A UNITED STATES DEPARTMENT OF COMMERCE PUBLICATION ./ NOAA Technical Memorandum NWS HYDRO-14 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Weather Service >r,, 0» ' SILVER SPRING, MD. December 1972 National Weather Service River Forecast System Forecast Procedures STAFF, Hydrologic Research Laboratory NOAA TECHNICAL MEMORANDA National Weather Service, Office of Hydrology Series The Office of Hydrology (HYDRO) of the National Weather Service (NWS) develops procedures for making river and water supply forecasts, analyzes hydrometeorological data for planning and design criteria for other agencies, and conducts pertinent research and development. NOAA Technical Memoranda in the NWS HYDRO series facilitate prompt distribution of scientific and technical material by staff members, cooperators, and contractors. Information presented in this series may be preliminary in nature and may be published formally elsewhere at a later date. Publication 1 is in the former series. Weather Bureau Technical Notes (TN) ; publications 2 to 11 are in the former ser- ies, ESSA Technical Memoranda, Weather Bureau Technical Memoranda (WBTM) . Beginning with 12, publica- tions are now part of the series, NOAA Technical Memoranda, NWS. Publications listed below are available from the National Technical Information Service, U.S. Depart- ment of Commerce, Sills Bldg., 5285 Port Royal Road, Springfield, Va. 22151. Price: $3.00 paper copy; $0.95 microfiche. Order by accession number shown in parentheses at end of each entry. Weather Bureau Technical Notes TN 44 HYDRO 1 Infrared Radiation from Air to Underlying Surface. Vance A. Myers, May 1966. 664) (PB-170 ESSA Technical Memoranda WBTM HYDRO 2 Annotated Bibliography of ESSA Publications of Hydrological Interest. J. L. H. Paulhus, February 1967. (Superseded by WBTM HYDRO 8) WBTM HYDRO 3 The Role of Persistence, Instability, and Moisture in the Intense Rainstorms in Eastern Colorado, June 14-17, 1965. F. K. Schwarz, February 1967. (PB-174 609) WBTM HYDRO 4 Elements of River Forecasting. Marshall M. Richards and Joseph A. Strahl, October 1967. (Superseded by WBTM HYDRO 9) WBTM HYDRO 5 Meteorological Estimation of Extreme Precipitation for Spillway Design Floods. Vance A. Myers, October 1967. (PB-177 687) WBTM HYDRO 6 Annotated Bibliography of ESSA Publications of Hydrometeorological Interest. J. L. H. Paulhus, November 1967. (Superseded by WBTM HYDRO 8) WBTM HYDRO 7 Meteorology of Major Storms in Western Colorado and Eastern Utah. January 1968. (PB-177 491) Robert L. Weaver, WBTM HYDRO 8 Annotated Bibliography of ESSA Publications of Hydrometeorological Interest. J. L. H. Paulhus, August 1968. (PB-179 855) WBTM HYDRO 9 Elements of River Forecasting (Revised). Marshall M. Richards and Joseph A. Strahl, March 1969. (PB-185 969) WBTM HYDRO 10 Flood Warning Benefit Evaluation - Susquehanna River Basin (Urban Residences). Harold J. Day, March 1970. (PB-190 984) WBTM HYDRO 11 Joint Probability Method of Tide Frequency Analysis Applied to Atlantic City and Long Beach Island, N.J. Vance A. Myers, April 1970. (PB-192 745) NOAA Technical Memoranda NWS HYDRO 12 Direct Search Optimization in Mathematical Modeling and a Watershed Model Application. John C. Monro, April 1971. (COH-71-00616) NWS HYDRO 13 Time Distribution of Precipitation in 4- to 10-Day Storms — Ohio River Basin. Miller and Ralph H. Frederick, May 1972. (COM-72-11139) John F. U.S. DEPARTMENT OF COMMERCE National Oceanic S.nd Atmospheric Administration National Weather Service NOAA Technical Memorandiom NWS-HYDRO-14 NATIONAL WEATHER SERVICE RIVER FORECAST SYSTEM FORECAST PROCEDURES Staff, Hydrologic Research Laboratory in C o ts o o n o ■o «« '^^^^^ WASHINGTON, D.C. December 1972 UDC 551.509.58:551.579.4:556.16.06:061.1(73) 061.1 Official Services 551.5 Meteorology .509 Forecasting .58 River forecasting .579 Hydrometeorology .4 Surface water fluctuations 556 Hydrology .16 Runoff .06 Runoff forecasting C731 United States The programs listed herein are furnished with the express understanding that the United States Govern- ment gives no warranties, express or implied, con- cerning the accuracy, completeness, reliability, usa- bility, or suitability for any particular purpose of the information and data contained in these programs or furnished in connection therewith, and the United States shall be under no liability whatsoever to any person by reason of any use made thereof. The programs herein belong to the Government. There- fore, the recipient further agrees not to assert any proprietary rights therein or to represent these pro- grams to anyone as other than Government programs. 11 CONTENTS Chapter 1. Introduction 1.1 National Weather Service River Forecast System (NWSRFS) .... 1-1 1.2 Contents of the NWSRFS 1-1 1.3 Computer requirements 1-2 1.4 Catchment model 1-3 1.5 Future additions 1-3 1.6 Computer programs 1-3 1.7 Acknowledgments 1-4 Chapter 2. Data Requirements 2.1 Introduction 2-1 2.2 Streamflow data 2-1 2.3 Precipitation data 2-1 2.4 Potential evapotranspiration 2-1 2.5 Period of record required for development 2-2 Chapter 3. Data Processing 3.1 Introduction 3-1 3.2 Precipitation data formating 3-1 3.3 Point values and area! means of precipitation 3-1 3.4 Mean basin precipitation (MBP) program 3-10 3.5 Potential evapotranspiration 3-14 3.6 Streamflow 3-16 3.7 Magnetic tape preparation and manipulation 3-19 Chapter 4. Soil Moisture Accounting 4.1 Introduction 4-1 4.2 Method 4-1 4.3 Parameters 4-1 4.4 Flow chart 4-2 4.5 Modifications 4-3 4.6 Watershed potential evapotranspiration 4-5 Chapter 5. Channel Routing 5.1 General 5-1 5.2 Flow routing procedure 5-1 5.3 Selection of flow values 5-5 Chapter 6. Verification and Operational Programs 6.1 Introduction 6-1 6.2 Program contents 6-1 6.3 River system organization 6-3 6.4 Alternate reach routing 6-4 6.5 Verification program 6-4 6.6 Operational river forecasting program 6-6 111 Chapter 7. Model Calibration 7.1 Introduction 7-1 7.2 Pattern search 7-1 7.3 Computational features 7-2 7.4 The calibration model (NWSRFS) 7-2 7.5 Parameters 7-4 7.6 Initial parameter values 7-7 7.7 Initial moisture storage 7-11 7.8 A recommended calibration technique 7-11 Appendix A Standard Data Format for Punch Cards A-1 Appendix B Data Tapes Containing NCC Data and Program HRTAPE B-1 Appendix C Mean Basin Precipitation Program C-1 Appendix D Processing USGS Mean Daily Streamflow Data D-1 Appendix E Tape Preparation Programs E-1 Appendix F Verification Program - Input and Output Samples F-1 Appendix G Operational Program - Input and Output Samples G-1 Appendix H Calibration Program - Input and Output Samples H-1 Appendix I The Optimization of Non-Mathematical Functions Through Use of Warping Coefficients I-l IV CHAPTER 1 . INTRODUCTION 1.1 NATIONAL WEATHER SERVICE RIVER FORECAST SYSTEM (NWSRFS) The NWSRFS consists of several components such as data acquisition, forecast procedures, and forecast dissemination. This Technical Memorandum describes a complete river forecast procedure. The acronym NWSRFS is used throughout the text and computer programs. The hydrologic forecasting service of the NWS is undergoing major change. Most forecast procedures used in the field are based on empirical graphical relations such as the Antecedent Precipitation Index method described by Linsley, Kohler, and Paulhus (1958). A few of the River Forecast Centers (RFC) have developed or adapted models for their own use, but no model has been adopted for general use. The Hydrologic Research Laboratory (HRL) of the Office of Hydrology in Silver Spring, Maryland, is responsible for research and development support for the river forecasting service. Work on concep- tual models, as well as studies on the physical processes involved in the hydrologic cycle, has been conducted by the Laboratory for several years. In 1971 a decision was made that the Laboratory should prepare a package to illustrate the necessary steps for developing a river forecast system based on conceptual hydrologic models and to present the digital computer programs needed for implementation. This Technical Memorandum serves the following purposes: a. A guide for implementation of conceptual river forecasting models by field offices, b. a tool for use in testing and evaluating new concepts and procedures by the HRL, and c. a vehicle for providing the results to others in the hydrologic community. This Technical Memorandum describes the package which includes the techniques and programs needed for developing operational river forecasts based on the use of a continuous conceptual model, from the initial processing of basin data to the preparation of forecasts. The programs are written for a large- capacity digital computer and are generalized for use on any river system. Thus, they may or may not be the most efficient programs for use in a particular situation. 