NOAA Technical Report EDS 1 5 IFYGL Physical Data Collection System: Description of Archived Data Washington, D.C. September 1 976 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Environmental Data Service NOAA TECHNICAL REPORTS Environmental Data Service Series The Environmental Data Service (EDS) archives and disseminates a broad spectrum of environmental data gathered by the various components of NOAA and by the various cooperating agencies and activities throughout the world. The EDS is a "bank" of worldwide environmental data upon which the researcher may draw to study and analyze environmental phenomena and their impact upon commerce, agriculture, industry, aviation, and other activities of man. The EDS also conducts studies to put environmental phenomena and relations into proper historical and statistical perspective and to provide a basis for assessing changes in the natural environment brought about by man's activities. The EDS series of NOAA Technical Reports is a continuation of the former series, the Environmental Science Services Administration (ESSA) Technical Report, EDS. Reports in the series are available from the National Technical Information Service, U.S. Department of Commerce, Sills Bldg., 5285 Port Royal Road, Springfield, Va. 22151. Price: $3.00 paper copy; $1.45 microfiche. When available, order by accession number shown in parentheses. ESSA Technical Reports EDS 1 Upper Wind Statistics of the Northern Western Hemisphere. Harold L. Crutcher and Don K. Halli- gan, April 1967. (PB-174-921) EDS 2 Direct and Inverse Tables of the Gamma Distribution. H. C. S. Thorn, April 1968. (PB-178-320) EDS 3 Standard Deviation of Monthly Average Temperature. H. C. S. Thorn, April 1968. (PB-178-309) EDS 4 Prediction of Movement and Intensity of Tropical Storms Over the Indian Seas During the October to December Season. P. Jagannathan and H. L. Crutcher, May 1968. (PB-178-497) EDS 5 An Application of the Gamma Distribution Function to Indian Rainfall. D. A. Mooley and H. L. Crutcher, August 1968. (PB-180-056) EDS 6 Quantiles of Monthly Precipitation for Selected Stations in the Contiguous United States. H. C. S. Thorn and Ida B. Vestal, August 1968. (PB-180-057) EDS 7 A Comparison of Radiosonde Temperatures at the 100-, 80-, 50-, and 30-mb Levels. Harold L. Crutcher and Frank T. Quinlan, August 1968. (PB-180-058) EDS 8 Characteristics and Probabilities of Precipitation in China. Augustine Y. M. Yao, September 1969. (PB-188-420) EDS 9 Markov Chain Models for Probabilities of Hot and Cool Days Sequences and Hot Spells in Nevada. Clarence M. Sakamoto, March 1970. (PB-193-221) NOAA Technical Reports EDS 10 BOMEX Temporary Archive Description of Available Data. Terry de la Moriniere, January 1972. (COM-72-50289) EDS 11 A Note on a Gamma Distribution Computer Program and Graph Paper. Harold L. Crutcher, Gerald L. Barger, and Grady F. McKay» April 1973. (COM-73-11401) EDS 12 BOMEX Permanent Archive: Description of Data. Center for Experiment Design and Data Analysis, May 1975. EDS 13 Precipitation Analysis for BOMEX Period III. M. D. Hudlow and W. D. Scherer, September 1975. (PB-246-870) EDS 14 IFYGL Rawinsonde System: Description of Archived Data. Sandra M. Hoexter, May 1976. „Og"OSQ,,. ^nUana^ NOAA Technical Report EDS 1 5 IFYGL Physical Data Collection System: Description of Archived Data Center for Experiment Design and Data Analysis Jack Foreman Washington, D.C. September 1976 U.S. DEPARTMENT OF COMMERCE Elliot L. Richardson, Secretary u National Oceanic and Atmospheric Administration £" Robert M. White, Administrator o 1 Environmental Data Service o) Thomas S. Austin, Director o ACKNOWLEDGMENTS Overall guidance in the preparation of this report was provided by Joshua Z. Holland, Director, Daniel B. Mitchell, and David Saxton, Center for Experiment Design and Data Analysis (CEDDA) . For the information on the data acquisition, calibration, and reduction efforts, the author is indebted to Thomas W. Cass, Kenneth I. Hildebrandt, William M. Knight, Jr., and William R. Laseter, Texas Instruments, Inc.; Lt.(jg.) Jerry Crowley, NOAA Corps; Carroll Delaney, IFYGL Field Headquarters; and Sgt. C. Edwin Wilson, USAF, who were responsible for the fabrication, maintenance, and operation of the Physical Data Collection System; Dan Del Proporto and Vernon Maxey, Lake Survey Center, who provided valuable assist- ance in the design of computer software and computer operations necessary to record the data and produce the provisional data base; Richard J. Robbins, Lake Survey Center, who was responsible for the reduction of the calibration data; and Lawrence Chase and his staff at the National Oceanographic Instru- mentation Center, who designed and carried out the calibration procedures. Acknowledgment is also due the following members of the CEDDA staff: James Harrison, who offered guidance in the early stages of data reduction; Ray Crayton, who assisted in reducing the electronics and sensor calibration data; Robert Hopkins, Kathy Kidwell, and Karl Peckmann, who played a major role in data processing and quality control; and Paul Wofsy, who was responsible for much of the programming support necessary to produce the edited data base. 11 CONTENTS Page Abstract 1 1. Introduction 1 2. System structure 2 2 . 1 Overview 2 2.2 Station structure 2 2.2.1 Land stations 2 2.2.2 Galloo Island station 14 2.2.3 Towers 16 2.2.4 Buoys 16 2.3 Sensors 16 3. Calibration 2 3 3.1 NOIC calibration procedures 23 3.1.1 Water temperature sensor 2 3 3.1.2 Q-15 current meter 24 3.1.3 Q-18 current meter 24 3.1.4 Atmospheric pressure sensor .... 24 3.1.5 Air temperature sensor 25 3.1.6 Wind direction sensor 26 3.1.7 Wind speed sensor 27 3.2 Electronics calibration 29 3.2.1 Performance checks 29 3.2.2 Internal calibrations 31 3.2.3 Derivation of performance check equations 32 4. Factors affecting data quality and quantity 41 4.1 Telephone and radio links 41 4.2 Power supplies 41 4. 3 Sensors 42 4.3.1 Air temperature 42 4.3.2 Dewpoint 42 4.3.3 Air pressure 42 4.3.4 Wind speed 42 4.3.5 Wind direction 42 4.3.6 Radiation 43 4.3.7 Water temperature 44 4.3.8 Precipitation 44 4.3.9 Pan evaporation 44 4.3.10 Current speed and direction 44 iii CONTENTS (Continued) Page 4.4 Other factors 45 5. Data processing 47 5.1 Conversion to scientific units 47 5.1.1 Air temperature 52 5.1.2 Atmospheric pressure 52 5.1.3 Pan evaporation 52 5.1.4 Precipitation 53 5.1.5 Longwave radiation 53 5.1.6 Shortwave radiation 53 5.1.7 Dewpoint 53 5.1.8 Wind direction (buoys) 54 5.1.9 Wind direction (land, island, and tower stations) .... 54 5.1.10 Wind speed 55 5.1.11 Water temperature 55 5.1.12 Water temperature (evaporation pan) 55 5.1.13 Current direction (buoys) 55 5.1.14 Current speed (buoys) 56 5.1.15 Current speed and direction (towers) 56 5.2 PDCS provisional data set 57 5.3 PDCS final data set 60 6. Archive format and data inventory 61 6.1 Provisional data tape format 61 6.2 Final data tape format 65 Appendix I Chronology of events 75 Appendix II Station inventory 79 Appendix III Factors affecting data quality . . 101 Appendix IV Internal calibration values 115 Appendix V Sensor calibration correction values 143 Appendix VI Station position corrections 173 iv IFYGL PHYSICAL DATA COLLECTION SYSTEM: DESCRIPTION OF ARCHIVED DATA Jack Foreman Center for Experiment Design and Data Analysis Environmental Data Service National Oceanic and Atmospheric Administration Washington, D.C. 20235 ABSTRACT This report describes the data obtained by the Physical Data Collection System, a network of towers, buoys, and land stations used during the International Field Year for the Great Lakes (IFYGL) in 1972-73 for limnological and meteorological measurements on Lake Ontario. Sen- sors used, calibration procedures, and data processing techniques are discussed, and inventories are given of the archived data. 1. INTRODUCTION During the International Field Year for the Great Lakes (IFYGL), a joint United States-Canadian research program carried out from April 1, 1972, to March 31, 1973, a Physical Data Collection System (PDCS) was established in support of the primary objective of IFYGL: a study of the physical processes related to Lake Ontario and its basin. The U.S. Army Corps of Engineers, Detroit, Michigan, awarded a contract to Texas Instruments, Inc., in 1970 for the design, fabrication, testing, installation, and checkout of the system. In 1971 the National Oceanic and Atmospheric Administration (NOAA) became the U.S. lead agency for IFYGL and monitored the development, construction, and implementation of the system. As a result of these efforts, a network of towers, buoys, and land stations was established for meteorological and lim- nological measurements on Lake Ontario. After the field operations, a team was formed at the Center for Experiment Design and Data Analysis (CEDDA) to design the data reduction procedures and to guide computer personnel at NOAA's Lake Survey Center in Detroit in the initial reduction of the PDCS data. Final processing and validation of the data was done at CEDDA. This report describes system characteristics, calibration procedures, and the techniques used in processing the data, which were placed in a permanent IFYGL Archive at the National Climatic Center in 1974. Requests for data should be addressed to: IFYGL Data Manager, Room 17 National Climatic Center National Oceanic and Atmospheric Administration Federal Building Asheville, North Carolina 28801 Tel: (704) 258-2850, ext. 754; FTS 672-0754 2. SYSTEM STRUCTURE 2 . 1 Overview The IFYGL Physical Data Collection System (PDCS) consisted of 20 meteoro- logical and limnological stations on the United States portion of Lake Ontario. They included 5 land meteorological stations, 2 shallow-water towers, 2 deep- water towers, 10 deepwater buoys, and 1 meteorological station on Galloo Island. The stations were grouped into five subnetworks, as shown in figure 2-1, each around a land station that contained an interrogation unit that acted as a relay for the associated subnetwork. The DECCA coordinates and geographic positions of the stations are listed in table 2-1. Beginning and ending dates of operation for each station are given in table 2-2; a more detailed chronol- ogy of events is contained in appendix I. The Rochester Control Center (RCC) , in Rochester, N.Y., served as the control, collection, and relay point for the entire network. Each land sta- tion was connected via telephone lines with RCC, which was collocated with land station 28. On the hour and every 6 min thereafter, the RCC real time clock generated a command to begin the station interrogation sequence. Three modes of data transmission were used to interrogate and monitor the network: hard wire, radio link, and telephone lines (fig. 2-2). The data were recorded on magnetic tapes (RCC Weekly Data Tapes) and simultaneously transmitted to the Lake Survey Center (LSC) in Detroit, Mich. The data transmitted to LSC formed the real-time or pre-provisional data base. All stations were equipped with on-board cassette recorders, which served a dual purpose — as backup in case of radio failure or as primary storage where no station radio existed. Sensors used and parameters measured are listed, by station type, in table 2-3; a detailed inventory of the sensors, including dates of installa- tion and removal, is given in appendix II. 2.2 Station Structure 2.2.1 Land Stations All land stations were basically the same. A small building housed the electronics, batteries, and telephone interface (fig. 2-3). The main tower supported the sensors and the radio antenna (fig. 2-4). Precipitation stands were positioned at a reasonable distance from the building and from obstructions, The radiometers were also placed a reasonable distance from the building, free from shadows and obstructions. The land station at Rochester contained not only the regular land station equipment but also electronics, additional tele- phone equipment, and backup power equipment for the Rochester Control Center. Commercial 110-V, 60-Hz power was used at all the land stations. The lights, telephone equipment, and precipitation gage heater were powered direct- ly; the dewpoint sensor heater was powered via a step-down transformer. The station electronics, including the Land Interrogation Unit (LIU) and the VHF transceiver, were powered by a 12-V, 95 A/hr lead acid storage battery float charged from commercial power. 1 * •J r, o >* go Ul _i o £ Su t- z> K < (- 00 I 1° I [ Jo Jo Table 2-1. — DECCA and geographic PDCS station positions Station Station DECCA Geographic position No. type , Red Green Lat. N. Long. W. 12 Buoy H 16.40 A 39.03 43° 34' 47" 78° 46' 43" 13 I 07.88 A 44.80 43 25 59 78 44 15 14 D 14.90 B 44.77 43 35 32 78 01 02 15 E 10.94 C 39.94 43 25 24 77 56 19 16 D 15.05 D 35.24 43 27 36 77 43 54 17 C 05.87 E 44.20 43 36 07 77 23 51 18 C 13.35 H 32.21 43 26 24 76 56 46 19 B 13.33 I 41.94 43 41 41 76 44 36 20 B 23.72 I 44.08 43 33 00 76 37 57 21 B 12.53 A 30.25 43 41 36 76 26 10 22 Land - - 43 16 21 79 00 21 23 Deepwater tower I 14.88 B 30.05 43 21 26 78 42 49 24 Shall ow-wa t e r tower I 16.23 B 30.63 43 20 37 78 42 37 25 Land - - 43 22 17 78 29 11 26 Deepwater tower E 06.06 D 36.75 43 21 42 77 45 17 27 Shallow-water tower E 08.10 D 37.06 43 20 52 77 45 23 28 Land - - 42 20 00 77 45 46 29 it - - 43 26 02 76 34 02 30 Island - - 45 53 17 76 26 41 31 Land - - 43 50 22 76 17 53 Table 2-2. — Periods of operation of PDCS stations Station No. Station type Placed in operation Operation terminated 12 Buoy June 13 , 1972 Nov. 1 , 1972 13 May 25 , 1972 Nov. 1 , 1972 14 June 14 , 1972 Nov. 17 , 1972 15 July 18 , 1972 Oct. 31 , 1972 16 May 23 , 1972 Nov. 17 , 1972 17 June 15 , 1972 Nov. 18 , 1972 18 July 19 , 1972 Oct. 11 , 1972 19 June 6 , 1972 Nov. 4 , 1972 20 May 31 , 1972 Nov. 4 , 1972 21 June 7 , 1972 Nov. 5 , 1972 22 Land May 9. 1972 Mar. 31 , 1973 23 Deepwater tower June 29. 1972 Nov. 6. 1972 24 Shallow-water tower June 16. 1972 Oct. 31. 1972 25 Land May 4. 1972 Mar. 31 , 1973 26 Deepwater tower May 16. 1972 Nov. 28, 1972 27 Shallow-water tower June 5. 1972 Nov. 16, 1972 28 Land Apr. 28 , 1972 Mar. 31 , 1973 29 n i May 2, 1972 Mar. 31 , 1973 30 Island Sept. 27, 1972 Mar. 31 , 1973 31 Land May 11 = 1972 Mar. 31. 1973 FORT NIAGARA NO. 22 r ~i t GOLDEN HILL NO. 25 TOWER NO. 23 i ; x BUOY NO. 12 TOWER NO. 24 ; BUOY NO. 13 t t t t MODEM ROCHESTER CONTROL CENTER TOWER NO. 26 TOWER NO. 27 LAND TELEPHONE LINES HARDWIRE VHF RADIO LINK Figure 2-2. — PDCS data transmission flow. 5-1 4-1 rC o 43 ■u CO 00 ex ti ■H QJ QJ CU Tj CO 43 u O o •H ■ CO 4-J O c •H 3 QJ CO w o PX 5-J o co C cu co u QJ ■l-i 0) 6 CO !-i cfl PL, e s s m o o UO u-l CM CM CM LO CM O CO o X LO O O 1-^ o o rH O O 0) co CM •H ^o 43 t\ CO 00 a T3 C3 g QJ 3 4-) 4-> o CO CO ;* O /— s u CO w •H S s-^ rH ex •-N iH en O C* 4-1 m cO H 3 P-, 1 1 •— \ O QJ vO H 4-J X) #\ c H O 3 CO QJ CO O H O QJ 5-i > „ SO T3 CO 5-1 o 3 CO CO C CO ». QJ CJ <: cfl c •H 4-J 00 U •H .H aj o C f3 5-4 .H S •H CO QJ 3 CJ 4-J r^ 4J O O •H QJ CM 5-i cd »• 3 >H 5-4 QJ ■u 5-1 4-) O A 43 CO 4-> 4-1 • QJ •H o 4-1 C3 CO s 4-J 5-4 CO T3 9J C3 O C O QJ (3 H pi •H QJ 43 LS CO 0) ^— ' 4-) 4-1 X ■*~s ^J H CO C3 O O QJ 00 C3 S-i QJ QJ 4-1 CX 4-1 QJ M •H 4-J O rC 4tJ cfl 5-i QJ CX 4-1 .H 00 00 CJ QJ CX •H CJ . >! >, C3 H CO O QJ QJ QJ QJ •H u H QJ 5-4 4-1 r-\ rH rH CX QJ QJ CX C QJ CO CX CX CX CX 43 >H 3 cfl a QJ CX CX CX •H H ^-^ cj > < QJ 5-1 CO CO 33 w c o •H 4-1 cfl •H cfl !-i QJ > w G o •H 4-1 cfl •H cfl 5-i QJ > CO c o •H 4-1 CO •H 13 CO 5-< QJ > Cfl H QJ QJ cfl & 4-J U C3 5-1 S 4-1 5-i 3 O CX 00 5-i O C3 ■u •H f3 O 43 O CO 4-J CJ O 43 CO •H U T3 CJ •H .H CO 4-1 QJ QJ CD 5-4 T) cfl & QJ U QJ 4-1 4J 4-1 QJ 4-1 CX •H J^ (3 CJ £3 4-1 •H QJ CO TJ CX •H QJ a) CJ CX 4-1 CO O T3 T3 QJ •H X) T) O CX •H •H tH O u C3 C & a a "4-1 QJ •H •H •H 4-1 QJ C C3 QJ 5-( H CO o CO X •~\ u •H a, /•— -\ s rH rH - — V CU CU X CO o pi 4-1 m CU XI 3 ,£> CN cd rH 3 Ch ,0 CN 3 o O 1 1 /-~\ O o o ■H u CN CU xO rH 4-1 X) •s 5-i CN ■u ex vO X >-i /~N 3 >> o »\ «S cd O CO X - * — ' o CO a CO »> CU CJ <3 cd O CO CX 4-1 ■H 4-1 60 5-i ■H rH jy CX 4J CO cu 3 3 PI 5-( rH s CU C !-i cu 4J cu 3 CJ 4-1 r^ CU CU 3 6 s B O •H CU CN 5-( ci S & •H 3 CU 3 >H 5-i B CU •H 3 O M B s-t 4-1 o n X >-< H 4-1 4-1 CU 4-1 • CU ■H o 4-1 4-J 4-1 a CO H CO s S 4-1 5-i cd a co M 0) 3 cu a o 3 O cu CU c CU S H H cd •H a) X 12 E rH ■U CU CO ^— / 4-1 4-1 X v— ' CU CO ^H CO o CO a o o r-\ CO 3 1 CU 60 3 r~s too 3 5-1 CU 01 4-1 a 4-J CU CU 60 3 & U •H S-i •H 4-1 o 43 M 5-1 >H o cd 5-1 cd 5-i CU ex 4-1 <-\ 00 00 u cd 5-1 H cu ex 0) ex B •H o •> >. >. >> a •H O B H S rH cd O cu cu cu CU ai •H 6 rH 5-1 ^H u H CU 5-1 4-1 rH H 43 >-• 3 cd 5 cu ex Cu CX CX •H X >H H H s-^ a > <3 CU 5-i 3 ca w S o •H 4-1 cd •H X cd 5-i CI o •H 4-1 cd •H X cd 5-1 CU w c o •rl 4-1 cd •H XI cd u cu Ci o •H 4-J cd ■H X) cd 5-i cu > H H ^^ CU CO cu > > cd CU M CO > cd cd & U 3 CU cu cd 5 & 4-J 3 4-1 S-i a 5-1 £> 4-1 )-i 4J cd 3 o ex 5-i C O CI cd 5-1 4-1 •H fi O o X. O u CU cd 4-1 a o ^C rH CO •H CU & u X O ■H rH CO 4-J CX i cu a> CU >-i X X cd S CU f> CU 5-i cu 4J 4-1 4-J CU CU 4-1 cu 4-) S ex •H X c a C 4-1 4-1 •rl 4-1 cu CO X) ex •H cu CU CJ CJ CX M 4J CO O X) X) CU cu •H 5-1 CU X XI o ^ ■H •H <-\ T-\ CJ CU 4-J 5-1 13 a B CJ O 14H <4H CU 4-J cd •H •H •H 4J cu CI d CU cu 5-1 cd IS <: 12 12 H U Xl P Q CO •H X X -H cS X) i a o cu > M H ^- XI CU CU a CO 4-1 3 cu >h M 3 CJ s o •H 4-1 O CU M •H XJ X) CU CU p. co 3 O •H 4-1 CJ CU 5n •H T3 X> CU a; p. CO 3 o •H 4J O CU u •H XI 4J 4-1 4-1 4J 4-t c c c c d 0) cu cu cu cu >-i M S-l M J-l 5— I ?— I S— I S— i S— I 3 3 3 3 3 CJ O c_> c_) C_> Xl CU CU p. CO 4-1 3 CU u u 3 a 3 O •H 4-1 CJ cu 5-J •H X> 4-1 3 CU U u 3 o Xl cu cu p CO 4-> 3 cu 5-4 5-4 3 C_> 3 O •H 4-> CJ cu >-4 •H X) 4-1 3 cu 1-4 u 3 c_> Pi| H [^ CU p p w 3 o •H 4-1 cd •H •3 cO !-i CU > CO g) 3 O 3 CU Xl •H a 3 m PS 1 M >•> CU rH p. p. w 3 o ■H 4-1 CO •H XI CO V4 CU > CO g, 3 O x> cu 4J o cu iH "4-1 cu Pi 00 o: I 00 t^ cu iH p. P w 3 o •H 4-J CO •H XI CO J-t cu > CO & 4-1 5-4 o 42 CO 4-J 3 cu XI •H a 3 00 00 •nT I 00 >> CU H p Oh h 3 o •H 4-1 cO •H X) CO >-l cu > CO & 4-1 5-4 o XI CO X) cu 4-J u cu iH <4H CU Pi CTi m Ph CU U 3 CO CO cu & 5-1 CU 4J CO cu 12 CU o 3 43 60 3 •H p P •H H 3 O •H 4-t CO 4-t •H Ph •H CJ CU 5-i Ph t3 o CO to a, CO 3 CO O CO S CO I I u 4J rC o 43 4-> to bO ex d •H cu OJ CU T3 en 43 u O o •H • CO 4-> o d •H 53 cu CO en o ex o CO a cu CO J-l cu +j cu cfl u CO PL. CN /"■S CU X T3 42 CM CU O O 3 M CN C cx 4-1 4-) o a to H aj c M Xl CU cu iH CD 4-1 CU 60 cO 3 2 Xl -H ex CO U cu CU CX cu a w O •H H & •H O S iH XI .H cu CU rC >> H ^ s 6 S e e e CN co d- m r-~ 00 CN CN CN CN CN CN CO CO CO CO CO CO CO CU to O CI 60 iH CO 3 v£> > •H M «l c CX 50 •H CO § 4J 5 O c o >H CU H rH • CU CU /~s g H >H O 0) 1 pi co T3 VO •^s o H H r^- CU o n •H cu M 42 « 4-> CO to to CU CU 4J 3 T3 3 O •H cu CU .H +-> CU •H co 3 13 Xl U CO S-i •H 4-» 0) cx to CX 43 to a 3 H CO M O cu cu cu cu cu cu cu cu cu cu QJ 0) u u u n M M u M M u u u 3 3 3 3 3 3 3 3 3 3 3 3 QJ 4-1 4J 4-1 4-1 4-1 4-1 4-1 4-J 4-1 4-1 4-1 4-1 u CO CO cd cO CO CO CO CO CO cO CO CO 3 h u u u (-1 M u u rl u n Xi 4-1 a) cu CU cu QJ OJ cu cu cu cu cu cu CO & CX &■ ex CX CX CX CX F> CX cx CX u T3 QJ 0) cu cu cu cu CU CU OJ cu cu OJ cu QJ & QJ ■u 4-1 4-1 4-1 4-1 4J XI 4-1 4-1 4J 4J 4J a) CX to u u u Xl M u u u u u u u 4-1 cu cu CU CU cu cu cu cu cu cu cu QJ T3 4-1 4-1 4-1 4-1 4-1 4-1 4-1 4J 4J 4-1 4-1 4J t-l 3 CO CO CO CO cO cO (0 cO CO cO CO cO •H •H 5 ^ & IS ^ rs ^ s !3 5 s s -i CO ft o co X e o CO CO CN -cr CN o a) u 3 CD CO 3 CU o U •H ft 4-1 CJ (U ai M )-i cu 4J •H 43 3 XI ft •H CO O X O ft 3 S •H 4-1 cu 12 < Q X CU CU ft CO 3 CU S-J r-l =1 o c o •H 4-1 o cu j-i ■H X X 3 co co O (3 O •rl 4-1 O CU U X •H cu X) CU ft 4-1 CO 3 CU XI r-l 3 l-i •H 3 & CJ O 4J 4-J O o 43 CO IT) o o CO I— 1 o ^D CN CO /-> to m 5 rH | o 4-1 o* >H CO O ft £ c/3 •H CU o pi 4-) X 3 /— s 3 3 CU X O cu •■> M cu 4-J X pq 4-J rH CU r-S 3 3 CO ^ 3 o "4-1 LO (3 o CU O rH CU rH •H X M /~s M X v£> U 1 4-1 CO O cu CO CD- £3 CU CJ «i rH cu * 43 O u •rl H rH u 60 4-1 U rl rH CU 3 •H X •^s o 4-1 r-. CO ft a 3 & -H •H CU CN * •rl O X CO u O •H r-l >H 4J 3 n 4-) o •i 3 4-J 3 CU cu cu •H o PQ X ai /~-\ • o pa s 4J M CU X s X v -' o o 3 O 4-1 o CM • CO H •H CU 43 CJ •H O Pi 0) 43 4-1 4J X 3 4J O ^^ S-l 4J r-l S3 O O X ' 3 m U cu cu ft Pn CU CO u o 4J 4-) >w^ X 4-J cu •H 3 cd o 43 cu O #1 4-» r-l 5 ft 4J H 4-J ft 00 cu 4-1 CJ ft •H CJ 3 3 CU -H cu 43 & •H cu J^ 3 o 4J CU 4J rJ •H 4-1 O o cu p •H X r-l ■rl >-i cu •H 3 !S •rl X o !5 3 4-i to O CU 1 • cO 3 cO CU U 4-J CU CU S CU 13 cu CO 3 3 • ft 4-1 cd 3 CU CO CO p*5 3 O O > < W > > "— ' U ft 4-1 LT> O O 0\ o o 4-1 4-t O o 42 CO I cu i* •H X cu 4-1 CJ 3 X X CU 4-J 3 cu •H U O I CU 3 cO > LO CO 3 3 3 O O O •H •H •H 4J 4J 4J CJ CJ CJ X X X CU CU CU CU cu CU U }-l r4 CU cu cu •H •H •H ft ft ft X X* X CO CO CO 4J 4-J 4-J 4J 4J 4J G G G G G G CU CU CU CU cu cu r-l r-l r-l r-l r-l r-l U r-l U U U U 3 3 3 3 3 3 CJ CJ U a c_> u 11 CJ> £ O CO £ CO 0) a, CO 3 CO o CO I I I u •u X, o X u CO 00 CX PI •H 0) CD CD X) co XI a u o o •H • . en 4-1 o S •H s CD CO CO O ex o CO c CD CO u CU ■U cu cd u cd (X CO o D cu u cd e S S M-l co CO CO m o m o m O m o 3 o o iH i-H CM CN CO co 4J CO O r^ 4-1 cu cu CO 4-) e cu >-( 4-J CO a cd cu c •H .H •H u cu x: H CO 60 a •H M CO o cu 4-t cd cu §• CU 4-1 n •H < m O i-H CM O u o o o •H hJ X) CU ■P cd cu o CN 4-J CO O CO N— / 4-J o cd cu u o ex ,c 4-t •H T3 •H O U 00 M cu 4-t cu c •H o •H 4-J 4-t C CI CU CU 4-1 cu cu X! ,n cm o o J-l CM CX V4 4-1 CU cu d X! 4-1 •H CX O CO u £ i cd 4-t CU 4-1 cd Q <3 !3 cr> CM CM CO m ^D r-^ a\ O CM CM CM CM CM CM CO cu 0) CD cu CD CD CD CD CD CD u M M u u S-i M >-l U U 3 3 d 3 3 3 3 3 3 3 4-1 4-1 4-1 4-1 4J 4-1 4-) 4-1 4-1 4-1 cd cd cd cd cd cd cd cd cd cd u n !-i )-l m u M M >-i U cu CU CD 0) CD cu (D CD CD CD Q< & CX Cu d. ex CX CX CX Cu cu CD CD CD CD -l U U >-J u U ^ u l-t CU CU CD CU CU CU 0) CU CD d) 4-1 4-1 4-1 4-1 4-J 4J 4-1 4-1 4-1 4-J cd cd cd cd cd cd cd cd cd cd £ ^ ^ & S 13 rs ^ 12 D£ 12 u 4-J 42 o 42 4J co 50 C^ d •H QJ 01 0) T3 GO 42 a U o o •H • CO +j O d •H 3 (U CO 0) O cu o CO C! CU W cu I cd Cm CO co QJ X 42 CN O O M CN cuo- o- * - 01 O CO 3 Cu 4-t a ^ 0) o iH CO 3 0) M PQ d H >H cfl H a) cu d w •H rH S •H O H M r-t CU 0) 42 >H H ^ o o o m CO m m 0) a > o O •H Xi 4-> cd CO M o cu m cd d • > cd o CU a m CN o CO o IT) o 0) •H 4= CO T2 CU 4-1 cd u •H cu co cd l O cu iH C 1 ^•N cd vO rH > rH o O rH 42 VO d 4-1 r» o •H CO ^ •H s 4-1 too 4-1 d g 03 co cu 4-1 O s o CO r^. u fH T3 4-1 4-1 • d d CO S cd cu d • rH H 04 CO cu s-/ M H CO CU Ml ri d CU M •H 4-1 cd M a (U a d C/5 O •H H is CU •H o d 8 H cd 0) CU cu 42 >< d H \^ o o o o e o o 0) •H 42 CO T3 CU 4-1 CJ cd •H M M •H 4-1 a 0) co cd /—\ o i O •H cu rH 4J d 1 /-~v d cd vO rH cu > rH o 4-» O rH /<— \ o 42 VO o CU 4-J 9k <: .•—N •H CO W\ rH 42 CO & 4-1 too iH 4-t 4-1 d d 1^. •rH (2 CO cu d CN •5 cu O % o t\ s—> 9 u o CU M 4-1 4-> • M IH 4J d CO s O 3 CO cu d 43 CO (2 H p<3 X Cd H cu -^^ ^ r-i CO Pt4 S co CU too M >-• ^ d cu CO u >-l M 4-» O cu 4-t cu cu CU T> XI & *o 4-1 4-t 4J u d d c u d cd cd cd •rt •H •H CU cd •H •H & !3 13 <$ S & Q Cm < ^ O ■X3 to 0) rl a, tj s a CD 0) Td to 43 d u O o •rl • to 4J o a •H a CO O u o to d cd CO rl (U •u CD S cO U cd e o •H 4-1 CO H a S e S o p. o m o CN CN CN CN m CO d !-H • rH • > CO 13 CD P, CO m oo cr> CN CN CN ■U LO CD X d Ph 40 CN o O O 4-J T3 n rl CN =1 CO 0) P. -< -d CO 60 rH & & •rl T3 >> >•> fc*. >^ d •H o • o 4-1 CD CD CD CD CU •H rH CD s rl CO 4-1 r-i r-i H «H a M rH d 01 o cd P, p. p. p, a. CD CD CO « a CO CD a. a ex a. •H 42 EH > N—/ < OJ rl 3 v— ' PC w d o •H 4-1 CO •H CO U [4 d o •H 4-1 cO ■H CO rl 0) w d o •rl 4J CO •H Tj CO rl 0) w d o •H 4J CO •H CO rl CD > H H ^-^ CO CD > > CO CD CD CO > CO CO > U rl CD CO & S 4-1 d d (2 rl 11 ■M rl 4-1 4-1 o a d rl o d CO CO •H d O O 42 o rl rl 4-1 o O rH 42 CO •H CU OJ o •H H CO 4J & & CD rl T3 T3 CO n CU 4J 4-1 QJ 4-1 OJ 4-) CD OJ •H 42 d a 4-1 d 4-1 •rl 4-1 4-1 X! a •rl CD CJ CD O P. CO o T3 CU T3 CU •H U u T3 Q t •H rH •rl rH CJ OJ CD e O "4-1 CJ 4-1 CU 4-1 4-1 •H 4J CD d CU d CU M CO CO Be < a rH PS* H PSi Pn E3 S 14 INSTRUMENT SHELTER RADIOMETER T FRAME a PRECIPITATION GAGE A METEOROLOGICAL TOWER Figure 2-3. — Land meteorological station layout. Because of RCC's importance, a 3-kW generator was used as an emergency power source. Power transfer was buffered by the storage battery so as not to affect the data during the switching process. Table 2-4 lists the nominal system design specifications for the vari- ous parameters measured by the land stations. 2.2.2 Galloo Island Station The island station layout (fig. 2-5) was similar to that of the land stations, except for additional sensors. An evaporation pan was mounted on a platform at ground level. The offshore temperature probe was mounted in 2 m of water. The primary source of power was a propane-fueled thermoelectric generator (TEG) . Thermal energy was obtained from a catalytic regulator burn- er. Included in the generator was a burner temperature regulator to improve performance and to prevent inadvertent overheating of the solid-state thermo- electric elements. A d.c. converter and limiter were used with the generator to regulate its output. The TEG supplied a continuous charging current to a 15 RADIO ANTENNA Figure 2-4. — Land meteorological station main tower design. 