -104.1 92.24 -104.9 92.86 -107.1 93.48 -107.4 94.10 -110.4 94.72 -110.6 95.34 -114.8 95.96 -117.6 96.58 -120.7 97.20 -120.8 97.83 -122.1 98.45 -132.5 99.07 -158.5 99.69 Table E-4. Analysis of ground-based superrefractive and ducting layers: Amundsen-Scott, Antarctica. FEBRUARY 87 Profiles Skipped 99 Profiles Read Number of Ducts 2 Number of Superrefractive Layers 10 CUMULATIVE DISTRIBUTION OF DUCTING GRADIENTS, STATION 90001, MONTH 2 -157.500 25.00 | -164.815 75.00 CUMULATIVE DISTRIBUTION OF DUCT THICKNESSES, STATION 90001, MONTH 2 0.120 25.00 | 0.108 75.00 | CUMULATIVE DISTRIBUTION OF TRAPPING FREQUENCIES, STATION 90001, MONTH 2 3693.683 25.00 1191.104 75.00 CUMULATIVE DISTRIBUTION OF SUPERREFRACTIVE LAYER GRADIENTS. STATION 90001, MONTH 2 -100.000 5.00 -101.626 15.00 -103.922 25.00 -103.960 35.00 -117.391 45.00 -118.033 55.00 -124.793 65.00 -129.054 75.00 -138.182 85.00 -148.182 95.00 128 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY Table E-4. {Continued) CUMULATIVE DISTRIBUTION OF SUPERREFRACTIVE LAYER THICKNESSES, STATION 90001 , MONTH 2 0.148 5.00 0.102 75.00 0.123 15.00 0.101 85.00 0.122 25.00 0.092 95.00 0.121 35.00 0.110 45.00 0.110 55.00 0.104 65.00 MAY 45 Profiles Skipped 164 Profiles Read Number of Ducts 79 Number of Superrefractive Layers 40 CUMULATIVE DISTRIBUTION OF DUCTING GRADIENTS, STATION 90001, MONTH 5 -157.396 0.63 -158.605 1.90 -158.929 3.16 -159.596 4.43 -159.873 5.70 -160.156 6.96 -161.207 8.23 -164.045 9.49 -165.248 10.76 -165.306 12.03 -165.789 13.29 -166.667 14.56 -167.290 15.82 -167.480 17.09 -167.925 18.35 -169.595 19.62 -170.732 20.89 -172.414 22.15 -173.810 23.42 -174.737 24.68 -175.163 25.95 -175.694 27.22 -176.119 28.48 -176.774 29.75 -176.800 31.01 -180.952 32.28 -182.906 33.54 -183.511 34.81 -187.629 36.08 -187.850 37.34 -188.095 38.61 -192.035 39.87 -192.105 41.14 -192.241 42.41 -196.241 43.67 -196.522 44.94 -198.742 46.20 -200.962 47.47 -202.778 48.73 -202.857 50.00 -203.175 51.27 -205.263 52.53 -206.542 53.80 -210.204 55.06 -210.959 56.33 -214.019 57.59 -219.231 58.86 -220.192 60.13 -221.429 61.39 -224.107 62.66 -224.762 63.92 -231.633 65.19 -231.818 66.46 -232.824 67.72 -233.333 68.99 -237.903 70.25 -239.583 71.52 -240.230 72.78 -244.706 74.05 -246.808 75.32 -250.000 76.58 -259.375 77.85 -263.265 79.11 -266.279 80.38 -266.327 81.65 -272.500 82.91 -275.000 84.18 -276.389 85.44 -284.615 86.71 -285.981 87.97 -298.947 89.24 -302.410 90.51 -306.383 91.77 -351.282 93.04 -375.000 94.30 -377.586 95.57 -405.128 96.84 -422.414 98.10 -789.655 99.37 CUMULATIVE DISTRIBUTION OF DUCT THICKNESSES , STATION 90001, MONTH 5 0.215 0.63 0.196 1.90 0.188 