1.2 CONTENTS OF THE NWSRFS a. Data requirements and availability. Records of precipitation, potential evapotranspiration, and streamflow are required. Precip- itation records for the United States are maintained at the National Climatic Center (NCC), Environmental Data Service, NOAA, Asheville, North Carolina. It is recognized that hourly and daily precipitation records have not been readily available from NCC in a form suitable for hydrologic modeling. Arrangements have been made with NCC to provide hourly and daily precipitation data on tape in a format 1-1 especially designed for use in hydro! ogic modeling. Information on the format and how the tapes may be obtained from NCC is included in this report (appendix B). Equations for computing potential evapotranspiration from meteorological factors, as well as programs for processing the summary tapes of the USGS containing all daily streamflow records for the United States are also included. b. Computation of mean basin precipitation. A method of computing point precipitation from nearby observed values is described. This method is the basic portion of a computer program that estimates missing records or distributes cumulative precipitation records, as well as computing mean areal precipitation. c. Parameter optimization. The optimization of conceptual model para- meters is based on a direct-search optimization technique described by Monro (1971). d. Verification and operational forecasting. The verification of model parameters and operational river forecasting are included in programs that can simulate an entire river system. To permit the future incorporation of additions and improvements with a minimum of effort, the parameter optimization and the verification and opera- tional river forecasting programs of the NWSRFS have been developed in a modular form. 1.3 COMPUTER REQUIREMENTS The computer programs in the package are prepared for use on the CDC 6600 system and may be readily adapted to other large computer systems. Considerable modification and segmentation would be required to adapt the programs for use on computer systems with small storage capacity. The computer storage require- ments of the main programs of the package are as follows: a. The program for computing mean basin precipitation requires 50K (decimal) words (67K if the consistency check subroutine is included) of core storage when using 20 precipitation stations and 10 years of record. In addition, one K of mass storage (temporary random access disk storage) is required for each station year of precipitation data. b. The parameter optimization program requires 30K core storage plus 40K for data storage (core or disk). c. The parameter verification program requires 35K of core storage for a river system with five mean basin precipitation areas and five streamflow points. d. The operational river forecasting program is currently dimensioned for 10 mean basin precipitation areas and 10 streamflow points and requires 25K of core storage. 1 - 2 1.4 CATCHMENT MODEL An extensive testing program was conducted to select the hydro! ogic catch- ment model to be used in the package. A computerized model for simulating continuous streamflow based on the antecedent precipitation index (API) method was developed (3) as a basis for comparing other models. Three models were tested against the continuous API model. These were: a. The SSARR Model used by the Portland, Oregon RFC in conjunction with the Corps of Engineers (1964), b. the Sacramento RFC Hydrologic Model developed and used in the Sacramento RFC (Burnash 1971), and c. a modified Stanford IV Model based on the work of Crawford and Linsley (1966). The models were tested on the following six river basins representing various climatic and hydrologic regimes of the contiguous United States: 2 Mad River at Springfield, Ohio (485 mi )« Bird Creek near Sperry, Oklahoma (905 mi ) « French Broad River at Rosman, North Carolina (68 mi ) « Monocacy River above Jug Bridge near Frederick, Md. (817 mi ) Meramec River near Steel vi lie, Missouri (781 mi 2) South Yamhill River near Whiteson, Oregon (502 mi2) Based on the results of the statistical analyses of the tests completed as of August 1971, the modified Stanford IV Model was selected for use in the NWSRFS package. This does not imply that the Modified Stanford Model is the only acceptable model for use in the NWSRFS nor that it is the model that will be adopted for all future field use. Additional testing after the selection was made indicates that there is overall no statistical difference in the accuracy of model output between the Sacramento RFC Hydrologic Model and the modified Stanford Model for the six test basins and the Leaf River near Collins, Missi- ssippi (752 mi2) which is part of the river system used as the example for package results. 1.5 FUTURE ADDITIONS The present package represents only the current programs for conceptual modeling as used by the Hydrologic Research Laboratory. Statements pertaining to a snowmelt routine are included in some of the present package programs. Snow subroutines have been developed, are in final review status, and will be included in the near future. Another addition being developed is a program for implicit numerical river routing. As these options are added to the package, other types of basic data input will be required. 1.6 COMPUTER PROGRAMS The larger programs for mean basin precipitation, parameter optimization, parameter verification, and operational river forecasting are not included in 1-3 this report because of space requirements. Small data processing programs are included in the appendices. Information on availability and costs of program tapes can be obtained from the Office of Hydrology, National Weather Service, NOAA, Silver Spring, Maryland 20910. 1.7 ACKNOWLEDGMENTS The forecast procedures described in this report were developed primarily through the efforts of the Research Hydrologists E. A. Anderson and J. C. Monro with contributions by V. C. Bissell, C. E. Schauss and W. T. Sittner. Dr. E. L. Peck, Acting Assistant Director of the Laboratory, acted as coor- dinator for the report, with general supervision by Mr. T. J. Nordenson, Acting Director of the Laboratory. Technical assistance was provided by other members of the Laboratory staff. Mrs. Doris B. Brown provided essential technical support and the manuscript was typed by Mrs. Michelle Scott. REFERENCES Burnash, R. J. C, and Ferral , R. L., "A Generalized Streamflow Simulation System", paper presented at the International Symposium on Mathematical Models in Hydrology, Warsaw, Poland, July 19-24, 1971, 13 pp. plus figures. Crawford, N. H., and Linsley, R. K., "Digital Simulation in Hydrology: Stanford Watershed Model IV", Department of Civil Engineering Technical Report No. 39, Stanford University, Stanford, California, July 1966, 210 pp. Linsley, R. K. , Kohler, M. A., and Paulhus, J. L. H., Hydrology for Engineers , McGraw Hill Book Company, Inc., New York, 1958, 340 pp. Monro, John C, "Direct Search Optimization in Mathematical Modeling and a Watershed Model Application", NOAA Technical Memorandum NWS HYDRO-12, U.S. Department of Commerce, Washington, D.C., April 1971, 52 pp. Rockwood, D. M., "Streamflow Synthesis and Reservoir Regulation", Technical Bulletin No. 22, U. S. Army Engineer Division, North Pacific, Portland, Oregon, Engineering Studies Project 171, Jan. 1964, 36 pp. plus 7 appendices. Sittner, W. T., Schauss, C. E., and Monro, J. C, "Continuous Hydrograph Synthesis with an API - Type Hydrologic Model", Water Resources Research , Vol. 5, No. 5, 1969, pp. 1007-1022. 