16 12-V, 95 A/hr nickel cadmium battery and 25 V a.c. to the dewpoint sensor heater. The battery was sufficient to provide power for all functions (except the dewcell heater) for more than 72 hr. Table 2-5 lists the design specifications for the parameters measured. 2.2.3 Towers The offshore shallow-water towers were anchored at a depth of 5 m; the deepwater towers, at 20 m. All the limnological sensors were mounted on the north side of the towers. Two-burner TEG's with an air heat sink were the primary power supply. The TEG's supplied a continuous charging current to a 14.2-V 45 A/hr nickel-cadmium battery and 25 V a.c. to the dewpoint sensor heater. The battery was sufficient to power all functions, except that of the dewcell heater, for more than 72 hr. Figure 2-6 shows the tower design, and table 2-6 lists the specifica- tions for the parameters measured. 2.2.4 Buoys The taut-moored, surface-following buoys were anchored at depths from 104 to 184 m. With this mooring, the tension line increased as the drag forces on the buoy increased; hence the sensor cable maintained its vertical orienta- tion under all but extreme weather conditions. Current meters and water- temperature sensors were positioned on the buoy cable at specified levels with reference to the water surface (fig. 2-7). The bottom current meter was expected to be 2.4 m from the bottom under static conditions. Under condi- tions of moderate wind speeds and currents, the meter was expected to be at the specified 3-m level. The buoy TEG differed from that on the towers only in that the burner unit was bolted to the bottom of the compartment and was in direct contact with the water. This method of heat-sinking was used to eliminate thermal interaction with the mast-mounted meteorological sensors and to maintain a low center of gravity on the buoy. Table 2-7 lists the specifications for the parameters measured. 2.3 Sensors Sensor outputs were of four types: variable resistance, voltage divid- er, pulses (switch closures/openings), and generated voltage. With the variable resistance output, the parameter being measured caused the resistance to vary in a well-defined manner. This element was contained in the air and water temperature, and dewpoint sensors. The dewpoint sensor had a temperature-sensitive element inside a metal tube covered with a wick of woven glass tape. Two parallel gold overlay wires were wound around the wick, which was impregnated with lithium chloride that absorbed moisture from the air, forming an electrically conductive solution. The gold wires acted as electrodes when an alternating current was applied 17 Table 2-4. — Land station design specifications Parameter Range Allowable error Resolution Air temperature Atmospheric pressure Wind speed Wind direction Dewpoint Incident longwave radiation Incident shortwave radiation Reflected shortwave radiation Precipitation -25 to 40°C 950 to 3,050 mb to 50 m/s to 360° -25 to 40°C to 4 ly/min to 2 ly/min to 2 ly/min to 1.6 cm/ 6 min ±0..5°C ±0.2 mb ±1 m/s ±5° ±1° ±0.05 ly/min ±0.05 ly/min ±0.05 ly/min ±0.025 cm 0.065°C 0.125 mb 0.10 m/s 0.045° 0.065°C 0.02 ly 0.01 ly 0.01 ly 0.025 cm Table 2-5. — Galloo Island station design specifications Parameter Range Allowable error Resolution Wind speed Wind direction Air temperature Water temperature Dewpoint Atmospheric pressure Incident longwave radiation Incident shortwave radiation Reflected longwave radiation Reflected shortwave radiation Precipitation Pan evaporation to 50 m/s to 360° -25 to 40°C -2 to 30°C -25 to 40°C 950 to 1,050 mb to 4 ly/min to 2 ly/min to 4 ly/min to 2 ly/min to 1.6 cm/6 min to 10 cm ±1 m/s ±5° ±0.5°C ±0.2°C ±1°C ±0.5 mb ±0.05 ly/min ±0.05 ly/min ±0.05 ly/min ±0.05 ly/min ±0.025 cm ±0.02 cm 0.10 m/s 0.045° 0.065°C 0.032°C 0.065°C 0.125 mb 0.02 ly 0.01 ly 0.02 ly 0.01 ly 0.025 cm 0.01 cm 18 ELECTRONICS Figuve 2-5. — Island meteorological station layout. (to prevent polarization) , the amount of current being dependent on the con- ductivity of the solution, which in turn was dependent on the moisture re- tained by the lithium chloride. The current produced heating, the water evaporated, and the lithium chloride dried, terminating the heater current. After this had occurred, the temperature of the lithium chloride and the dewcell was higher than ambient and represented the temperature of equilibrium between the moist air and the lithium chloride-water solution. This temper- ature was measured and used to compute the dewpoint temperature. The device was considered to be at equilibrium after the first start-up equilibrium point had been reached. For pan evaporation, air pressure, and wind and current direction, voltage dividers or potentiometers were used, equipped with a wiper or full- scale slide wire. An excitation voltage was applied across the slide wire and the parameter sensed as a voltage with respect to the ground. 19 Table 2-6. — Offshore tower design specifications Parameter Range Allowable error Resolution Air temperature Water temperature Atmospheric pressure Wind speed Wind direction Dewpoint Precipitation Incident longwave radiation Incident shortwave radiation Reflected longwave radiation Reflected shortwave radiation Current speed Current direction -25 to 40°C -2 to 30°C 950 to 1,050 mb to 50 m/s to 360° -25 to 40°C to 1.6 cm/min to A ly/min to 2 ly/min to 4 ly/min to 2 ly/min to +100 cm/s to -100 cm/s to 360° ±0.5°C ±0.2°C ±0.5 mb ±1 m/s ±5° ±1°C ±0.025 cm ±0.05 ly/min ±0.05 ly/min ±0.05 ly/min ±0.05 ly/min ±2 cm/s ±5° 0.065°C 0.032°C 0.125 mb 0.10 m/s 0.045° 0.065°C 0.025 cm 0.02 ly 0.01 ly 0.02 ly 0.01 ly 0.222 cm/s On Galloo Island, a still-well configuration was directly coupled to the evaporation pan. A float in the well sensed the water level, so that a change in float level resulted in rotation of the wiper. Atmospheric pressure at all stations was sensed by an aneroid that mechanically positioned the wiper. At the land, island, and tower stations, a vane sensed wind direction and positioned the wiper. On the buoys, the vane was positioned by the wind direction, which in turn resulted in the slide wire also being positioned in the direction of the wind. A magnetic compass oriented the wiper, which made contact with the slide wire when a solenoid was actuated. The output was a wind direction value with respect to true north. The buoy Q-15 current meter sensed current direction with a 4-ft vane, which positioned the slide wire relative to steady-state currents. A mag- netic compass oriented the wiper on the slide wire, providing a reading with respect to magnetic north about every 6 min. On the buoys and towers, precipitation and current speed information was relayed by means of switch openings and closures. These sensors had a 20 WIND SPEED ATMOSPHERIC PRESSURE SHORT WAVE & LONGWAVE RADIOMETER (REFLECTED •*- WIND DIRECTION SHORT WAVE & LONG WAVE RADIOMETER (INCIDENT) Figure 2-6. — Limnologioal water station tower. 21 DEW POINT THE FOXBORO CO WIND SPEED R. M. YOUNG CO AIR TEMPERATURE YELLOW SPRINGS INSTRUMENTS INC. AIR PRESSURE H.E. SOSTMAN CO. MOORING CABLE DATA LINE CABLE VHF ANTENNA T-171.125 MHz. R-170. 250 MHz. NAVIGATION LIGHT WIND DIRECTION R. M. YOUNG CO. PROPANE GAS BOTTLES WATER TEMPERATURE YELLOW SPRINGS INSTRUMENTS INC. CURRENT METER MARINE ADVISORS INC. Q-15 CHAIN ANCHOR Figure 2-7. — Limnological buoy. 22 Table 2-7. — Buoy design specifications Parameter Range Allowable error Resolution Air temperature Water temperature Atmospheric pressure Wind speed Wind direction Current speed Current direction Dewpoint -25 to 40°C ±0.5°C 0.065°C -2 to 30°C ±0.2°C 0.032°C 950 to 1,050 mb ±0.5 mb 0.125 mb to 50 m/s ±1 m/s 0.10 m/s to 360° ±5° 0.045° to 100 cm/s ±2 cm/s 0.111 cm/s to 360° ±5° 0.045° -25 to 40°C ±1.0°C 0.065°C defined relationship between the parameter and the number of pulses per second. The signal conditioning circuitry counted the pulses and converted them to a voltage output. All precipitation sensors were equipped with a tipping bucket mechanism. When a known amount of water entered the bucket, the mechanism tipped, result- ing in a momentary switch closure. The Q-18 current meters on the towers had two propellers, one above the other, each rotating in either a clockwise or counterclockwise direction, de- pending on the direction of flow along its axis. Magnets embedded in the shaft of the propeller caused switch closures as the propeller rotated. Each propel- ler had a switch assembly consisting of two reed switches that closed in a 1-2 or 2-1 sequence, depending on the direction of rotation. The pulse rate pro- vided information on speed, and the switch closure sequence indicated the direction of flow. In the Q-15 current meter, a ducted impeller sensed the flow along the vane-oriented axis. Magnets embedded in the tips of the impeller blades caused momentary closures of two reed switches as the impeller rotated. The two switches had a closure sequence of 1-2 or 2-1, depending upon the direction of the flow along its axis through the duct. This unit provided a steady-state current speed by averaging out wave effects. A 4-ft vane kept the ducted im- peller oriented with respect to the dominant flow. The resulting pulses along a particular axis provided the current speed. Wind speed and radiation at all stations were measured by d.c. voltage level outputs. Wind speed was sensed by an omnidirectional three-cup anemom- eter. As the cup assembly rotated, a d.c. tachometer generator provided an output voltage directly proportional to the wind speed. Limited-band radiation was sensed by the shortwave and longwave radiom- -1 eters with thermopiles. The nominal sensitivity was 7 mV langley - 1 - min *■ for the shortwave and 5 mV langley - ! m i n ~-L f or the longwave sensor. 23 3. CALIBRATION The IFYGL PDCS sensors were calibrated separately from the electronics. NOAA's National Oceanographic Instrumentation Center (NOIC) calibrated the limnological sensors before deployment, and all sensors after the end of the Field Year. During the operational phase, a calibration laboratory, manned by NOIC personnel, was established at the Rochester Control Center (RCC) . All electronics were calibrated at the RCC facility. To the extent possible, sensors were also rotated through the RCC laboratory for calibration or replacement. A special rotation procedure was designed to provide information on the aging of the delicate atmospheric pressure sensors. To determine the amount of change, attributed to sensor handling, one sensor was used as a control and was calibrated repeatedly. A precise pressure gage, calibrated by the National Weather Service in August 1972 and April 1973, was used as the standard in calibrating the pressure sensors. All wind speed sensors were checked at RCC against a reference sensor. This sensor, as well as seven other ones, were calibrated in December 1972 in the University of Michigan wind tunnel. The Q-15 current meters were calibrated in air before deployment, and their condition therefore had to be checked before postcalibration. Sensors that showed poor spin or threshold tests were cleaned with soap and water, without being disassembled, and retested. Sensors that did not pass the check because of bad reed switches were not tested further. All Q-18 current meters were fouled on retrieval and had to be cleaned before postcalibration. All dewpoint sensors were given one-point operational checks before deployment and at the end of the Field Year. 3.1 NOIC Calibration Procedures 3.1.1 Water Temperature Sensor The thermistors were calibrated in ladder arrays. The wire lengths and connections represented variable quantities during calibration and deployment. The calibration results confirmed that the variations were within sensor specifications. The test equipment was as follows: Equipment Specification Digital multimeter Decade resistance box Digital power supply Quartz thermometer Mueller bridge Test jig Constant temperature bath ± 0.01 percent of reading ± 0.02 percent of reading ± 0.0001 V d.c. ± 0.02 percent of reading ± 0.001°C The digital multimeter at ±0.01 percent of maximum voltage introduced an uncertainty of ±0.0002 V, or ±0.02°C. The decade resistance box intro- duced a ±0.014°C uncertainty; the digital power supply, which was constantly 24 monitored, a ±0.01°C uncertainty. The quartz thermometer was used to control the constant temperature of both with a resolution of ±0.001°C. The Mueller bridge had an accuracy of ±0.001°C. The constant temperature bath was held to •±0.003°C between 15 °C and 25 °C and to ±0.005°C above and below these points. Thus the maximum error introduced by the calibration equipment was ±0.050°C. Subsequent test results indicated a true variation of less than half of this amount . 3.1.2 Q-15 Current Meter The Q-15 meter measured both current speed and direction. Speed was measured by a plastic five-blade propeller mounted in a cylindrical housing with a reed switch. Direction was measured by a fiberglass vane at the end of a boom mounted to the propeller housing. The vane assembly turned the unit into the direction of flow. Within the unit was a magnetic compass and a three-terminal potentiometer. The magnetic compass oriented itself and the resistive segment of the potentiometer with respect to true north, regardless of the physical position of the meter. The potentiometer was connected directly to the boom. In this configuration, the resistance between the rotating arm and either end of the potentiometer was directly related to the orientation of the vane. During calibration, the resistance bridge specification was ±0.5°, the magnetic compass uncertainty was ±3.6° and the test jig introduced a ±2° un- certainty. The total uncertainty assigned to the test equipment was 6.1°. Since all tests were static in nature, the uncertainty of the sensor was set at 4°, giving a total uncertainty of 10°. 3.1.3 Q-18 Current Meter The Q-18 current velocity impeller consisted of two orthogonally mounted five-bladed propellers. Imbedded in the impeller unit were four permanent mag- nets, with a reed switch positioned to be activated by them. The reed switches were arranged to indicate forward or reverse direction of flow. The following static tests were conducted: (1) The reed switch was checked. (2) An oscilloscope checked the rise and fall characteristics of the reed switch. (3) A spin-down test provided a chart representing the mechanical deceleration of the unit. (4) A threshold test provided a check on the amount of friction necessary to be overcome for sustained rotation. 3.1.4 Atmospheric Pressure Sensor The atmospheric pressure unit consisted of a bellows assembly in a com- partment vented by a single opening whose dimensions changed with pressure. This dimensional change was translated into mechanical motion which moved a knife-edge wiper across a potentiometer. The following test equipment was used: 25 Specification ± 0.01 percent of reading ± 0.05 percent of ratio ± 0.1 mb Equipment Digital multimeter Precision pressure gage Manometer Test jig (switching) Vacuum/pressure pump Assorted clamps, tees, and hoses The digital multimeter ratio introduced an uncertainty of from ±0.01 mb at 0.05 percent of ratio to ±0.07 mb at 0.95 percent of ratio. The precision pressure gage was assigned an accuracy of ±0.10 mb. The combined uncertainty from these two sources amounted to a maximum of ±0.17 mb, constituting only a degree of uncertainty, not an actual error. Each sensor was considered unfit for deployment only in case of serious failure, e.g., open leads, jammed bellows, and the like. 3.1.5 Air Temperature Sensor The air temperature sensor was a three-wire thermolinear unit with two internal thermistors and two external resistors that linearized the output across either a resistor, a thermistor, or a combination of them, when a con- stant voltage was applied to both in series. The voltage across the component- resistor combination decreased as temperature increased. The resistor values were selected to make the output nearly linear for the range of the sensor. The test equipment was as follows: Equipment Digital multimeter Decade resistance box Digital power supply Quartz thermometer Mueller bridge Test jig for switching Constant temperature bath Specification ± 0.01 percent of reading ± 0.02 percent of reading ± 0.02 percent of reading ± 0.001°C The digital multimeter at ±0.01 percent of a maximum of 2,000 V intro- duced an uncertainty of ±0.015°C. The decade resistance box introduced an uncertainty of ±0.016°C. The digital power supply was constantly monitored, at less than ±0.008°C. The quartz thermometer reading was not used. The platinum thermometer-Mueller bridge combination with corrections had an accuracy of ±0.001°C. The constant temperature bath, manually controlled by a skilled operator, could be held at ±0.003°C at relatively ambient tempera- tures of 15°C to 25°C. Above or below these points, 0.005°C could be main- tained. The switching jig introduced no error. Combined, the multimeter, the decade resistance box, and the power supply give an uncertainty of 0.039°C, with an additional 0.006°C introduced 26 by the platinum thermometer and the temperature bath. The test results indicated a variation of less than half this amount. 3.1.6 Wind Direction Sensor At the land, tower, and island stations, the wind direction sensor Jiad two main sections. One was the direction sensing unit: the vane, shaft, hub, and counterweight. The first two were attached permanently; the last two could be positioned for proper balance. The other section was the housing, the top half of which contained a vertical shaft and bearing assembly termin- ating in a fork portion of a flexible coupling. In the bottom half was the bristle brush portion of the flexible coupling, the potentiometer, and the electrical connector assembly. The connector assembly also locked the unit to the correct compass heading. The wind forced the vane to turn the vertical shaft and counterweight to face into the wind, and the vertical shaft physically turned the potenti- ometer arm to its proper position relative to this heading. The potentiometer leads terminated in the connector, which also served as a clamp to position the unit. The test equipment was as follows: Equipment Specification Test jig adapter ± 1.5° Mechanical orienting test jig ±1.5° Digital power supply Digital voltmeter ± 0.05 percent of scale Digital voltmeter ± 0.01 percent of scale Wiring harness The test equipment uncertainty was in the test jig and adapter, assigned a maximum error of ±1.5°. The digital power supply and the digital voltmeter contributed negligible errors; the wiring harness introduced no error. The sensor uncertainty, 0.5 percent linearity, was determined from the manufactur- er's statement. Another 1 percent for overall accuracy was included, giving a total of ±1.5 percent or approximately ±5.5° of arc. The total test uncer- tainty was ±7.0°. The buoy wind direction sensor also consisted of two major segments: the sensing unit (vane, shaft, hub, and counterweight); and the housing. The housing contained the vertical shaft, the magnetic compass unit, slip ring assemblies, the electrical conector, and the mounting bracket. The vane was connected to a vertical shaft, which was connected in turn to the wiper arms of a potentiometer. The resistive segment of the potentiometer was connected to a magnetic compass. To keep the compass as free from friction as possible, the wiper arm made contact with the potentiometer winding only when activated by a solenoid. Once activated, there was no change in reading until the solenoid was deactivated. The potentiometer leads were connected to the slip rings on the compass, which allowed the unit to rotate freely whether or not the solenoid was activated. The following test equipment was used: 27 Equipment Mechanical orienting test jig Electronic test jig Magnetic compass Resistance bridge Multimeter ± 2° Specification 1 percent of reading 0.15 percent of reading The total uncertainty in the test equipment was 6.1°, based on the possible uncertainty of ±2° of the test jig; the magnetic compass specifica- tion of 1 percent, which translates to a maximum error of 3.6°; and the resistance bridge specification of 0.15 percent, which equals a maximum error of 0.5°. The multimeter monitored the solenoid current to assure its operation and had no effect on the results. The manufacturer assigned a dynamic accuracy of ±5° to the sensor. Since all laboratory tests were of a static nature, the uncertainty of the sensor for this test was arbitrarily set at 4° of arc, yielding a total uncer- tainty of 10° of arc. If a sensor did not meet this criterion, it was con- sidered to have an improper response. 3.1.7 Wind Speed Sensor The wind speed sensor was a three-cup anemometer, consisting of the cup assembly, bearings, and a d.c. generator. The bearing assembly maintained the relationship of the cup assembly and the flexible coupling. The bearing assembly shaft terminated in a two-prong fork. The d.c. generator had a bristle brush wheel that formed the second segment of the flexible coupling, which, along with the fork portion of the bearing assembly, absorbed sudden changes in wind velocity. The generator was adjusted by the manufacturer to have an output of 2,400 mV at 1,800 rpm, or 50 mi/h. The test equipment was as follows Equipment Digital voltmeter Variac Digital multimeter Decade resistance box Wind tunnel (modelled) Test jig (switching) Anemometer Specification ± 0.05 percent of scale 0.15 percent of reading ± 10 mV at anemometer output ± 1 m/s The digital voltmeter at ±0.05 percent of maximum voltage introduced an uncertainty of ±0.0005 V in the 1,000-V range and ±0.005 V in the 10-V range. The wind tunnel introduced an uncertainty of ±10 mV in the anemometer output due to perturbations in wind speed. The anemometer was assumed to meet all the manufacturer's specifications and its output vs. wind speed was used as a standard. All the other components did not contribute to the uncertainty of test results. 28 The uncertainty in the sensor was determined prior to any testing, partly from the manufacturer's specifications. If the data did not fall within the sum of the maximum uncertainties of the test equipment and sensor, the latter was considered faulty. The uncertainty in the sensor was arbitrarily placed at 3 percent of reading and an additional uncertainty of -0.5 mi/h was added because of the manufacturer's statement that the threshold was between 1.0 mi/h and 1.5 mi/h. Using the manufacturer's assumption that the friction causing the threshold is the same for all cup-wheel speeds, an anemometer with readings of 0.5 mi/h less than the standard test unit was considered valid. The total uncertainty with respect to the standard anemometer was -0.5 mi/h ± 10 mV ± 3 percent of reading. In terms of mV, the total uncertainty was -22.92 mV ± 10 mV ± 3 percent of reading. In determining the theoretical response of the R. M. Young (Model No. 6101) wind speed sensor used as the standard test unit in the RCC lab- oratory the following assumptions were made: (1) One revolution of the cups corresponds to 2.4 ft of wind passage. (2) The threshold of the instrument is 1.0 mi/h. The friction loss is in the bearings and generator assembly, and the magnitude of the friction loss is constant at all cup-wheel speeds. (3) The relationship between output voltage and wind speed is linear above threshold. (4) Generator output at 1,800 rpm is 2,250 mV. The above assumptions are illustrated in figure 3-1. The equation describing the response in meters/sec can be found from Speed = m(Voltage) + b , where and ASpeed 22.3926 - 0.4470 n nnQ7 , u m = r^TTZ = TZTTi n = 0.0097536 AVoltage 2250 - b = 0.4470 The following conversion factors were used: 1 m/s = 2.2369 mi/h = 82.0210 rmp = 102.5263 mV The only graph available of an actual unit calibration represented the output at 1,800 rpm to be 2,250 mV. This was used as a base point for all data and conversions were worked out around it. However, the IFYGL calibra- tion tests gave an output of 2,400 mV at 1,800 rpm. This test was added during the postcalibrations. Since all the tests could not be rerun and any attempt to reconvert the data would have been fruitless, no change was made. 29 2,250 mV Generator output (mV) 1.0 mi/h (0.4470 m/s) (0 rpm) Wind speed 50.0909 mi/h (22.3926 m/s) (1,800 rpm) Figure 3-1. — Graph of theoretical response of wind speed sensor. 