3.16 0.178 4.43 0.171 5.70 0.169 6.96 0.164 8.23 0.159 9.49 0.157 10.76 0.155 12.03 0.153 13.29 0.152 14.56 0.148 15.82 0.144 17.09 0.141 18.35 0.134 19.62 0.133 20.89 0.131 22.15 0.128 23.42 0.126 24.68 0.126 25.95 0.126 27.22 0.125 28.48 0.124 29.75 0.123 31.01 0.120 32.28 0.117 33.54 0.116 34.81 0.116 36.08 0.116 37.34 0.115 38.61 0.113 39.87 0.112 41.14 0.112 42.41 0.108 43.67 0.107 44.94 0.107 46.20 0.107 47.47 0.107 48.73 0.107 50.00 0.106 51.27 0.105 52.53 0.105 53.80 0.105 55.06 0.104 56.33 0.104 57.59 0.104 58.86 0.099 60.13 0.098 61.39 0.098 62.66 (.098 63.92 0.098 65.19 0.097 66.46 0.096 67.72 0.096 68.99 0.095 70.25 0.095 71.52 0.094 72.78 0.087 74.05 0.086 75.32 0.085 76.58 0.083 77.85 0.078 79.11 0.076 80.38 0.076 81.65 0.075 82.91 0.073 84.18 0.072 85.44 0.066 86.71 0.060 87.97 0.058 89.24 0.058 90.51 0.049 91.77 0.048 93.04 0.047 94.30 0.039 95.57 0.039 96.84 0.029 98.10 0.028 99.37 CUMULATIVE DISTRIBUTION OF TRAPPING FREQUENCIES, STATION 90001, MONTH 5 2429.613 0.63 2325.397 1.90 2227.842 3.16 1903.914 4.43 1718.862 5.70 1450.565 6.96 1439.236 8.23 1108.889 9.49 1107.595 10.76 1063.192 12.03 1054.213 13.29 1040.684 14.56 1037.927 15.82 980.129 17.09 961.749 18.35 957.395 19.62 954.692 20.89 913.759 22.15 847.641 23.42 838.695 24.68 820.140 25.95 816.260 27.22 810.394 28.48 777.463 29.75 764.293 31.01 712.759 32.28 710.191 33.54 662.327 34.81 646.673 36.08 610.797 37.34 603.274 38.61 592.484 39.87 586.278 41.14 582.761 42.41 573.161 43.67 563.175 44.94 553.068 46.20 538.194 47.47 534.227 48.73 530.990 50.00 528.221 51.27 522.541 52.53 515.639 53.80 512.172 55.06 507.723 56.33 506.381 57.59 502.051 58.86 494.731 60.13 484.498 61.39 483.106 62.66 482.604 63.92 482.287 65.19 481.507 66.46 476.108 67.72 472.742 68.99 465.027 70.25 450.911 71.52 449.615 72.78 449.164 74.05 448.447 75.32 445.739 76.58 439.734 77.85 - 437.183 79.11 435.225 80.38 424.335 81.65 412.328 82.91 394.994 84.18 390.938 85.44 390.912 86.71 387.054 87.97 370.600 89.24 340.803 90.51 338.249 91.77 302.637 93.04 299.088 94.30 290.004 95.57 287.878 96.84 282.840 98.10 266.106 99.37 CUMULATIVE DISTRIBUTION OF SUPERREFRACTIVE LAYER GRADIENTS, STATION 90001, MONTH 5 -103.333 1.25 -103.347 3.75 -103.791 6.25 -106.587 8.75 -106.667 11.25 -111.515 13.75 -111.892 16.25 -112.632 18.75 -113.333 21.25 -114.465 23.75 -115.741 26.25 -120.084 28.75 -123.478 31.25 -125.253 33.75 -126.087 36.25 -126.214 38.75 -127.700 41.25 -127.835 43.75 -128.144 46.25 -130.000 48.75 -130.337 51.25 -130.469 53.75 -133.110 56.25 -133.588 58.75 -134.375 61.25 -135.714 63.75 -138.967 66.25 -139.655 68.75 -139.662 71.25 -140.845 73.75 -141.799 76.25 -142.938 78.75 -143.158 81.25 -147.183 83.75 -147.619 86.25 -148.980 88.75 -150.649 91.25 -155.208 93.75 -155.556 96.25 -155.797 98.75 CUMULATIVE DISTRIBUTION OF SUPERREFRACTIVE LAYER THICKNESSES, STATION 90001, MONTH 5 0.300 1.25 0.299 3.75 0.240 6.25 0.239 8.75 0.239 11.25 0.237 13.75 0.213 16.25 0.213 18.75 0.213 21.25 0.211 23.75 0.206 26.25 0.198 28.75 0.189 31.25 0.185 33.75 0.184 36.25 0.178 38.75 0.177 41.25 0.174 43.75 0.167 46.25 0.167 48.75 0.165 51.25 0.159 53.75 0.154 56.25 0.147 58.75 0.142 61.25 0.138 63.75 0.131 66.25 0.128 68.75 0.126 71.25 0.120 73.75 0.115 76.25 0.108 78.75 0.098 81.25 0.097 83.75 0.096 86.25 0.096 88.75 0.095 91.25 0.095 93.75 0.090 96.25 0.080 98.75 THICKNESS AND GRADIENT OF SUPERREFRACTIVE LAYERS OVER 300 METERS THICK 0.30000 -106.66667 APPENDIX E 129 Table E-4. (Continued) AUGUST 31 Profiles Skipped 185 Profiles Read Number of Ducts 104 Number of Superrefractive Layers 50 CUMULATIVE DISTRIBUTION OF DUCTING GRADIENTS, STATION 90001, MONTH 8 -157.059 0.48 -157.639 1.44 -157.843 2.40 -158.268 3.37 -159.236 4.33 -160.759 5.20 -161.881 6.25 -162.667 7.21 -163.265 8.17 — 16(1.355 9.13 -167.262 10.10 -167.532 11.06 -168.033 12.02 -170.149 12.98 -170.248 13.94 -170.408 14.90 -172.308 15.8? -172.727 16.83 -172.727 17.79 -173.404 18.75 -173.984 19.71 -175.510 20.67 -175.949 21.63 -176.056 22.60 -176.111 23.56 -176.190 24.52 -176.786 25.48 -177.165 26.44 -177.922 27.40 -181.250 28.37 -182.292 29.33 -182.895 30.29 -182.993 31.25 -184.127 32.21 -184.536 33.17 -185.185 34.13 -185.315 35.10 -186.170 36.06 -190.816 37.02 -191.919 37.98 -194.286 38.94 -196.939 39.90 -198.889 40.87 -200.000 41.83 -200.000 42.79 -200.769 43.75 -202.062 44.71 -202.069 45.67 -202.083 46.63 -202.778 47.60 -203.738 48.56 -205.517 49.52 -205.674 50.48 -208.571 51.44 -210.526 52.40 -211.111 53.37 -211.702 54.33 -214.286 55.29 -214.943 56.25 -216.239 57.21 -218.584 58.17 -218.750 59.13 -220.619 60.10 -221.552 61.06 -222.078 62.02 -225.000 62.98 -230.645 63.94 -232.174 64.90 -232.941 65.87 -234.694 66.83 -236.842 67.79 -237.113 68.75 -239.175 69.71 -243.434 70.67 -243.750 71.63 -243.966 72.60 -245.977 73.56 -252.885 74.52 -255.652 75.48 -256.701 76.44 -257.843 77.40 -258.491 ',8.37 -264.935 79.33 -266.154 80.29 -266.279 81.25 -267.257 82.21 -268.817 83.17 -271.429 84.13 -277.586 85.10 -278.261 86.06 -281.395 87.02 -281.633 87.98 -282.558 88.94 -284.058 89.90 -284.211 90.87 -288.298 91.83 -289.189 92.79 -290.566 93.75 -295.349 94.71 -298.507 95.67 -302.941 96.63 -326.923 97.60 -332.653 98.56 -408.000 99.52 CUMULATIVE DISTRIBUTION OF DUCT THICKNESSES STATION 90001, MONTH 8 