1 - 4 CHAPTER 2. DATA REQUIREMENTS 2.1 INTRODUCTION Data requirements for a conceptual and continuous model differ from those for older types of procedure such as API in two ways. First, data for develop- ment purposes must be continuous. Second, some form of PE data may be involved in both development and operational work. Aside from these differences, all other considerations are about the same as for conventional forecast procedure. 2.2 STREAMFLOW DATA 2.2.1 DEVELOPMENT Calibration of the catchment model is based on a record of mean daily discharge. Channel routing coefficients require instantaneous hydrographs of a few selected events. 2.2.2 OPERATIONAL Observed data are used to update the model periodically. Requirements are the same as for any other type of forecast procedure. That is, observations from each flowpoint every 3 or 6 hours would be ideal. Any lesser quantity of data will decrease the quality of the final product, but no observed streamflow data are actually necessary to keep the system running. 2.3 PRECIPITATION DATA 2.3.1 DEVELOPMENT A continuous record of 6-hour basin means is required. This can be derived (see sections 3.3 and 3.4) from any combination of recording and daily gages in and around the basin. 2.3.2 OPERATIONAL The precipitation data requirement is identical to that which would be used with any basin analysis based on areal averages. 2.4 POTENTIAL EVAPOTRANSPIRATION The catchment model uses for its evapotranspiration demand the product of PE and a seasonal correction curve that is optimized as part of the model. The PE record can be day-by-day computed PE or a curve representing the long term averages of these figures. There is some evidence, inconclusive at this time, that the use of day-by-day PE will yeild superior results. On the other hand, one can hypotehsize situations where use of day-by-day PE would produce a lesser degree of accuracy than would long term averages. Since the relative effects are not known, no recommendation can be made at this time. If average PE is to be used however, then no PE data are required. It is then only neces- sary to optimize the demand curve itself which is the product of two fixed seasonal curves. 2-1 2.5 PERIOD OF RECORD REQUIRED FOR DEVELOPMENT Considerations here are the same as for the development of any other type of forecast procedure. It is desirable to sample the variation of each parameter over its maximum possible range, and so a long period is indicated. On the other hand, basin characteristics do change with time and for forecasting one is interested in parameters which express the future, not the past. Since the future cannot be sampled, a short record representing the present is the second choice. A suitable compromise seems to be the most recent 10 years of record. 2-2 CHAPTER 3. DATA PROCESSING 3.1 INTRODUCTION Vast amounts of data are required to implement the NWSRFS throughout the United States. Thus, it becomes necessary to have the means for efficient data retrieval and the use of computerized data manipulation and processing routines. This chapter describes the data retrieval system and data proces- sing programs used in the NWSRFS. In the final processed form, data are stored either on cards in the Office of Hydrology Standard Card Format (appendix A) or on magnetic tape in NWSRFS Standard Tape Format (section 3.7.2). 3.2 PRECIPITATION DATA FORMATING 3.2.1 DATA SOURCE Hourly and daily precipitation data are retrieved from the National Climatic Center (NCC) Environmental Data Service, NOAA, Asheville, North Carolina. 3.2.2 HOURLY AND DAILY PRECIPITATION DATA NCC stores the hourly precipitation data in a format described in their reference manual for Card Deck 488; daily precipitation data are stored according to Card Deck 486. Data may be retrieved from NCC on cards or on tape. Any other format used must be so specified. Magnetic tape retrieval, formatted as defined in appendix B, is recommended. Tapes formatted in this manner can be processed efficiently by most large computer systems, in particular the IBM 360 series, the CDC 6000 series, and the UNIVAC 1100 series. Data tapes formatted as described in appendix B.l are directly usable by the Mean Basin Precipitation (MBP) program. Section 3.4 describes MBP program computations. If hourly data are on cards in NCC Card Deck 488 Format, then a "working" tape must be created. The format for the working tape is in order of monthly records and compatible for MBP program use. The program that creates working tapes is HRTAPE; a listing of this program is in appendix B.3. Daily precipi- tation data must be stored either on tape, as described in appendix B.2.3, or on cards in Office of Hydrology standard card format. 3.3 POINT VALUES AND AREAL MEANS OF PRECIPITATION 3.3.1 INTRODUCTION The extraction of any hydrologic intelligence from precipitation data requires knowledge of its variation over an area. Since precipitation is normally measured as a point value, the use of the data requires an ability to estimate the value at other points. Any method of areal analysis, isohyets, Thiessen weights, etc. involves, implicitly or explicitly, inferences concerning the depth of precipitation at all points in the area of interest. 3-1 The procedure to be described is an objective formulation that produces an estimate of the precipitation at a point as a function of that at surrounding points. The method is the result of a great deal of unpublished development and experimentation over many years and has been verified on both an empirical and theoretical basis. Only the mechanics of the method will be given here. 3.3.2 THEORY OF ESTIMATION Referring to Figure 3-1, let point A be the point at which it is desired to estimate the precipitation. II I OB O C O D O E O F O G O I III OJ OK IV Figure 3-1. --The four quadrants surrounding precipitation station A. North-South and East-West lines through point A divide the surrounding area into four quadrants, numbered as shown, counter clockwise from the northeast. Points B through K are points at which precipitation is known. Using the map coordinates of the stations, the closest to A in each quadrant is located. These are G, D, H and J. The estimate of precipitation at A is now computed as a weighted average of that at the other four points. The weight is equal to the reciprocal of the square of the distance from point A to the reference point. As an example, let the data be as shown in table 3-1. 3 - 2 Table 3-1 .