3.2 Electronics Calibrations 3.2.1 Performance Checks In the performance checks of the electronics, done at the Rochester Control Center (RCC) , the analog circuitry was calibrated, and the digital circuitry, the internal calibration feature, and the recorder and radio were checked. Most of the effort involved the analog circuitry and the analog-to- digital (A/D) conversion. Performance checks were made both before and after deployment. Input to the electronics calibration were accurately known values simulating a sensor, and the output was a three-digit raw data number. Since the design relationships between the inputs and outputs were known, the measured output and calculated output could be matched. If after the predeployment performance check the measured output and calculated output were not identical, they were adjusted to coincide. During the postretrieval performance check, if the measured and calculated outputs were not the same, no adjustments were made. The actual measured output and internal calibration data were recorded. The sensors were simulated by a variable resistance, a voltage divider, and a pulse generator or a voltage generator. An impedance bridge, voltmeter, and frequency counter were used as standards. The specifications are listed in table 3-1. For air and water temperature , 10 resistors, connected to simulate the sensor, were measured by the impedance bridge, and the resistor values were recorded. As each resistor was connected, the voltage, V± n (measured), and a three-digit field test interrogation unit (FTIU) readout of measured data (MD) was recorded. The calculated input voltage, V^ n (calc), was determined by multiplying the input resistance ratio by the excitation voltage. The FTIU readout of calculated data (CD) was determined from the calculated input 30 4-> C CU CO cO > •H w rO V-4 en O CN u~l 3 r-i • • O M O O H CU +1 +1 CO s 00 •H 1=3 05 1-1 H H Pn CO 4-1 4-1 ■H CO 60 •H O 00 o iH n cd 3 < CO 4-1 •u CO c CU rH rH CO CO c > 00 •H •H 3 05 cr fxj 0) 60 s CO CU 4-1 CU s CO r-l CO O O m no r* h +i +i +i vO +1 on ON l oo ON ON o 4-1 o o I o o o o o o 4-1 +1 ON ON ON o o I o o o o o o 4-> m +i m +i ON ON ON CO 00 On ON ON ON o o 4J 4-1 O o I o o o o o o 00 +1 00 H +1 o o ON I ON ON 00 o o I o o o o o o 4-1 o rH +1 +1 o o 00 I ON ON o 4-J o o I o o o o o 00 o 4-1 o o ON ON +1 +1 o O rH i i T3 1 a U CU 0) u 1 1 -3 1 1 3 -3 CU CU cu 3 3 /"^ 3 4-1 O 4-1 /~\ 0) s-x CU u o CO o o CJ •H 3 e u o. •H C"> 4-J /""V CO * — / •H CD 4-1 CU a 3 CU CO T) 1 CO CU 4-1 rH 3 rH V ■u u **~s 1 — ^ u 3 CO m •H <-!-; CO 3 4-1 /~\ 4-1 4-1 3 ex o •H cu ■3 CU 3 U 4-1 /—\ 3 CO a >N 3 •H •3 5-i 3 u o 0) CO o CU ' — , 0) o CU CJ 4-1 CO *^. U ->*, ■H p- !-i o u S u 3 U t) •H CJ U 4J /■"N 4-1 s~ V ■U 6 CU s»*> u CJ u rO u cu u CU 3 3 CU c 3 3 CU 8* 3 N^ 3 1 3 /■■> CU CU u CU CO •H > CU •H ■M 4-1 e rH CJ CJ 1 a CO Pu JG •H > -3 e 3 -3 6 •H CU r-\ >N 3 *^^. CO P- /-n T3 cd •H & •H & U 4-1 CU U o u O m CO ,o 1, O >N 4-1 a >N •H CU CJ CU 3 CU •H CU CJ T3 O TJ 3 rH r-l 3 rH CJ 4-> u S 4-1 rO 4-1 4-1 ■U v— ' 3 S >»• 3 3 ■H n— ' O •H *^ CU CO •H CU CO CO CO •H 4-1 •H o Xi r-l as < o IS !2 13 ES h n 91 'V 2 + 4492.614 . (3-6) -> • / + Rrp The water temperature can be found by rewriting eq. (3-1) and substituting the above values, i.e., -175.914 R T = 141.761 - T . (3-7) T 33 Derivation of the performance equation for the evaporation pan water temperature was similar to the above, except that the temperature range was -2 to 40°C. Therefore, from eqs. (3-3) and (3-4), m = 2094.213 and b = 3422.895 From eqs. (3-2), (3-5), and the above, we obtain -4188.426 R CD = — = = - - — - + 3422.895 , (3-8) J • / ■ K_ T from which the water temperature can be calculated by means of eq. (3-7). The buoy air temperature sensor can be simulated as shown in figure 3-3. According to the manufacturer, V. = E (AT + B) , (3-9) where % = 18,700 ohms, E = -2.000 V, A = -0.0067966, and B = 0.605107. The temperature range of -25 to 40 °C is equivalent to a range of 000 to 1,000 raw units. The relationship between CD and R™ can be determined from eq. (3-2), where m = 1131.788 and b = 1858.361 Substituting V. , m, and b into eq. (3-2) gives -2263.575 R CD = 18 7 - R + 1858.361 . (3-10) Solving eq. (3-2) for T and substituting the values for A and B, we obtain 147.132 R T=95 ' 793 - 18.7 + R T (3 " U) The land station air temperature sensor can also be simulated as shown in figure 3-3, where E = 1.46 V, Rl = 18,700 ohms, R 2 = 821.9 ohms, R3 = 178.1 ohms, and Gain = 15.384 34 INPUT A. T 'IN ELECTRONICS 1. OFFSET OUTPUT CD Figure 3-2. — Representation of water temperature sensor. .NPUT T ELECTRONICS OUTPUT CD Figure 3-3. — Representation of buoy and Zand station air temperature sensor. 35 Solving the circuit diagram for CD and making the appropriate substitutions gives 42001 397 CD = 187 + R ' 40 °- 02 ' (3_12) T and 1.46 R V in = 18.7 + R T * (3 " 13) The buoy dewpoint sensor can be simulated as shown in figure 3-4, where E = 8.00 V, R]_ = 1,003 ohms, R2 = 316 . 5 ohms , R 3 = 5.00 ohms, Gain = 114.69214, and Offset = -109.702914. Solving the above, we obtain ER v l IT— » < 3 -") R, + R„ + 1 2 IL + R % CD = 100 (V 2 Gain + Offset) , (3-15) and ER 2 V in = R (R + R ) + R R " (3-16) R l + R 2 + R^ — The land station dewpoint sensor can be simulated as shown in figure 3-5 , where E = 2.45 V, R-L = 258.194 ohms, R 2 = 4753.1 ohms, R3 = 5246.9 ohms, and Gain = 86.6, from which we obtain , =p M 1 \ R 2 +R 3 R 1 + R D/ and V, = h 7 „ - n n E , (3-17) CD = 100 (86.6V 1 ) . (3-18) 36 Substitution into eq. (3-18) gives CD- 11132.348 25 l 5 £l 10 + 2 h , (3-19) which describes the channel when Rq is actually the dewpoint sensor. The lead resistance cannot be neglected in the performance check however, and a 2-ohm potentiometer was inserted. Therefore, eq. (3-19) needs to be modified by replacing R D by R D + 2.000, i.e., CD = 11132.348 - 26 5 ™\°l ^ , (3-20) and 2.45 R n V in = 260.194 \ ' (3 " 21) The air pressure channel can be simulated as shown in figure 3-6. Since a 10-mV input to the A/D represents one count, CD = 100 V . (3-22) The circuitry for the wind and current direction and the wind speed sensors are identical, as shown in figure 3-7. Therefore, R E V ln = R^V^= 4 - 000 ' (3 " 23) and ER (100) CD = l = 400 , (3-24) R l + R 2 where E = 8.000 V, and Rl and R 2 = 5,700 ohms. The buoy current speed sensor can be simulated as shown in figure 3-8, where f = 0.311 speed (in cm/s) . From the specifications, speeds of to 100 cm/s are equivalent to 000 to 900 raw data units. The relationship of CD and f can be found from eq. (3-2) , where ACD = m " ASpeed " y and b = CD - m Speed = 37 INPUT V| N T ELECTRONICS V. n f OFFSET 1 OUTPUT Figure 3-4. — Representation of buoy dewpoint sensor. INPUT V IN J_ T ELECTRONICS OUTPUT Figure 3-5. — Representation of land station dewpoint sensor. 38 INPUT V DVM A+ X ELECTRONICS I A/D 1 OUTPUT CD Figure 3-6. — Representation of air pressure channel. Substituting m and b into eq. (3-2) gives Speed = 0.311 0.311T (3-25) where T is the time period. The equations for tower current speed were similar to those used for the buoy current speed, except for the sensor specification that f = 0.122 speed. According to the system specifications, speeds of -100 to 100 cm/s are equiva- lent to 050 to 950 raw data units. Therefore, and 450 CD = jffifi + 500 100 Speed = j^TI (3-26a) (3-26b) The precipitation channel can be simulated as a switch as shown in figure 3-9. A tip is one switch closure, and the design range is from tips, or 999 raw units, to 63 tips, or 000 raw units. The equation is where CD = M (Tips) + b (3-27) — QQQ m = -§?Z- and b = 999 63 39 INPUT t DVM V|N 1 ELECTRONICS I 1_ ! OUTPUT CD Figure 3-7. — Representation of oirouitry for wind and current direction and wind speed sensors. INPUT PULSE GENERATOR SI TEST JIG FREQUENCY COUNTER ELECTRONICS si SI P/A A/D OUTPUT CD Figure 3-8. — Representation of buoy current speed sensor. 40 For the shortwave radiometer , which can be simulated as shown in figure 3-10, the nominal response coefficient was assumed to be 7 mV/ly/min. Based on the system specification that 2 ly/min (200 counts) is the maximum and ly/min (000 counts) is the minimum, with a linear response in between, the electronics conform to eq. (3-2), where V is the sensor output in millivolts, m = 100/7, and b = 0. The longwave radiometer was similar to the shortwave sensor. A nominal response coefficient of 5 mV/ly/min and a system maximum of 4 ly/min (200 counts) and a minimum of ly/min (000 counts), with a linear response in between, were assumed. The electronics conform to eq. (3-2), with m = 10 and b = 0. INPUT ELECTRONICS 1. OUTPUT CD Figure 2-9. — Representation of precipitation channel. i INPUT ELECTRONICS OUTPUT CD Figure 3-10. — Representation of shortwave radiometer. 41 4. FACTORS AFFECTING DATA QUALITY AND QUANTITY 4.1 Telephone and Radio Links Examination of data transmission problems indicated that between 5 and 10 percent of all missing or erroneous data were the result of malfunctions of telephone lines and associated equipment. Data from each subnetwork control station were fed first into a telephone junction and then into the Rochester Control Center (RCC) . Faulty connections between RCC and one of the control stations therefore could affect data from other stations. The most common problem was noise on the telephone lines, resulting in data contamination that, in every case, could not be removed in later processing. Failure of the main line between RCC and the subnetworks meant that none of the stations, except the ones in the Rochester network, could be interrogated. When this occurred, however, data recording continued on the backup cassettes, but this type of failure does account for some of the gaps in the data. Radio problems were restricted almost entirely to the buoys and towers. The radio equipment was the first of the station components to be affected by a decrease in power supply. Difficulties with the buoy thermoelectric genera- tors decreased the power available, with resulting loss in communications. 4.2 Power Supplies Two commercial power failures occurred at RCC early in the Field Year. When this happened, and backup power was not available, the master control clock did not operate. When commercial power was restored, the clock would start at a random time. This resulted in some data loss, because the computer at the Lake Survey Center (LSC) was programed to reject an observation when any part of the RCC header (day/hour/minute/second) was smaller than in the previous observation. Data storage was resumed at LSC only after the digital clock had been reset. This accounts for some of the gaps in the PDCS data set. Considerable difficulty was encountered in maintaining the buoys' thermoelectric generator (TEG) output to the battery at the required level. Initially, all units operated satisfactorily and data transmission began immediately after buoy deployment. (Exceptions were buoys 15 and 18, which did not contain radios when deployed.) However, in a short time condensate formed in the TEG intake pipe, and on the walls and in the bottom of the com- partment. As the condensate level increased, the burner insulation became wet, reducing the burner temperature and TEG output. Eventually the level reached a point at which one or both of the burners were extinguished. When the battery voltage was sufficient to maintain radio communication, failure could be detected by examining the dewpoint temperature data since loss of a.c. power to the dewcell heater resulted in a sharp drop in dewpoint tempera- ture. However, when the battery voltage decreased slowly because of reduced TEG output, the loss of radio communications indicated TEG failure. Another effect of the condensate was corrosion of the power transistors. Such damage generally required extensive refurbishment of the electronic burner unit. In many instances a buoy had to be taken off line during the refurbish- ment period because of insufficient spares, and all data were lost for that period. 42 On Galloo Island and at the tower stations, data were lost in a few instances when the TEG failed because of inadequate propane supply. 4.3 Sensors 4.3.1 Air Temperature The thermistor probe was protected from mechanical damage by a radiation shield. The shield required wind speeds of 1.5 mi/h or more for proper opera- tion, and several units were found to lack freedom of rotation at low wind speeds because of bearing wear. Clogging of the shield with snow and ice during winter operations may have degraded some of the data. 4.3.2 Dewpoint The dewcell was protected by a guard and enclosed within a weatherhood. The lithium chloride solution applied to the element was expected to last 6 months, but such factors as moisture and contaminants had to be considered in scheduling the cleaning cycle. Another factor was the time needed for the dewcell to reach equilibrium when power was applied. Under ambient conditions, the time varied between 1 and 2 hr, but when power was lost an additional warm-up period was required. Most of the data recorded during these periods are included in the provisional data base, with the provisional time-series graphics highlighting the problem. These data are not a part of the final, edited data set. 4.3.3 Air Pressure Primary among the inherent aneroid barometer problems were variations in the calibration curve caused by temperature changes and sensitivity to motion. During the Field Year, data from the air pressure sensor showed extreme transitions or discontinuities for periods of several days. A test to isolate malfunction was performed on buoy 20 by replacing the air pressure sensor with a fixed voltage divider. Results showed that the problem was associated with the sensor itself. The exact cause could not be determined, but indications pointed to a combination of temperature, moisture, platform motion, and filter configuration. 4.3.4 Wind Speed As could be expected, the major problem with the standard three-cup anemometer, which generated a d.c. voltage proportional to rotation, lay in the bearings. The combination of bearing wear and environmental effects on the bearing assembly were responsible for changes in the sensor threshold. No data were available concerning the overall effects of buoy motion. During the winter months icing of the cups occurred, causing stoppages for periods of up to several days. 4.3.5 Wind Direction On the buoys, the wind direction sensor housed a compass to orient measurements with respect to true north. The inherent problems of a magnetic compass on a moving platform, with local sources of magnetic interference, 43 were not evaluated, from 356° to 358°. Predeployment checks showed the sensor's range varied The main problem was that the fin portion of the vane occasionally broke loose from the shaft and either rotated freely about the shaft or broke off completely. Such occurrences were not readily detectable because of buoy motion. Also, if the fin remained on the shaft, the vane would still attempt to align itself with the wind. These malfunctions were usually corrected during routine maintenance. At the land, island, and tower stations, the wind direction sensor did not contain an internal compass and had to be aligned with respect to a known heading, as shown in table 4-1 and figure 4-1. This requirement introduced an error of less than 5° in the data. The problem with the vane was the same as on the buoys. Table 4-1. — Heading used to align wind direction sensors on land and. island stations Station No, Station type Support arm angle with respect to magnetic north (°) 22 25 28 29 30 31 Land Island Land 65 89 5 98 285 227 4.3.6 Radiation The primary problem with the longwave radiation sensors, particularly those measuring incident radiation, was the formation of deposits on the sensing enevelope. When a heavy deposit had formed, the only solution was to remove the sensor. Lack of spares prevented rotation of sensors and, although sensitivity checks were made periodically to detect degradation, resulted in some stations being without sensors for extended periods, leaving gaps in the data. Initially, the coating on some of the shortwave radiation sensors flaked off, but this was corrected. The basic problem, here too, was the presence of foreign substances on the sensor envelopes, but it was not as serious as with the longwave radiometers, because the envelopes did not discolor and the deposits could be removed with a soft cloth. In two instances loose seals permitted condensation to form inside the envelope. Lack of sufficient spares prohibited rotation of the sensors as often as would have been desirable. As a check on performance, tests were made 44 LINE OF SIGHT. TOWER WIND DIRECTION VANE -»» 6- 1 >- 3J 1 3 WINDSPEED SENSOR SUPPORT ARM Figure 4-1. — Representation of wind direction sensor. during routine maintenance by turning the sensor measuring reflected radiation upright and comparing its output with the output of the radiometer measuring incident radiation. 4.3.7 Water Temperature This probe contained two thermistors and a resistor in an epoxy-filled, stainless steel probe, which was hard-wired to the underwater signal cable to avoid connector problems. The method of splicing used proved very satisfac- tory, with only isolated instances of leakage. No mechanical damage to the probe was encountered. 4.3.8 Precipitation A tipping bucket was used to activate switches, which, when closed, provided a measurement of precipitation. The land and island installations included heaters and wind shields. Accumulation of foreign material in the funnel and funnel screen, the gage not remaining level, and platform motion were some of the problems anticipated. However, only slight fouling of the tunnel and minor problems in gage levelness actually occurred. Sensor mal- functions were limited to failure of the heating elements. 4.3.9 Pan Evaporation The basic problem with this equipment was keeping the water-filled tank free of foreign substances. The pan was placed in a fenced area, and bleach was added to the water to reduce biological growth. The full-scale range of raw data equivalent to 10 cm of evaporation was determined by adding various amounts of water to the still-well with a 1,000-ml graduated cylinder and obtaining raw data readings. While care was taken in this operation, the data should be used with caution. 4.3.10 Current Speed and Direction On the towers, the data from this sensor were referenced to a known heading that was fixed by the orientation of the tower. Information on current direction was therefore dependent on accurate knowledge of the tower position. 45 Because of the open configuration of the meter, foreign objects became entangled around the impeller shaft. In addition, considerable bio- logical growth was found on the impellers, particularly during the summer months. The shallow current meters were cleaned during routine maintenance trips. The meters at greater depths, which were subject to less fouling, were cleaned by divers on an "as-available" basis. Divers also measured the depths of the meters after deployment. (See appendix III.) Some performance degradation resulted from bearing wear. On the buoys, a magnetic compass served as the reference base for the current meter. The problems inherent here, as in the wind direction sensors, with a magnetic compass located on a moving platform, and local sources of magnetic interference, were not evaluated. A 4-ft vane positioned the bidirectional ducted impeller and the wiper of the potentiometer in the direction of dominant flow. The impeller was designed to respond equally to forward and reverse current, eliminating the effects of turbulence. The primary difficulty on the buoys was the vane assembly. Inspection of the meters by divers often revealed that the vane was missing completely, or that the boom and/or the fin was broken. The probable cause of the break- age was the vane striking the support bracket. Tests showed that when the meter swung approximately 35° the top of the fin could strike the bracket. Indentations in the top of the housing of some meters indicated that the meters were swinging through more than 90°. No empirical relationship could be established between sea state and degrees of arc, but observation of a 5-m sensor during 5- to 6-ft waves and 30- to 35-kt winds showed deviations of 10° or less. This indicates that damage occured only under the most severe weather conditions. It was also observed that breakage could occur if any part of the vane was loose, placing the fin in a horizontal position. The fin was 1 m in area, and the force at the vane attachment point due to vertical acceleration was significant. Several vanes were broken at this junction, and were re- placed to the extent possible. In some cases, in an attempt to eliminate breakage, the 4-ft boom was removed and the fin was secured directly to the boom attachment point. This modification was only partly successful, and its effect on sensor response is not known. Several current meters were lost during the Field Year, probably because of unexpected motion. Through this motion the suspension shackles would become locked together, and, the leek of freedom of movement would increase the friction between the shackles, causing them to break. 4.4 Other Factors The chronology of events, as outlined in appendix I, shows a general delay in the execution of specific tasks. Because the original schedule was not adhered to as closely as would have been desirable, a great deal of data was lost. The major order for spare parts was not filled until late in the Field Year, and parts for the buoys were in some cases not delivered 46 until after retrieval, at the end of the data collection operations. Lack of spare parts kept some stations from being operational, and parts were taken from low-priority stations to enable high-priority stations to func- tion. For varying periods of time, several buoys were left without current meters, longwave radiometers and radios were removed from several stations, and thermoelectric generators were taken out and not replaced. Calibration of sensors, through rotation, without loss of data was also a problem. The original plan of removing buoy sensors several times during the Field Year had to be abandoned because the establishment of the calibration facility at Rochester was delayed and because spare sensors were lacking. As a result, both data quality and quantity were affected in many cases. Rough weather kept maintenance crews from working on the buoys and towers for weeks at a time. Under moderate conditions, a tower could be boarded and maintenance performed, but this was not true of the buoys under the same conditions. Calm weather was required for work to be done on the buoy electronics or the thermoelectric generator, because a hatch had to be opened. To change the sensors on a buoy the mast had to be climbed, and this, too, could only be done under calm conditions. As a result, maintenance in some cases amounted only to replenishment of the propane supply. The geographic locations also determined the frequency with which stations could be visited and inspected. Vehicle, headquarters, marina, and other equipment support during the Field Year were generally adequate, however . 47 5. DATA PROCESSING The scheme used in processing the PDCS data is illustrated in figure 5-1. During the Field Year, messages were recorded on the RCC weekly tapes in burst mode, at variable densities, and all of them could therefore not be decoded automatically. The rest had to be printed out, or dumped, and decoded manually, an effort that required 2 man-years by a team of physical scientists and technicians at the Center for Experiment Design and Data Analysis (CEDDA) . Only 65 to 95 percent of the PDCS data that could be processed were recovered automatically; after the manual decoding, the percentage rose to between 80 and 100 percent. All PDCS calibration data were recorded manually during the field operations and had to be collated, abstracted, and preprocessed before use, a manual task that also absorbed considerable manpower. Processing of the PDCS data was divided into three stages. In the first stage, corrections were made for sensor electronics. Data from the performance checks, both before and after deployment of the sensors, were used to correct the internal calibrations. The assumption was made that the automatic internal calibration values fell on a straight line fit of the performance check data and represented a base for calculating drifts during the field operations. The internal calibration values used are listed in appendix IV. In the second stage of processing, the raw data counts were converted into scientific units. Nominal transfer functions were used, derived from the system equations provided by the manufacturer; from the electronics equations furnished by the primary contractor, Texas Instruments, Inc; and from the calibration checks. The equations used are given in section 5.1 below. In the third stage, corrections were made for particular sensors and their orientation on the measurement stations. Sensor calibration correc- tions were applied when the manufacturer's information was considered un- reliable, or when, in the case of air and water temperature, a calibration procedure with an error of less than 1/4 of the sensor error had been used. The calibration correction values, applied through linear interpolation, are listed in appendix V. Some sensors also required station position corrections. These are shown in appendix VI. 5.1 Conversion to Scientific Units The internal electronics calibrations (app. IV), the sensor calibra- tion corrections (app. V), and the station position corrections (app. VI) were applied differently for each parameter. Since the internal electronics calibration was a straight line fit, these calibrations were applied as a slope (a) and intercept (3), respectively, as indicated by the second of each set of equations given in the sections that follow. The transfer coefficients S 1 and S~ are listed in appendix V. 48 > CD < ID -O a CO 03 a <* "D LU 0) u IX re "a c3 s < U S p w> a LU O tt 4^> is a a o s o s I I I s &4 49 cs I O CD r E Q. ..— ,, [— CO < CT C3 I u o 3 OJ LU T3 CJ O O # c F s 1 ■g. SL< CO to co a ."