0.204 0.48 0.202 1.44 0.201 2.40 0.189 3.37 0.180 4.33 0.170 5.29 0.168 6.25 0.168 7.21 0.158 8.17 0.158 9.13 0.157 10.10 0.154 11.06 0.152 12.02 0.147 12.98 0.145 13.94 0.145 14.90 0.144 15.87 0.144 16.83 0.144 17.79 0.144 18.75 0.143 19.71 0.143 20.67 0.142 21.63 0.141 22.60 0.134 23.56 0.130 24.52 0.127 25.48 0.127 26.44 0.126 27.40 0.126 28.37 0.124 29.33 0.123 30.29 0.122 31.25 0.121 32.21 0.117 33.17 0.116 34.13 0.116 35.10 0.116 36.06 0.115 37.02 0.115 37.98 0.113 38.94 0.113 39.90 0.108 40.87 0.107 41.83 0.107 42.79 0.106 43.75 0.106 44.71 0.105 45.67 0.105 46.63 0.104 47.60 0.102 48.56 0.099 49.52 0.099 50.48 0.099 51.44 0.098 52.40 0.098 53.37 0.098 54.33 0.098 55.29 0.098 56.25 0.098 57.21 0.098 58.17 0.098 59.13 0.098 60.10 0.098 61.06 0.097 62.02 0.097 62.98 0.097 63.94 0.097 64.90 0.097 65.87 0.097 66.83 0.096 67.79 0.096 68.75 0.096 69.71 0.095 70.67 0.095 71.63 0.094 72.60 0.094 73.56 0.094 74.52 0.094 75.48 0.093 76.44 0.090 77.40 0.087 78.37 0.087 79.33 0.086 80.29 0.086 81.25 0.086 82.21 0.086 83.17 0.085 84.13 0.084 85.10 0.078 86.06 0.077 87.02 0.077 87.98 0.077 88.94 0.075 89.90 0.075 90.87 0.069 91.83 0.068 92.79 0.067 93.75 0.065 94.71 0.065 95.67 0.064 96.63 0.057 97.60 0.046 98.56 0.037 99.52 CUMULATIVE DISTRIBUTION OF TRAPPING FREQUENCIES, STATION 90001, MONTH 8 4257.656 0.48 2532.044 1.44 2411.305 2.40 2246.992 3.37 1828.382 4.33 1707.076 5.29 1536.587 6.25 1452.918 7.21 1329.146 8.17 1250.981 9.13 1105.087 10.10 1094.283 11.06 1054.796 12.02 1015.818 12.98 963.952 13.94 959.732 14.90 898.651 15.87 836.497 16.83 793.512 17.79 788.227 18.75 774.572 19.71 773.430 20.67 762.783 21.63 748.876 22.60 689.477 23.56 686.622 24.52 679.791 25.48 667.047 26.44 665.675 27.40 645.208 28.37 612.670 29.33 608.351 30.29 605.451 31.25 590.511 32.21 586.965 33.17 585.818 34.13 583.745 35.10 581.916 36.06 576.303 37.02 571.701 37.98 557.462 38.94 555.015 39.90 554.666 40.87 552.839 41.83 550.368 42.79 536.565 43.75 535.535 44.71 511.758 45.67 509.624 46.63 508.428 47.60 507.829 48.56 496.512 49.52 493.191 50.48 491.071 51.44 486.291 52.40 484.535 53.37 456.489 54.33 455.120 55.29 454.290 56.25 450.911 57.21 441.075 58.17 439.567 59.13 439.536 60.10 434.024 61.06 433.891 62.02 429.227 62.98 422.651 63.94 420.691 64.90 418.707 65.87 413.111 66.83 412.601 67.79 410.449 68.75 400.787 69.71 398.659 70.67 396.399 71.63 394.077 72.60 393.639 73.56 387.321 74.52 385.794 75.48 383.099 76.44 374.394 77.40 369.326 78.37 365.419 79.33 363.385 80.29 362.590 81.25 361.955 82.21 360.014 83.17 355.321 84.13 351.509 85.10 347.118 86.06 341.917 87.02 323.797 87.98 322.623 88.94 321.650 89.90 