--Estimating the amount of precipitation at station A from surrounding station amounts. Point X Y Precip AX AY d2 WxlO^ PUxlO"^ A 75 50 _-_- __ -_ -- G 92 59 2.61 17 9 370 2.7027 7.0540 D 67 62 1.78 8 12 208 4.8077 8.5577 H 63 43 0.56 12 7 193 5.1813 2.9015 J 94 33 .2.19 19 17 650 1.5385 3.3693 Sums - - - 14.2302 21.8825 The estimated precipitation at A is then equal to 21.8825/14.2302 or 1 .538 inches. If one or more quadrants contains no point of known precipitation, then the averaging computation involves only the remaining quadrants. A variation of the method recognizes as a special case the situation where reference points are found in only two quadrants and those two are adjacent; that is, I and II, II and III, III and IV or IV and I. In this case, the estimate is given as EPW rather than ZPW/ZW. This has the effect of reducing estimates to zero as the points move from a precipitation area toward an area of no reports. This is probably the most logical treatment for this indeter- minate rather unusual situation. The estimating technique described can never result in a point estimate that is greater than the largest amount observed or less than the smallest. In some areas, particularly mountainous regions, precipitation patterns have known characteristics which might indicate higher or lower amounts at certain points. The following modification permits this to be taken into account. This modification is designated as "station characteristic adjustment." The characteristic precipitation for a station is similar to its normal precipitation. The difference is that while station normals indicate the total accumulation at a station over an extended period, the station charac- teristics indicate the amount that might occur in one storm. In this applica- tion, the actual value of the characteristic precipitation is not important. What is used, in effect, is the ratio of one station characteristic to that of other stations. As defined, and as used, the characteristics are probably not equal to normals and there may be a separate set of characteristics for each of a number of storm types. Assuming that the appropriate set of station characteristics is known, the computation proceeds as follows: Using the example of figure 3-1 and table 3-1, let the characteristic precipitation for stations A, G, D, H, and J be as shown in table 3-2. 3-3 Table 3-2. --Adjusting the amount of precipitation at station A by the "station characteristic adjustment" method. Point Char. W X 10^ CxWxlO-^ A 4.2 — — G 3.4 2.7027 9.1892 D 2.9 4.8077 13.9423 H 3.0 5.1813 15.5439 J 2.0 1.5385 3.0770 14.2302 41.7524 Note that the characteristic for station A is considerably higher than for the estimator stations indicating an increase in the basic estimate. The computation in table 3-2 is essentially an estimate of the characteristic at station A based on those at stations G, D, H, and J and works out to 41.7524/ 14.2302, or 2.9341 inches. Since the known characteristic at station A is 4.2 inches, the estimate of precipitation for this event is 1.538 (4.2/2.9341) or 2.202 inches. It should be noted that unlike the basic estimating procedure, the characteristic adjustment method has had limited testing and verification. Provision for using it is included in the MBP program, but it should be used with caution. Usually, in mountainous regions, there are no stations in the high precip- itation areas. "Dummy" stations can be located at strategic points and their characteristic amounts estimated from known precipitation patterns. These stations of course will never report, but will be estimated in such a way as to define the proper pattern. 3.3.3 APPLICATIONS OF THE ESTIMATING TECHNIQUE-GENERAL The basic estimating method can be used in a number of ways. The precipi- tation at network stations which fail to report in a particular event can be estimated. Then areal means may be computed by use of a pre-determined set of Thiessen weights. If a fine grid is superimposed on an area, the precipitation at each grid point may be estimated. From the distribution so defined, depth-area studies can be made. Machine plotting of isohyets is also possible. 3.3.4 GRID POINT WEIGHTS. The discussion so far has dealt with the analysis of an actual event in which precipitation amounts are the variables. Using the same concepts, it is possible to compute a set of station weights, similar to Thiessen weights, 3 - 4 which can be used to compute area! averages. Consider a basin covered with a fine grid. In a particular event, the estimating procedure described could be used to compute the precipitation at each grid point that falls within the basin. The arithmetic average of all these grid point amounts would be the basin average. Station weights that will produce a basin average equal to one computed in this manner are known as "grid point weights". They can be determined as follows: At each grid point falling within the basin, perform the estimating procedure only as far as locating the four reference stations and computing the weights. Then normalize (adjust to total unity) the weights, and assign each weight to the appropriate station. After this procedure has been repeated for each grid point, the total weight assigned to each station, after being normalized, is its grid point weight. As an example, consider the basin shown in figure 3-2. The area is covered with a 10x10 grid, 47 points of which fall within the basin. The weight computations for these 47 points are shown in table 3-3. The weight shown is the reciprocal of the squared distance, but the weights for each grid point have been normalized to total unity. Note that a special case exists where a 10-t- 4 + -1- \ + 4 4 4 4 4 9 + + + •h + 4- ^ -T- ■-K v+ 9 A 84- 9^ + -h -1- / + 4- 4 \ + 7-1- 4 + + i 4 9' + A ■1- 6 + +• 9-' y A -f -h + 4- A + 5 + + V / + 0^ 4 + 4- / 4- 4 + V 4 4- -f- -h -h -1- y /+ + 3 + A 4- -h -h -h 4- f + 4- 2 + U ^F -f- -h 4- 0^ i 4- 4- 4- 1 + V 4-. ^ -h 4^ s^ 4 4 ^H 4- 04--l-4--+-4-i- 4-4--h4--f- 0123456789 10 Figure 3-2. --Grid superimposed on an area for estimating grid point weights. 3-5 Table 3-3.— Normalized weights for each grid point. X Y QUAD. I quAD. II Q UAD. III QUAD. IV Sta d2 W Sta d2 W Sta D2 W Sta d2 W 1 2 D 17 .056 - - - _ _ _ F 1 .944 1 3 D 10 .167 - - - - - - F 2 .833 2 1 F 1 .980 B 50 .020 - - - - - - 2 2 F 1.000 - - - - - - - - _ 2 3 D 9 .092 B 26 .032 F 1 .828 G 17 .048 2 4 D 4 .411 B 17 .096 F 4 .411 G 20 .082 3 1 G 10 .159 F 2 .797 - - - H 36 .044 3 2 E 13 .065 F 1 .842 - - - G 9 .093 3 3 E 8 .094 D 10 .076 F 1 .755 G 10 .075 3 4 E 5 .295 D 5 .295 F 5 .295 G 13 .115 3 5 C 20 .036 D 1 .714 F 10 .071 E 4 .179 4 2 E 10 .166 F 4 .417 - - - G 4 .417 4 3 E 5 .295 D 13 .115 F 5 .295 G 5 .295 4 4 E 1 .727 D 8 .091 F 8 .091 G 8 .091 4 5 C 13 .057 D 5 .148 F 13 .057 E 1 .738 4 6 C 10 .111 D 4 .278 F 20 .056 E 2 .555 5 2 E 9 .091 F 9 .091 - - - G 1 .818 5 3 E 4 .276 D 18 .061 F 10 .111 G 2 .552 5 4 E 1 .738 D 13 .057 F 13 .057 G 5 .148 5 5 E 1.000 - - - - - - - - - 5 6 C 5 .146 D 9 .081 E 1 .731 G 17 .042 5 7 A 41 .042 B 17 .101 E 4 .429 C 4 .428 5 8 A 26 .094 B 16 .152 E 9 .269 C 5 .485 6 2 G 1.000 - - - - - - - - - 6 3 C 17 .044 E 5 .150 G 1 .749 H 13 .057 6 4 C 10 .110 E 2 .552 G 4 .276 H 18 .062 6 5 C 5 .148 E 1 .740 G 9 .082 H 25 .030 6 6 C 2 .458 D 16 .057 E 2 .458 H 34 .027 6 7 A 20 .039 B 26 .030 E 5 .155 C 1 .776 6 8 A 17 .084 B 25 .057 E 10 .143 C 2 .716 7 2 C 25 .032 G 1 .806 - - H 5 .162 7 3 C 16 .077 E 8 .154 G 2 .615 H 8 .154 7 4 C 9 .189 E 5 .340 G 5 .340 H 13 .131 7 5 C 4 .385 E 4 .385 G 10 .154 H 20 .076 7 6 C 1 .785 D 25 .031 E 5 .157 H 29 .027 7 7 C 1.000 - - - - - - - - - 7 8 A 10 .088 B 36 .024 C 1 .872 H 53 .016 7 9 - - - - - - C 4 .692 A 9 .308 8 4 A 29 .096 C 10 .278 G 8 .348 H 10 .278 8 5 A 20 .130 C 5 .519 G 13 .199 H 17 .152 8 6 A 13 .107 c 2 .699 E 10 .140 H 26 .054 8 7 A 8 .102 c 1 .814 E 13 .062 H 37 .022 8 8 A 5 .270 B 49 .028 C 2 .675 H 50 .027 8 9 - - - - - - C 5 .444 A 4 .556 9 6 A 10 .279 c 5 .557 E 17 .164 - - - 9 7 A 5 .400 c 4 .500 E 20 .100 - - - 9 8 A 2 .699 B 64 .022 C 5 .279 - - - 3 - 6 station is located at the grid point. That station is given unit weight, and no other stations are used. To compute the grid point weights for the various stations, the total weight assigned to each station is determined. These totals are shown in table 3-4. Note that the grand total is 47, the number of grid points. Normalizing these figures results in the grid point weights. Table 3-4. --Grid point weights for the various stations. Station Sum of weights Grid point weight A 3.294 0.0701 B 0.562 0.0119 C 12.312 0.2619 D 2.730 0.0581 E 10.348 0.2202 F 8.931 0.1900 G 7.504 0.1597 H 1.319 0.0281 47.000 1.0000 To illustrate the application of the weights, see figure 3-3 which shows the basin with a precipitation pattern superimposed on it. Point amounts at the stations are: A-1.0 B-0.2 C-4.6 D-1.0 E-3.2 F-1.9 G-2.1 H-1.0 Using these amounts and applying the grid point weights in table 3-4, the computed basin mean is 2.764 inches. If the computations in table 3-2 are continued, to determine, for this pattern, the precipitation at each of the 47 grid points in the basin, the computed basin mean is also 2.764. 