> LU 3 ~ <=> « ■a o tt _l C3 >- o, LU O " CD CO CO — ► LL. co *-» O CO h- a \* 6 a o 3 O s o -Li s « I I I 50 0- UJ = S ■a Q a °§ o s < rO E i CO a — \ a. a g a, 2 LU ■§ p it c S "O j= ai a. «o (D Q. C3 >• < 3 trt CO Q 09 U -O a. a o .£ LU 3 ■a C ° H o S 1 > re ■o -a Q> — 1 a. < oo J2 a £ a uj Sou ■^ 00 —— a- 3 s +a O s o o •a I <3> 51 I 03 >* EJS~ r a< r- .£ □ a> o £ <8 e^> 09 >- E co , . j— Q. c/3 < 09 U Li a LU -o o (fc<8 _l CD >- en u. O CO CO CO c U Li- CO ra CO 1- a d/l >• a. o < a o a o a CO n LU ro u r- > Q. a < a CJ o o a CQ a LU >T3 u 1— ^3 « O «K o +i o s •tj 0) +9 s I I M I lO 0) CN 3 fi4 52 5.1.1 Air Temperature R = raw data counts, (1) R' = aR + 3, (2) E = S^' - S , (3) E x = E Q + f(E Q ), (4) where E is the corrected temperature in degrees Celsius, and f(E„) represents the linear interpolation between the sensor correction values given in appen- dix V. The error in temperature, A , is defined as A T - T c - T t , (5) where T is the true temperature, and T is the calculated temperature from eq. (3). The sensor correction table was then converted to a table of cal- culated temperatures and corrections, where T c - T t + A, (6) A' = -A, (7) A' being the correction applied to the calculated temperature in order to obtain the true temperature. 5.1.2 Atmospheric Pressure R = raw data counts, (1) R 1 = aR + 3, (2) E = SJR' - S , (3) E 1 = (E - 950) + f(E ), (4) E F = E ± + 950, (5) where Ej. is the corrected pressure in millibars, and f (Eq) represents the interpolation between the sensor calibration values given in appendix V. In eq. (4), 950 mb is subtracted from the pressure for ease in computation. 5.1.3 Pan Evaporation R = raw data counts, (1) R' - aR + 3, (2) E = (0.0145138) R' + (-0.3628), (3) where Ej is the final pan evaporation in centimeters. The only sensor cali- bration was a measurement of the high and low voltage outputs while the sensor was on site. The only assumption possible, therefore, was that the sensor responded linearly between these values, yielding the coefficients in eq. (3). 53 5.1.4 Precipitation R = raw data counts, (1) R f = aR + 3, (2) E Q = S ± r - S , (3) where S^ = -0.0630, Sq = -63.00, and E Q is rounded to the nearest integer, which gives E 1 = (0.025) E Q , (4) where E is the precipitation in centimeters per 6 min. 5.1.5 Longwave Radiation R = raw data counts, (1) R' = aR + 3, (2) E = SjR' , (3) E l = C 1 E 0' (4) where C 1 - 5.0/ (ACC) E^ is the corrected value for longwave radiation in langleys per minute, and ACC is the actual cell constant as given in appendix V. 5.1.6 Shortwave Radiation where R = raw data counts, (1) R* = aR + B, „ (2) E = S-^' , (3) E i - C lV (4) C ± = 7.0/ (ACC), Ei is the final shortwave radiation value in langleys per minute, and ACC is tne actual cell constant given in appendix V. 5.1.7 Dewpoint R = raw data counts, (1) R' = aR + 6, ? (2) Rj. = R» + (R' - 11038.42) PC/5294926, (3) E = (0.09627) R' - 2.27, (4) E = f(E ), c (5) 54 where, in eq. (3), PC is the station position correction obtained from appendix VI. Because of the nature of the sensor, the data have to be converted to dew- point in two steps by eqs. (4) and (5). In the latter equation, to obtain the corrected dewpoint E]_, linear interpolation is used between the following values : E (Dewcell) E (Dewpoint) -8.00 34.00 47.00 71.00 77.00 90.00 96.00 -28.90 -0.90 9.00 25.40 29.30 37.00 41.40 5.1.8 Wind Direction (Buoys) R = raw data counts, R' = aR + B, E = SjR' , E, = E + PC, (1) (2) (3) (4) where S^ = 0.4438 for all sensors, E^ is the corrected wind direction in degrees of arc from true north, and PC is the station position correction as given in the following table: IFYGL station No. Correction ( ° of arc) 12 -8.8 13 -8.8 14 -9.7 15 -9.7 16 -10.1 17 -10.1 18 -10.8 19 -11.2 20 -11.2 21 -11.5 5.1.9 Wind Direction (Land, Island, and Tower Stations) R = raw data counts, ■ R' = aR + 6, E = S]_R - S , E = E + PC, (1) (2) (3) (4) where PC is the station position correction as given in appendix VI, and E. is the corrected wind direction in degrees of arc from true north. 55 5.1.10 Wind Speed R = raw data counts, (1) R' = aR + 3, (2) E = S X R' - S , (3) where E~ is the final wind speed in meters per second. 5.1.11 Water Temperature R = raw data counts, (1) R' - aR + 3, (2) E Q = SjR' - S Q , (3) E 1 = E Q + f(E Q ), (4) where E^ is the corrected water temperature in degrees Celsius, and f (Eq) is the result of interpolating between the values in the sensor calibration correction table given in appendix V. The table consists of eight values of true temperatures (-5°C to 30 °C, in 5°C increments) and the corresponding thermistor errors. These errors are defined as A = T c - T fc , (5) where T t = true temperature, and T c = calculated temperature. The values in the sensor correction table are converted to a table of calculated temperatures and corrections as follows: T c = T t + A, (6) A» = -A, (7) where A' is the correction applied to the calculated temperature in order to obtain the true temperature. 5.1.12 Water Temperature (Evaporation Pan) The data conversion process for the evaporation pan water temperature is the same as described in section 5.1.10 above, with the exception that the evaporation pan temperatures range from -5 °C to 40 °C, in 5°C increments, as shown in appendix V. 5.1.13 Current Direction (Buoys) R = raw data counts, (1) R' = aR + 3, (2) E = S^', (3) E - E + PC, (4) 56 iven in section 5.1.8 for buoy wind direction, and E is the corrected current where S-i = 0.4500 for all sensors, PC is the station position correction as given in section 5.1.8 for buoy wind directio direction in degrees of arc toward true north 5.1.14 Current Speed (Buoys) R = raw data counts, (1) R' = aR + 3, (2) E = S R\ (3) where Sj = 0.1111, and E is the corrected current speed in centimeters per second. 5.1.15 Current Speed and Direction (Towers) The conversion for this sensor is somewhat different from the previous derivations. The raw data counts are used in pairs for the following sensor position numbers: Shallow-Water Tower Deepwater Tower 01, 02 01, 02 03, 05 03, 05 06, 07 09, 10 11, 13 Current direction is then computed from two orthogonal speeds, R.. , R~ = raw data counts, (1) R i = a i R i + B r (2) R 2 = a 2 R 2 + 6 2' (3) where the values for a^, a 2 , 3i, B2> paired in the same way as the raw data counts, are given in appendix IV. Then, E i " s i R i - V (4) E 2 = Sl R' - S Q , (5) where Sq = 111.11, and S-^ = 0.2222. The uncorrected direction in radians, A , is obtained from A Q = tan" 1 (E 2 /E 1 ), (6) and the uncorrected current speed, Mq, from M Q = (E2 + EJ) h , (7) which yields 57 M = M_(1.0 + Z a. cos(4.A,J c . _ 1 l i=0 (8) for the corrected speed, M , where a = 0.0946, a° - -0.0899, a = -0.0054, a = 0.0019, a = 0.0015, a = -0.0001, and a, = -0.0008. D The corrected angle between, A c , between 0° and 360° is obtained from A = A„(180.0/tt) + E cos (4. A.) j=0 J ° (9) where b Q = 1.99, b^ = 0.10, b£ = -1.46, b« = -0.13, and b, = -0.26. 4 The corrected direction 6, is obtained from = 45.0 + A + PC, c (10) where PC is the station position correction given in appendix VI. The final current speed, M c , is in centimeters per second, and the final current direction, 9, is in degrees of arc toward true north. 5.2 PDCS Provisional Data Set Following the conversion to scientific units, a provisional data set was generated. In this set, the real-time instantaneous 6-min observations are merged with the data from the 66 usable cassette recordings and from the RCC weekly data tapes, with electronics and sensor calibrations applied. These provisional, unedited, data consist of 88 seven-track BCD tapes and of time- series graphics, as shown in figure 5-2, each covering 8-day periods for each month (days 1-8, 9-16, 17-24, and 25-month' s end). Additional microfilm, sequenced by station and sensor, containing 2 days of 6-min observations per frame was also generated, as shown in figure 5-3. Any missing data are represented by -999. 58 z > o UJ — 0> a a r^ a. LU UJ UJ e a K — 3 3 1- 1- a E l O o z u rsj o is. _j nr ** i i- UJ 1 o M 1 CI fs. H >- a —■ LL < —* -J "■s. _i z < > z IX o < -J < a z LU O — (Em — QJ < o CO LU — 1- E =i CO CO < z o o o 14. a. a O z o ir a: •- < co o o z >• (- CO CO o < < z z a 1- LU UJ CO co CO CO UJ — t- E > X co CO CO < o cj LJ (_> CJ a. a. Q o o u. a. UJ Q. a a. 1 \ '; B. 1 1 ■" ,# \ jj *, 1. S_ i •. "" / • ( \ 'I B 4 ' B = , P z i "*> > B_ "*** *> i \ 1 'Iff' ' 1 j S- ■t' 1 / / . i" r i *•) | C B. } | S = > > i > i , . < ,"> ( 1 > *>. K. it. t i i B. i 1 -aB* B_ -!= = •! - »s? S- - s$3 (Snisl33 83911930) nisl33 S3 aamvaid ! aanssfa" iialaioave 59 OS O* r<4 «- «0 (?• O* 0* ao m «o 9- in isi ISIISI isi m isi m CMSl rsiisi «o isilu o* •- is m i— ©■ o» fs isi m O* o m a* m m «o o* isi O* m rs m ki •-C 4> < m o* «o rs rs rs o* o* m in in O" m 4> 4> m m 43 «o *o o- «o r u. i ill i o ^ c m •— mm «— ^ ^ 9 «o o «o rsi «o «o rsi *o r\j r> r> m m fsi m 4/ 9 rsi I** %r isi r> r> r> •- ki f> f> m r> ki rs mm r> 9 43 o Ps rsi «o sr ©'•©rsr^rs *»mmmO' 4/ wr ^mmo«M> «op** 43P** LU O- &• 0~ P> I- I I I I ©< rsi rsi «o «o isi m «o «o m r\j isi rsi rsi o isi m isi m ■— r> r> m «o r> — ce mmN 1 oifl«KiNNm-0'mMn.OKioKO'»«m- I— Hi isi ■ • ■ • • r «o «o rs rs rs 9 rs 49 rs cec r>o- SH Ul UK < m«*-NN«iAm«oinm4N^MtON«-«oo > 0'«mm 4J pn Ps. mr^K ISI aO Pn 4/ rsi CP* mrs Irtiofrtfn in O* O* m OO OCCJ 43 I— O t* o° LULU II CO < aew c rsi w O" M isi in «o o- «o r> «o «o ISI «o r— x m 4r rs in rsi o r> p*> m -4* ki r> m rs ki 43 m •- pn p> p*. ki r^ n. in 3 o >- k» MioKKNS^inmiiMn4 4 4i/im^Kio^«io^^ CO O o I I o r— cj in isi •" in i/im «o i/% 9 i/i &• *r« ^ 49 isi i/^ «o mm 9 hi i/msiisi UJ 4m9ANOKI«00>4i-Oin^l^^O-40l>0 4^m -j'- >r o^ «o in in •— isi in isi «o in isi O- in 9 9 isi «o 9 in «o O- «o «o *n in in N4«Moom^om»-o^inloinfr«w»^in«o _j • *o 4jmmmmmm4Hnino-0«oO'»o»04>45 — — I I I >- isi isi & in •— »— «o r\i o* «o i Ol— O* «# O" f^ K» •- ki «o 4) in ki «o •- 9 t- K» 9 «o r^ r*. K» K» i— o> Jtl isi X LU II < X —I c t-QC — «Ofs 43 _J » O- LUQ. O II 1 rs. t- LU K O O 3 *o inj rsi in fsi O O in isj «o fsi «o oo *si isi fsj w-> isj .— m ■ — —I I- o< _IH- LUCO«- — ISI U 1 LU L343 1-aC _!>-.— 3 30«- IS1KI 4" in 431^ (OO- O •— ISI K» 4/ in 43 N. MO 1 O •- ISIKI - t- — « < is Ufsi ■ o ^ — — — r N«oc>fsKiinisiN.inr^~-in43*-oo^'-mo-*430 v Kio MSI0»3C*OO»-^--' U. CO •0 •- O- iniSIO^*©*- •- •- 4T O 4T OOO 43KIISI 43 430 •— 4/ CO CO K» c> 9 o ki o* m Ps in in o ki 43 O* O* »s «— isi isi ki Kim in 43 ;-o 2 . O *- •- •- •— ISI ISI Ki ISI ISI Ki Ki >T O- 4/ ISI ■- ^ — " CO o- •omininmin 4/ •- <— 4> rv oors okioo* 43 43Ct' o 4/ •- lu i k» o o «o isi «o 43 in in 43 o ■— m o* ct- «o •- ISI O^KI 4T cr- «o o* oa p^«o«orso x O > '0«-«— «— .— isiisiisirsi'sip I 4T 4T P4»-0 pmo^"— o-«oo»4/psis«— «-4?4rpooio43cVisirsi43msr^r IO^C*C*«-SJ3iTimSCPN'0<'-IM»-NONinO»30 Ps.Psrsfso v o»c»*-»— «-«-isirsiisimrnmpo4r>r%rm«— •- SCO-- — >---f CO o 03 CO O K S I to O CO I I to I 0) 60 5.3 PDCS Final Data Set Further editing, both manual and automatic, was done to produce the final data set. Manual editing consisted of studying the PDCS Event Logs and the provisional graphical displays, and deleting incorrect data. The first step in the automatic editing was to pass each parameter through windows or ranges of acceptable values. Any value falling outside the sensor's range, or judged unacceptable in terms of the physical world, was deleted. Hourly averages (x) for air and water temperature, atmospheric pressure, pan evaporation, and dewpoint were computed in the usual manner, i.e., x = Z x. l The standard deviation of the average was also computed, based on a sample set beginning 30 min before the hour and ending 29 min after the hour. Every observation that deviated from the average by more than 3.0 times the standard deviation was deleted from the sample set, and a new average was computed. This procedure was iterated until no two successive averages (x^ and x^+i) differed by less than the sensor's resolution or until only 50 percent of the beginning number of observations remained. The resulting hourly averages (xj) , their associated standard deviations, and number of observations used are contained in the final archive product. from Hourly averages for wind and current speed and direction were computed ,_2 , JIM v = (u + v ) , where u = Z u n * v = Z v n ' n < 10 , u = -s o (sin d Q ) > v = -s (cos d ) » D = tan 1 (^r) v s = observed speed, and d = observed direction. When either s Q or d Q was missing for any 6-min observation, the entire observa- tion was treated as missing. For precipitation and radiation, no hourly averages were computed, only hourly totals. 61 The final PDCS data set consists of the following: (1) Microfilm graphics of each day's data for each sensor. As shown in figure 5-4, each frame is divided into three segments: title and location information; unedited 6-min provisional data for 1 day; and edited 6-min observations for the same day and sensor. (2) Time-series graphics of the edited data on microfilm. (3) Microfilm displays of the hourly averages (or hourly totals), and standard deviations and the number of observations used. (4) Seven-track BCD tapes (one per 8-day period) of the edited data. 6. ARCHIVE FORMAT AND DATA INVENTORY 6.1 Provisional Data Tape Format One day for one station for one sensor constitutes a 2,170-character record. There are 10 characters of identification followed by 240 fields of data containing nine characters each. The tapes were generated using FORTRAN. Fields are right justified with high order positions blank filled. The following notations are used: x = any numeric or alphanumeric character - = an "11" punch in the card or the equivalent tape configuration A = blank configuration on tape Field = any position or group of positions used to describe an element The data record is as follows : SN ID JUL DAT DATA MIN 00 MIN +06 MIN +12 MIN +18 MIN +24 XXX XX XX XXX xxxxx.xxx xxxxx.xxx xxxxx.xxx xxxxx.xxx xxxxx.xxx Field £ £ £ £ o o o o number o o o o o o o o o o 00 o o CT\ O O DATA MIN +1428 Field number xxxxx . xxx MIN +1434 xxxxx . xxx on CM -3- cm 62 ^OO-NNOOOOOOOoOooaON^inKKOOOOONOvt r\J«— «— »— ■— r- *— i— cr< ■— ■— •— rMfSJfNJfNJfNIfNJOrNjrsirNjrNjro < ZOO < Z — o -» <->o — — .— .x CO cni— (— — • >- Xt-UJ o a. too cc Q. 1 Oh ri fNl CO» , OOOf\jr^r\Jl/~>rs.CO( — l>(TtN>t^OO<>m^Nltf r t«Ol/>{>>0'*000(MMMir>KQ r^.(\j«— o — • < ij , ^No>orrtflo»-c^«30^>fNM^-^^)»-f-^T-ro>ouj a:o>r iNir\jrsjf\ir\jr\jrvjfNjr\jf^<\icoo i>c\j«— «—•—«—•—«—«—«—•—•—•— fMf\irsir\ir\ir\jrsjf\ji\j<\)r\jco ■coi/"t«— MdO'O^rj'tOQ !>>OON(\j»JO''OiNJ'NJ>00'-oOi/i»-fOfoNf-ooor^r\i*-ioflO _* '>(\jO , fONfM«o^oooorsin»*>runNf-ocoN.(\ii-tpoo < OO ■fSi(Njrsjr\irvjrsjfsj{sirsi(Njfsj — <> r\l «— «—»—«—•—«—*— *-«— .— •— rsirs*fsirsjr\(rNjfNjr\j(\ir\if\j on. i a- I #— ro u-t oo ro oo o r-~ ro »© *Ni i oooor^v sor^.ooooooooooooc?'' Or\j«— «-■—■—«—«—•—«—*—«— «—i\j(\ji\jr\jf\j<\jiNif\jrsjCsir\j U. INJI— rsj— . CC C3 - — _) I— o< — It- LUCO>- — CM U 1 O-O _!>-•- OOMOO'00''-'-tON(MNOmoONN OC , >nc»~f\jKOOoOinoO'C 1 N>OfM'-orj'--Oin c><\j«— «—■—•—•—«—«— o*«— <—«— r\jrsjr\iZ (-•(- — ooa: < o z 3 cr t- 63 Tape field number 001 002 003 004 005-244 Tape positions 01-03 04-05 06-07 08-10 11-2170 Tape field number 001 002 Number characters 3 2 2 3 240 fields - 9 per field Element Station number - PDCS Sensor indicator (position number) Tape configuration 2-21 1-42 Eleme nt Station number - PDCS Sensor indicator (position number) Year Julian day Data: Air temperature Dewpoint temperature Atmospheric pressure Longwave radiation Shortwave radiation Pan evaporation Water temperature (evaporation pan) Precipitation Wind speed Wind direction Water temperature Current speed Current direction Code definition and remarks PDCS station number (see station list in sec. 2.2.1, p. 4) Sensor indicator (see table 2-3, sec. 2.2.1, p. 6) 003 004 005-244 Year Julian day Data: Air temperature 72 or 73 001-366 Year: -25.000-40.000 72 = 1972 73 = 1973 Julian day in given year. Temperature of air in degrees Celsius to hundredths. Right position zero filled. 64 Tape field number Element Tape configuration Dewpoint temperature -25.000-40.000 Code definition and remarks Dewpoint in degrees Celsius to hundredths Right position zero filled. Atmospheric pressure 950.000-1050.000 Atmospheric pressure in millibars to hun- dredths. Right posi- tion zero filled. Longwave radiation 0.000-4.000 Longwave radiation in langleys per minute to thousandths. Shortwave radiation 0.000-2.000 Shortwave radiation in langleys per min- ute to thousandths. Pan evaporation -10.000-10.000 Change in water level with respect to full pan in centimeters to thousandths. Water temperature (evaporation pan) -2.000-40.000 Evaporation pan water temperature in degrees Celsius to hundredths. Right position zero filled. Precipitation 0.000-1.575 Amount of precipita- tion in centimeters per 6 min to 25 thousandths. Wind speed 0.000-50.000 Wind speed in meters per second to tenths, Two right positions zero filled. Wind direction 0.000-360.000 Direction from which wind is moving with respect to true north in degrees to tenths. Two right positions zero filled. Water temperature -2.000-30.000 Temperature of water in degrees Celsius to hundredths. Right position zero filled. 65 Tape field number Element Tape configuration Code definition and remarks Current speed 0.000-100.00 Current speed in centimeters per sec- ond to tenths. Two right positions zero filled. Current direction 0.000-360.000 Direction toward which water is moving with respect to true north in degrees to tenths. Two right positions zero filled. NOTE: Missing data indicated by -999.000. 6.2 Final Data Tape Format One day for one station for one sensor constitutes a 2,170-character record. There are 10 characters of identification followed by 240 fields of data containing nine characters each. The tapes were generated using FORTRAN. Fields are right justified with high order positions blank filled. The following notations are used: x = any numeric or alphanumeric character - = an "11" punch in the card or the equivalent tape configuration A = blank configuration on tape Field = any position or group of positions used to describe an element The data record is as follows : TYPE 1 : TEMPERATURES, PRESSURE AND DEW, POINT STN SN YEAR JUL DAT T Y P B FIRST HOUR SECOND HOUR HR MEAN STANDARD DEV # POINTS BLANK M MEAN STANDARD DEV # POINTS BEF AFT EEF AFT / XXX XX xxxx XXX l 01. XXXX.XXX XXXX . XXX XX. XX. AAAAA A2. XXXX.XXX XXXX.XXX XX. XX. ETC. FIELD o o NUMBER ° ° ST Ut <£> o o o o o o co o o en o o H O o o o o TYPE 7 • VECTOR AVERAGE OF SPEEI ) AND DIRECTION STN SN YEAR JUL DAT T Y p E FIRST HOUR SECOND HOUR HR AVERAGE SPEED AVERAGE DIR # PTS FILL BLANK HR AVERAGE SPEED AVERAGE DIR M PTS FTLL ; XXX XX XXXX XXX 2 01. XXXX.XXX XXXX.XXX XX. A0. AAAAA A2. XXXX.XXX XXXX.XXX XX. A0. FIEI NUMB! at CM O o co o o ST o o m o o 10 o o CM <-\ o CO r-\ o ST r-i O r-i O in H o ID o o CM H o co r-l o ST r-l o in r-\ o ETC. 66 TYPE 3 PRECIPITATION, RADIATION AND EVAPORATION STN SN YEAR JUL DAT FIRST HOUR KR TOTAL FILL ? PTS xxx xx xxxx xxx 3 AO. xxxx.xxx AAA0.000 xx. AO. AAAAA A2. xxxx.xxx AAA0.000 xx. AO FILL BLANK SECOND HOUR HR TOTAL FILL PTS FILL I ETC. FIELD o NUMBER CM CO o o o o o o © o o o H O co en © o o CM O i-l CM © ID t» CO CD O O i-l H H CM o o o o o Tape Tape Number field number positions characters Element 001 1-3 3 Station number 002 4-5 2 Sensor 003 6-9 4 Year 004 10-12 3 Julian day 005 13 1 Type 006 16 3 Hour 007 17-24 8 Mean 008 25-32 8 Standard deviation 009 33-35 3 Number of points before use 010 36-38 3 Number of points after hour Oil 39-43 5 Blank Fields 006 through 011 are repeated a total of 24 times (hours 01-24) . 012 013 014 015 016 17-24 25-32 33-35 36-38 39-43 Average speed Average direction Total number of points Fill Blank Fields 006, 012-016 are repeated a total of 24 times (hours 01-24) 017 018 019 020 021 17-24 25-32 33-35 36-38 39-43 8 Total 8 Fill 3 Total number of points 3 Fill 5 Blank Fields 006, 017-021 are repeated a total of 24 times (hours 01-24) Tape field number 001 Element Station number Tape configuration 12-31 Code definition and remarks IFYGL station number (see station list in sec. 2.2.1, p. 4) 002 Sensor indicator (position number) 01-42 Sensor indicator (see table 2-3, sec. 2.2.1, p. 6) 67 Tape field number Element 003 Year 004 Julian day 005 006 007 008 009 010 Oil 012 Type Tape configuration 1972 or 1973 001-366 1, 2, 3 Hour 01-24 Type 1: Temperature, Pressure, Dewpoint Mean 0.000-9999.999 Standard deviation Number of points before hour Number of points after hour 0.000-9999.999 0.-5. 0.-5. Code definition and remarks Year Julian day in given year Data and format type of values in this record; 1 = temperature, pressure, and dew- point; 2 = vector average of speeds direction; 3 = precipitation, radiation, and evaporation Hour of day (GMT) Mean value for hour (30 min before to 30 min after given hour) Temperature and dew- point in degrees Celsius Pressure in millibars Standard deviation of values Number of points (6-min values) used from before the hour Number of points (6-min values) used from after the hour Blank bbbbb Blank Type 2: Vector Average of Speed and Direction Average speed 0.000-9999.999 Average speed for hour: wind in meters per second; 68 Tape field number Element Tape configuration 013 014 015 016 017 018 019 020 021 Average direction 0.000-9999.999 Total number of points 01. -10. Filler 0. Code definition and remarks current in centi- meters per second Average direction for hour: wind - direction from which air is moving with respect to true north in degrees; current - direction toward which water is moving with respect to true north in degrees Total number of 6-min values used for this hour's computation Filler Blank bbbbb Blank Type 3: Precipitation, Radiation, Evaporation Total Filler Total number of points Filler Blank 0.000-9999.999 0.000 01. -10. 0. bbbbb Total of 6-min values for this hour Filler Total number of 6-min values used for this hour's computation Filler Blank Precipitation, evap- oration in centi- meters per hour; radiation in langleys per hour 6.3 Data Inventory An inventory of the provisional and final archived data sets is given in tables 6-1 through 6-7. 69 Table 6-1.— Provisional 6-min data (Archive control No. USA 1-100-002) Magnetic tape No. Beginning date Ending date Station and sensor (in parentheses) 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 5/1/72 6/1/72 7/1/72 8/1/72 9/1/72 10/1/72 11/1/72 12/1/72 1/1/73 2/1/73 3/1/73 5/31/72 6/30/72 7/31/72 8/31/72 9/30/72 10/31/72 11/30/72 12/1/72 1/1/73 2/1/73 3/1/73 12 (1) - 31 (11) 12 (1) - 23 (13) 23 (13) - 31 (11) 12 (1) - 22 (33) 22 (33) - 31 (11) 12 (1) - 22 (18) 22 (18) - 31 (11) 12 (1) - 22 (33) 22 (33) - 31 (11) 12 (1) - 23 (05) 23 (05) - 31 (11) 12 (1) - 26 (03) 26 (03) - 31 (11) 12 (1) - 31 (11) 12 (1) - 31 (11) 12 (1) - 31 (11) 12 (1) - 31 (11) Table 6-2. — Provisional data listings on 16 -mm microfilm (Archive control No. USA 6-100-003) Microfilm reel No. Beginning date Ending date 001 5/1/72 5/8/72 002 5/9/72 5/16/72 003 5/17/72 5/24/72 004 5/25/72 5/31/72 005 6/1/72 6/8/72 006 6/9/72 6/16/72 007 6/17/72 6/24/72 008 6/25/72 6/30/72 009 7/1/72 7/8/72 010 7/9/72 7/16/72 011 7/17/72 7/24/72 012 7/25/72 7/31/72 013 8/1/72 8/8/72 014 8/9/72 8/16/72 015 8/17/72 8/24/72 016 8/25/72 8/31/72 017 9/1/72 9/8/72 018 9/9/72 9/16/72 019 9/17/72 9/24/72 020 9/25/72 9/30/72 Station 12 - 31 70 Table 6-2. — Provisional data listings on 16 -mm microfilm (Archive control No. USA 6-100-003) (Continued) Microfilm reel No. Beginning date Ending date Station 021 022 023 024 025 026 027 028 057 058 059 060 10/1/72 10/9/72 10/17/72 10/25/72 11/1/72 11/9/72 11/17/72 11/25/72 12/1/72 1/1/73 2/1/73 3/1/73 10/8/82 10/16/72 10/24/72 10/31/72 11/8/72 11/16/72 11/24/72 11/30/72 12/31/72 1/31/72 2/28/73 3/31/73 12 - 31 Table 6-3. — Provisional time-series graphics on 35-mm microfilm (Archive control No. USA 6-100-004) Microfilm reel No. Beginning date Ending date Station 050 5/1/72 051 6/1/72 052 7/1/72 053 8/1/72 054 9/1/72 055 10/1/72 056 11/1/72 057 12/1/72 058 1/1/73 059 2/1/73 060 3/1/73 Table 6-4.— Final, edited 5/31/72 6/30/72 7/31/72 8/31/72 9/30/72 10/31/72 11/30/72 12/31/72 1/31/73 2/28/73 3/31/73 12 - 31 USA 1-100-005) Magnetic tape No. Beginning date Ending date Station 045 046 6/13/72 5/25/72 6/14/72 6/28/72 6/18/72 11/1/72 11/1/72 6/27/72 11/17/72 10/31/72 12 13 14 14 15 71 Table 6-4. — Final, edited 6-min data (Archive control No. USA 1-100-005) (Continued) Magnetic tape No. Beginning date Ending date Station 046 5/23/72 9/17/72 16 047 9/18/72 11/17/72 16 6/15/72 11/18/72 17 7/19/72 10/11/72 18 6/6/72 8/6/72 19 048 8/7/72 11/4/72 19 5/31/72 11/4/72 20 6/7/72 2/14/72 21 049 7/15/72 11/5/72 21 5/9/72 3/30/73 22 6/29/72 9/13/72 23 050 9/14/72 11/6/72 23 6/16/72 10/31/72 24 5/4/72 3/30/72 25 5/16/72 5/16/72 26 051 5/17/72 11/28/72 26 6/5/72 8/8/72 27 052 8/9/72 11/16/72 27 4/28/72 3/31/73 28 5/2/72 2/13/73 29 053 2/14/73 3/31/73 29 9/27/72 3/31/73 30 5/11/72 3/31/73 31 Table 6-5. — Final, edited hourly averages (Archive control No. USA 1-100-008) Magnetic tape No. Beginning date Ending date Station 6/13/72 11/1/72 12 5/25/72 11/1/72 13 6/14/72 11/17/72 14 7/18/72 10/31/72 15 5/23/72 11/17/72 16 6/15/72 11/18/72 17 7/19/72 10/11/72 18 6/6/72 11/4/72 19 5/31/72 6/22/72 20 6/23/72 11/4/72 20 6/7/72 11/5/72 21 5/9/72 3/30/73 22 6/29/72 11/6/72 23 001 002 72 Table 6-5. — Final, edited hourly averages (Archive control No. USA 1-100-008) (Continued) Magnetic tape No. nning date Ending date 6/16/72 10/31/72 5/4/72 3/30/72 5/16/72 7/14/72 7/15/72 11/28/72 6/5/72 11/16/72 4/28/72 3/31/73 5/2/72 3/31/73 9/27/72 3/31/73 5/11/72 3/31/73 Station 003 24 25 26 26 27 28 29 30 31 Table 6-6. — Final, edited time-series graphics on 35-mm microfilm (Archivt control No. USA 6-100-007) Microfilm reel No. Beginning date Ending date Station 001 002 003 004 005 006 007 008 009 010 011 5/1/72 6/1/72 7/1/72 8/1/72 9/1/72 10/1/72 11/1/72 12/1/72 1/1/73 2/1/73 3/1/73 5/31/72 6/30/72 7/31/72 8/31/72 9/30/72 10/31/72 11/30/72 12/31/72 1/31/73 2/28/73 3/31/73 12 - 31 TaMe 6-7.