321.337 90.87 320.504 91.83 317.181 92.79 308.929 93.75 306.892 94.71 298.083 95.67 298.050 96.63 292.426 97.60 274.025 98.56 272.166 99.52 CUMULATIVE DISTRIBUTION OF SUPERREFRACTIVE LAYER GRADIENTS, STATION 90001, MONTH 8 -104.545 1.00 -105.093 3.00 -106.000 5.00 -109.016 7.00 -109.502 9.00 -110.687 11.00 -111.111 13.00 -112.500 15.00 -113.978 17.00 -118.902 19.00 -120.257 21.00 -120.556 23.00 -122.609 25.00 -124.409 27.00 -126.894 29.00 -127.362 31.00 -127.368 33.00 -127.962 35.00 -128.090 37.00 -128.495 39.00 -129.583 41.00 -130.380 43.00 -131.250 45.00 -131.902 47.00 -132.903 49.00 -133.047 51.00 -133.444 53.00 -133.673 55.00 -134.343 57.00 -135.052 59.00 -136.598 61.00 -136.813 63.00 -137.288 65.00 -138.378 67.00 -140.217 69.00 -140.645 71.00 -142.553 73.00 -144.253 75.00 -144.324 77.00 -144.545 79.00 -146.012 81.00 -146.980 83.00 -147.489 85.00 -151.402 87.00 -152.222 89.00 -153.247 91.00 -155.224 93.00 -156.081 95.00 -156.164 97.00 -156.627 99.00 CUMULATIVE DISTRIBUTION OF SUPERREFRACTIVE LAYER THICKNESSES, STATION 90001, MONTH 8 0.311 1.00 0.307 3.00 0.302 5.00 0.279 7.00 0.264 9.00 0.244 11.00 0.240 13.00 0.233 15.00 0.232 17.00 0.224 19.00 0.221 21.00 0.220 23.00 0.219 25.00 0.216 27.00 0.211 29.00 0.200 31.00 0.198 33.00 0.194 35.00 0.186 37.00 0.185 39.00 0.185 41.00 0.184 43.00 0.182 45.00 0.180 47.00 0.178 49.00 0.177 51.00 0.174 53.00 0.166 55.00 0.164 57.00 0.163 59.00 0.163 61.00 0.158 63.00 0.155 65.00 0.155 67.00 0.149 69.00 0.148 71.00 0.146 73.00 0.134 75.00 0.131 77.00 0.127 79.00 0.117 81.00 0.115 83.00 0.110 85.00 0.107 87.00 0.098 89.00 0.097 91.00 0.095 93.00 0.094 95.00 0.090 97.00 0.077 99.00 130 A WORLD ATLAS OF ATMOSPHERIC RADIO REFRACTIVITY Table E-4. (Continued) THICKNESS AND GRADIENT OF SUPERREFRACTIVE LAYERS OVER 300 METERS THICK 0.31100 -120.25723 0.30200 -133.44371 0.30700 -127.36157 NOVEMBER 144 Profiles Skipped 161 Profiles Read Number of Ducts Number of Superrefractive Layers 17 CUMULATIVE DISTRIBUTION OF SUPERREFRACTIVE LAYER GRADIENTS, STATION 90001, MONTH 11 -100.000 2.94 -111.972 44.12 -137.255 85.29 -100.000 8.82 -113.592 50.00 -151.852 91.18 -100.000 14.71 -115.254 55.88 -152.252 97.06 -101.786 20.59 -118.750 61.76 -102.970 26.47 -120.690 67.65 -106.504 -122.000 32.35 73.53 -109.804 -131.667 38.24 79.41 CUMULATIVE DISTRIBUTION OF SUPERREFRACTIVE LAYER THICKNESSES, STATION 90001, MONTH 11 0.142 2.94 0.101 44.12 0.051 85.29 0.123 8.82 0.100 50.00 0.051 91.18 0.120 14.71 0.112 20.59 0.081 55.88 0.070 61.76 0.050 97.06 0.112 26.47 0.060 67.65 0.111 0.059 32.35 73.53 0.103 0.058 38.24 79.41 "& U.S. GOVERNMENT PRINTNG OFFICE: 1967—0 222-613