3.3.5 THIESSEN WEIGHT COMPUTATIONS The determination of Thiessen weights by machine can be done rather easily. A Thiessen polygon is defined as being formed by the perpendicular bisectors of the lines connecting stations. To program the equations of these lines and computations of the area bounded by them is extremely difficult. If, however, the polygon for a station is thought of as the boundary of all points which are closer to the subject station than to any other station, then the solution becomes obvious. Table 3-5 shows the stations, and, from figure 3-2, the number of grid points closest to each. These numbers, normalized, are the Thiessen weights. 3 - 7 Figure 3-3. --Precipitation pattern superimposed on an area, Table 3-5. --Grid points used to compute Thiessen weights Station No. of points Thiessen Weight A 2 0.0426 B -- C 16 0.3404 D 3 0.0638 E 10 0.2128 F 9 0.1915 G 7 0.1489 H — 3 - 8 3.3.6 COMPARISON OF WEIGHTING METHODS Figure 3-4 shows the network with conventional Thiessen polygons drawn, Weights determined from these are: A - 0.0301 E - 0.2441 C - 0.3080 F - 0.2038 D - 0.0323 G - 0.1817 The agreement with the values of table 3-5 is good, considering the coarse- ness of the grid used. It is now possible, for this event, to compute the basin mean by a number of different methods. The computation has already been made using grid point weights and grid point averages and the results were, as expected, identical. The mean can also be determined by the use of Thiessen OA Figure 3-4. --Thiessen polygon network by the conventional method. weights derived either from the polygons or the grid point count, or by an isohyetal analysis. A summary of results appears below: Grid point method 2.76 Thiessen weights (Polygons) 3.03 Thiessen weights (Grid point count) 3.03 Isohyetal analysis 2.62 The isohyetal analysis would probably be considered as giving the best value, one which could be used as a standard for judging those derived by other methods. The fact that the grid point method yielded a value closer this standard than that obtained from Thiessen weights indicates superior results in this case, but this should not be the basis for generalization. 3 - 9 to Usually, the values of grid point weights for an area are quite close to those of Thiessen weights. The chief noticeable difference is that an outlying station often has a small non-zero grid point weight when its Thiessen weight would be zero. This was the case with stations B and H in the example. 3.3.7 SENSITIVITY The use of a finite number of grid points in the analyses shown is of course an approximation to the exact solution. The greater the number of grid points, the closer the approximation. Sensitivity analyses for this type of computa- tion have indicated that adequate results will be obtained if 100 or more grid points fall within the basin. Increasing the number of points above 100 refines results slightly, but beyond 150 points there is no perceptible change. 3.4 MEAN BASIN PRECIPITATION (MBP) PROGRAM 3.4.1 INTRODUCTION The following sections describe the digital computer program that was written to compute mean basin precipitation using the concepts described in the pre- ceding sections. Such a program is needed to provide an efficient means of processing the vast amounts of precipitation data required to implement a continuous hydrologic model for operational river forecasting. The computer program is described in sequential order of the major computations that are involved. 3.4.2 COMPUTATIONS OF STATION WEIGHTS The MBP program has the options of computing station weights by either grid point weights, Thiessen weights (grid point count) or predetermined station weights. Predetermined station weights are used in mountainous areas where station weights are functions of elevation, aspect, etc., in addition to their two-dimension coordinate location. If grid points are used an 80-by-80- element grid map is input to the program. This map is prepared by putting a 1 at all grid points located within the area for which mean precipitation is to be computed. Currently the MBP program is dimensioned to compute mean areal (basin) precipitation for up to 10 areas during a single run. All areas must lie within the same 80-by-80-element grid map. Various size 80-by-80 grids can be prepared so that a grid system which will cover the entire area and meet the sensitivity requirements of section 3.3.7 can be selected. 3.4.3 INPUT OF PRECIPITATION DATA In the MBP program precipitation data for the period for which MBP is being computed are input in order by stations. Hourly stations are input first. Hourly data can come from NWSRFS--National Climatic Center hourly precipita- tion tapes (appendix B.l and B.2) or from working tapes created by program HRTAPE (appendix B.3) or from Office of Hydrology standard format cards. If NWSRFS-NCC tapes are used, the observation time of each daily station and any changes during the period in observation time must also be input to the program. Standard format cards contain the observation time. As each 3-10 month of data is read, it is stored on mass storage (temporary disk storage). The information is later retrieved from mass storage as it is needed. The MBP program is currently programmed to store 4,800 months of hourly data on mass storage (daily data are stored in hourly form, i.e., each daily amount is stored in the hour of the observation time). This is approximately 3.5 million hours of precipitation data. 3.4.4 ESTIMATION OF MISSING OR ACCUMULATIVE HOURLY PRECIPITATION DATA After all data are read, the program goes through the hourly precipitation stations, month by month, to estimate periods when the hourly data are missing or to distribute periods when only an accumulative value is recorded. One day from the preceding month and two days from the following month are also included to help estimate missing time distribution which overlaps months. Only hourly stations are used to estimate missing or accumulative hourly data. The equation used to estimate a missing hour of data is: i=l V NT THT-fJ (3-1) \ i=n i=i Td-^F where: A = the hourly precipitation at the station being estimated. i = the station being used as an estimator. n = number of estimators. (The nearest station in each quadrant which has valid data is used as an estimator -- see section 3.3.2.) A. = the hourly precipitation at the estimator station. N = the monthly characteristic precipitation at the station being estimated. N. = the monthly characteristic precipitation at the estimator station, d. = the distance from the station being estimated to the estimator ^'^ station. Characteristic precipitation does not need to be included in flat terrain, but is necessary in mountainous areas. Monthly characteristic precipitation is used because individual storm data are not usually available and because storm types have a fairly strong correlation with season. The equation used to estimate each hour during a period when only the accumulative value is recorded is: 3 - 11 \" [a. . ]x. . 1 I i='' L ^i (d. )2J (3-2) X = i=n E 1 i=^ (d. )2 where: T = the accumulative precipitation amount at the station being distributed. T. = the total precipitation amount for the period of missing time distribution at the station being used to estimate the distribution. Equations 3-1 and 3-2 will handle the general case of missing data or accumu- lative data. For special cases the following rules apply: a. If no valid estimator station is available, the hourly precipitation for that hour is set to zero and a message is printed. b. If missing time distribution extends more than 2 days into the succeeding month, then the entire period is set to missing data and a message printed. The missing data period is again estimated using equation 3-1 . c. If no station can be found to estimate a period of missing time distribution, then the accumulated amount is left in the last hour and again a message is printed. At this point in the program all hourly precipitation stations have a complete record free of missing data and accumulative amount indicators. 