— Final, edited data listings of 6-min observations and hourly averages on 16 -mm microfilm (Archive control No. USA 6-100-006) Microfilm reel No. Beginning date 001 (1 reel) 002 ii 003 ii 004 ii 5/1/72 5/9/72 5/17/72 5/25/72 Ending date 5/8/72 5/16/72 5/24/72 5/31/72 Station 12 - 31 73 Table 6-7. — Final, edited data listings of 6-min observations and hourly averages on 16 -mm microfilm (Archive control No. USA 6-100-006) (Continued) Microfilm reel No. 005 (2 reels) 006 ii 007 ii 008 (3 reels) 009 (2 reels) 010 ii Oil ii 012 ii 013 ii 014 (1 reel) 015 (2 reels) 016 ii 017 ii 018 ii 019 (3 reels) 020 (2 reels) 021 ii 022 ii 023 ii 024 (1 reel) 025 (2 reels) 026 (1 reel) 027 ii 028 ii 029 ii 030 ii 031 ii 032 ii 033 ii 034 ii 035 ii 036 ii 037 ii 038 ii 039 n 040 ii 041 ii 042 ii 043 ii 044 it Beginning date Ending date Station 6/1/72 6/8/72 6/9/72 6/16/72 6/17/72 6/24/72 6/25/72 6/30/72 7/1/72 7/8/72 7/9/72 7/16/72 7/17/72 7/24/72 7/25/72 7/31/72 8/1/72 8/8/72 8/9/72 8/16/72 8/17/72 8/24/72 8/25/72 8/31/72 9/1/72 9/8/72 9/9/72 9/16/72 9/17/72 9/24/72 9/25/72 9/30/72 10/1/72 10/8/72 10/9/72 10/16/72 10/17/72 10/24/72 10/25/72 10/31/72 11/1/72 11/8/72 11/9/72 11/16/72 11/17/72 11/24/72 11/25/72 11/30/72 12/1/72 12/8/72 12/9/72 12/16/72 12/17/72 12/24/72 12/25/72 12/31/72 1/1/73 1/8/73 1/9/73 1/16/73 1/17/73 1/24/73 1/25/73 1/31/73 2/1/73 2/8/73 2/9/73 2/16/73 2/17/73 2/24/73 2/25/73 2/28/73 3/1/73 3/8/72 3/9/73 3/16/73 3/17/73 3/24/73 3/25/73 3/31/73 12 - 31 ii ii ii ii ii ii ii ii ii ii it ii n ii ii ii ii it ii ti ii ii ii ii ii ti ii it ii ii ii ii ii ii ii ii ii ii APPENDIX I Chronology of Events 76 Jul. Date day (1972) 061 Mar. 1 092 Apr. 1 108 Apr. 17 115 Apr. 24 119 Apr. 28 123 May 2 125 May 4 128 May 7 130 May 9 132 May 11 136 May 15 137 May 16 144 May 23 146 May 25 152 May 31 153 June 1 154 June 2 157 June 5 158 June 6 159 June 7 APPENDIX I Chronology of Events Event TI maintenance contract begins. Field Year begins. NOIC begins calibration of sensors. 21-ft skiff on Lake Ontario. S/V Johnson arrives on Lake Ontario. Station 28 in operation. Station 29 in operation. Station 25 in operation. USGS Maple arrives in Rochester. Station 22 in operation. Filing of current main- tenance reports begins at Rochester Field Data Center (RFDC) . Station 31 in operation. Telecopier installed. Station 26 in operation. Station 16 in operation. Station 13 in operation. Station 20 in operation. Filing of daily maintenance reports begins at RFDC, RCC time changed from EST to GMT. Station 27 in operation. Station 19 in operation. Station 21 in operation. 77 165 June 13 166 June 14 167 June 15 168 June 16 181 June 29 200 July 18 201 July 19 207 July 25 208 July 26 214 Aug. 1 217 Aug. 4 235 Aug. 22 249 Sept. 5 262 Sept. 18 265 Sept. 21 271 Sept. 27 276 Oct. 2 285 Oct. 11 304 Oct. 30 305 Oct. 31 Calibration laboratory equipment arrive in Rochester. Station 12 in operation. Station 14 in operation. Station 17 in operation. Station 24 in operation. Station 23 in operation. Station 15 in operation. Daily Summary of Missing Station report begins. Station 18 in operation. Weekly internal calibration report forwarded to RFDC from LSC. Calibration laboratory technician arrives at RCC. Jayne E II leased for project use. Major TI spares contract awarded (electrical TEG and mechanical parts) . Intercomparison (S/V Johnson ) started. Wang calculator delivered for use by project (for calculation and intercomparison data reduction) . TI spares delivered (8 percent complete) ; electri- cal parts. TI spares delivered (9 percent complete) ; mechan- ical parts. Station 30 in operation. TI spares delivered (25 percent complete) ; batter- ies and electrical parts. Station 18 terminated. TI spares delivered (37 percent complete) ; radios, TEGs, and stress members. TI spares delivered (80 percent complete) ; electri- cal parts. Stations 15 and 24 terminated. 78 306 Nov. Stations 12 and 13 terminated. 309 Nov. 4 Stations 19 and 20 terminated. 310 Nov. 5 Station 21 terminated. 311 Nov. 6 Station 23 terminated. 321 Nov. 16 Station 27 terminated. 322 Nov. 17 Stations 14 and 16 terminated. 323 Nov. 19 Station 17 terminated. 331 Nov. 26 21-ft skiff removed from Lake Ontario. 333 Nov. 28 Station 26 terminated. 335 Nov. 30 Jayne E II returned. 338 Dec. 3 Johnson leaves Lake Ontario. 340 Dec. 5 TI spares delivered (88 percent complete); electrical parts. 350 Dec. 15 TI maintenance crew reduced from eight to two. 353 Dec. 18 TI spares delivered (96 percent complete); radios. 354 Dec. 19 Daily radiometer maintenance started at station 28, 355 Dec. 20 Calibration laboratory technician and most cali- bration equipment leave RCC. 364 Dec. 29 TI spares delivered (100 percent complete). 366 Dec. 31 RCC clock reset to Julian day 000. (1973) 023 Jan. 23 Daily radiometer maintenance started at stations 29 and 31. 031 Jan. 31 Daily radiometer maintenance started at station 25, Apr. 31 PDCS data collection phase ends. Stations 22, 25, 28, 29, 30 and 31 shut down. APPENDIX II Station Inventory 80 Station 12 - Buoy APPENDIX II Station Inventory Parameter Sensor No. Date of Installation Date of Removal Air temperature 1007 5/9/72 11/1/72 Air pressure ii it 2017 2006 8/19/72 11/1/72 Dewpoint 7002 5/9/72 11/1/72 Wind direction 8010 Wat :er temperature (5 m) (10 m) (15 m) (20 m) (25 m) (30 m) (35 m) (40 m) (surface) » (50 (60 (75 m) m) m) (100 m) Current direction (bottom) M ii (30 m) it m (15 m) it ii (5 m) Current speed (bottom) ii it (30 m) M ii (15 m) i i i i (5 m) 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 13032 13029 13028 13011 14032 14029 14028 13011 Station 13 - Buoy 81 Parameter Air temperature Sensor No. 1008 Date of Installation 5/8/72 Date of Removal 11/1/72 Air pressure M it 2008 2007 9/21/72 8/18/72 11/1/72 Dewpoint 7004 5/8/72 11/1/72 Wind direction it ii 8001 8006 10/25/72 10/25/72 11/1/72 Wind speed 10012 Water temperature (5 m) 10046 (10 m) 10047 (15 m) 11048 (20 m) 11049 (25 m) 11050 (30 m) 11051 (35 m) 11052 (40 m) 11053 (surface) 11054 (50 m) 11055 (60 m) 11056 (75 m) 11057 (100 m) 11058 Current direction (5 m) 13015 ii ii (15 m) 13018 ii ii (30 m) 13014 ii ii (bottom) 13020 Current speed (5 m) 14015 it ii (15 m) 14018 ii ii (30 m) 14014 i t i i (bottom) 14020 5/8/72 5/12/72 11/1/72 11/1/72 82 Station 14 - Buoy Parameter Air temperature Sensor No. 1012 Date of Installation 5/22/72 Date of Removal 9/12/72 Air pressure 2020 2025 2009 9/7/72 10/4/72 8/16/72 10/4/72 11/17/72 Dewpoint Wind direction ii it Wind speed Water temperature (5 m) it ii (10 m) ii ii (15 m) n ii (20 m) ii ii (25 m) ii ii (30 m) it ii (35 m) ii ii (40 m) ii ii (surface) ii ii (50 m) ii ii (60 m) it ii (75 m) ii ii (100 m) ii it (150 m) Current direction (5 m) it it (5 m) it it (15 m) it ii (15 m) it ii (30 m) it it (bottom) Current speed (5 m) ii ii (5 m) n it (15 m) ii ii (15 m) it it (30 m) it it (bottom) 7019 8002 8013 10013 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 13002 13038 13027 13017 13031 13033 14002 14038 14027 14017 14031 14033 5/22/72 it 9/7/72 5/22/72 8/26/72 11/17/72 6/14/72 9/7/72 6/14/72 9/7/72 6/14/72 6/14/72 9/7/72 6/14/72 9/7/72 6/14/72 9/7/72 lost 9/7/72 11/17/72 9/7/72 11/17/72 9/7/72 lost 9/7/72 11/17/72 9/7/72 11/17/72 83 Station 15 - Buoy Parameter Air temperature Air pressure Dewpoint Wind direction Wind speed Water Temperature (5 m) (10 m) (15 m) (20 m) (25 m) (30 m) (35 m) (40 m) 11 (surface) (50 m) (60 m) (75 m) (100 m) Sensor Date of Date of No. Installation 4/26/72 Removal 1009 10/4/72 2002 ii 8/11/72 7023 it 10/4/72 8011 ii 8/2/72 0006 ii 10/4/72 1175 7/13/72 10/31/72 11176 11177 11178 11179 11180 11181 11182 11187 11183 11184 11185 11186 Current direction (30 m) 13034 7/18/72 10/31/72 Current speed (30 m) 14034 84 Station 16 - Buoy Parameter Air temperature Air pressure it ii ii ii Dewpoint Wind direction it ii Wind speed Water temperature ( [5 m) ;i0 m) ;i5 m) :20 m) ;25 m) !30 m) [35 m) ;40 m) [surface) [50 m) ;60 m) 75 m) ;ioo m) Current direction ( ;5 m) [5 m) :i5 m) II II ! ;i5 m) :30 m) :30 m) [bottom) Current speed 1 [5 m) [5 m) :i5 m) :i5 m) [30 m) [30 m) [bottom) Sensor No. Date of Installation 4/26/75 Date of Removal 1010 11/17/72 2016 2021 2021 ii 9/6/72 10/3/72 8/11/72 9/26/72 11/17/72 7017 8005 8014 10011 11024 11017 11025 11023 11022 11019 11016 11018 11014 11021 11013 11015 11020 13007 13027 13008 13035 13009 13037 13001 14007 14027 14008 14035 14009 14037 14001 4/26/72 ii 9/26/72 4/26/72 5/3/72 5/23/72 10/27/72 5/23/72 10/27/72 5/23/72 10/27/72 5/23/72 5/23/72 10/27/72 5/23/72 10/27/72 5/23/72 10/27/72 5/23/72 9/12/72 10/27/72 11/17/72 10/27/72 11/17/72 10/27/72 11/17/72 10/27/72 11/17/72 10/27/72 11/17/72 10/27/72 11/17/72 10/27/72 11/17/72 Station 17 - Buoy 85 Parameter Air temperature Sensor No. 1011 Air pressure 2019 ii ii 2013 Dewpoint 7009 Wind direction 8007 it ii 8004 it it 8011 Wind speed 10014 Water temperature (5 m) 11114 it i (10 m) 11115 it » (15 m) 11116 ii i (20 m) 11117 it i (25 m) 11118 it i (30 m) 11119 ti i (35 m) 11120 it i (40 m) 11121 it i (surface) 11122 n i (50 m) 11123 ti i (60 m) 11124 it i (75 m) 11125 it i (100 m) 11126 ii i (150 m) 11127 Current direction (5 m) 13006 it ii (15 m) 13030 ti it (30 m) 13004 ii it (bottom) 13005 Current speed (5 m) 14006 it it (15 m) 14030 it ii (30 m) 14004 ii i i (bottom) 14005 Date of Installation 5/24/72 10/10/72 5/24/72 it 7/17/72 10/18/72 5/24/72 5/30/72 Date of Removal 11/18/72 8/21/72 11/18/72 7/11/72 10/10/72 11/18/72 6/15/72 it ii lost 11/18/72 it ti lost ti 11 ti M 11/18/72 ii II lost 86 Station 18 - Buoy Parameter Air temperature Air pressure Dewpoint Wind direction ii ii Wind speed Water temperature (5 m) ii ii (10 m) ii ii (15 m) ii ii (20 m) ii ii (25 m) ii ii (30 m) ii ii (35 m) it ii (40 m) ii ii (surface) ti ii (50 m) ii ii (60 m) it ii (75 m) ii ii (100 m) ii ii (150 m) Current direction (30 m) Current speed (30 m) Sensor No. 1016 2007 7016 8003 8006 10007 10023 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 13036 14036 Date of Installation 5/23/72 7/14/72 5/23/72 7/17/72 7/13/72 Date of Removal 10/11/72 8/16/72 10/11/72 7/3 /72 10/11/72 7/17/72 10/11/72 9/19/72 10/11/72 87 Station 19 - Buoy Parameter Air temperature Sensor No. 1015 Air pressure 2005 ii ii 2001 Dewpoint 7012 Wind direction 8008 Wind speed 10020 it ii 10017 Water temperature (5 m) 11073 it ii (10 m) 11074 ii ii (15 m) 11075 n ii (20 m ) 11076 it it (25 m) 11077 ii ii (30 m) 11078 n ii (35 m) 11079 ii ii (40 m) 11080 ii ii (surface) 11081 ii ii (50 m) 11082 ii ii (60 m) 11083 ii it (75 m) 11084 ii it (100 m) 11085 Current direction (5 m) 13012 it n (15 m) 13025 ii ti (30 m) 13010 it ii (bottom) 13021 Current speed (5 m) 14012 ii ii (15 m) 14025 ii ii (30 m) 14010 ii ii (bottom) 14021 Date of Installation 5/15/72 10/27/72 5/15/72 6/6/72 5/18/72 5/18/72 it ii M s II II 6/6/72 Date of Removal 11/4/72 8/11/72 11/4/72 10/26/72 6/6/72 11/4/72 lost 11/4/72 lost 11/4/72 88 Station 20 - Buoy Parameter Air temperature Air pressure ii it Dewpoint Wind direction Wind speed Sensor Date of Date of No. Installation Removal 1014 5/15/72 10/27/72 2004 ii 8/11/72 2002 9/6/72 11/14/72 7001 5/15/72 ii 8009 5/15/72 7/31/72 8007 7/31/72 8/11/72 8012 9/18/72 11/4/72 10016 5/15/72 7/31/72 10022 7/21/72 11/4/72 Water temperature (5 m ) (10 m) (15 m) (20 m) (25 m) , (30 m) (35 m) (40 m) (surface) (50 m) (60 m) (75 m) (100 m) (150 m) 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 5/17/72 11/4/72 Current direction (5 m) (15 m) (30 m) (botton) Current speed (5 m) (15 m) (30 m) (bottom) 13016 13023 13013 13024 14016 14023 14013 14024 5/31/72 lost 11/4/72 II it II ii 5/31/72 lost ii ii ii 11/4/72 ii lost Station 21 - Buoy 89 Parameter Air temperature Air pressure ii it Dewpoint Wind Direction Wind speed ii ii Sensor No. Date of Installation 5/16/72 Date of Removal 1006 11/5/72 2001 2008 it 9/20/72 8/11/72 11/5/72 7011 5/16/72 ii 8006 8003 8003 ii 7/3/72 9/23/72 6/29/72 8/11/72 11/5/72 10017 10020 5/16/72 6/7/72 6/6/72 11/5/72 Water temperature (5 m) (10 m) (15 m) (20 m) (25 m) (30 m) (35 m) (40 m) (surface) (50 m) (60 m) (75 m) (100 m) 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 5/16/72 Current direction (5 m) (15 m) (30 m) (bottom) 13026 13003 13022 13019 6/7/72 11/5/72 ii Current speed (5 m) ii ii (15 m) ii it (30 m) ii ii (bottom) 14026 14003 14022 14019 90 Station 22 - Land Parameter Air temperature Air pressure Sensor Date of Date of No. Installation 5/9/72 Removal 1001 1/3/73 1020 1/3/72 4/2/73 2010 5/9/72 9/13/72 2015 9/13/72 1/3/73 2020 1/3/72 1/19/73 2023 1/19/73 2/6/73 2018 2/6/73 2/20/73 2020 2/20/73 3/1/73 2007 3/1/73 3/21/73 2003 3/21/73 4/2/73 Precipitation 4003 6/21/72 4/2/73 Longwave radiation (incident) 5005 " (reflected) 5002 5/9/72 1/3/73 1/3/72 4/2/73 Shortwave radiation (incident) 6011 (reflected 6017 5/9/73 ii Dewpoint 7022 Wind direction ii ii 9001 9012 1/3/73 1/3/73 4/2/73 Wind speed ii ii 10003 10014 5/9/72 1/3/73 1/3/73 4/2/73 91 Station 23 - Deepwater Tower Sensor Parameter No . Air temperature 1017 Air pressure 2001 " 2010 Precipitation 4008 Shortwave radiation (incident) 6007 (reflected) 6008 Dewpoint 7005 Wind direction 9003 Wind speed 10019 Water temperature (1 m) 11030 (2 m) 11031 (3 m) 11032 (4 m) 11033 (5 m) 11034 (7 m) 11035 (9 m) 11036 (11 m) 11037 (13 m) 11038 (15 m) 11039 (17 m) 11040 (19 m) 11041 Current speed and direction (3 m) 15008 (4 m) 15012 (5 m) 15011 (2 m) 15013 Date of Inst allation 6/29/72 10/13/72 6/29/72 7/31/72 6/29/72 6/29/72 10/13/72 Date of Removal 11/6/72 8/17/72 11/6/72 10/19/72 11/6/72 11/6/72 92 Station 24 - Shallow-Water Tower Parameter Air temperature Air pressure Precipitation Shortwave radiation (incident) (reflected) Dewpoint Wind direction Wind speed Water temperature (1 m) (2 m) (3 m) (4 m) Current speed and direction (1 m) (2 m) Sensor Date of Date of No. Installation Removal 1002 6/16/72 10/31/72 2018 6/20/72 8/17/72 2018 9/13/72 10/13/72 2014 10/13/72 10/31/72 4009 6005 6014 7013 9005 10018 11042 11043 11044 11045 15009 15010 6/16/72 6/20/72 6/16/72 6/20/72 10/24/72 10/31/72 Station 25 - Land 93 Parameter Air temperature Air pressure it Sensor Date of Date of No. Installation 5/4/72 Removal 1007 11/29/72 1007 11/29/72 4/3/73 2003 5/4/72 8/17/72 2020 9/13/72 11/29/72 2007 11/29/72 1/3/73 2019 1/3/73 2/6/73 2010 2/6/73 2/20/73 2011 2/20/73 3/7/73 2015 3/7/73 3/21/73 2008 3/21/73 4/3/73 Precipitation 4004 6/21/72 Longwave radiation (incident) 5002 5/4/72 6/2/72 ii it ii 5012 8/8/72 11/28/72 ii ii ii 5016 12/14/72 4/3/73 Shortwave radiation (incident) 6012 5/4/72 7/27/72 1! II ii 6013 7/27/72 4/3/73 II II (reflected) 6013 5/4/72 7/27/72 II II ii 6020 8/8/72 4/3/73 Dewpoint 7010 5/4/72 6/21/72 ii 7020 6/21/72 8/16/72 ii 7010 8/18/72 4/3/73 Wind direction 9009 5/4/72 1/3/73 ii ii 9004 1/3/73 4/3/73 Wind speed 10002 5/4/72 1/3/73 ii ii 10025 1/3/72 4/3/73 94 Station 26 - Deepwater Tower Parameter Air temperature Air pressure Precipitation Longwave radiation (incident) ii it ,, (reflected) Shortwave radiation (incident) (reflected) Dewpoint Wind direction Wind speed Water temperature (1 m) (2 m) (3 m) (4 m) (5 m) (7 m) (9 m) (11 m) (13 m) (15 m) (17 m) (19 m) Current speed and direction (1 m) ii ii ii (2 m ) ii ii ii (3 m ) (4 m) (5 m) Sensor Date of Date of No. Installation 5/3/72 Removal 1013 11/28/72 2015 5/12/72 8/23/72 2022 9/7/72 10/11/72 2022 10/18/72 11/30/72 4001 5006 5013 5007 6009 6016 7008 9002 10008 11001 11002 11003 11004 11005 11006 11011 11010 11009 11008 11007 11012 15005 15001 15003 15002 15004 5/12/72 5/3/72 10/6/72 5/3/72 5/12/72 5/3/72 ii 5/12/72 10/6/72 11/30/72 95 Station 27 - Shallow-Water Tower Parameter Air temperature Air pressure it H Precipitation Longwave radiation (incident) (reflected) Shortwave radiation (incident) (reflected) Dewpo int Wind direction Wind speed Water temperature (1 m) (2 m) (3 m) (4 m) Current speed and direction (1 m) (2 m) Sensor Date of Date of No. Installation 6/5/72 Removal 1003 11/16/72 2006 ii 8/23/72 2011 9/7/72 10/11/72 2005 10/18/72 11/16/72 4004 5001 5009 6006 6010 7003 9004 10009 11026 11027 11028 11029 15006 15007 6/5/72 96 Station 28 - Land Parameter Air temperature Air pressure Precipitation Longwave radiation (incident) Shortwave radiation (incident) deflected) Dewpoint Wind direction ii ii Wind speed 4002 5004 5015 5010 6018 6002 7018 9008 9002 10004 10004 Sensor Date of Date of _No^_ Installation Removal 1022 4/28/72 9/12/72 1022 9/19/72 4/4/73 2009 4/28/72 9/12/72 2023 9/12/72 9/29/72 2023 10/10/72 1/5/73 2009 1/5/73 2/9/73 2003 2/9/73 2/23/73 2008 2/23/73 3/9/73 2009 3/9/73 3/23/73 2019 3/23/73 4/4/73 6/22/72 4/28/72 9/12/72 1/5/73 4/28/72 4/2/73 9/12/72 1/5/73 4/2/73 4/4/73 II 1/5/73 1/8/73 4/4/73 4/28/72 9/29/72 0/10/72 4/4/73 97 Station 29 - Land Parameter Air temperature Air pressure Precipitation Longwave radiation (incident) Shortwave radiation (incident) ii ii ii (reflected) Dewpoint Wind direction Wind speed it n ii ii Sensor Date of Date of No. Installation 5/2/72 Removal 1019 12/1/72 1002 12/1/72 4/4/73 2013 5/2/72 9/5/72 2004 9/5/72 12/1/72 2010 12/1/72 1/9/73 2022 1/9/73 1/23/73 2011 1/23/73 2/14/73 2022 2/14/73 2/27/73 2003 2/27/73 3/13/73 2018 3/13/73 3/26/73 2004 3/26/73 4/4/73 4006 5003 5014 5013 6001 6021 6015 7006 9003 9007 9003 10010 10007 10012 6/22/72 5/2/72 8/10/72 12/13/72 5/2/72 1/23/73 5/2/72 6/7/72 1/16/73 5/2/72 10/23/72 3/13/73 8/7/72 12/6/72 4/4/73 1/23/73 4/4/73 6/7/72 1/16/73 4/4/73 9/27/72 3/13/73 4/4/73 98 Station 30 - Island Parameter Air temperature ii M (1.5 m ii ii it ii it (10 m) ii Air pressure ii ti ii it ii ii n ii Sensor Date of Date of No. Installation 9/27/72 Removal 1012 11/30/72 1017 11/30/72 4/9/73 1005 9/27/72 1/25/73 1021 1/25/73 4/9/73 2019 9/27/72 11/30/72 2018 11/30/72 1/25/73 2015 1/25/73 2/28/73 2004 2/28/73 3/20/73 2020 3/20/73 4/9/73 Precipitation 4010 10/26/72 Longwave radiation ii it (incident) (reflected) 5017 5008 1/25/73 ii ii Shortwave radiation (incident) it ii M (reflected) ii ii ii 6014 6010 6019 6005 10/26/72 1/25/73 10/26/72 1/25/73 1/25/73 4/9/73 1/25/73 4/9/73 Dewpoint (1.5 m) M it (10 m) ii it 7015 7026 7021 7013 9/27/72 11/30/72 9/27/72 1/25/73 11/30/72 4/9/73 1/25/73 4/9/73 Wind direction it ii 9006 9011 9/27/72 1/25/73 1/25/73 4/9/73 Wind speed (1.5 m) ii ii u " " (evaporation pan) (10 m) it ii ii 10024 10022 10021 10015 10010 9/27/72 11/30/72 9/27/72 ii 11/30/72 11/30/72 4/9/73 11/30/72 4/9/73 Water temperature it ii it it (1 m) (evaporation pan) 11142 12143 12145 9/1/72 ii 11/30/72 ii 11/30/72 4/9/73 Station 31 - Land 99 Parameter Air temperature Air pressure Precipitation Longwave radiation (incident) (reflected) Shortwave radiation (incident) (reflected) Dewpoint Wind direction Sensor Date of Date of No. Installation 5/11/72 Removal 1018 12/1/72 1016 12/1/72 4/3/73 2014 5/11/72 9/27/72 2017 9/27/72 12/1/72 23C8 12/1/72 1/22/73 2004 1/22/73 2/13/73 2G23 2/13/73 2/26/73 2019 2/26/73 3/12/73 2011 3/12/73 4/3/73 4005 5008 5011 6004 6003 7014 7023 7012 9010 9001 9009 6/22/72 5/11/72 9/28/72 5/11/72 12/1/72 1/22/73 5/11/72 1/23/73 2/13/73 7/25/72 4/3/73 12/1/72 1/22/73 4/3/73 1/23/73 2/13/73 4/3/73 Wind speed 10001 5/11/72 APPENDIX III Factors Affecting Data Quality 102 APPENDIX III Factors Affecting Data Qaulity Station 12 - Buoy Lat. N: 43°34'47" Long. W; 78°46'43" 1. Current direction (5 m) - vane found broken during recovery. 2. Current direction (15 m) - vane on unit found broken off 9/12/72. 3. Current direction (30 m) - vane reported broken off 9/12/72. 4. Current direction (143 m) - vane found bent at 60 to vertical 9/12/72, 5. Current speed (5 m) - post-recovery spindown and switch test bad; data questionable; see 1 above. 6. Current speed (15 m) - post-recovery spindown and switch test bad; data questionable; see 2 above. 7. Current speed (30 m) - see 3 abve. 8. Current speed (143 m) - see 4 above. 9. Water temperature (5 m) - actual sensor depth, 4.9 m. 10. Water temperature (10 m) - actual sensor depth 9.8 m. 11. Water temperature (15 m) - actual sensor depth, 14.5 m. 12. Water temperature (20 m ) - actual sensor depth, 19.3 m. 13. Water temperature (25 m) - actual sensor depth 24.2 m. 14. Water temperature (30 m) - actual sensor depth 28.7 m. 15. Wind direction (3 m) - sensor damaged by the Maple during recovery, 11/1/72; post-recovery sensor evaluation not possible. 16. Wind speed (3 m) - see 15 above. 17. Lake depth, 148 m. 103 Station 13 - Buoy Lat. N; 43°25'59" Long. Wt 78°44'15" 1. Current direction (15 m) - vane found broken during recovery 11/1/72. 2. Current direction (30 m) - vane found lost 11/1/72. 3. Current direction (122 m) - vane found broken 11/1/72. 4. Current speed (5 m) - switch test and spindown bad after recovery; data may be questionable. 5. Current speed (15 m) - switch test and spindown poor after recovery; data may be questionable; see 1 above. 6. Current speed (30 m) - post-operational spindown bad; data may be questionable; see 2 above. 7. Current speed (122 m) - post-field year spindown bad; data may be questionable; see 3 above. 8. Dewpoint (3 m) - TEG out 6/2 to 6/27, 1972; data useless for that period, 9. Water temperature (5 m) - actual sensor depth, 5.7 m. 10. Water temperature (10 m) - actual sensor depth, 10.2 m. 11. Water temperature (15 m) - actual sensor depth, 13.4 m. 12. Water temperature (20 m) - actual sensor depth, 19.9 m. 13. Water temperature (25 m) - actual sensor depth, 24.7 m. 14. Water temperature (30 m) - actual sensor depth, 29.2 m. 15. Wind direction (3 m) - sensor 8001 on line 5/8 to 10/25/72; damaged by S/V Johnson during recovery; sensor 8006 on line 10/25 to 11/1/72; vane loose when recovered. 16. Lake depth, 126 m. 104 Station 14 - Buoy Lat. N; 43°35'32" Long. W: 78 o 01'02" 1. Current direction (5 m) - sensor 13002 on line 6/14 to 9/7/72; vane lost during this period; sensor 13038 installed 9/7/72; sensor lost some- time between 9/7 and 11/17/72. 2. Current direction (15 m) - sensor 13027 on line 6/14 to 9/7/72; vane lost during this period; sensor 13017 on line 9/7 to 11/17/72; vane found broken during recovery. 3. Current direction (30 m) - vane lost. 4. Current direction (181 m) - vane found broken during recovery. 5. Current speed (5 m) - data questionable; see 1 above. 6. Current speed (15 m) - see 2 above. 7. Current speed (30 m) - post-recovery switch test bad; data questionable; see 3 above. 8. Current speed (181 m) - see 4 above. 9. Water temperature (5 m) - actual sensor depth, 4.9. m. 10. Water temperature (10 m) - actual sensor depth, 10.3 m. 11. Water termperature (15 m) - actual sensor depth, 14.8 m. 12. Water temperature (20 m) - actual sensor depth, 20.3 m. 13. Wind direction (3 m) - sensor 8002 on line 5/22 to 8/26/72; vane found loose during recovery; sensor 8013 on line 9/7 to 11/17/72; vent found bent during recovery. 14. Lake depth, 184 m. 105 Station 15 - Buoy Lat. N: 43°25'24" Long. W: 77°56'19 1. Current direction (30 m) - vane found broken during recovery. 2. Current speed (30 m) - post-recovery spindown test bad; data may be questionable; see 1 above. 3. Dewpoint (3 m) - data qeustionable for 8/24 to 8/26/72; TEG out at end of this period. 4. Water temperature (5 m) - actual sensor depth, 5.7 m. 5. Water temperature (10 m) - actual sensor depth, 9.5 m. 6. Water temperature (15 m) - actual sensor depth, 14.0 m. 7. Water temperature (20 m) - actual sensor depth, 18.8 m. 8. Water temperature (25 m) - actual sensor depth, 23.4 m. 9. Water temperature (30 m) - actual sensor depth, 28.2 m. 10. Lake depth, 126 m. 106 Station 16 - Buoy Lat. N; 43°27'36" Long. W: 77°43'54" 1. Current direction (5 m) - sensor 13007 on line 5/23 to 10/27/72; vane found broken during recovery; sensor 13027 on line 10/27 to 11/17/72; vane found cocked at 30 during recovery; data may be questionable. 2. Current direction (15 m) - vane found broken during recovery. 3. Current direction (30 m) - vane found broken during recovery; data questionable for period 5/23 to 10/27/72. 4. Current direction (129 m) - vane found broken during recovery. 5. Current speed (5m) - switch test and post-recovery spindown bad; data questionable for period 5/23 to 10/27/72; see 1 above. 6. Current speed (15 m) - see 2 above. 7. Current speed (30 m) - post-recovery spindown bad; data may be questionable; see 3 above. 8. Current speed (129 m) - switch test bad; data questionable; see 4 above. 9. Dewpoint (3 m) - data questionable for period 6/16 to 7/17/72; TEG out at the end of the period. 10. Water temperature (5 m) - actual sensor depth, 5.3 m. 11. Water temperature (10 m) - actual sensor depth, 9.1 m. 12. Water temperature (15 m) - actual sensor depth, 13.6 m. 13. Water temperature (20 m) - actual sensor depth, 19.5 m. 14. Water temperature (25 m) - actual sensor depth, 24.3 m. 15. Water temperature (30 m) - actual sensor depth 28.3 m. 16. Wind direction (3m)- vane found broken during recovery 10/27/72. 