3.4.5 DISTRIBUTION OF DAILY PRECIPITATION OBSERVATIONS Daily precipitation is converted into hourly, month by month, by using the hourly precipitation stations to determine distribution of the daily values. Converting daily precipitation into hourly is a two-pass operation. On the first pass, daily precipitation observations are distributed but missing data are ignored. Equation 3-2 is used to distribute the daily observations, where Tx is now the daily precipitation observation and T-j is the total precipitation since the last daily observation at the hourly station being used to estimate the missing daily amount. Once the daily amount is estimated it is distributed as in pass one. The reason for a second pass is so that not only can hourly precipitation stations be used to estimate the missing daily amount, but so that the amount from a daily station will be used if it is the closest station, in a particular quadrant, to the station being 3 - 12 estimated. In this case, A in equation 3-1 is now the daily precipitation at the station which is being estimated and A. is the total precipitation since the last daily observation at the hourly or diily station used as an estimator. For special cases the following rules apply: a. If no station can be found to distribute a daily observation, then the total amount is left in the hour of the time of observation and a message is printed. b. If missing time distribution extends more than 2 days into the succeeding month, then the entire period is set to missing data and an appropriate message printed. c. If no valid estimator station is available for a missing daily amount, the daily amount is set to zero and again a message is pri nted . Now all the hourly precipitation stations are complete and all daily stations have been converted into an hourly record which is free of missing data and accumulative amount indicators. 3.4.6 COMPUTATION AND OUTPUT OF MEAN AREAL PRECIPITATION Computation of mean area! precipitation is now simply accomplished by going through the entire period for each area, multiplying the hourly precipitation by the station weight for all stations within the area, and summing these results to create a mean areal hourly precipitation sequence. The MBP program has the option to output the results in 1-, 3- or 6-hour increments. The program also has the option to output results onto tape or in Office of Hydrology standard format cards. If tape output of 6-hour data is requested, the results are output in NWSRFS standard tape format (see section 3.7.2). 3.4.7 CONSISTENCY SUBROUTINE Before using the results of the MBP program, some check on the consistency of the individual station records is needed. The MBP program contains a subroutine that performs this function. The subroutine uses the station records just prior to the computation of mean areal precipitation (i.e., hourly precipitation stations are complete and all daily stations have been converted into an hourly record) to prepare the following table and plots: a. A table is prepared which lists for each station, month by month, the accumulated precipitation at that station, the double mass value from the group to which the station is assigned, and the double mass value from a group containing all other stations. Group assignments are made so that stations can be compared against other stations with the same geographical characteristics. If a station is not assigned to a group it will be compared to the group-one double mass. In this case, group one would be composed of stations judged to have the highest quality records. 3 - 13 b. In addition to a tabulation of monthly values, the subroutine plots the accumulative values for each station against the double mass of all other stations and against the double mass of the group to which the individual station is assigned. 3.4.8 INPUT SUMMARY Appendix C.l contains a listing of the data cards needed for operating the MBP program. 3.4.9 SAMPLE INPUT AND OUTPUT A set of sample input for the computation of mean basin precipitation for January 1968 through September 1969 on three subareas of the Leaf River basin in Mississippi is listed in appendix C.2. Appendix C.3 contains examples of the output for that run. 3.5 POTENTIAL EVAPOTRANSPIRATION 3.5.1 INTRODUCTION Thornthwaite defined potential evapotranspiration as "the water loss which will occur if at no time there is a deficiency of water in the soil for the use of vegetation". Many investigators have assumed that for practical pur- poses potential evapotranspiration can be considered equal to free-water (lake) evaporation. Theoretically, this assumption is not correct since the albedo of meadows and forest is 10-20%, crops 15-25% and soils 10-45% (Sellers, 1969). This difference in albedo would indicate that free-water evaporation should be somewhat greater than potential evapotranspiration. However, since the error associated with the computed free-water evaporation is 10-15% (root-mean-square), it is doubtful that use of a coefficient to reduce free-water evaporation to potential evapotranspiration is justified. 3.5.2 COMPUTATION METHODS Many methods are described in the literature for the computation of poten- tial evapotranspiration and free-water evaporation. The methods that require as input only air temperature (such as Thornthwaite) are yery attractive due to the small data requirement. However, caution should be exercised in use of such methods since they yield very poor estimates of P.E. in many areas. Only the methods for computing free-water evaporation (E[_) developed in the Office of Hydrology will be described briefly: Class A pan evaporation. The most obtained by adjusting the observed gain or loss through the sides and accomplished by use of equation 14 (1955). reliable estimates of E|_ can be Class A pan evaporation for heat bottom of the pan. This can be or figure 7 in Kohler et al . 0.88- E, = 0.70 [E„ + 0.00051Pa (0.37 + 0.0041u^) (T^ - Tj^-°°] (3-3) L P P p O d 3-14 The reader should refer to Kohler for units and meaning of symbols. The value of ap (proportion of advected energy utilized for evapora- tion) is obtained from figure 5 as a function of pan wind movement and pan water temperature. This relationship has been converted to equation form for use in the computer program. b. Meteorological factors. El can be computed from the meteorological factors of air temperature, dew point, daily wind movement, and solar radiation as described by equation 10 and figure 6 of Kohler et al . (1955). This relationship has been expressed in equation form by Lamoreaux (1962). ^ ^ [-g(Ta-212) (0.1024-0.01066 In R) _ q qqq^ (3.4) + 0.0105(es-ea)°-^^ (0.37+0.0041Up)] x [0.015+(Ta+398.36)-2(6.8554xl0l0)^-7482.6/(Ta+398.36)3-l See Lamoreaux 's paper for units and symbols. The solar radiation network in the United States unfortunately con- sists of a sparse network of only about 90 stations. Therefore, it is necessary at most first-order stations to estimate solar radiation from percent sunshine. This is accomplished by the relationship developed by Hamon et al . (1954), which has been converted to computer format. It will also be necessary at some first-order stations to estimate solar radiation from tenths of sky cover. A crude approxi- mation of percent sunshine can be obtained by assuming it to be inversely related to sky cover, i.e., 1.00 minus 0.2 sky cover is 80% possible sunshine. In the development of evaporation maps for the United States (Kohler et al . 1959), percent sunshine at first- order stations with only sky cover was obtained from a relationship between tenths sky cover and percent sunshine developed for a nearby first-order station with similar climatic regime. A study is under- way to develop a generalized relationship between sky cover and solar radiation. Evaporation computed on the basis of sky cover will not be reliable on a daily basis, but may be adequate on a weekly or monthly basis. It is important to remember that the wind term in equation 3.4 is for the daily wind movement at Class A pan anemometer height (approx. 2 feet). The following equation is recommended for reducing observed wind to pan height. (3-5) 3-15 where U-. = wind movement at pan height; Up = wind movement at station anemometer height; Z-, = height of pan anemometer (2 feet); and Z2 = height of first-order station anemometer. The literature indicates that the exponent in equation 3-5 should be 1/7. However, experience, and wind data at 2, 4, 8 and 16 meters for the Lake Hefner evaporation study indicate that 0.3 power is preferable when reducing wind to such a low height as 2 feet above the ground. It is also suggested that a cursory check be made of the computed 2-foot wind movement with observed wind movement at nearby Class A pan stations to ensure that a reasonable wind reduction has been achieved, c. Kohler-Parmele equation. Kohler and Parmele (1967) present a modifi- cation of the basic Penman equation by providing for use of "incident minus reflected" all -wave radiation (Q^-^) and eliminating water temperature from the emitted radiation term. E. = (0.^ - eaT/)A ^ E^ [y + 4saT^^/f(u)] (3,^^ L " A + L Y + ^zaJ^/fTu) 7 a where Eg = (0.181 + 0.00236U^) (e^ - 62) (3-7) See paper for units and symbols. Q. can be obtained from observed or computed solar radiation (inort-wave) and observed or computed incoming long-wave radiation. Unfortunately, observed incoming long-wave radiation is. rarely available, although recently Eppley has put on the market a new radiometer (pyrgeometer) to measure directly incoming long-wave radiation. Long-wave radiation can be computed by technique described by Anderson and Baker (1967). It is hoped that in the not too distant future Q. can be obtained from a network of X-3 pans. This is the experimental insulated pan developed and being tested by the Office of Hydrology. It is hoped that this pan will be an improved evaporimeter with a nearly constant pan-to-lake coefficient and will also serve as a radiation integrator. Q. can be computed by an energy budget analysis of the X-3 pan observations. d. Other. At Class A stations where pan water temperature observations are not available, E. can be computed by multiplying the observed pan evaporation by a coefficient obtained from Plate 3 of Kohler (1959). At stations where X-3 pan is being tested, E. can also be computed by multiplying the observed X-3 evaporation by 0.73. 3.6 STREAMFLOW 3 - 16 3.6.1 INSTANTANEOUS DISCHARGE USGS does not maintain instantaneous discharge records in automatic data processing (ADP) form (cards or magnetic tape). Instantaneous discharge records may, however, be obtained from USGS in two forms. a. Tabulation of primary computation of gage height and discharge. Gives bi -hourly gage heights and daily maximum, minimum, and mean discharge. Corresponding rating curves are required to convert bi- hourly stages to discharge values. Bi-hourly stage tabulations are available only for more recent records where digital stage recorders have been installed. b. Instantaneous stage data are available in strip chart form from Geological Survey. Again, appropriate rating tables must be used in converting stage to discharge. Also, timing and gage-height corrections must be made where appropriate in picking stage values from charts. 3.6.2 MEAN DAILY DISCHARGE 3.6.2.1 General Mean daily discharge records are available from USGS on magnetic tape or IBM cards. Costs for copying selected portions depend on several factors. For example, the number of stations and their physical location on the USGS magnetic tape library, the type of output desired, and the request priority (governing turnaround time), all contribute to computation of the job cost. Briefly, three output formats are available to users as follows: a. Nine-track magnetic tape (1636 byte record); b. Seven-track magnetic tape (336 byte record); and c. IBM cards (or card images on magnetic tape). The program DAILYF described herein and in appendix D will read mean daily discharge data from the USGS seven-track magnetic tape and output selected portions in one of two modes: a. Office of Hydrology standard card format (see appendix A for description) in station order; b. NWSRFS tape format (binary, in month order, produced with Fortran unformatted write. See 3.7) 3.6.2.2 Input to DAILYF Two items are required to specify the data portion to be output: k a. Which stations. Station identification numbers (USGS downstream order numbers) are required in output sequence. These are eight-character integers (example: 12-1422.10 is input as 12142210). 3-17 b. Period of Record. The same period of record must be output for all requested stations. This is specified by beginning year and month and ending year and month of the desired record. Up to 20 input tapes may be used. The entire record for a particular station may be repeated on more than one input tape. If a station is encountered more than once, the program retains the requested portion the first time the station is encountered and ignores it at subsequent encounters. Also, the program has the option available to override parity errors in reading an input tape record and treating as missing data the information on such a record. More detailed information on program input is found in appendix D. 3.6.2.3 The Function of Program DAILYF The data available from USGS are in station order. For input to NWSRFS the data must be in monthly order, with stations and various types of data for each properly ordered within each month (see 3.7). For large jobs, con- version from USGS station ordering to NWSRFS monthly ordering requires either the availability of mass storage in the computing system or time-consuming multiple passes on the input data tape. Program DAILYF will either produce a mean daily flow tape in month order which can be combined with other types of data using SUPERTP, or will produce a standard format card deck in station order appropriate for input to NWSRFS2. In either output mode, DAILYF takes advantage of the large random access storage available in the CDC 6600 system at NOAA Computer Division, Suitland, Maryland. See section 3.7 for SUPERTP and NWSRFS2 program descriptions. What happens if requested data are not encountered on the input tape(s)? It is anticipated that an incomplete mean daily flow record would not be used in either optimization or verification jobs. Program DAILYF, however, will not abort a job in which all requested record is not found on input. Instead, a message is printed "missing data month xx station yyyy" and flow values of (-9.) are output if a tape is being produced, or appropriate missing data flags (see appendix A) if standard format cards are being produced. For any month in which one or more values are missing, the entire month of record will be treated as missing. 3.6.2.4 Output of DAILYF Output for NWSRFS may be, as previously mentioned, (1) magnetic tape in binary format, without header records of any kind, or (2) standard format cards. Tape output will have data in order (month 1, station 1), (month 1, station 2). . . . (month 1, station N), (month 2, station 1), . . . etc. Standard format card output will be in order (month 1, station 1), (month 2, station 1), . . . , (month M, station 1), (month 1, station 2), . . . etc. Listing of output data is a program option which may be specified on the job input card stream. 3.6.2.5 Job Input Stream and USGS Data Tape Formats are Detailed in appendix D. 3-18 3.7 MAGNETIC TAPE PREPARATION AND MANIPULATION 3.7.1 INTRODUCTION The previous sections of this chapter have described the different types of data needed for the NWSRFS. The data, at this stage of processing, are either on cards in Office of Hydrology standard card format, or on tapes in NWSRFS standard tape format. The final phase of data processing is the conversion of card-stored data to tape storage, and the merging of tape data onto a lesser number of tapes. Section 3.7.2 describes NWSRFS standard tape format- ing; section 3.7.3 briefly describes program NWSRFS2, which converts standard format cards to standard tape formats; and, section 3.7.4 introduces program SUPERTP, the tape-merging program. 