17. Lake depth, 133 m. 107 Station 17 - Buoy Lat. N: 43° 36 '07" Long. W; 77°23'51" 1. Air pressure (3 m) - calibration indicated erratic sensor output; on line 10/10 to 11/18/72. 2. Current direction (5 m) - sensor installed 6/15/72; lost sometime there- after. 3. Current direction (15 m) - vane found broken during recovery. 4. Current direction (30 m) - see 3 above. 5. Current direction (149 m) - installed 6/15/72; lost sometime thereafter. 6. Current speed (5 m) - see 2 above. 7. Current speed (15 m) - see 3 above. 8. Current speed (30 m) - post-recovery spindown bad; data questionable; see 3 above. 9. Current speed (149 m) - see 5 above. 10. Dewpoint (3 m) - data questionable for period 8/23 to 8/29/72; TEG out at end of period. 11. Water temperature (5 m) - actual sensor depth, 4.9 m. 12. Water temperature (10 m) - actual sensor depth, 9.6 m. 13. Water temperature (15 m) - actual sensor depth, 14.4 m. 14. Water temperature (20 m) - actual sensor depth, 19.4 m. 15. Water temperature (25 m) - actual sensor depth, 24.5 m. 16. Water temperature (75 m) - sensor putput very erratic; data questionable, 17. Wind direction (3 m) - vane found broken during recovery. 18. Lake depth, 157 m. 108 Station 18 - Buoy Lat. N; 43°26'24" Long. W: 76°56'46" 1. Water temperature (surface) - sensor output very erratic: data may be questionable. 2. Water temperature (5 m) - actual sensor depth, 5.5 m. 3. Water temperature (10 m) - actual sensor depth, 9.8 m. 4. Water temperature (15 m) - actual sensor depth, 14.2 m. 5. Water temperature (20 m) - actual sensor depth 19. 7m. 6. Water temperature (25 m) - actual sensor depth 24.8 m. 7. Water temperature (30 m) - actual sensor depth, 29.5 m. 8. Wind speed (3 m) - sensor 10007 on line 5/23 to 7/1/72; defective when recovered; sensor 10023 on line 7/17 to 10/11/72; hit by the Maple in recovery operation and lost in lake. 9. Lake depth, 186 m. Station 19 - Buoy Lat. N: 43°41'41" Long. W: 76°44 , 36" 1. Current direction (5 m) - sensor on line 6/6/72; lost sometime there- after. 2. Current direction (15 m) - vane found broken during recovery. 3. Current direction (30 m) - see 2 above. 4. Current direction (131 m) - see 2 above. 5. Current speed (5 m) - see 1 above. 6. Current speed (15 m) - post-recovery spindown bad; data questionable; see 2 above. 7. Current speed (30 m) - see 2 above. 8. Current speed (131 m) - see 2 above. 9. Water temperature (5 m) - actual sensor depth, 4.2 m. 10. Water temperature (10 m) - actual sensor depth, 9.6 m. 11. Water temperature (15 m) - actual sensor depth, 13.8 m 12. Water temperature (20 m) - actual sensor depth, 18.9 m. 13. Water temperature (25 m) - actual sensor depth, 23.7 m. 14. Wind direction (3m)- vane found broken during recovery. 15. Lake depth, 131 m. 109 Station 20 - Buoy Lat. N; 43°33'00" Long. W; 76°37'57" 1. Current direction (5 m) - sensor on line 5/31/72; lost sometime there- after. 2. Current direction (15 m) - vane found broken during recovery. 3. Current direction (30 m) - see 2 above. 4. Current direction (99 m) - see 1 above. 5. Current speed (5m)- see 1 above. 6. Current speed (15 m) - see 2 above. 7. Current speed (30 m) - see 2 above. 8. Current speed (99 m) - see 1 above. 9. Dewpoint (3 m) - data questionable for period 10/23/ to 27/72; TEG out at end of period. 10. Water temperature (5 m) - actual sensor depth, 4.4 m. 11. Water temperature (10 m) - actual sensor depth, 9.8 m. 12. Water temperature (15 m) - actual sensor depth, 14.8 m. 13. Water temperature (20 m) - actual sensor depth, 19.8 m. 14. Water temperature (25 m) - actual sensor depth, 24.6 m. 15. Water temperature (30 m) - actual sensor depth, 28.9 m. 16. Water temperature (35 m) - actual sensor depth, 34. 4 m. 17. Wind direction (3 m) - sensor 8009 on line 5/15 to 7/31/72; damaged during recovery; sensor 8012 on line 9/18 to 11/4/72; vane found bent during recovery. 18. Wind speed (3 m) - sensor 8009 on line 5/15 to 7/31/72; damaged during recovery. 19. Lake depth, 156 m. 110 Station 21 - Buoy Lat. Nj 43°41'36" Long. W: 76°26'10" 1. Current direction (5 m) - vane found broken during recovery. 2. Current direction (15 m) - see 1 above. 3. Current direction (30 m) - see 1 above. 4. Current direction (88 m) - see 1 above. 5.- Current speed (5 m) - post-recovery spindown test bad; data question- able; see 1 above. 6. Current speed (15 m) - see 1 above. 7. Current speed (30 m) - see 1 above. 8. Current speed (88 m) - post-recovery switch test bad; data questionable; see 1 above. 9. Water temperature (5 m) - actual sensor depth, 4. 1 m. 10. Water temperature (10 m) - actual sensor depth, 9.4 m. 11. Water temperature (15 m) - actual sensor depth, 14.1 m. 12. Water temperature (20 m ) - actual sensor depth, 19.0 m. 13. Water temperature (25 m) - actual sensor depth, 23.9 m. 14. Water temperature (30 m) - actual sensor depth, 28.8 m. 15. Wind direction (3m) - sensor 8006 on line 5/16 to 6/29/72; defective when recovered; sensor 8003 on line 7/3 to 8/11/72; vane found damaged during recovery; serviced and replaced on line 9/22 to 11/5/72; vane found broken during recovery. 16. Lake depth, 105 m. Station 22 - Land Lat. Nj 43°16'21" Long. W: 79°00 f 21" 1. Air pressure (1.5 m) - actual sensor height, 1.3 m; calibration poor; data questionable for the period 2/5 to 2/23/73. 2. Dewpoint (1.5 m) - actual sensor height, 1.4 m. 3. Precipitation (1.5 m) - see 2 above. 4. Incident longwave radiation (2 m) - actual sensor height, 2.1 m. 5. Incident shortwave radiation (2 m) - see 2 above. 6. Reflected shortwave radiation (2 m) - actual sensor height, 1.9 m. 7. Wind direction (10 m) - actual sensor height, 9.4 m; vane found loose during recovery; data questionable for the period 5/16 to 6/21/72. 8. Wind speed (10 m) - actual sensor height, 9.3 m. 9. Station elevation, 83 m. Ill Station 23 - Deepwater Tower Lat. N; 43°21'26" Long. W: 78°42'49 1. Wind direction (10 m) - moisture in sensor and pin B open; data may be questionable. 2. Lake depth, 20 m. Station 24 - Shallow-Water Tower Lat. H; 43°20'37" Long. W: 78°42'37' 1. Wind direction (10 m) - vane found loose during recovery; data may be questionable. 2. Lake. depth, 5 m. Station 25 - Land ooo i i i n Lat. N; 43°22'17" Long. W; 78°29'11 1. Air pressure (1.5 m) - actual sensor height, 1.1 m; sensor 2010 on line 2/6 to 2/20/72; calibration poor after recovery; data may be questionable. 2. Dewpoint (1.5 m) - actual sensor height 1.4 m; sensor 7010 on line 5/4 to 6/21/72; heater found defective during recovery; sensor 7020 on line 6/21 to 8/16/72; burned out at time of recovery; data for both these periods may be questionable. 3. Precipitation (1.5 m) - actual sensor height, 1.6 m. 4. Longwave incident radiation (7m)- actual sensor height 2.1 m; sensor 5002 on line 5/4 to 6/2/72 found defective during recovery; sensor 5012 operational 8/8 to 11/28/72; deposits on envelope when recovered. 5. Shortwave incident radiation (2 m) - actual sensor height, 2.1 m; coating found defective during recovery 7/27/72. 6. Shortwave reflected radiation (2 m) - actual sensor height, 1. 9m. 7. Wind direction (10 m) - actual sensor height, 10.7 m. 8. Wind speed (10 m) - actual sensor height, 10. 6m. 9. Station elevation, 82 m. Station 26 - Deepwater Tower Lat. N: 43°21'42" Long. W: 77°45'17" 1. Longwave incident radiation - sensor envelope found coated during recovery 10/6/72. 2. Longwave reflected radiation - deposits found on sensor envelope during recovery 11/30/72. 3. Lake depth, 21 m. 112 Station 27 - Shallow-Water Tower Lat. IT; 43°20'52" Long. W; 77°45'23" 1. Wind speed (10 m) questionable. 2. Lake depth, 5 m. - bearings found bad during recovery; data may be Station 28 - Land Lat. N: 43°20'00" Long. W; 77°45'46" 1. Longwave incident radiation -(2m)- sensor envelope found to need resurfacing during recovery 9/12/72; data may be questionable. 2. Station elevation, 78 m. Station 29 - Land Lat. N; 43°26'02" Long. W: 76°34'02" 1. Air pressure (1.5 m) - actual sensor height, 1. 7 m. 2. Air temperature (1.5 m) - see 1 above. 3. Dewpoint (1.5 m) - see 1 above. 4. Longwave incident radiation (2 m) - actual sensor height, 2.2 m. sensor 5003 on line 5/2 to 8/7/72; found defective during recovery; sensor 5014 on line 8/10 to 12/6/72; deposits found in dome during recovery; data may be questionable. 5. Shortwave incident radiation (2 m) - actual sensor height, 2.2 m; sensor 6001 on line 5/2/72 to 1/23/73; moisture found in dome during recovery. 6. Shortwave reflected radiation (2 m) - actual sensor height, 1.7 m. 7. Wind direction (10 m) - actual sensor height, 9.2 m; sensor 9003 on line 5/2 to 5/7/72; found defective during recovery. 8. Wind speed (10 m) - actual sensor height, 9.2 m. 9. Station elevation, 111 m. 113 Station 30 - Island Lat. N: 43°53'17" Long. W; 76°26'4l" 1. Station elevation, 76 m. Station 31 - Land Lat. N; 43°50'22" Long. W: 76°17'53" 1. Air pressure (1.5 m) - actual sensor height, 1.3 m. 2. Air temperature (1.5 m) - actual sensor height, 1.8 m. 3. Dewpoint (1.5 m) - sctual sensor height, 1.4 m. 4 # Longwave incident radiation (2 m) - sensor 5008 on line 5/11 to 7/25/72: found defective during recovery; all readings seem to be high; envelope coated. 5. Wind direction (10 m) - actual sensor height, 9.8 m; sensor became defective between 12/1 and 12/13/72; data questionable for that period. 6. Wind speed (10 m) - actual sensor height, 9.8 m; sensor 9010 on line 5/11/72 to 1/23/73; wiper found bad during recovery; sensor 9001 on line 1/23 to 2/13/73; found defective upon recovery; sensor 9003 on line 2/13 to 4/3/73; bad when recovered; data from all three periods may be questionable. 7. Station elevation, 77 m. APPENDIX IV Internal Calibration Values 116 APPENDIX IV Internal Calibration Values Sensor position No. Starting date Time (GMT) Slope (a) Intercept' (B) Station 12 01 4/1/72 10/1/72 0000 0000 1.0010 0.9978 -0.14 -0.99 02 4/1/72 0000 1.0000 0.00 03 4/1/72 0000 1.0000 0.00 05 4/1/72 0000 1.0000 0.00 06 4/1/72 0000 1.0000 0.00 07 4/1/72 0000 1.0000 0.00 09 4/1/72 0000 1.0000 0.00 10 4/1/72 0000 0.9994 +0.23 11 4/1/72 8/1/72 9/1/72 0000 0000 0000 1.0054 1.0054 1.0022 -2.35 -1.35 -1.20 13 4/1/72 0000 1.0029 -0.83 14 4/1/72 0000 1.0009 -1.09 15 4/1/72 8/1/72 0000 0000 1.0006 1.0006 -2.26 -1.26 17 4/1/72 0000 1.0000 0.00 18 4/1/72 8/1/72 9/1/72 0000 0000 0000 0.9990 1.0003 0.9990 1.10 -0.02 1.10 19 4/1/72 0000 0.9985 0.34 21 4/1/72 0000 0.9994 -1.14 22 4/1/72 8/1/72 0000 0000 0.9976 0.9989 0.83 -0.29 23 4/1/72 8/1/72 0000 0000 1.0003 0.9990 -0.22 -0.10 25 4/1/72 0000 1.0000 0.10 26 4/1/72 0000 0.9990 0.19 27 4/1/72 8/1/72 0000 0000 0.9994 0.9981 -0.14 -0.02 29 4/1/72 0000 0.9989 -0.52 30 4/1/72 8/1/72 0000 0000 1.0001 0.9989 -0.21 -0.09 Internal Calibration Values 117 Sensor position No. Starting date Time (GMT) Slope (a) Intercept (3) 31 4/1/72 8/1/72 0000 0000 0.9997 0.9997 0.42 -0.58 33 4/1/72 8/1/72 0000 0000 0.9994 1.0006 0.26 -0.36 34 4/1/72 8/1/72 0000 0000 0.9992 0.9992 0.57 -0.43 35 4/1/72 8/1/72 0000 0000 Station 13 0.9994 0.9994 0.28 -0.84 01 4/1/72 0000 1.0067 -0.11 02 4/1/72 0000 1.0000 0.07 03 4/1/72 0000 1.0000 0.07 05 4/1/72 0000 1.0000 0.07 06 4/1/72 0000 1.0000 0.07 07 4/1/72 0000 1.0000 0.07 09 4/1/72 0000 1.0000 0.07 10 4/1/72 0000 1.0032 -0.65 11 4/1/72 7/1/72 8/1/72 9/1/72 10/1/72 0000 0000 0000 0000 0000 1.0009 1.0009 1.004r 1.0041 1.0041 -1.56 -0.54 -0.69 -1.70 -2.70 13 4/1/72 oooo • 1.0044 0.09 14 4/1/72 0000 1.0004 -0.37 15 4/1/72 7/1/72 10/1/72 0000 0000 0000 0.9983 0.9995 0.9983 0.78 -0.35 0.78 17 4/1/72 0000 1.0000 0.07 18 4/1/72 0000 0.9994 1.05 19 4/1/72 0000 0.9999 0.91 21 4/1/72 0000 0.9978 0.81 22 4/1/72 0000 0.9986 0.83 23 4/1/72 10/1/72 0000 0000 0.9996 0.9984 0.44 0.55 118 Internal Calibration Values Sensor position No. Starting date Time (GMT) Slope (a) Intercept (3) 25 26 27 29 30 31 33 34 35 01 02 03 05 06 07 09 10 11 13 14 15 17 18 19 21 4/1/72 0000 0.9986 0.93 4/1/72 0000 0.9998 0.32 4/1/72 0000 1.0000 0.60 7/1/72 0000 0.9988 0.72 4/1/72 0000 0.9989 0.61 4/1/72 0000 0.9978 1.20 4/1/72 0000 0.9991 0.98 4/1/72 0000 0.9983 0.87 4/1/72 0000 0.9987 0.92 4/1/72 0000 Station 14 0.9997 0.32 4/1/72 0000 1.0054 -1.26 7/1/72 0000 1.0022 -0.10 8/1/72 0000 1.0054 -1.26 9/7/72 1724 1.0022 -3.11 4/1/72 0000 1.0001 -0.12 4/1/72 0000 1.0001 -0.12 4/1/72 0000 1.0001 -0.12 4/1/72 0000 1.0001 -0.12 4/1/72 0000 • 1.0001 -0.12 4/1/72 0000 1.0001 -0.12 4/1/72 0000 1.0003 -1.71 4/1/72 0000 1.0019 0.31 4/1/72 0000 1.0006 -0.73 9/7/72 1724 1.0038 -1.89 4/1/72 0000 0.9988 0.61 7/1/72 0000 1.0001 -0.51 8/1/72 0000 0.9988 0.61 4/1/72 0000 0.9985 -0.94 4/1/72 0000 1.0001 -0.12 4/1/72 0000 0.9992 -0.53 4/1/72 0000 0.9989 0.11 4/1/72 0000 1.0008 -0.77 7/1/72 0000 0.9995 -0.65 Internal Calibration Values 119 Sensor position Starting Time Slope Intercept No. date (GMT) (a) (3) 22 4/1/72 0000 0.9980 1.29 9/1/72 0000 0.9992 0.17 23 4/1/72 0000 0.9985 0.84 8/1/72 0000 0.9997 -0.28 25 4/1/72 0000 0.9998 0.52 7/1/72 0000 1.0010 -0.60 26 4/1/72 0000 0.9989 0.11 27 4/1/72 0000 0.9989 -0.49 29 4/1/72 0000 0.9993 0.17 7/1/72 0000 0.9993 -0.83 30 4/1/72 0000 1.0014 -1.83 7/1/72 0000 1.0001 -1.71 31 4/1/72 0000 1.0000 -0.10 33 4/1/72 0000 0.9981 0.58 7/1/72 0000 0.9994 -0.54 34 4/1/72 0000 1.0008 -1.17 7/1/72 0000 0.9995 0.05 35 4/1/72 0000 Station 15 0.9996 -0.26 01 4/1/72 0000 1.0016 -2.08 02 4/1/72 0000 1.0002 -0.18 8/16/72 1836 1.0000 0.00 03 4/1/72 0000 1.0002 -0.18 8/16/72 1836 1.0000 0.00 05 4/1/72 0000 1.0002 -0.18 8/16/72 1836 1.0000 0.00 06 4/1/72 0000 1.0002 -0.18 8/16/72 1826 1.0000 0.00 07 4/1/72 0000 1.0002 -0.18 8/16/72 1836 1.0000 0.00 09 4/1/72 0000 1.0002 -0.18 8/16/72 1836 1.0000 0.00 10 4/1/72 0000 1.0045 -2.72 11 4/1/72 0000 1.0019 -2.29 13 4/1/72 0000 1.0013 -0.16 120 Internal Calibration Values Sensor position No. Starting date Time (GMT) Slope (a) Intercept (3) 14 4/1/72 0000 1.0009 -2.09 15 4/1/72 0000 1.0000 0.00 17 4/1/72 8/16/72 0000 1836 1.0002 1.0000 -0.18 0.00 18 4/1/72 0000 0.9984 0.38 19 4/1/72 0000 0.9993 -0.43 21 4/1/72 0000 0.9991 -0.30 22 4/1/72 0000 0.9987 -0.63 23 4/1/72 0000 0.9998 -0.62 25 4/1/72 0000 0.9991 -0.43 26 ■ 4/1/72 0000 1.0001 0.19 27 4/1/72 0000 1.0004 -0.74 29 4/1/72 0000 1.0009 -0.28 30 4/1/72 0000 1.0006 0.14 31 4/1/72 0000 1.0010 -0.60 33 4/1/72 0000 1.0009 -0.58 34 4/1/72 0000 1.0011 -0.71 35 4/1/72 0000 Station 16 1.0001 0.19 01 4/1/72 7/1/72 11/11/72 0000 0000 1524 1.0000 0.9968 1.0022 -0.20 0.95 -3.26 02 4/1/72 11/11/72 0000 1524 0.9999 1.0000 -0.02 0.00 03 4/1/72 11/11/72 0000 1524 0.9999 1.0000 -0.02 0.00 05 4/1/72 11/11/72 0000 1524 0.9999 1.0000 -0.02 0.00 06 4/1/72 11/11/72 0000 1524 0.9999 1.0000 -0.02 0.00 07 4/1/72 11/11/72 0000 1524 0.9999 1.0000 -0.02 0.00 09 4/1/72 11/11/72 0000 1524 0.9999 1.0000 -0.02 0.00 Internal Calibration Values 121 Sensor position Starting Time Slope Intercept No. date (GMT) (a) (3) 10 4/1/72 0000 1.0067 -1.01 6/1/72 0000 1.0067 -2.01 7/1/72 0000 1.0034 -1.86 11/11/72 1524 1.0002 0.04 11 4/1/72 0000 0.9991 -0.96 10/1/72 0000 0.9959 -0.81 11/11/72 1524 1.0005 0.36 13 4/1/72 0000 0.9987 0.26 7/1/72 0000 0.9987 1.26 8/1/72 0000 0.9956 1.40 9/1/72 0000 0.9987 0.26 11/11/72 1524 1.0025 -1.93 14 4/1/72 0000 0.9991 -0.91 7/1/72 0000 1.0016 -2.16 8/1/72 0000 1.0041 -4.42 9/1/72 0000 1.0028 -4.30 10/1/72 0000 1.0004 -2.04 11/11/72 1524 1.0005 -1.46 15 4/1/72 0000 1.0000 0.00 11/11/72 1524 0.9969 1.48 17 4/1/72 0000 0.9999 -0.02 11/11/72 1524 1.0000 0.00 18 4/1/72 0000 0.9989 -0.09 11/11/72 1524 0.9991 0.45 19 4/1/72 0000 1.0000 -0.20 7/1/72 0000 0.9988 -0.08 11/11/72 1524 1.0004 -0.09 21 4/1/72 0000 1.0005 -1.35 11/11/72 1524 0.9999 0.22 22 4/1/72 0000 1.0003 -0.72 11/11/72 1524 1.0004 -0.09 23 4/1/72 0000 0.9993 -0.13 10/1/72 0000 0.9980 -0.01 11/11/72 1524 1.0004 -0.09 25 4/1/72 0000 0.9988 0.32 7/1/72 0000 1.0000 -0.80 10/1/72 0000 0.9988 0.32 11/11/72 1524 1.0004 -0.09 26 4/1/72 0000 0.9999 -0.69 11/11/72 1524 0.9996 0.13 122 Internal Calibration Values Sensor position Starting Time Slope Intercept No. date (GMT) (a) (3) 27 4/1/72 0000 0.9996 -0.56 9/1/72 0000 0.9984 -0.45 11/11/72 1524 0.9996 0.13 29 4/1/72 0000 1.0004 -1.14 11/11/72 1524 0.9996 0.13 30 4/1/72 0000 1.0000 0.00 31 4/1/72 0000 1.0006 -0.96 11/11/72 1524 0.9993 0.10 33 4/1/72 0000 1.0006 0.04 7/1/72 0000 1.0006 -0.96 9/1/72 0000 0.9994 0.16 11/11/72 1524 0.9994 0.13 34 4/1/72 0000 1.0004 -1.34 11/11/72 1524 1.0003 -0.24 35 4/1/72 0000 0.9995 -0.75 11/11/72 1524 Station 17 1.0000 0.00 01 4/1/72 0000 1.0041 -2.40 02 4/1/72 0000 1.0000 0.00 03 4/1/72 0000 1.0000 0.00 05 4/1/72 0000 1.0000 0.00 06 4/1/72 0000 1.0000 0.00 07 4/1/72 0000 1.0000 0.00 09 4/1/72 0000 1.0000 0.00 10 4/1/72 0000 1.0022 -1.00 11 4/1/72 0000 1.0035 -1.56 13 4/1/72 0000 1.0067 -3.02 14 4/1/72 0000 1.0000 -1.10 15 4/1/72 0000 0.9991 -3.32 7/1/72 0000 0.9979 -0.20 17 4/1/72 0000 1.0000 0.00 18 4/1/72 0000 1.0001 -1.01 19 4/1/72 0000 0.9992 -0.33 21 4/1/72 0000 0.9999 -0.29 Internal Calibration Values 123 Sensor position Starting Time Slope Intercept No. date (GMT) (a) (6) 22 4/1/72 0000 1.0013 -2.02 23 4/1/72 0000 1.0006 -1.46 25 4/1/72 0000 1.0005 -0.85 26 4/1/72 0000 0.9989 0.71 27 4/1/72 0000 1.0010 -0.80 7/1/72 0000 0.9998 -0.68 29 4/1/72 0000 1.0010 -1.40 30 4/1/72 0000 1.0005 -1.25 8/1/72 0000 0.9993 -1.13 31 4/1/72 0000 1.0029 -3.08 8/1/72 0000 1.0016 -2.96 9/1/72 0000 1.0029 -3.08 33 4/1/72 0000 1.0006 -0.96 34 4/1/72 0000 1.0003 -1.82 35 4/1/72 0000 1.0001 -0.81 8/1/72 0000 0.9989 -0.69 9/1/72 0000 Station 18 1.0001 -0.81 01 4/1/72 0000 1.0012 0.24 02 4/1/72 0000 1.0000 0.00 03 4/1/72 0000 1.0000 0.00 05 4/1/72 0000 1.0000 0.00 06 4/1/72 0000 1.0000 0.00 07 4/1/72 0000 1.0000 0.00 09 4/1/72 0000 1.0000 0.00 10 4/1/72 0000 1.0006 -1.83 11 4/1/72 0000 0.9981 -1.80 13 4/1/72 0000 1.0034 -1.97 14 4/1/72 0000 0.9995 0.15 15 4/1/72 0000 0.9980 -0.92 17 4/1/72 0000 1.0000 0.00 18 4/1/72 0000 1.0011 0.19 19 4/1/72 0000 0.9985 1.14 124 Internal Calibration Values Sensor position No. Starting date Time (GMT) Slope (a) Intercept (S) 21 4/1/72 0000 0.9983 1.96 22 4/1/72 0000 0.9975 2.04 23 4/1/72 0000 0.9995 0.45 25 4/1/72 0000 0.9992 0.77 26 4/1/72 0000 0.9983 0.96 27 4/1/72 0000 0.9998 0.02 29 4/1/72 0000 1.0008 -0.17 30 4/1/72 0000 1.0000 0.00 31 4/1/72 0000 1.0001 0.29 33 4/1/72 0000 0.9999 0.91 34 4/1/72 0000 1.0008 0.23 35 4/1/72 0000 Station 19 0.9999 0.11 01 4/1/72 0000 1.0019 -0.79 02 4/1/72 0000 1.0000 0.00 03 4/1/72 0000 1.0000 0.00 05 4/1/72 0000 1.0000 0.00 06 4/1/72 0000 1.0000 0.00 07 4/1/72 0000 1.0000 0.00 09 4/1/72 0000 1.0000 0.00 10 4/1/72 10/1/72 0000 0000 1.0051 1.0019 0.27 0.41 11 4/1/72 7/1/72 9/1/72 0000 0000 0000 1.0010 1.0041 1.0010 0.26 0.11 0.26 13 4/1/72 7/1/72 0000 0000 1.0013 1.0013 0.74 -0.26 14 4/1/72 0000 0.9993 -0.93 15 4/1/72 0000 1.0000 0.00 17 4/1/72 0000 1.0000 0.00 18 4/1/72 0000 0.9995 0.05 19 4/1/72 0000 0.9987 -0.07 Internal Calibration Values 125 Sensor position No. Starting date Time (GMT) Slope (a) Intercept (0) 21 22 23 25 26 27 29 30 31 33 34 35 01 02 03 05 06 07 09 10 4/1/72 0000 0.9980 1.29 7/1/72 0000 0.9993 0.17 4/1/72 0000 0.9981 0.28 7/1/72 0000 0.9994 -0.84 10/1/72 0000 0.9981 0.28 4/1/72 0000 0.9976 0.83 9/1/72 0000 0.9989 -0.29 10/1/72 0000 0.9976 0.83 4/1/72 0000 1.0014 -0.83 4/1/72 0000 0.9978 0.81 4/1/72 0000 0.9983 0.27 4/1/72 0000 0.9995 -0.15 4/1/72 0000 0.9984 1.15 7/1/72 0000 0.9996 0.04 10/1/72 0000 0.9984 1.15 4/1/72 0000 0.9991 -0.02 4/1/72 0000 0.9984 0.16 4/1/72 0000 0.9978 0.12 7/1/72 0000 0.9990 0.00 4/1/72 0000 0.9974 1.45 Station 20 - 4/1/72 0000 1.0044 -4.63 7/1/72 0000 1.0076 -4.79 10/1/72 0000 1.0044 -4.63 4/1/72 0000 1.0000 0.00 4/1/72 0000 1.0000 0.00 4/1/72 0000 1.0000 0.00 4/1/72 0000 1.0000 0.00 4/1/72 0000 1.0000 0.00 4/1/72 0000 1.0000 0.00 4/1/72 0000 1.0028 -2.14 7/1/72 0000 1.0028 -1.13 9/1/72 0000 1.0060 -1.28 10/1/72 0000 0.9997 -0.99 126 Internal Calibration Values Sensor position Starting Time Slope Intercept No. date (GMT) (a) (e) 11 4/1/72 0000 1.0016 0.03 7/1/72 0000 1.0047 -0.12 8/1/72 0000 1.0016 0.03 10/1/72 0000 0.9984 0.17 13 4/1/72 0000 1.0057 -3.28 10/1/72 0000 1.0025 -3.12 14 4/1/72 0000 1.0002 -1.12 10/1/72 0000 1.0015 -1.25 15 4/1/72 0000 0.9982 -1.39 7/1/72 0000 0.9994 -0.53 9/1/72 0000 0.9982 0.60 10/1/72 0000 0.9982 -0.39 17 4/1/72 0000 1.0000 0.00 18 4/1/72 0000 0.9997 0.72 7/1/72 0000 0.9985 0.84 9/1/72 0000 0.9975 -0.28 10/1/72 0000 0.9985 0.84 19 4/1/72 0000 0.9994 -0.24 21 4/1/72 0000 1.0001 -0.01 7/1/72 0000 0.9989 0.11 22 4/1/72 0000 0.9994 -0.24 23 4/1/72 0000 0.9990 0.10 25 4/1/72 0000 0.9989 0.81 7/1/72 0000 1.0001 -0.31 26 4/1/72 0000 0.9981 0.58 7/1/72 0000 0.9994 -0.54 8/1/72 0000 0.9981 0.58 10/1/72 0000 0.9994 0.46 27 4/1/72 0000 0.9994 -0.34 8/1/72 0000 0.9981 0.78 9/1/72 0000 1.0006 -0.46 29 4/1/72 0000 0.9995 0.05 10/1/72 0000 1.0008 -0.07 30 4/1/72 0000 0.9983 0.87 7/1/72 0000 0.9995 -0.25 9/1/72 0000 0.9995 1.75 31 4/1/72 0000 0.9983 0.97 7/1/72 0000 0.9995 -0.15 9/1/72 0000 1.0008 -0.27 Internal Calibration Values 127 Sensor position No. Starting date Time (GMT) Slope (a) Intercept (3) 33 4/1/72 7/1/72 8/1/72 9/1/72 10/1/72 0000 0000 0000 0000 0000 0.9981 0.9994 0.9981 0.9981 0.9994 1.18 0.06 0.18 1.18 1.05 34 4/1/72 7/1/72 8/1/72 0000 0000 0000 1.0010 0.9997 1.0010 -0.50 -0.38 -0.50 35 4/1/72 9/1/72 0000 0000 Station 21 0.9989 1.0001 0.21 0.09 01 4/1/72 0000 1.0032 -2.06 02 4/1/72 0000 1.0000 0.00 03 4/1/72 0000 1.0000 0.00 05 4/1/72 0000 1.0000 0.00 06 4/1/72 0000 1.0000 0.00 07 4/1/72 0000 1.0000 0.00 09 4/1/72 0000 1.0000 0.00 10 4/1/72 0000 1.0077 -1.77 11 4/1/72 0000 1.0057 -1.68 13 4/1/72 0000 1.0061 -1.59 14 4/1/72 9/1/72 0000 0000 0.9991 0.9991 -0.11 -1.11 15 4/1/72 0000 1.0000 0.00 17 4/1/72 0000 1.0000 0.00 18 4/1/72 7/1/72 9/1/72 10/1/72 0000 0000 0000 0000 0.9992 1.0005 0.9992 1.0005 0.77 -0.35 0.77 -0.35 19 4/1/72 0000 0.9993 0.37 21 4/1/72 0000 0.9998 0.82 22 4/1/72 8/1/72 9/1/72 10/1/72 0000 0000 0000 0000 1.0015 1.0003 1.0015 1.0003 -0.64 -0.52 -0.64 -0.52 128 Internal Calibration Values Sensor position Starting Time Slope Intercept No. date (GMT) (a) (3) 23 4/1/72 0000 1.0005 0.05 7/1/72 0000 0.9993 0.17 10/1/72 0000 1.0005 0.05 25 4/1/72 0000 0.9994 0.76 7/1/72 0000 0.9994 -0.24 8/1/72 0000 1.0006 -0.36 9/1/72 0000 0.9994 -0.24 10/1/72 0000 0.9994 0.76 26 4/1/72 0000 1.0000 0.00 27 4/1/72 0000 0.9996 0.34 29 4/1/72 0000 0.9976 2.12 7/1/72 0000 0.9989 1.01 30 4/1/72 0000 1.0000 0.10 31 4/1/72 0000 0.9992 0.67 33 4/1/72 0000 1.0011 -0.21 34 4/1/72 0000 0.9999 0.31 7/1/72 0000 0.9986 0.43 35 4/1/72 0000 Station 22 0.9997 0.12 01 4/1/72 0000 1.0072 -1.17 10/30/72 1618 1.0108 -2.98 2/11/73 1512 1.0096 -2.86 2/16/73 1512 1.0083 -2.73 2/20/73 0030 1.0205 -2.39 02 4/1/72 0000 1.0000 0.00 03 4/1/72 0000 1.0000 0.00 05 4/1/72 0000 1.0000 0.00 06 4/1/72 0000 1.0145 -0.41 10/30/72 1612 1.0167 -0.30 2/20/73 1630 1.0128 -5.59 07 4/1/72 0000 0.9890 0.53 6/1/72 0000 0.9890 0.64 8/1/72 0000 1.0075 0.31 10/1/72 0000 0.9981 0.42 1/10/73 0300 0.9712 0.75 3/1/73 0000 0.9800 0.64 3/15/73 2206 0.9712 0.75 . Internal Calibration Values 129 Sensor position Starting Time Slope Intercept No. date (GMT) (a) (e) 09 4/1/72 0000 0.9942 1.78 6/1/72 0000 0.9879 1.86 8/1/72 0000 0.9816 1.94 10/1/72 0000 0.9879 0.87 11/1/72 0000 0.9755 2.02 12/1/72 0000 0.9816 0.96 1/1/73 0000 0.9694 1.13 2/1/73 0000 0.9755 1.04 2/20/73 1630 0.9948 -0.01 3/1/73 0000 0.9885 0.11 10 4/1/72 0000 1.0013 -1.02 6/1/72 0000 0.9949 -0.91 7/7/72 1154 0.9823 0.30 7/28/72 0000 0.9885 -0.79 8/1/72 0000 0.9949 -0.91 8/7/72 2018 0.9885 -0.79 8/24/72 2036 1.0078 -1.14 9/3/72 2024 0.9885 -0.79 11/1/72 0000 0.9823 -0.68 12/1/72 0000 0.9761 -0.57 1/10/73 0300 0.9700 -0.46 3/1/73 0000 0.9761 -0.57 11 4/1/72 0000 Station 23 1.0000 0.00 01 4/1/72 0000 1.0022 -5.15 10/1/72 0000 1.0022 -4.14 11/1/72 0000 1.0022 -5.15 02 4/1/72 0000 1.0035 -3.84 10/1/72 0000 1.0060 -5.24 03 4/1/72 0000 1.0026 -2.34 05 4/1/72 0000 1.0036 -1.16 06 4/1/72 0000 1.0026 -1.63 07 4/1/72 0000 1.0002 -0.84 8/1/72 0000 1.0027 -3.23 10/1/72 0000 1.0002 -0.84 11/1/72 0000 1.0027 -2.22 09 4/1/72 0000 1.0007 -0.82 8/1/72 0000 1.0032 -3.22 9/1/72 0000 1.0007 -0.82 10/1/72 0000 1.0032 -2.22 130 Internal Calibration Values Sensor position No. Starting date Time (GMT) Slope (a) Intercept (3) 10 4/1/72 10/1/72 0000 0000 1.0065 1.0040 -10.25 -7.84 11 4/1/72 0000 1.0037 -2.30 13 4/1/72 10/1/72 11/1/72 0000 0000 0000 1.0025 1.0025 1.0050 -1.98 -0.98 -2.37 14 4/1/72 0000 1.0086 -0.38 15 4/1/72 10/1/72 0000 0000 1.0095 1.0095 -0.50 0.51 17 4/1/72 8/1/72 10/1/72 11/1/72 0000 0000 0000 0000 1.0236 1.0306 1.0236 1.0168 -1.11 -2.35 -1.11 0.11 18 4/1/72 0000 1.0181 -1.84 19 4/1/72 0000 1.0000 0.00 21 4/1/72 0000 1.0023 -1.72 22 4/1/72 8/1/72 9/1/72 0000 0000 0000 1.0004 1.0016 1.0004 -0.74 -1.89 -0.74 23 4/1/72 * 0000 1.0004 -0.44 25 4/1/72 0000 0.9985 1.24 26 4/1/72 10/1/72 0000 0000 1.0000 0.9988 0.00 1.12 27 4/1/72 10/1/72 0000 0000 0.9996 0.9984 0.14 0.26 29 4/1/72 0000 1.0008 0.53 30 4/1/72 0000 0.9997 0.02 31 4/1/72 10/1/72 0000 0000 0.9999 0.9986 -0.09 1.03 33 4/1/72 0000 1.0003 -0.22 34 4/1/72 0000 0.9994 -0.14 35 4/1/72 0000 1.0001 -0.01 37 4/1/72 10/1/72 0000 0000 0.9990 0.9978 -0.10 0.02 38 4/1/72 0000 1.0000 0.00 39 4/1/72 0000 1.0000 0.00 131 Internal Calibration Values Sensor position No. Starting date Time (GMT) Slope (a) Intercept (6) 41 42 01 02 03 05 06 07 09 10 11 13 14 15 17 18 19 4/1/72 0000 1.0000 0.00 4/1/72 0000 Station 24 0.9971 0.50 4/1/72 0000 0.9998 0.34 7/1/72 0000 1.0022 -1.06 10/1/72 0000 0.9998 0.34 4/1/72 0000 1.0030 -2.56 9/1/72 0000 1.0005 -1.18 4/1/72 0000 1.0104 -3.52 8/1/72 0000 0.0129 -4.92 9/1/72 0000 1.0104 -2.51 10/1/72 0000 1.0129 -4.92 4/1/72 0000 1.0043 -0.96 10/1/72 0000 1.0017 0.42 4/1/72 0000 1.0001 -0.91 7/1/72 0000 1.0001 0.09 9/1/72 0000 1.0001 -0.91 10/1/72 0000 0.9989 -0.79 4/1/72 0000 1.0005 -2.45 7/1/72 0000 1.0017 -2.58 8/1/72 0000 1.0005 -2.45 4/1/72 0000 1.0000 0.00 4/1/72 0000 1.0000 0.00 4/1/72 0000 1.0000 0.00 4/1/72 0000 0.9998 -0.48 7/1/72 0000 1.0010 -2.59 9/1/72 0000 0.9998 -1.48 10/1/72 0000 0.9998 0.52 4/1/72 0000 0.9915 1.47 9/1/72 0000 1.0010 0.28 10/1/72 0000 0.9915 1.47 4/1/72 0000 0.9916 0.08 7/1/72 0000 1.0009 -0.12 9/1/72 0000 0.9916 0.08 4/1/72 0000 1.0046 -0.54 4/1/72 0000 1.0026 0.42 4/1/72 0000 1.0000 6.00 132 Internal Calibration Values Sensor position Starting Time Slope Intercept No. date (GMT) (a) (e) 21 4/1/72 0000 1.0001 0.89 9/1/72 0000 0.9989 2.01 10/1/72 0000 0.9989 1.01 22 4/1/72 0000 0.9984 1.45 10/1/72 0000 0.9971 1.57 23 4/1/72 0000 Station 25 0.9991 1.08 01 4/1/72 0000 1.0110 -4.82 5/24/72 0000 1.0047 -4.18 6/1/72 0000 1.0047 -3.17 6/4/72 1842 1.0059 -3.29 6/9/72 1612 1.0072 -3.43 6/15/72 2036 1.0084 -3.54 6/22/72 1518 1.0097 -3.68 7/1/72 0000 1.0097 -4.69 8/1/72 0000 1.0097 -3.68 9/15/72 1054 1.0084 -3.55 9/24/72 0036 1.0072 -3.43 10/22/72 0430 1.0084 -3.55 11/29/72 1654 1.0097 -3.68 1/4/73 1506 1.0009 -3.80 1/31/73 1818 1.0084 -4.55 3/12/73 1118 1.0072 -4.43 02 4/1/72 0000 1.0000 0.00 03 4/1/72 0000 1.0000 0.00 05 4/1/72 0000 1.0000 0.00 06 4/1/72 0000 1.0168 -4.36 5/24/72 0000 1.0142 -4.08 6/7/72 1512 1.0155 -4.29 8/24/72 1418 1.0155 -5.23 9/15/72 1054 1.0142 -6.11 9/24/72 0036 1.0142 -7.12 11/1/72 0000 1.0155 -7.22 11/29/72 1654 1.0168 -12.37 1/4/73 1506 1.0129 -12.04 1/12/73 2330 1.0142 -13.21 1/20/73 1124 1.0142 -14.22 1/31/73 1818 1.0129 -4.95 2/20/73 1906 1.0142 -5.09 3/2/73 0000 1.0129 -4.95 3/7/73 1636 1.0117 -4.81 3/21/73 1812 1.0104 -4.67 Internal Calibration Values 133 Sensor position No. Starting date Time (GMT) Slope (a) Intercept (6) 07 09 10 11 01 02 03 4/1/72 0000 1.0725 -5.32 7/7/72 1848 1.0621 0.14 8/15/72 1348 0.9856 -1.14 1/4/73 1506 0.9768 0.91 1/14/73 1530 0.9856 -3.11 1/31/73 1818 0.9856 -4.10 4/1/72 0000 1.0052 -1.28 5/24/72 0000 1.0118 -0.38 7/7/72 1848 1.0052 6.76 8/15/72 1348 0.9923 -5.05 9/1/72 0000 0.9860 -3.93 10/1/72 0000 0.9923 -2.07 10/22/72 0430 0.9923 -4.05 11/29/72 1654 0.9987 -3.18 1/4/73 1506 0.9860 1.98 1/14/73 1530 0.9797 -0.88 1/20/73 0124 0.9860 -2.95 1/31/73 1818 0.9860 -0.96 4/1/72 0000 1.0033 1.54 6/1/72 0000 1.0099 1.43 7/7/72 1848 0.9968 8.63 8/15/72 1348 0.9777 -1.93 10/1/72 0000 0.9715 3.06 10/22/72 0430 0.9715 -2.77 11/1/72 0000 0.9654 -1.67 12/1/72 0000 0.9715 -0.83 1/4/73 1506 1.0019 2.88 1/14/73 1530 0.9956 -0.04 2/1/73 0000 1.0019 -1.13 3/1/73 0000 1.0019 -2.12 4/1/72 0000 1.0085 -9.65 1/4/73 1506 Station 26 1.0000 0.00 4/1/72 0000 1.0073 -3.86 7/1/72 0000 1.0047 -1.45 8/1/72 0000 1.0047 -2.43 4/1/72 0000 1.0105 -4.87 6/1/72 0000 1.0080 -3.46 7/1/72 0000 1.0055 -2.06 8/1/72 0000 1.0080 -3.46 4/1/72 0000 1.0037 -2.97 7/1/72 0000 1.0012 -0.59 9/1/72 0000 1.0037 -1.97 134 Internal Calibration Values Sensor position Starting Time Slope Intercept No. date (GMT) (a) (0) 05 4/1/72 0000 1.0032 -4.62 7/1/72 0000 1.0007 -3.22 10/1/72 0000 1.0032 0.40 06 4/1/72 0000 1.0032 -1.40 6/1/72 0000 1.0007 0.99 7/1/72 0000 1.0007 -0.02 9/1/72 0000 0.9983 2.36 10/1/72 0000 1.0007 0.99 07 4/1/72 0000 1.0010 -0.96 6/1/72 0000 1.0035 -2.35 7/1/72 0000 1.0010 -0.96 10/1/72 0000 1.0010 0.05 09 4/1/72 0000 1.0069 -4.19 6/1/72 0000 1.0045 -2.80 10 4/1/72 0000 1.0002 -0.74 8/1/72 0000 1.0027 -2.13 9/1/72 0000 1.0002 -1.74 10/1/72 0000 1.0027 -3.13 11 4/1/72 0000 1.0015 -0.53 9/1/72 0000 0.9990 0.85 10/1/72 0000 1.0015 -0.53 13 4/1/72 0000 1.0035 -1.34 6/1/72 0000 1.0035 -0.34 7/1/72 0000 1.0060 -2.74 8/1/72 0000 1.0035 -0.34 9/1/72 0000 1.0035 -1.34 14 4/1/72 0000 1.0057 -0.21 6/1/72 0000 1.0057 0.79 7/12/72 1348 1.0152 -0.40 7/30/72 1254 1.0152 -3.45 8/7/72 1518 1.0152 -6.50 8/12/72 0406 1.0152 -5.48 8/14/72 0512 1.0152 -3.45 8/21/72 0536 1.0152 -2.44 8/23/72 0548 1.0152 -1.42 8/31/72 0924 1.0057 -0.21 15 4/1/72 0000 1.0066 -0.33 5/16/72 1242 1.0066 -1.34 5/25/72 0230 1.0066 -0.33 17 4/1/72 0000 1.0046 -0.53 18 4/1/72 0000 1.0146 -1.44 7/1/72 0000 1.0079 -0.23 135 Internal Calibration Values Sensor position Starting Time Slope Intercept No. date (GMT) (a) (3) 9/1/72 0000 1.0146 -1.44 9/28/72 0542 1.0146 -2.45 19 4/1/72 0000 1.0000 0.00 21 4/1/72 0000 0.9988 1.22 6/1/72 0000 1.0000 0.10 7/1/72 0000 1.0013 -0.02 8/1/72 0000 1.0000 0.10 22 4/1/72 0000 0.9991 0.68 7/1/72 0000 1.0003 0.56 8/1/72 0000 0.9991 0.68 9/1/72 0000 0.9979 0.80 23 4/1/72 0000 0.9996 0.74 6/1/72 0000 1.0009 0.62 9/1/72 0000 0.9996 0.74 25 4/1/72 0000 0.9986 1.23 7/1/72 0000 0.9999 1.11 8/1/72 0000 0.9986 1.23 10/1/72 0000 0.9974 1.35 26 4/1/72 0000 0.9991 0.98 7/1/72 0000 1.0004 0.86 8/1/72 0000 0.9991 0.98 10/1/72 0000 ■ 0.9979 1.10 27 4/1/72 0000 0.9983 1.07 7/1/72 0000 0.9995 0.95 9/1/72 0000 0.9983 1.07 29 4/1/72 0000 0.9986 0.63 6/1/72 0000 0.9974 1.75 7/1/72 0000 0.9986 1.63 8/1/72 0000 0.9974 1.75 30 4/1/72 0000 0.9989 0.71 6/1/72 0000 0.9976 1.82 7/1/72 0000 0.9964 2.94 8/1/72 0000 0.9976 1.82 9/1/72 0000 0.9964 1.94 31 4/1/72 0000 0.9985 0.84 6/1/72 0000 0.9997 0.72 7/1/72 0000 0.9985 0.84 8/1/72 0000 0.9997 0.72 9/1/72 0000 0.9973 1.96 10/1/72 0000 0.9985 0.84 33 4/1/72 0000 0.9986 0.93 136 Internal Calibration Values Sensor position Starting Time Slope Intercept No. date (GMT) (a) (6) 7/1/72 0000 0.9999 0.81 9/1/72 0000 0.9986 0.93 34 4/1/72 0000 0.9989 0.72 6/1/72 0000 0.9975 1.83 7/1/72 0000 0.9989 1.72 8/1/72 0000 0.9975 1.83 10/1/72 0000 0.9963 1.95 35 4/1/72 0000 0.9983 0.87 7/1/72 0000 0.9983 1.86 8/1/72 0000 0.9999 0.75 9/1/72 0000 0.9983 0.87 37 4/1/72 0000 0.9979 0.21 6/1/72 0000 0.9991 0.86 8/1/72 0000 0.9991 0.91 9/1/72 0000 0.9979 0.79 38 4/1/72 0000 1.0002 0.18 6/12/72 1824 0.9996 0.37 39 4/1/72 0000 1.0002 -0.18 6/12/72 1824 0.9996 0.37 41 4/1/72 0000 1.0002 -0.18 6/12/72 1824 0.9996 0.37 42 4/1/72 0000 0.9978 1.46 7/20/72 1906 0.9968 -1.18 9/1/72 0000 0.9968 -2.18 10/1/72 0000 0.9956 -3.05 Station 27 01 4/1/72 0000 1.0010 -1.45 8/1/72 0000 1.0035 -3.85 10/1/72 0000 1.0060 -5.25 02 4/1/72 0000 1.0040 -3.22 8/1/72 0000 1.0015 -1.83 10/1/72 0000 1.0040 -3.22 03 4/1/72 0000 1.0030 -3.06 8/1/72 0000 1.0005 -1.68 10/1/72 0000 1.0030 -3.06 05 4/1/72 0000 1.0035 -2.74 10/1/72 0000 1.0035 -3.74 11/1/72 0000 1.0060 -5.14 06 4/1/72 0000 0.9999 -0.79 137 Internal Calibration Values Sensor position No. Starting date Time (GMT) Slope (a) Intercept (B) 07 09 10 11 13 14 15 17 18 19 21 22 23 9/1/72 0000 0.9986 -0.67 11/1/72 0000 0.9974 -0.55 4/1/72 0000 1.0006 -1.36 7/1/72 0000 0.9994 -1.24 10/1/72 0000 0.9981 -1.11 4/1/72 0000 1.0000 0.00 4/1/72 0000 1.0000 0.00 4/1/72 0000 1.0000 0.00 4/1/72 0000 0.9991 -0.01 10/1/72 0000 0.9979 1.10 11/1/72 0000 0.9991 -0.01 4/1/72 0000 1.0057 -0.11 7/24/72 1524 1.0057 -1.12 10/1/72 0000 0.9962 0.08 11/1/72 0000 1.0057 -1.12 4/1/72 0000 1.0095 -0.30 6/26/72 0842 1.0095 0.71 7/1/72 0000 1.0000 1.90 7/24/72 1524 1.0000 0.90 9/1/72 0000 1.0000 1.90 4/1/72 0000 1.0007 0.98 6/15/72 0318 1.0007 1.98 6/19/72 0654 1.0073 2.81 7/5/72 2154 1.0073 1.80 7/12/72 0348 1.0007 0.98 7/18/72 0912 1.0007 -0.02 7/25/72 02 30 1.0007 -1.02 4/1/72 0000 1.0080 -0.84 7/24/72 1524 1.0080 2.18 8/18/72 2324 1.0080 1.18 9/1/72 0000 1.0013 0.36 4/1/72 0000 1.0000 0.00 4/1/72 0000 1.0003 -0.72 7/1/72 0000 0.9990 -0.60 11/1/72 0000 0.9978 -0.48 4/1/72 0000 0.9983 -0.33 10/1/72 0000 0.9970 -0.21 4/1/72 0000 0.9999 -0.19 7/1/72 0000 0.9999 -1.19 11/1/72 0000 0.9974 0.05 138 Internal Calibration Values Sensor position Starting Time Slope Intercept 1 No. date (GMT) (a) (3) I Station 28 1 01 4/1/72 0000 1.0078 -2.08 I 02 4/1/72 0000 1.0000 0.00 1 03 4/1/72 0000 1.0000 0.00 1 05 4/1/72 0000 1.0000 0.00 1 06 4/1/72 0000 1.0157 -4.35 I 07 4/1/72 0000 1.0217 -0.53 1 6/1/72 0000 1.0028 0.76 1 7/1/72 0000 1.0121 -0.38 1 8/1/72 0000 1.0028 -0.24 1 9/1/72 0000 1.0217 -0.53 ] 11/1/72 0000 1.0314 -0.67 I 09 4/1/72 0000 1.0059 0.78 1 6/1/72 0000 1.0126 0.64 I 7/1/72 0000 1.0193 -0.53 1 8/1/72 0000 1.0126 -0.38 I 11/1/72 0000 1.0059 0.78 12/1/72 0000 1.0059 -0.23 1/1/73 0000 0.9993 0.91 3/2/73 0000 1.0059 -0.23 10 4/1/72 0000 1.0105 -0.61 6/1/72 0000 1.0105 0.40 7/1/72 0000 1.0172 -0.74 9/1/72 0000 1.0105 -0.61 2/1/73 0000 1.0039 -0.48 3/2/73 0000 1.0105 -0.61 11 4/1/72 0000 Station 29 1.0000 0.00 01 4/1/72 0000 1.0047 -1.76 5/13/72 1824 1.0034 -2.64 6/1/72 0000 1.0022 -2.52 6/16/72 0000 0.9996 -3.27 7/1/72 0000 0.9960 -2.89 7/21/72 1336 1.0059 -2.89 1/1/73 0000 1.0059 -1.88 3/2/73 0000 1.0059 -2.89 02 4/1/72 0000 0.9993 0.07 12/7/72 2054 0.9989 0.19 Internal Calibration Values 139 Sensor position Starting Time Slope Intercept No. date (GMT) (a) (3) 03 4/1/72 0000 0.9993 0.07 12/7/72 2054 0.9989 0.19 05 4/1/72 0000 0.9993 0.07 12/7/72 2054 0.9989 0.19 06 4/1/72 0000 1.0114 -3.87 5/13/72 1824 1.0064 -2.31 6/1/72 0000 1.0051 -2.18 6/14/72 0748 1.0026 -2.91 7/1/72 0000 1.0013 -2.77 7/10/72 0242 0.9964 -1.23 7/21/72 1336 1.0088 -2.58 8/1/72 0000 1.0101 -3.73 9/1/72 0000 1.0088 -2.58 11/1/72 0000 1.0076 -2.45 12/1/72 0000 1.0088 -2.58 12/7/72 2054 1.0101 -2.72 12/18/72 0930 1.0088 -2.58 1/18/73 1636 1.0127 -4.01 3/2/73 0000 1.0101 -3.73 07 4/1/72 0000 1.0083 -0.52 6/7/72 1542 1.0083 -6.57 7/1/72 0000 0.9991 -6.27 9/14/72 1654 0.9229 0.78 10/1/72 0000 0.9151 0.99 11/1/72 0000 0.9229 1.71 12/1/72 0000 0.9229 -0.14 12/7/72 2054 1.0083 -0.52 1/9/73 1636 0.9991 0.72 09 4/1/72 0000 0.9981 0.37 6/7/72 1542 0.9917 0,. 60 7/1/72 0000 0.9854 0.83 7/21/72 1336 0.9854 1.81 9/1/72 0000 0.9917 0.60 12/1/72 0000 0.9854 -1.14 12/7/72 2054 0.9854 1.81 1/1/73 0000 0.9917 0.60 10 4/1/72 0000 0.9942 -0.39 ,6/7/72 1542 0.9878 0.84 7/1/72 0000 0.9878 -0.15 7/21/72 1336 0.9942 -0.39 9/1/72 0000 0.9878 -0.15 10/1/72 0000 0.9815 , 0.08 11/1/72 0000 0.9815 -0.90 12/1/72 0000 0.9692 -0.43 12/7/72 2054 1.0006 -1.62 140 Internal Calibration Values Sensor position No. Starting date Time (GMT) Slope (a) Intercept (3) 1/1/73 2/1/73 3/2/73 0000 0000 0000 0.9942 0.9878 0.9878 -0.39 0.84 -0.15 11 4/1/72 0000 Station 30 1.0000 0.00 01 4/1/72 3/2/73 0000 0000 0.9986 0.9974 -0.57 -0.44 02 4/1/72 0000 0.9992 0.38 03 4/1/72 0000 0.9992 0.38 05 4/1/72 10/1/72 11/1/72 12/1/72 3/2/73 0000 0000 0000 0000 0000 1.0004 0.9991 1.0004 0.9991 0.9979 -0.04 1.09 -0.04 0.09 0.22 06 4/1/72 0000 0.9992 0.38 07 4/1/72 10/1/72 12/1/72 1/1/73 2/1/73 0000 0000 0000 0000 0000 1.0009 0.9996 0.9996 1.0009 0.9996 -1.99 -1.86 -0.86 -1.99 -1.86 09 4/1/72 0000 0.9992 0.38 10 4/1/72 0000 0.9992 0.38 11 4/1/72 0000 0.9992 0.38 13 4/1/72 10/1/72 12/1/72 0000 0000 0000 0.9966 0.9978 0.9966 2.03 1.91 1.03 14 4/1/72 11/1/72 12/1/72 3/2/73 0000 0000 0000 0000 0.9925 1.0019 0.9925 1.0019 0.65 0.46 0.65 -0.54 is 4/1/72 2/1/73 3/2/73 0000 0000 0000 0.9953 1.0047 0.9953 0.49 -0.70 0.49 17 4/1/72 11/1/72 12/1/72 2/1/73 0000 0000 0000 0000 1.0020 1.0020 1.0020 1.0020 1.85 2.85 0.85 1.85 Internal Calibration Values 141 Sensor position Starting Time Slope Intercept No. date (GMT) (a) (B) 18 4/1/72 0000 1.0033 0.51 11/1/72 0000 1.0033 1.51 12/1/72 0000 1.0033 0.51 1/1/73 0000 0.9967 0.69 2/1/73 0000 1.0033 -0.50 19 4/1/72 0000 1.0000 0.00 21 4/1/72 0000 0.9993 0.25 22 4/1/72 0000 Station 31 0.9991 0.68 01 4/1/72 0000 1.0109 -2.29 6/1/72 0000 1.0135 -2.55 9/25/72 1936 1.0099 -5.31 10/1/72 0000 1.0112 -4.43 10/13/72 0000 1.0137 -4.69 12/1/72 1548 1.0099 -4.30 02 4/1/72 0000 1.0000 0.00 03 4/1/72 0000 1.0000 0.00 05 4/1/72 0000 1.0000 0.00 06 4/1/72 0000 1.0135 -6.33 9/25/72 1936 1.0197 -5.25 07 4/1/72 0000 0.9864 -0.38 6/1/72 0000 0.9864 -1.37 9/1/72 0000 0.9954 0.47 1/1/73 0000 0.9864 0.60 1/22/73 1948 0.9954 -0.53 3/2/73 0000 1.0046 -2.68 09 4/1/72 0000 0.9910 0.48 6/1/72 0000 0.9974 -0.65 7/1/72 0000 0.9910 0.48 9/25/72 1936 1.0032 -2.37 10/1/72 0000 0.9968 -0.23 10/13/72 0000 0.9968 0.76 11/1/72 0000 1.0032 0.64 12/1/72 1536 0.9968 2.76 1/1/73 0000 1.0097 1.52 1/22/73 1948 0.9968 -2.23 3/2/73 0000 0.9968 -4.22 142 Internal Calibration Values Sensor position Starting Time Slope Intercept No. date (GMT) (a) (3) 10 4/1/72 0000 1.0039 -1.29 6/1/72 0000 0.9974 -1.14 9/25/72 1936 0.9936 -0.56 10/1/72 0000 1.0000 -0.70 11/1/72 0000 0.9936 -0.56 12/1/72 1536 1.0000 -0.70 1/1/73 0000 0.9936 -0.56 1/22/73 1948 1.0000 -1.70 3/2/73 0000 0.9936 -1.55 11 4/1/72 0000 1.0000 0.00 APPENDIX V Sensor Calibration Correction Values 144 o o H sO o o o s o rH m 3 oo o o 2 OS o o H s m 3" m .-H 3 o (N 00 o o o o rH o o CM o o O o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o to .-H H H so o 5 <■ CT\ h* ro Li~S CO 1—1 CTi rH -3" CN CO rH CO m 5 CO o o o -3- o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o ■ST o o o os CO o 2 1—1 P*. o o 3 os o o OS o - o 00 o m o o CO o CO o OS o OS o m o o 00 o CO o CO o CO o o o o o o o o o o 1 o o o o 1 o o o o o o 1 o o o o o o o o o o o o o 1 o o 00 o o co o o o CO CN o OS o 00 o to o os o o 00 o sO o CO o CN CO o o o o o o .-1 o CN sO o 00 o o 00 o OS o CO o CM o T o o o o o o o o o o o o o o o o o o o o o o o o o o o o o 1 o 1 o o CN o CO o o sO o r-. o o CO o o o o CO o o o o CN o v£> fN o o o o o m o sD o o o o o o CO o Os o o o o o 1 o o 1 o o o o o o o o o o o o o o o o o o o o o o o o o 1 o 1 o o Os o -3" -3- r*» sO o o CO o as o H 00 o o CO o o 00 o -3" o CO o r- o o sD o sO o m o o OS o OS o o 00 o r-. o o OS 1 o 1 o o o o o 1 o o 1 o 1 o 1 o 1 o o ( o o o o 1 o 1 o 1 o o 1 o 1 o o o 1 o 1 o o 1 o 1 o 1 o o os -3- -3- CN r-^ co o o CO CO o p> OS CO o CO 1— 1 m o 00 r^ CTn £j sD i-H sO -3" 1— 1 o i-H CTs OS Os rH 00 r-^ o CO OS o CN 1 o o O 1 O o o 1 o 1 o 1 o 1 o 1 o o o o 1 o 1 o o o 1 o 1 o 1 o 1 o 1 o o 1 o 1 o o o 1 o o 1 o o H gj a CN o CO 1— 1 sO so r-l CO 1— 1 sO r- so CO 1— 1 sO CO o rH m I— 1 m -3" ■sfr CO CO o r^- r^ r- vO t— 1 m CO r^. in 1 o o o i O 1 o 1 o 1 o 1 o 1 o o 1 o o 1 o o 1 o o 1 o 1 o o o 1 o 1 o o o 1 o 1 o 1 o 1 o 1 o 1 o 1 o o £J o sO O o r- o rH CM H os o CN o rH H o CN m ^1 o o CO -3" -3" -3- sO o ^3" in rH -3- -3" -3" o rH -3" CM sO rH o CN in 1 — rH CM CO OS 1-1 o ■ CO o c z CD CO o o o o co o o m o o \0 o o o o CO o o o o o rH o o CN 1-1 o rH co o o m o o o OO o OS o o CM o o o 145 Calibration correction values for atmospheric pressure S = 0.1389 S Q = 5.56 Pressure (mb-950) Correction (mb) Pressure (mb-950) Correction (mb) Sensor No. 2001 Starting date: 4/1/72 -2.26 2.16 3.27 2.19 8.64 2.34 14.25 2.30 19.70 2.38 25.24 2.40 30.82 2.37 36.52 2.20 42.21 2.08 47.71 2.12 53.35 2.07 59.37 1.58 64.21 2.27 70.03 2.00 75.75 1.86 81.47 1.67 Starting date: 10/12/72 -1.63 4.19 9.72 15.34 21.08 26.74 32.60 38.42 44.26 49.91 55.76 61.27 67.13 72.74 78.59 84.32 1.44 1.36 1.28 1.20 0.97 0.87 0.60 0.34 0.10 0.03 -0.13 -0.22 -0.51 -0.68 -0.91 -1.21 Sensor No. 2002 Starting date: 4/1/72 6.43 -6.53 11.17 -5.70 15.98 -4.99 20.77 -4.21 25.52 -3.43 30.55 -2.90 35.61 -2.41 40.57 -1.84 45.88 -1.58 50.86 -1.02 55.97 -0.54 60.90 0.05 66.01 0.47 71.05 0.98 75.99 1.62 81.07 2.07 Starting sdate: 8/22/72 1.47 7.15 12.97 18.63 24.05 29.41 35.21 40.84 46.23 51.56 57.02 62.76 68.16 73.43 78.98 84.47 -4.05 -4.04 -3.71 -3.31 -2.82 -2.39 -2.23 -1.97 -1.73 -1.34 -1.00 -0.79 -0.49 -0.04 0.26 0.62 146 Calibration correction values for atmospheric pressure (Continued) S = 0.1389 S Q = 5.56 Pressure Correction Pressure Correction (mb-950) (mb) (mb-950) (mb) Sensor No. 2003 Starting date: 4/1/72 Starting date: 2/5/73 7.76 -7.86 -0.01 -0.12 13.27 -7.80 5.59 -0.12 18.60 -7.61 10.95 -0.01 24.43 -7.87 16.47 0.08 29.82 -7.73 22.03 0.10 35.33 -7.68 27.49 0.15 40.98 -7.78 33.12 0.09 46.52 -7.79 38.62 0.13 52.36 -8.06 44.23 0.10 57.92 -8.08 49.80 0.07 63.42 -7.99 55.47 0.00 68.61 -7.65 60.99 0.00 74.13 -7.64 66.53 -0.01 79.53 -7.49 71.98 0.11 85.05 -7.43 77.36 0.32 90.46 -7.31 82.65 0.51 Starting date: 2/24/73 Starting date: 3/16/73 -0.10 -0.08 -0.28 0.09 5.41 -0.03 5.33 0.09 10.78 0.07 10.78 0.20 16.31 0.15 16.31 0.24 21.77 0.22 21.82 0.29 27.31 0.24 27.36 0.30 32.91 0.19 32.91 0.28 38.42 0.23 38.40 0.31 44.07 0.18 44.04 0.24 49.67 0.13 49.58 0.20 55.39 0.03 55.20 0.13 60.82 0.08 60.72 0.18 66.35 0.08 66.35 0.13 71.75 0.22 71.77 0.27 77.17 0.42 77.24 0.41 82.48 0.59 82.47 0.66 147 Calibration correction values for atmospheric pressure (Continued) S = 0.1389 S Q = 5.56 Pressure (mb-950) Correction (mb) Pressure (mb-950) Correction (mb) Sensor No. 2004 Starting date: 4/1/72 5.06 -5.16 9.80 -4.33 14.82 -3.83 20.13 -3.57 24.89 -2.80 30.17 -2.52 35.13 -1.93 40.21 -1.48 45.32 -1.02 50.21 -0.37 55.48 -0.05 60.39 0.56 65.30 1.18 70.46 1.57 75.55 2.06 80.69 2.45 Starting date: 8/16/72 3.36 -4.31 8.46 -3.78 13.62 -3.29 18.56 -2.82 23.63 -2.27 28.76 -1.85 33.81 -1.35 38.85 -0.86 43.97 -0.41 48.84 0.21 53.99 0.64 58.88 1.22 63.88 1.80 69.46 2.03 74.14 2.69 79.22 3.13 Starting date: 12/6/72 -1.04 -1.26 4.60 -1.24 10.29 -1.08 15.83 -0.81 21.48 -0.56 27.18 -0.39 32.95 -0.22 38.52 0.02 44.18 0.23 49.74 0.58 55.42 0.81 60.89 1.17 66.38 1.35 72.19 1.47 77.77 1.81 83.34 2.04 Starting date: 2/16/73 -1 4 9 24 44 96 15.71 21.30 26.99 32.67 38.31 43.98 49.48 55.21 60.75 66.26 71.99 77.62 83.13 1.04 0.94 0.86 0.78 0.69 0.56 0.39 0.31 0.21 0.22 0.11 0.13 0.16 -0.04 -0.07 -0.09 148 Calibration correction values for atmospheric pressure (Continued) S = 0.1389 S Q = 5.56 Pressure (mb-950) Correction (mb) Pressure (mb-950) Correction (mb) Sensor No. 2004 (Continued) Starting date: 3/22/73 Sensor No. 2005 Starting date: 4/1/72 -1.44 4.06 9.50 15.27 20.88 26.78 32.43 38.13 43.62 49.26 54.83 60.40 66.02 71.63 77.16 82.74 1.24 1.21 1.25 1.07 0.99 0.76 0.64 0.50 0.50 0.46 0.41 0.38 0.34 0.23 0.22 0.21 -0.13 5.61 11.38 17.36 23.29 29.25 35.31 41.31 47.45 53.76 59.36 64.27 69.17 74.19 79.17 84.21 0.03 -0.14 -0.39 -0.80 -1.20 -1.60 -2.11 -2.58 -3.15 -3.92 -3.93 -3.31 -2.68 -2.15 -1.55 -1.06 Sensor No. 2005 (Continued) Starting date: 8/16/72 -0.13 -0.10 5.61 -0.32 11.38 -0.65 17.36 -0.96 23.29 -1.38 29.25 -1.80 35.31 -2.22 41.31 -2.87 47.45 -3.46 53.76 -4.12 59.36 -4.11 64.27 -3.54 69.17 -2.99 74.19 -2.44 79.17 -1.84 84.21 -1.32 Starting date: 10/11/72 0.14 5.99 11.93 17.69 23.69 29.67 35.54 41.97 48.13 54.19 59.72 64.69 69.73 74.70 79.70 84.68 -0.34 -0.72 -1.06 -1.38 -1.82 -2.26 -2.64 -3.37 -3.82 -4.31 -4.26 -3.68 -3.22 -2.62 -1.98 -1.58 149 Calibration correction values for atmospheric pressure (Continued) S l = 0.1389 s o = 5.56 Pressure Correction Pressure Correction (mb-950) (mb) (mb-950) (mb) Sensor No. 2006 Sensor No. 2007 Starting date: 4/1/72 Starting date: 4/1/72 -0.53 0.43 0.26 -0.36 4.96 0.50 5.74 -0.27 10.28 0.70 11.56 -0.57 16.02 0.53 16.89 -0.33 21.41 0.67 22.38 -0.29 27.00 0.64 28.08 -0.43 32.11 1.08 33.50 -0.30 38.16 0.56 38.89 -0.16 43.80 0.49 44.73 -0.43 49.28 0.55 50.28 -0.44 55.15 0.27 56.07 -0.64 60.66 0.29 61.48 -0.52 66.09 0.39 67.12 -0.63 71.55 0.48 72.62 -0.58 77.09 0.52 78.03 -0.41 82.68 0.46 83.37 -0.22 Sensor No. 2007 (Cont: Lnued) Starting date 8/24/72 Starting date: 11/18/72 0.26 -4.20 0.38 -4.26 5.74 -4.16 5.87 -4.22 11.56 -4.04 11.42 -3.99 16.89 -3.49 17.00 -3.53 22.38 -3.03 22.49 -3.08 28.08 -2.73 28.19 -2.77 33.50 -2.30 33.82 -2.43 38.89 -1.84 39.48 -2.11 44.73 -1.66 45.13 -1.84 50.28 -1.37 50.73 -1.58 56.07 -1.25 56.57 -1.49 61.48 -1.01 62.02 -1.26 67.12 -0.72 67.45 -0.86 72.62 -0.32 73.06 -0.50 78.03 0.22 78.49 0.03 83.37 0.78 83.89 0.57 150 Calibration correction values for atmospheric pressure (Continued) S = 0.1389 S Q = 5.56 Pressure (mb-950) Correction (mb) Pressure (mb-950) Correction (mb) Sensor No. 2007 (Continued) Starting date: 2/7/73 Sensor No. 2008 Starting date: 4/1/72 -0.09 5.49 11.06 16.57 22.12 27.54 33.37 38.94 44.71 50.37 56.20 61.79 67.38 72.72 78.07 83.37 -0.24 -0.21 -0.25 -0.22 -0.21 -0.21 -0.39 -0.48 -0.62 -0.71 -0.95 -0.95 -0.92 -0.85 -0.67 -0.49 3.10 8.71 14.30 20.06 25.74 30.38 37.02 42.76 48.40 53.99 59.60 65.19 70.75 76.37 81.90 87.11 -3.20 -3.24 -3.31 -3.50 -3.65 -2.73 -3.82 -4.03 -4.10 -4.15 -4.17 -4.23 -4.26 -4.33 -4.28 -3.96 Sensor No. 2008 (Continued) Starting date: 8/26/72 3.10 -3.29 8.71 -3.37 14.30 -3.39 20.06 -3.54 25.74 -3.73 30.38 -3.30 37.02 -3.90 42.76 -4.08 48.40 -4.22 53.99 -4.29 59.60 -4.33 65.19 -4.41 70.75 -4.51 76.37 -4.45 81.90 -4.40 87.11 -4.32 Starting date: 11/18/72 3.29 -3.41 8.99 -3.52 14.46 -3.61 20.14 -3.72 25.91 -3.99 31.53 -4.13 37.18 -4.30 42.86 -4.39 48.66 -4.66 54.27 -4.73 59.94 -4.77 65.56 -4.55 71.27 -4.69 76.60 -4.56 82.14 -4.63 87.86 -4.73 ^ 151 Calibration correction values for atmospheric pressure (Continued) S 1 = 0.1389 S Q = 5.56 Pressure Correction Pressure Correction (mb-950) (mb) (mb-950) (mb) Sensor No. 2008 (Continued) Starting date: 2/7/73 Starting date: 3/16/73 3.32 -3.42 3.29 -3.40 9.11 -3.58 8.94 -3.55 14.74 -3.75 14.68 -3.72 20.58 -3.94 20.34 -3.89 26.36 -4.23 26.00 -4.09 32.02 -4.39 31.72 -4.21 37.77 -4.61 37.52 -4.44 43.38 -4.65 43.25 -4.58 49.27 -4.98 49.07 -4.86 54.84 -5.02 54.65 -4.90 60.51 -5.05 60.15 -4.90 65.51 -4.52 65.53 -4.56 71.15 -4.63 71.08 -4.62 76.49 -4.53 76.49 -4.45 82.09 -4.61 82.14 -4.49 87.88 -4.74 Sensor No. 87.80 2009 -4.68 Starting date: 4/1/72 Starting date: 9/27/72 -1.82 1.72 -2.45 2.03 3.69 1.77 3.33 1.95 9.08 1.90 8.96 1.96 14.41 2.14 14.24 2.22 19.82 2.26 19.82 2.26 25.57 2.07 25.75 1.98 31.12 2.07 31.16 2.04 36.85 1.87 36.99 1.80 42.60 1.69 42.74 1.61 48.33 1.50 48.40 1.47 53.99 1.43 54.02 1.41 59.44 1.51 59.54 1.46 64.95 1.53 64.94 1.53 70.45 1.58 70.50 1.56 75.78 1.83 75.85 1.79 81.42 1.72 81.38 1.74 152 Calibration correction values for atmospheric pressure (Continued) S 1 = 0.1389 S Q = 5.56 Pressure (mb-950) Correction (mb) Pressure (mb-950) Correction (mb) Sensor No. 2009 (Continued) Starting date: 12/5/72 Starting date: 2/16/73 -2.45 3.33 8.96 14.24 19.82 25.75 31.16 36.99 42.74 48.40 54.02 59.54 64.94 70.50 75.85 81.38 20 13 03 23 21 90 99 74 1.52 1.44 1.41 1.38 1.50 1.51 1.76 1.78 -2.14 3.34 8.94 14.39 19.91 25.73 31.24 36.98 42.80 48.37 53.99 59.61 65.02 70.54 75.84 81.35 2.03 2.12 2.10 2.26 2.34 2.09 2.06 1.83 1.59 1.55 1.48 1.43 1.55 1.54 1.78 1.76 Sensor No. 2010 Starting date: 4/1/72 Starting date: 9/27/72 -3.92 1.69 7.67 13.61 19.58 25.52 31.19 37.02 43.17 48.97 54.97 60.97 67.02 72.89 79.11 85.20 82 77 31 94 50 12 2.00 1.70 1.12 0.86 0.45 -0.01 -0.53 -0.85 -1.49 -2.05 -3.92 1.69 7.67 13.61 19.58 25.52 31.19 37.02 43.17 48.97 54.97 60.97 67.02 72.89 79.11 85.20 3.47 3.20 2.77 2.43 2.00 1.58 1.48 1.12 0.57 0.09 -0.43 -0.97 -1.47 -1.92 -2.50 -3.02 153 Calibration correction values for atmospheric pressure (Continued) S = 0.1389 S Q = 5.56 Pressure Correction Pressure Correction (mb-950) (mb) (mb-950) (mb) Sensor No. 2010 (Continued) Starting date: 11/18/72 Starting date: 2/5/73 -3.22 2.91 -2.79 2.69 2.97 2.41 3.14 2.32 8.82 2.04 9.07 1.91 14.67 1.75 14.93 1.62 26.69 0.93 32.64 0.55 32.23 0.77 38.68 0.04 38.30 0.25 44.86 -0.56 44.38 -0.29 50.91 -1.07 50.73 -0.97 57.32 -1.89 56.97 -1.69 63.46 -2.50 63.10 -2.30 69.55 -3.06 69.04 -2.78 75.57 -3.53 75.29 -3.38 81.53 -3.91 81.25 -3.76 87.61 -4.46 87.33 -4.31 93.59 -4.91 93.21 -4.71 99.73 -5.48 Sensor No. 2011 Starting date: 4/1/72 Starting date: 8/16/72 -2.12 2.02 -2.57 2.24 3.61 1.85 3.14 2.10 9.23 1.75 8.63 2.06 14.62 1.93 13.69 2.38 20.25 1.83 19.30 2.31 25.59 2.05 24.86 2.40 31.18 2.01 30.40 2.40 36.99 1.73 35.73 2.39 42.55 1.74 41.02 2.50 47.91 1.92 46.67 2.52 53.45 1.97 51.78 2.80 59.11 1.84 57.22 2.81 64.03 2.45 62.50 3.12 69.86 2.17 68.00 3.14 75.35 2.26 72.84 3.50 80.83 2.31 78.17 3.63 154 Calibration correction values for atmospheric pressure (Continued) S 1 = 0.1389 S = 5.56 Pressure (mb-950) Correction (mb) Pressure (mb-950) Correction (mb) Sensor No. 2011 (Continued) Starting date : 1/19/73 -0.52 0.41 5.05 0.35 10.43 0.45 16.20 0.34 21.78 0.28 27.19 0.36 32.93 0.22 38.35 0.25 44.07 0.20 49.63 0.20 55.28 0.11 60.79 0.17 66.28 0.18 71.70 0.25 77.20 0.38 82.56 0.51 Sensor No. 2011 (Continued) Starting date : 3/9/73 -0.77 0.60 4.61 0.68 10.18 0.70 15.96 0.56 21.54 0.50 27.11 0.51 32.77 0.42 38.35 0.36 44.06 0.26 49.51 0.29 55.16 0.23 60.55 0.40 66.05 0.39 71.54 0.45 76.99 . 0.60 82.51 s 0.62 Starting date: 2/16/73 -0.63 0.47 4.95 0.46 10.39 0.57 16.01 0.44 21.61 0.39 27.15 0.47 32.77 0.34 38.36 0.36 44.01 0.26 49.57 0.23 55.22 0.17 60.56 0.28 66.13 0.27 71.62 0.37 77.02 0.50 82.54 0.59 Sensor No. 2012 Starting date: 4/1/72 0.14 -0.24 5.42 0.04 10.99 0.00 16.47 0.08 21.87 0.21 27.48 0.16 33.07 0.12 38.70 0.02 44.60 -0.30 50.13 -0.29 55.93 -0.50 61.29 -0.33 66.59 -0.10 71.84 0.19 77.15 0.46 82.70 0.44 155 Calibration correction values for atmospheric pressure (Continued) S = 0.1389 S Q - 5.56 Pressure (mb-950) Correction (mb) Pressure (mb-950) Correction (mb) Sensor No. 2013 Starting date: 4/1/72 Starting date: 9/27/72 -1.90 3.63 8.91 14.43 19.88 25 . 06 30.89 36.62 42.39 47.98 53.77 59.01 64.92 70.13 75.76 81.48 1.80 1.83 2.07 2.12 20 58 30 10 1.90 1.85 1.65 1.94 1.56 1.90 1.85 1.66 1.38 7.45 13.21 19.30 25.35 31.12 37.10 43.04 48.93 54.65 60.25 65.66 71.16 76.15 81.33 86.67 -1.48 -1.98 -2.22 -2.74 -3.26 -3.47 -3.90 -4.31 -4.63 -4.81 -4.82 -4.70 -4.67 -4.11 -3.71 -3.52 Sensor No. 2014 Starting date: 4/1/72 Starting date: 10/5/72 1.02 7.09 13.12 18.54 24.45 30.40 36.24 42.18 48.05 53.60 59.18 64.61 69.93 75.13 80.48 85.89 -1.12 -1.62 -2.13 -1.98 -2.36 -2.75 -3.04 -3.45 -3.75 -3.76 -3.75 -3.65 -3.44 -3.09 -2.86 -2.74 1.02 7.09 13.12 18.54 24.45 30.40 36.24 42.18 48.05 53.60 59.18 64.61 69.93 75.13 80.48 85.89 -1.28 -1.77 -2.22 -2.18 -2.61 -2.87 -3.25 -3.57 -3.87 -3.93 -3.84 -3.70 -3.52 -3.18 -2.99 -2.83 156 Calibration correction values for atmospheric pressure (Continued) S = 0.1389 S Q = 5.56 Pressure (mb-950) Correction (mb) Pressure (mb-950) Correction (mb) Sensor No. 2015 Starting date: 4/1/72 Starting date: 8/24/72 9.72 15.57 21.08 26.41 32.27 37.98 43.43 49.07 54.47 59.87 65.39 70.85 76.48 82.09 87.51 93.23 1.26 0.98 1.00 1.23 0.92 0.74 0.86 0.76 0.95 1.08 1.09 1.18 1.13 1.05 1.16 1.01 -1.27 4.34 9.72 15.41 20.91 26.43 32.07 37.80 43.36 48.87 54.46 60.01 65.31 70.92 76.42 82.02 1.21 1.19 1.26 1.07 1.08 1.22 1.03 0.83 0.90 0.87 0.96 1.01 1.13 1.15 1.16 1.09 Starting date: 1/19/73 Starting date: 3/2/73 -1.27 4.34 9.72 15.41 20.91 26.43 32.07 37.80 43.36 48.87 54.46 60.01 65.31 70.92 76.42 82.02 1.10 1.06 1.14 1.10 1.10 1.18 1.03 0.89 0.90 0.92 0.92 1.00 1.20 1.16 1.20 1.18 -1.50 4.00 9.59 15.10 20.60 26.23 31.84 37.42 43.04 48.53 54.26 59.67 65.02 70.39 75.99 81.57 1.21 1.23 1.20 1.25 1.25 1.28 1.15 1.08 1.06 1.09 1.02 1.16 1.34 1.43 1.42 1.41 157 Calibration correction values for atmospheric pressure (Continued) S 1 = 0.1389 5.56 Pressure (mb-950) Correction (mb) Pressure (mb-950) Correction (mb) Sensor No. 2016 Starting date: 4/1/72 Starting date: 8/17/72 5.45 11.26 16.60 21.90 27.81 33.44 38.85 44.49 50.32 55.99 61.79 67.40 73.25 78.92 84.65 90.46 -5.55 -5.79 -5.61 -5.34 -5.72 -5.79 -5.65 -5.76 -6.02 -6.15 -6.36 -6.44 -6.76 -6.88 -7.03 -7.31 5.45 11.26 16.60 21.90 27.81 33.44 38.85 44.49 50.32 55.99 61.79 67.40 73.25 78.92 84.65 90.46 -5.63 -5.77 -5.82 -5.56 -5.89 -6.00 -5.91 -6.20 -6.50 -6.63 -6.86 -7.02 -7.33 -7.47 -7.63 -7.87 Sensor No. 2016 (Continued) Sensor No. 2017 •tar-.ing date: 10/11/72 5.60 -6.22 11.20 -6.35 17.06 -6.49 22.33 -6.23 28.16 -6.50 33.86 -6.71 39.37 -6.62 45.45 -7.06 51.34 -7.64 56.97 -6.38 62.85 -7.76 68.61 -8.22 74.46 -8.48 80.12 -8.53 85.88 -8.61 91.61 -8.75 Starting date: 4/1/72 11.26 15.08 18.92 22.93 26.92 30.92 34.58 39.11 43.32 47.74 52.32 56.50 60.41 64.70 68.58 72.54 -11.36 -9.61 -7.93 -6.37 -4.83 -3.27 -1.38 -0.38 0.97 2.09 3.10 4.45 6.07 7.33 9.03 10.60 158 Calibration correction values for atmospheric pressure (Continued S = 0.1389 S Q = 5.56 Pressure (mb-950) Correction (mb) Pressure (mb-950) Correction (mb) Sensor No. 2017 (Continued) Starting date: 8/22/72 Sensor No. 2018 Starting date: 4/1/72 -2.72 2.72 8.24 13.68 19.36 25.06 30.79 36.41 42.00 47.52 53.17 58.55 64.13 69.58 75.32 80.86 -4.37 -4.30 -4.30 -3.68 -2.52 -1.48 -0.46 -0.66 1.42 2.17 2.81 3.85 4.76 5.94 6.99 8.14 -1.15 4.39 10.01 15.47 20.92 26.50 32.04 37.64 43.32 48.82 54.40 60.11 65.59 71.00 76.53 82.13 1.05 1.07 0.97 1.08 1.16 1.14 1.15 1.08 0.97 1.01 1.02 0.84 0.89 1.03 1.08 1.01 Starting date: 8/14/72 -1.15 4.39 10.01 15.47 20.92 26.50 32.04 37.64 43.32 48.82 54.40 60.11 65.59 71.00 76.53 82.13 Sensor No. 2018 (Continued) 0.82 0.84 0.86 0.94 0.98 1.00 0.97 1.05 0.90 0.96 0.93 1.01 1.13 1.31 1.37 1.33 Starting date: 10/18/72 -0.17 0.60 4.90 0.59 10.27 0.73 15.90 0.72 21.51 0.69 26.97 0.76 32.69 0.65 38.23 0.75 43.84 0.64 49.42 0.66 54.94 0.67 60.42 0.86 65.85 1.01 71.30 1.16 76.82 1.23 82.38 1.20 159 Calibration correction values for atmospheric pressure (Continued) S 1 = 0.1389 S Q = 5.56 Pressure (mb-950) Correction (mb) Pressure (mb-950) Correction (mb) Sensor No. 2018 (Continued) Starting date -0. 80 4. 81 10. 36 15. 90 21. 39 26. 91 32. 62 38. 05 A3. 81 49. 34 54. 98 60. 44 65. 79 71. 25 76. 70 82. 21 2/5/73 Starting date 0.66 -0.80 0.61 4.81 0.66 10.36 0.65 15.90 0.63 21.39 0.70 26.91 0.54 32.62 0.58 38.05 0.47 43.81 0.45 49.34 0.46 54.98 0.52 60.44 0.66 65.79 0.76 71.25 0.85 76.70 0.85 82.21 Sensor No . 2019 2/23/73 0.57 0.60 0.62 0.65 0.66 0.66 0.54 0.57 0.47 0.49 0.43 0.51 0.70 0.79 0.92 0.97 Starting date: 4 11112 -0.29 0.19 5.10 0.36 10.79 0.19 16.34 0.21 21.88 0.20 27.61 0.03 33.24 -0.04 38.98 -0.25 44.93 -0.63 50.60 -0.76 55.88 -0.45 61.24 -0.28 66.59 -0.10 72.02 0.01 77.46 0.15 82.86 0.28 Starting date: 8/24/72 -0.29 -0.03 5.10 0.10 10.79 0.06 16.34 -0.04 21.88 -0.08 27.61 -0.17 33.24 -0.26 38.98 -0.37 44.93 -0.72 50.60 -0.88 55.88 -0.52 61.24 -0.34 66.59 -0.21 72.02 -0.07 77.46 0.05 82.86 0.17 160 Calibration correction values for atmospheric pressure (Continued) S = 0.1389 S = 5.56 Pressure (mb-950) Correction (mb) Pressure (mb-950) Correction (mb) Sensor No. 2019 (Continued) Starting date: 12/6/72 0.16 -0.72 5.61 -0.59 11.04 -0.53 16.88 -0.62 22.47 -0.60 28.03 -0.58 33.70 -0.71 39.23 -0.72 45.12 -0.90 50.86 -1.08 56.02 -0.69 61.37 -0.46 66.81 -0.30 72.19 -0.13 77.65 0.03 83.08 0.12 Starting date: 2/7/73 1.08 6.48 11.99 17.46 22.89 28.43 34.13 39.67 45.29 50.99 56.20 61.48 66.77 72.15 77.51 82.97 -3.18 -3.02 -2.69 -2.30 -1.90 -1.57 -1.32 -1.13 -0.89 -0.60 -0.02 0.53 1.06 1.58 2.03 2.36 Sensor No. 2019 (Continued) Starting date: 3/16/73 Sensor No. 2020 Starting date: 4/1/72 4.75 9.91 14.77 19.67 24.65 29.72 34.78 39.88 45.07 49.57 54.37 59.15 63.91 68.67 73.50 78.43 -5.02 -4.55 -3.90 -3.27 -2.66 -2.15 -1.61 -1.23 -0.79 0.01 0.73 1.53 2.24 3.05 3.80 4.39 -0.18 5.59 11.11 16.77 22.38 28.00 33.81 39.36 45.05 50.65 56.27 61.63 68.03 72.63 77.94 83.48 0.08 -0.12 -0.12 -0.21 -0.29 -0.35 -0.61 -0.63 -0.75 -0.81 -0.84 -0.67 -1.54 -0.59 -0.32 -0.33 161 Calibration correction values for atmospheric pressure (Continued) S 1 = 0.1389 S„ = 5.56 Pressure (mb-950) Correction (mb) Pressure (mb-950) Correction (mb) Sensor No. 2020 (Continued) Starting date: 8/27/72 Starting date: 12/5/72 -0.18 5.59 11.11 16.77 22.38 28.00 33.81 39.36 45.05 50.65 56.27 61.63 68.03 72.68 77.94 83.48 -0.05 -0.21 -0.18 -0.22 -0.34 -0.41 -0.61 -0.66 -0.78 -0.87 -0.90 -0.70 -1.12 -0.59 -0.32 -0.34 0.09 5.67 11.22 16.79 22.48 28.12 33.81 39.42 45.12 50.77 56.38 61.69 67.22 72.64 77.95 83.50 -0.32 -0.33 -0.35 -0.39 -0.51 -0.63 -0.77 -0.85 -0.98 -1.10 -1.12 -0.96 -0.88 -0.73 -0.51 -0.53 Starting date: 2/5/73 0.35 -0.59 5.84 -0.55 11.46 -0.58 17.12 -0.72 22.73 -0.78 28.45 -0.89 34.13 -1.04 39.75 -1.14 45.44 -1.29 51.11 -1.41 56.72 -1.37 62.15 -1.26 67.52 -1.10 72.89 -0.95 78.30 -0.85 83.86 -0.78 Starting date: 3/9/73 0.62 6.29 11.82 17.44 23.07 28.69 34.33 39.94 45.66 51.34 56.86 62.22 67.65 73.08 78.47 83.90 -0.73 -0.77 -0.76 -0.89 -0.95 -1.01 -1.14 -1.24 -1.40 -1.53 -1.43 -1.29 -1.16 -1.04 -0.93 -0.80 162 Calibration correction values for atmospheric pressure (Continued) S 1 = 0.1389 S Q = 5.56 Pressure Correction Pressure Correction (mb-950) (mb) (mb-950) (mb) Sensor No. 2021 Starting date: 4/1/72 Starting date: 9/27/72 0.28 -0.72 0.28 -1.11 5.70 -0.65 5.70 -1.05 11.15 -0.53 11.15 -0.94 16.71 -0.42 16.71 -1.07 22.18 -0.39 22.18 -1.15 28.22 -0.60 28.22 -1.55 33.60 -0.51 33.60 -1.51 39.20 -0.53 39.20 -1.53 45.06 -0.75 45.06 -1.64 50.87 -0.87 50.87 -1.81 56.49 -0.94 56.49 -1.85 61.75 -0.75 61.75 -1.49 67.24 -0.72 67.24 -1.17 72.52 -0.55 72.52 -0.87 77.86 -0.33 77.86 -0.65 83.20 -0.12 83.20 -0.45 Starting date: 4/] 772 -0.66 0.50 4.80 0.54 10.41 0.45 15.76 0.56 21.50 0.47 26.94 0.55 32.61 0.50 37.98 0.56 43.55 0.53 49.30 0.47 54.80 0.50 60.25 0.55 65.87 0.49 71.28 0.57 76.61 0.75 82.19 0.76 Starting date: 1C )/12/72 -0.79 0.62 4.81 0.65 10.51 0.52 16.01 0.66 21.57 0.54 27.03 0.65 32.49 0.64 37.99 0.73 43.61 0.71 49.00 0.69 54.75 0.64 60.18 0.74 65.50 0.80 71.55 0.62 76.48 1.06 82.07 1.01 163 Calibration correction values for atmospheric pressure (Continued) S = 0.1389 S = 5.56 Pressure (mb-950) Correction (mb) Pressure (mb-950) Correction (mb) Starting date: 12/6/72 Sensor No. 2022 (Continued) Starting date: 2/7/73 -0.79 4.81 10.51 16.01 21.57 27.03 32.49 37.99 43.61 49.00 54.75 60.18 65.50 71.55 76.48 82.07 0.63 0.54 0.52 0.55 0.52 0.55 0.59 0.65 0.62 0.74 0.61 0.71 0.84 0.65 1.01 1.01 -0.68 5.03 10.40 15.99 21.55 27.14 32.72 38.14 43.72 49.18 54.87 60.30 65.78 71.20 76.71 82.20 0.45 0.36 0.47 0.43 0.39 0.37 0.35 0.47 0.47 0.53 0.49 0.53 0.58 0.70 0.82 0.86 Sensor No. 2023 Starting date: 4/1/72 Starting date: 10/5/72 -0.17 5.45 10.87 16.49 21.99 27.43 32.95 38.47 44.11 49.52 55.22 60.72 66.29 71.65 77.22 82.72 -0.50 -0.48 -0.32 -0.31 -0.17 -0.12 -0.01 0.06 0.02 0.20 0.22 0.30 0.24 0.52 0.57 0.69 0.80 6.31 11.60 17.02 22.51 27.91 33.35 38.71 44.17 49.63 55.08 60.33 65.80 71.30 76.53 81.95 -0.98 -0.90 -0.67 -0.58 -0.41 -0.37 -0.20 -0.05 0.00 0.14 0.30 0.49 0.48 0.68 0.91 1.06 164 Calibration correction values for atmospheric pressure (Continued) S 1 = 0.1389 S Q = 5.56 Pressure (mb-950) Correction (mb) Pressure (mb-950) Correction (mb) Starting date 0.80 6.31 11.60 17.02 22.51 27.91 33.35 38.71 44.17 49.63 55.08 60.33 65.80 71.30 76.53 81.95 Sensor No. 202 3 (Continued) 1/12/73 Starting date 2/7/73 -1.08 -1.02 -0.80 -0.68 -0.60 -0.43 -0.30 -0.15 -0.06 0.10 0.20 0.43 0.58 0.71 1.01 1.18 -0.29 5.34 10.84 16.39 21.88 27.51 33.08 38.55 44.18 49.58 55.23 60.65 66.11 71.68 77.08 82.48 -0.53 -0.54 -0.44 -0.37 -0.29 -0.24 -0.17 -0.07 -0.06 0.12 0.13 0.27 0.43 0.53 0.75 0.92 Sensor No. 2024 Starting date: 4/1/72 0.33 -0.43 6.00 -0.53 11.37 -0.38 17.00 -0.44 22.51 -0.42 27.82 -0.17 33.40 -0.20 38.98 -0.25 44.56 -0.26 50.00 -0.16 55.62 -0.19 61.16 -0.20 66.69 -0.20 72.11 -0.07 77.69 -0.07 83.13 0.01 165 Calibration correction values for longwave radiometer (ly/min) S = 0.0200 Sensor No. Starting date Actual cell constant 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 4/1/72 4/1/72 1/1/73 4/1/72 4/1/72 4/1/72 4/1/72 4/1/72 4/1/72 1/1/73 4/1/72 4/1/72 4/1/72 4/1/72 4/1/72 4/1/72 4/1/72 4/1/72 4/1/72 6.02 5.20 3.77 5.33 5.49 5.05 5.92 5.23 4.71 4.59 5.57 5.18 4.93 4.54 4.54 5.43 5.55 4.87 4.99 Calibration correction values for shortwave radiometer (ly/min) s 1 - 0.0100 Sensor No, Starting date Actual cell constant 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 4/1/72 4/1/72 4/1/72 4/1/72 4/1/72 4/1/72 4/1/72 4/1/72 4/1/72 4/1/72 4/1/72 4/1/72 4/1/72 4/1/72 4/1/72 4/1/72 4/1/72 4/1/72 6.83 6.14 5.28 5.67 6.24 7.07 6.04 7.00 6.86 7.25 7.01 7.04 6.32 7.05 7.06 6.24 6.30 7.20 166 Calibration correction values for shortwave radiometer (ly/min) (Continued) S = 0.0100 Sensor No, Starting date Actual cell constant 6019 6020 6021 6022 4/1/72 4/1/72 4/1/72 4/1/72 7.45 8.15 7.67 7.06 Calibration correction values forjwind direction (except buoys) (degrees of arc) Sensor No. Starting date 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 5/9/72 1/23/72 5/3/72 1/8/73 5/2/72 7/31/72 1/16/73 6/5/72 1/3/73 6/20/72 9/27/72 6/7/72 4/28/72 5/4/72 2/13/73 5/11/72 1/25/73 1/3/73 0.5039 0.5075 0.5125 0.5119 0.4768 0.5167 0.4864 0.4702 0.4732 0.4860 0.4961 0.5095 0.4995 0.4825 0.4809 0.4855 0.4847 0.4875 13.50 16.29 32.81 30.73 7.09 33.46 15.64 11.72 10.22 14.64 16.57 25.10 20.42 13.68 13.79 12.52 11.22 12.07 Calibration correction values for wind speed (m/s) Sensor No, Starting date 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 4/1/72 4/1/72 4/1/72 4/1/72 4/1/72 4/1/72 4/1/72 4/1/72 4/1/72 4/1/72 0.0952 0.0956 0.0944 0.1030 0.1078 0.0945 0.0958 0.0974 0.0948 0.0953 -0.11 -0.11 -0.11 -0.11 -0.11 -0.11 -0.11 -0.11 -0.11 -0.11 Calibration correction values for wind speed (m/s) (Continued) 167 Sensor No, Starting date 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 4/1/72 4/1/72 4/1/72 4/1/72 4/1/72 4/1/72 4/1/72 4/1/72 4/1/72 4/1/72 4/1/72 4/1/72 4/1/72 4/1/72 4/1/72 4/1/72 0.0976 0.0954 0.0938 0.0954 0.0952 0.0965 0.0953 0.0960 0.0951 0.0952 0.0953 0.0951 0.0956 0.0953 0.0959 0.0958 ■0.11 ■0.11 -0.11 ■0.11 •0.11 ■0.11 ■0.11 ■0.11 -0.11 -0.11 -0.11 -0.11 -0.11 -0.11 -0.11 -0.11 Calibration correction values for water temperature (°C) S^^ = 0.0320 S = 2.00 Sensor No. Starting date -5.00 0.00 5.00 10.00 15.00 20.00 25.00 30.00 11001 4/1/72 0.05 -0.05 -0.05 0.00 0.02 0.03 0.02 -0.02 11002 4/1/72 0.04 -0.06 -0.04 0.00 0.02 0.01 0.00 -0.06 11003 4/1/72 0.02 -0.08 -0.08 -0.04 0.00 0.00 -0.01 -0.05 11004 4/1/72 0.06 -0.05 -0.05 0.00 0.03 0.03 0.02 -0.02 11005 4/1/72 0.07 -0.02 -0.01 0.01 0.05 0.04 0.03 -0.02 11006 4/1/72 0.04 -0.06 -0.05 -0.02 0.01 0.02 0.00 -0.05 11007 4/1/72 0.04 -0.05 -0.04 -0.01 0.01 0.00 -0.03 -0.05 11008 4/1/72 0.01 -0.10 -0.10 -0.05 -0.01 -0.01 -0.02 -0.06 11009 4/1/72 0.05 -0.04 -0.04 0.00 0.02 0.02 0.01 -0.02 11010 4/1/72 0.02 -0.08 -0.08 -0.04 0.00 -0.01 -0.02 -0.06 11011 4/1/72 0.04 -0.05 -0.05 -0.02 0.02 0.02 0.00 -0.05 11012 4/1/72 0.03 -0.07 -0.07 -0.03 0.00 0.00 -0.01 -0.05 11013 4/1/72 0.05 -0.04 -0.02 0.01 0.03 0.03 0.00 -0.05 11014 4/1/72 0.06 -0.05 -0.04 0.00 0.03 0.03 0.01 -0.01 11015 4/1/72 0.04 -0.04 -0.02 0.01 0.02 0.02 -0.01 -0.07 11016 4/1/72 0.04 -0.06 -0.06 -0.02 0.02 0.01 0.00 -0.05 11017 4/1/72 0.05 -0.05 -0.04 0.00 0.00 0.02 0.00 -0.04 11018 4/1/72 0.06 -0.03 -0.02 0.05 0.06 0.04 0.02 -0.08 11019 4/1/72 0.03 -0.06 -0.06 -0.02 0.01 0.00 -0.02 -0.07 11020 4/1/72 -0.02 -0.11 -0.12 -0.05 -0.06 0.00 -0.06 -0.18 11021 4/1/72 0.06 -0.03 -0.02 0.01 0.04 0.04 0.00 -0.03 11022 4/1/72 0.04 -0.06 -0.07 -0.02 0.02 0.01 0.00 -0.05 11023 4/1/72 0.07 -0.02 -0.02 0.00 0.06 0.05 0.02 0.00 168 Calibration correction values for water temperature (°C) (Continued) S 1 = 0.0320 S Q = 2.00 Sensor No. Starting date -5.00 0.00 5.00 10.00 15.00 20.00 25.00 30.00 11024 4/1/72 0.07 -0.02 -0.03 0.01 0.05 0.04 0.02 0.00 11025 4/1/72 0.05 -0.05 -0.04 0.00 0.03 0.03 0.00 -0.05 11026 4/1/72 0.00 -0.09 -0.09 -0.05 -0.02 -0.03 -0.04 -0.09 1102 7 4/1/72 0.00 -0.10 -0.09 -0.06 -0.03 -0.04 -0.04 -0.09 11028 4/1/72 0.04 -0.05 -0.04 0.00 0.02 0.01 0.00 -0.06 11029 4/1/72 0.06 -0.04 -0.04 0.00 0.03 0.04 0.03 0.00 11030 4/1/72 0.00 -0.11 -0.11 -0.06 -0.01 -0.01 -0.03 -0.07 11031 4/1/72 0.02 -0.08 -0.07 -0.03 0.00 0.00 -0.01 -0.06 11032 4/1/72 0.03 -0.08 -0.08 -0.02 0.00 0.01 0.00 -0.05 11033 4/1/72 0.06 -0.05 -0.04 0.00 0.03 0.04 0.03 -0.01 11034 4/1/72 0.02 -0.08 -0.08 -0.03 0.00 0.00 -0.01 -0.05 11035 4/1/72 0.09 -0.01 0.00 0.04 0.06 0.06 0.04 -0.01 11036 4/1/72 0.02 -0.08 -0.08 -0.03 0.00 0.00 -0.01 -0.07 11037 4/1/72 0.07 -0.03 -0.02 0.01 0.04 0.04 0.02 -0.02 11038 4/1/72 0.07 -0.03 -0.04 0.03 0.04 0.04 0.02 -0.01 11039 4/1/72 0.06 -0.05 -0.05 -0.01 0.03 0.04 0.02 -0.01 11040 4/1/72 0.05 -0.06 -0.06 -0.02 0.01 0.02 0.01 -0.02 11041 4/1/72 0.04 -0.06 -0.07 -0.02 0.01 0.02 0.00 -0.02 11042 4/1/72 0.05 -0.06 -0.05 -0.02 0.01 0.02 0.01 -0.03 11043 4/1/72 0.05 -0.05 -0.05 -0.01 0.02 0.02 0.01 -0.02 11044 4/1/72 0.05 -0.04 -0.04 0.00 0.03 0.02 0.00 -0.04 11045 4/1/72 0.03 -0.08 -0.06 -0.02 0.00 0.00 0.00 -0.06 11046 4/1/72 0.05 -0.05 -0.04 0.00 0.03 0.03 0.00 -0.04 11047 4/1/72 0.04 -0.05 -0.04 0.00 0.02 0.01 -0.01 -0.06 11048 4/1/72 0.03 -0.05 -0.04 0.00 0.01 0.00 -0.03 -0.07 11049 4/1/72 0.04 -0.07 -0.08 -0.03 0.01 0.01 0.00 -0.03 11050 4/1/72 0.09 0.00 0.00 0.04 0.06 0.06 0.03 0.00 11051 4/1/72 0.04 -0.05 -0.05 -0.02 0.02 0.01 -0.01 -0.04 11052 4/1/72 0.02 -0.07 -0.06 -0.02 0.00 0.00 -0.02 -0.06 11053 4/1/72 0.02 -0.08 -0.08 -0.04 0.00 0.00 -0.03 -0.06 11054 4/1/72 0.05 -0.05 -0.04 0.00 0.03 0.03 0.00 -0.02 11055 4/1/72 0.07 -0.02 -0.01 0.02 0.05 0.04 0.01 -0.01 11056 4/1/72 0.03 -0.08 -0.06 -0.02 0.00 0.00 -0.04 0.01 11057 4/1/72 0.14 0.14 0.12 0.14 0.08 0.07 0.03 0.00 11058 4/1/72 -0.03 -0.12 -0.11 -0.07 -0.05 -0.06 -0.09 -0.14 11059 4/1/72 0.05 -0.05 -0.05 0.00 0.01 0.02 0.00 -0.02 11060 4/1/72 0.02 -0.09 -0.08 -0.04 -0.01 0.00 -0.03 -0.05 11061 4/1/72 0.02 -0.08 -0.08 -0.02 -0.01 0.00 -0.02 -0.05 11062 4/1/72 0.02 -0.08 -0.08 -0.03 0.00 0.00 -0.02 -0.05 11063 4/1/72 0.04 -0.05 -0.05 -0.01 0.00 0.04 -0.02 -0.04 11064 4/1/72 0.00 -0.11 -0.10 -0.06 -0.02 -0.03 -0.05 -0.08 11065 4/1/72 0.02 -0.08 -0.09 -0.04 0.00 0.00 -0.03 -0.06 11066 4/1/72 0.02 -0.08 -0.07 -0.03 0.00 0.00 -0.02 -0.05 11067 4/1/72 0.02 -0.08 -0.09 -0.04 0.00 0.00 -0.03 -0.06 11068 4/1/72 0.04 -0.05 -0.05 -0.01 0.00 0.02 0.00 -0.03 Calibration correction values for water temperature (°C) (Continued) 169 S 1 = 0.0320 S Q = 2.00 Sensor No. Starting date -5.00 0.00 5.00 10.00 15.00 20.00 25.00 30.00 11069 4/1/72 0.05 -0.05 -0.04 -0.01 0.02 0.02 0.00 -0.03 11070 4/1/72 -0.01 -0.11 -0.10 -0.06 -0.02 -0.04 -0.04 -0.12 11071 4/1/72 -0.01 -0.09 -0.10 -0.05 -0.02 -0.03 -0.07 -0.11 11073 4/1/72 0.07 -0.04 -0.04 0.00 0.04 0.03 0.02 0.00 11074 4/1/72 0.02 -0.11 -0.10 -0.07 0.00 0.00 -0.01 -0.04 11075 4/1/72 0.00 -0.10 -0.10 -0.05 -0.02 -0.01 -0.04 -0.07 11076 4/1/72 0.05 -0.05 -0.04 0.00 0.03 0.02 0.00 -0.03 11077 4/1/72 0.02 -0.08 -0.08 -0.03 0.00 0.00 -0.01 -0.06 11078 4/1/72 0.10 -0.02 0.20 0.02 0.05 0.05 0.02 -0.01 11079 4/1/72 0.05 -0.05 -0.04 0.00 0.02 0.02 0.00 -0.03 11080 4/1/72 0.02 -0.08 -0.08 -0.03 0.00 0.00 -0.03 -0.07 11081 4/1/72 0.06 -0.05 -0.04 0.00 0.03 0.04 0.01 -0.02 11082 4/1/72 0.00 -0.09 -0.07 -0.03 -0.01 -0.03 -0.04 -0.13 11083 4/1/72 -0.01 -0.12 -0.11 -0.07 -0.04 -0.04 -0.06 -0.10 11084 4/1/72 0.01 -0.09 -0.08 -0.04 -0.01 0.00 -0.04 -0.08 11085 4/1/72 0.02 -0.06 -0.03 0.00 0.01 0.00 -0.04 -0.10 11086 4/1/72 0.07 -0.04 -0.03 0.01 0.04 0.05 0.02 0.00 11087 4/1/72 0.04 -0.08 -0.09 -0.03 0.01 0.03 0.00 -0.02 11088 4/1/72 0.04 -0.07 -0.07 -0.02 0.01 0.02 0.00 0.00 11089 4/1/72 0100 -0.10 -0.10 -0.06 -0.02 -0.01 -0.03 -0.06 11090 4/1/72 0.03 -0.08 -0.08 -0.03 0.00 0.01 -0.01 -0.05 11091 4/1/72 0.01 -0.09 -0.09 -0.04 -0.01 0.00 -0.03 -0.06 11092 4/1/72 -0.02 -0.14 -0.14 -0.09 -0.05 -0.05 -0.03 -0.11 11093 4/1/72 0.00 -0.11 -0.11 -0.06 -0.03 -0.02 -0.04 -0.07 11094 4/1/72 0.02 -0.09 -0.09 -0.04 0.00 0.00 -0.01 -0.06 11095 4/1/72 0.03 -0.06 -0.04 -0.02 0.01 0.00 -0.03 -0.06 11096 4/1/72 -0.01 -0.12 -0.12 -0.08 -0.04 -0.04 -0.06 -0.09 11097 4/1/72 0.01 -0.09 -0.08 -0.04 -0.01 0.00 -0.03 -0.06 11098 4/1/72 0.01 -0.09 -0.08 -0.03 0.00 0.00 -0.03 -0.08 11099 4/1/72 0.01 -0.07 -0.05 -0.02 0.00 0.00 -0.04 -0.09 11100 4/1/72 0.06 -0.05 -0.04 0.00 0.04 0.03 0.01 0.00 11101 4/1/72 0.02 -0.09 -0.09 -0.04 0.00 0.00 -0.02 -0.04 11102 4/1/72 0.01 -0.10 -0.09 -0.05 -0.01 -0.01 -0.03 -0.06 11103 4/1/72 0.05 -0.06 -0.05 -0.01 0.02 0.03 0.00 -0.02 11104 4/1/72 0.01 -0.08 -0.07 -0.03 -0.01 0.00 -0.04 -0.08 11105 4/1/72 0.02 -0.07 -0.06 -0.03 0.00 0.00 -0.04 -0.08 11106 4/1/72 0.05 -0.05 -0.04 0.00 0.03 0.03 0.00 -0.03 11107 4/1/72 0.06 -0.04 -0.03 0.00 0.03 0.03 0.00 -0.02 11108 4/1/72 0.05 -0.05 -0.04 0.00 0.03 0.03 0.00 -0.02 11109 4/1/72 0.06 -0.03 -0.01 0.00 0.05 0.03 0.00 -0.01 11110 4/1/72 0.05 -0.04 -0.03 -0.01 0.03 0.02 0.00 -0.03 11111 4/1/72 0.05 -0.04 -0.03 0.00 0.03 0.03 0.00 -0.03 11112 4/1/72 0.02 -0.08 -0.07 -0.03 0.00 0.00 -0.02 -0.06 11114 4/1/72 0.08 -0.02 -0.01 0.02 0.06 0.06 0.03 0.00 11115 4/1/72 0.04 -0.06 -0.05 -0.01 0.02 0.00 0.00 -0.05 170 Calibration correction values for water temperature (°C) (Continued) S = 0.0320 S Q = 2.00 Sensor No. Starting date -5.00 0.00 5.00 10.00 15.00 20.00 25.00 30.00 11116 4/1/72 0.07 -0.03 -0.01 0.00 0.05 0.04 0.02 -0.01 11117 4/1/72 0.07 -0.04 -0.03 0.01 0.04 0.03 0.02 -0.01 11118 4/1/72 0.04 -0.05 -0.04 0.00 0.02 0.02 0.00 -0.04 11119 4/1/72 0.03 -0.07 -0.06 -0.02 0.01 0.01 -0.01 -0.06 11120 4/1/72 0.00 -0.11 -0.10 -0.06 -0.02 -0.02 -0.05 -0.08 11121 4/1/72 0.03 -0.08 -0.07 -0.02 0.01 0.01 -0.01 -0.05 11122 4/1/72 0.05 -0.06 -0.04 0.00 0.03 0.03 0.00 -0.03 11123 4/1/72 0.07 -0.03 -0.02 0.01 0.04 0.03 0.02 -0.01 11124 4/1/72 0.01 -0.09 -0.08 -0.03 -0.01 -0.01 -0.03 -0.08 11125 4/1/72 0.02 -0.06 -0.05 -0.03 -0.02 -0.02 -0.04 -0.06 11126 4/1/72 0.01 -0.07 -0.06 -0.02 0.00 0.00 -0.03 -0.09 11127 4/1/72 0.01 -0.08 -0.06 -0.02 0.00 0.00 -0.03 -0.09 11128 4/1/72 0.00 -0.11 -0.12 -0.05 -0.04 -0.05 -0.03 -0.11 11129 4/1/72 0.05 -0.05 -0.04 0.00 0.02 0.03 0.01 -0.04 11130 4/1/72 0.03 -0.05 -0.04 0.00 0.01 0.01 -0.01 -0.06 11131 4/1/72 0.03 -0.07 -0.08 -0.02 0.01 0.01 0.00 -0.04 11132 4/1/72 0.01 -0.08 -0.08 -0.04 -0.01 -0.02 -0.04 -0.07 11133 4/1/72 0.07 -0.03 -0.02 0.02 0.04 0.04 0.02 -0.02 11134 4/1/72 0.05 -0.04 -0.03 0.00 0.02 0.02 -0.01 -0.06 11135 4/1/72 0.06 -0.05 -0.05 -0.01 0.03 0.04 0.02 -0.01 11136 4/1/72 0.05 -0.05 -0.05 0.00 0.02 0.02 0.00 -0.03 11138 4/1/72 0.07 -0.03 -0.03 0.01 0.04 0.04 0.02 -0.01 11142 4/1/72 0.07 -0.03 -0.02 0.02 0.05 0.05 0.02 -0.02 11147 4/1/72 0.06 -0.05 -0.04 0.00 0.04 0.03 0.02 0.00 11148 4/1/72 0.09 -0.03 0.19 0.01 0.04 0.03 0.01 -0.02 11149 4/1/72 0.04 -0.07 -0.06 -0.01 0.01 0.02 0.00 -0.04 11150 4/1/72 0.06 -0.04 -0.02 0.01 0.04 0.04 0.00 -0.04 11151 4/1/72 0.02 -0.08 -0.07 -0.02 0.00 0.00 -0.03 -0.07 11152 4/1/72 0.05 -0.06 -0.05 -0.01 0.02 0.03 0.00 -0.03 11153 4/1/72 0.02 -0.08 -0.08 -0.03 0.00 0.00 -0.02 -0.05 11154 4/1/72 0.05 -0.05 -0.05 -0.01 0.02 0.03 0.00 -0.03 11155 4/1/72 0.06 -0.05 -0.05 0.00 0.04 0.03 0.02 0.00 11156 4/1/72 0.04 -0.06 -0.05 0.00 0.01 0.01 -0.01 -0.05 11157 4/1/72 -0.02 -0.12 -0.10 -0.07 -0.04 -0.05 -0.02 -0.12 11158 4/1/72 0.00 -0.09 -0.06 -0.02 -0.01 -0.02 -0.07 -0.13 11159 4/1/72 0.03 -0.06 -0.05 -0.01 0.01 0.01 -0.01 -0.06 11160 4/1/72 -0.03 -0.12 -0.09 -0.06 -0.05 -0.06 -0.10 -0.16 11161 4/1/72 0.07 -0.01 -0.01 0.00 0.02 0.03 0.02 0.00 11162 4/1/72 0.06 0.00 0.00 -0.04 0.00 0.00 0.00 0.00 11163 4/1/72 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 11164 4/1/72 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 11165 4/1/72 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 11166 4/1/72 0.08 0.01 0.00 -0.02 0.01 0.02 0.02 0.03 11167 4/1/72 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 11168 4/1/72 0.06 -0.01 0.00 -0.05 0.00 0.00 0.00 0.00 Calibration correction values for water temperature (°C) (Continued) 171 S 1 = 0.0320 S = 2.00 Sensor No. Starting date -5.00 0.00 5.00 10.00 15.00 20.00 25.00 30.00 11169 4/1/72 0.08 -0.01 0.00 0.01 0.04 0.04 -0.02 0.00 11170 4/1/72 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 11171 4/1/72 0.01 -0.01 -0.08 -0.03 -0.01 -0.01 -0.04 -0.08 11172 4/1/72 0.03 -0.01 -0.06 -0.02 0.00 0.00 -0.04 -0.08 11173 4/1/72 -0.02 -0.02 -0.12 -0.08 -0.06 -0.07 -0.11 -0.15 11174 4/1/72 -0.03 -0.02 -0.12 -0.09 -0.07 -0.08 -0.12 -0.14 11175 4/1/72 0.03 0.01 -0.09 -0.05 -0.01 0.00 -0.02 -0.05 11176 4/1/72 0.07 0.00 -0.02 0.00 0.04 0.04 0.00 -0.02 11177 4/1/72 0.04 0.00 -0.06 -0.02 0.00 0.01 -0.01 -0.05 11178 4/1/72 0.03 0.00 -0.08 -0.04 0.00 0.00 -0.02 -0.05 11179 4/1/72 0.01 0.00 -0.08 -0.04 -0.02 -0.01 -0.04 -0.08 11180 4/1/72 0.05 0.00 -0.04 0.00 0.01 0.01 -0.01 -0.05 11181 4/1/72 0.02 -0.08 -0.08 -0.03 0.00 0.00 -0.02 -0.05 11182 4/1/72 0.08 -0.01 0.00 0.03 0.06 0.05 0.03 0.00 11183 4/1/72 0.06 -0.04 -0.03 0.00 0.03 0.03 0.00 -0.03 11184 4/1/72 -0.04 -0.13 -0.13 -0.09 -0.08 -0.08 -0.12 -0.15 11185 4/1/72 0.02 -0.07 -0.06 -0.02 0.00 0.00 -0.03 -0.07 11186 4/1/72 0.05 -0.04 -0.03 0.01 0.03 0.02 0.00 -0.05 11187 4/1/72 0.04 -0.05 -0.04 0.00 0.02 0.02 0.00 -0.04 172 o o «3- o o o o c a a o 2 o a CD CD 3 2 CD I CD 4J CD •u § O 4-1 CO CD 3 iH « > CJ CD U u o o c o •H 4J 2 a «h w o o o o o o co o o o 00 o o CM o o o CM o o o o o o u-i O O o o i CO m o CM O • • o i o v£> o CO o • • o 1 o 1 o CM O • V o 1 O 1 tH o CM O • • o 1 O CM o o tH O •a- o • • o o tH O tH O • • o 1 o vO O CO o • • o 1 o 1 vO o -3- O • • o 1 o 1 r^ o o CO M c •H CD •U 4-1 u CO CO T3 u CO u o co • d O CD S3 CO O o O O • • CM CM O O CM CM -3" CO O O • • O O CM CM r~. r^ co CM IT) -a- APPENDIX VI Station Position Corrections 174 APPENDIX VI Station Position Corrections IFYGL station No. Sensor position No. Sensor No. Starting date Starting time (GMT) Station position correction (° of arc) Dewpoint 12 15 7002 6/13/72 1748 -0.03 13 15 7004 5/26/72 0230 0.00 14 15 7019 6/14/72 2000 0.00 15 15 7023 7/18/72 1700 -0.02 16 15 7017 5/23/72 2100 0.00 17 15 7009 6/15/72 2100 -0.43 15 7009 7/11/72 1740 0.00 18 15 7016 7/19/72 1600 -0.50 19 15 7012 6/6/72 1800 -0.47 20 15 7001 5/31/72 1818 0.00 21 15 7011 6/7/72 1600 -0.44 22 06 7022 5/9/72 1715 -1.43 23 42 7005 6/29/72 1847 -1.67 24 13 7013 6/16/72 1628 -0.07 25 06 7010 5/4/72 1810 -1.16 06 7020 6/21/72 1900 -1.16 06 7010 8/18/72 1415 -1.16 26 42 7008 5/18/72 1930 0.00 27 13 7003 6/5/72 1750 -0.38 13 7003 7/24/72 1533 0.09 13 7003 8/24/72 1835 -0.03 28 06 7018 4/28/72 2100 -1.94 29 06 7006 5/2/72 1835 -1.47 30 05 7015 9/27/72 2130 0.00 05 7026 11/30/72 2100 0.00 30 13 7021 9/27/72 2130 0.00 13 7013 1/25/73 1718 0.00 31 06 7014 5/11/72 1845 -2.15 06 7023 12/1/72 1744 -2.15 06 7012 1/23/73 1548 -2.15 Wind direction (except buoys) 22 23 03 9001 5/9/72 1715 -12.14 03 9012 1/3/73 1811 -9.89 39 9003 7/31/72 1615 -13.51 10 9005 6/21/72 1612 -8.80 03 9009 5/4/72 1810 -9.88 03 9004 1/3/73 2142 -9.67 175 Station Position Corrections (Continued) IFYGL station No. Sensor position No. Sensor No. Starting date Starting time (GMT) Station position correction (° of arc) Wind direction (except buoys) (continued) 26 39 9002 5/18/72 1930 2.68 39 9002 8/24/72 1430 -10.10 27 10 9004 6/5/72 1750 0.00 10 9004 8/24/72 1835 -18.03 28 03 9008 4/28/72 2100 89.35 03 9008 5/1/72 1330 -16.65 03 9002 1/8/73 2040 -11.76 03 9002 2/2/73 1630 -7.10 29 03 9003 5/2/72 1835 -13.87 03 9007 6/7/72 1945 -12.42 03 9003 1/16/73 1710 -7.97 30 10 9006 9/27/72 2130 -1.94 10 9011 1/25/73 1718 -14.64 31 03 9010 5/11/72 1845 -13.57 03 9001 1/23/73 1548 -12.11 03 9003 2/13/73 1948 -2.32 Current meter (towers) 23 05 15013 10/13/72 1600 2.70 07 15008 6/29/72 1847 2.70 10 15012 6/29/72 1847 2.70 13 15011 6/29/72 1847 2.70 24 02 15009 6/20/72 1845 1.60 05 15010 6/20/72 1845 1.60 26 02 15005 5/16/72 2030 -0.90 05 15001 5/16/72 2030 -0.90 07 15003 5/16/72 2030 -0.90 10 15002 5/16/72 2030 -0.90 13 15004 5/16/72 2030 -0.90 27 02 15006 5/6/72 1750 -14.00 05 15007 5/6/72 1750 -14.00 *U.S. GOVERNMENT PRINTING OFFICE: 1976 210-801/429 1-3 PENN STATE UNIVERSITY LIBRARIES ADD0D7ED53D13 ^OVJJT/O/i, NOAA--S/T 76-1837