3.7.2 NWSRFS STANDARD TAPE FORMAT Data on the flow forecast model input tapes are blocked by monthly records, with each type of data in a specific sequence. A standard month length of 31 days is used with 124 values for 6-hour data and 31 values for daily data. These data values are in binary code. The data field on tape is "zeroed" for the excess days for months with less than 31 days. The sequence in which each data type is entered for each monthly block is: Sequence number Types of data 1 mean 6-hour precipitation (MBP) 2 daily potential evaporation (PE) 3 mean 6-hour temperature (TA) 4 mean daily streamflow (0FW24) 5 instantaneous (6-hour) streamflow (0FW6) Examples of how the data are entered are given below: Case 1 One data tape with: 10 MBP stations 1 PE station 6 0FW24 stations Month 1 [MBP(l)] . . . [MBP(IO)] [PE] [0FW24(1)] . . . [0FW24(6)] This sequence repeats for each month of the data recorded. 3 - 19 Case 2 Two data tapes: Tape 1: 5 MBP stations 3 TA stations Tape 2: 1 PE station 2 0FW24 stations The data tape sequence for each tape would be: Tape 1 Month 1 [MBP(l)] . . . [MBP(5)] [TA(1)] . . . [TA(3)] This sequence repeats for each month of the data record. Tape 2 Month 1 [PE] [0FW24(1)] [0FW24(2)] This sequence repeats for each month of the data record. 3.7.3 CONVERSION OF CARD-STORED DATA INTO MAGNETIC TAPE-STORED DATA The computer program (NWSRFS2) that performs the data conversion, cards to tape, is listed in appendix E.l. This program reads data from Office of Hydrology standard format cards for the available period of record for each station, and stores this information in a mass storage device in the computer system. The data are rearranged into monthly records and written on tape in the sequence described in section 3.7.2. 3.7.4 MERGING NWSRFS STANDARD FORMAT TAPES The final phase of data manipulation is the creation of as few NWSRFS standard format tapes as possible. For example, one can combine the data from four tapes (for the same period of record), perhaps two tapes of MBP stations, one for PE stations, and one for 0FW24 stations, onto one tape. This is done simply for a more efficient tape storage. Program SUPERTP, listed in appendix E.2, performs this merging operation. In addition to combining tape data covering the same period of record, SUPERTP has the flexibility of "piecing together" types of data from two different record periods. These record periods may overlap in time, but should not have a time gap between them. As an example, assume one tape has data for the period 10/1/51 to 12/31/58, and another tape has data for the same stations, but for the period 10/1/58 to 12/31/66. Then SUPERTP will create a tape for the combined period of 10/1/51 to 12/31/66. 3 - 20 r REFERENCES Anderson, E. A. and Baker, D. R., "Estimating Incident Terrestrial Radiation Under All Atmospheric Conditions", Water Resources Research , Vol. 3, No. 4, 1967, pp. 975-988. Hamon, R. W., Weiss, L. L., and Wilson, W. T., "Insolation as an Empirical Function of Daily Sunshine Duration", Monthly Weather Review , 82, 1954, pp. 141-146. Kohler, M. A., Nordenson, T. J., and Fox, W. E., "Evaporation from Pans and Lakes", U.S. Weather Bureau Research Paper No. 38, 1955, 21 pp. Kohler, M. A., Nordenson, T. J., and Baker, D. R., "Evaporation Maps for the United States", U.S. Weather Bureau Technical Paper No. 37, 1959, 13 pp. plus 5 plates. Kohler, M. A. and Parmele, L. H., "Generalized Estimates of Free-Water Evaporation", Water Resources Research , Vol. 3, No. 4, 1967, pp. 997-1005. Lamoreaux, W. W., "Modern Evaporation Formulae Adapted to Computer Use", Monthly Weather Review , 90, 1962, pp. 26-28. Sellers, W. D., Physical Climatology , The University of Chicago Press, Chicago, 1969, 272 pp. 3 - 21 CHAPTER 4. SOIL MOISTURE ACCOUNTING 4.1 INTRODUCTION Soil moisture accounting includes that portion of the hydro! ogic cycle from when rain hits the ground and vegetation, or runoff from the snow leaves the pack, until the water enters the stream channel. This can also be referred to as the land phase of the hydrologic cycle. 4.2 METHOD The current version of NWSRFS uses a modified version of the Stanford Watershed Model IV (SWM IV) as described by Crawford and Linsley (1966) to model the land phase. This chapter will not discuss the soil -moisture accounting portion of SWM IV in detail. The reader should refer to chapter 4 (pp. 30-43) of Crawford and Linsley (1966) for this information. This chapter will describe the modifications which have been made to SWM IV (see section 4.5). 4.3 PARAMETERS Following is a list of the soil moisture parameters used in NWSRFS and their definitions for use as a reference. a. Kl Ratio of average areal precipitation to the precipitation input. Percent impervious area Maximum amount of interception storage (inches) Nominal upper zone storage. An index to the magnitude of upper zone capacity (inches) e. LZSN Nominal lower zone storage. An index to the magnitude of lower zone capacity (inches) Infiltration index (inches/hour) Exponent in infiltration curve Interflow index. Determines the ratio of interflow to surface runoff i. K24L Percent of groundwater recharge assigned to deep percolation j. K3 Evaporation loss index for the lower zone (inches) 4 - 1 b. A c. EPXM d. UZSN f. CB g. POWER h. CC GAGEPE 1. EHIGH m. ELOW n. NEP 0. NDUR p. K24EL q. SRCl r. LIRC6 Ratio of area! evapotranspiration to input evapotranspiration Parameters to compute watershed potential evapo- transpiration from free water potential evapotrans- piration (defined in section 4.6) EHIGH and ELOW can vary for each subarea NEP and NDUR are regional parameters assigned to the evaporation input station Percent of watershed stream surfaces and riparian vegetation Percent of surface detention reaching the channel each hour Percent of interflow detention reaching the channel each 6 hours s. LKK6 LIRC6 = l.O-(IRC)^/^ (4-1) where IRC is the SWM IV daily recession constant for interflow. Percent of groundwater storage that reaches the channel each 6 hours when KV zero. t. KV LKK6 = 1.0-(KK24)^/^ (4-2) where KK24 is the SWM IV minimum observed daily groundwater recession constant. Weighting factor to allow variable groundwater recession rates. NOTE: The basic 6-hour groundwater flow (GWF) equation is: GWF = LKK6-(1.0+KV-GWS)-SGW (4-3) where: GWS is the antecedent groundwater inflow index and SGW is storage in groundwater (inches). u. KGS Recession factor for antecedent groundwater inflow i ndex . 4.4 FLOW CHART Figure 4-1 shows the flow chart of the overall soil moisture accounting procedure used in NWSRFS. Parameters are associated with the components for which they are used. 4 - 2 4.5 MODIFICATIONS Most of the computations in SWM IV are the same in NWSRFS. These include the following computations, with reference to the appropriate equation, figure or table number from Crawford and Linsley (1966). a. Interception as described on page 30 b. Infiltration computations summarized by figure 4.3 and table 4.1 (p. 33) c. Upper zone moisture retention; equations 4.4, 4.5, 4.6 and 4.7 and figure 4.7 (pp. 35 and 37) d. The separation of interflow detention from surface detention as summarized by figures 4.3 and 4.6 and equation 4.3 (pp. 33, 35, 36) e. The outflow from interflow as shown in equations 4.10 and 4.11 (p. 39) except that a 6-hour time interval is used f. Percolation as shown in equation 4.8 (p. 38) except that a daily time interval is used; thus the coefficient becomes 0.072 g. Lower zone moisture retention; equations 4.12, 4.13 and 4.14 and figure 4.8 (pp. 39-40) h. The outflow from groundwater as shown in equations 4.15 and 4.17 (pp. 40-41) except that a 6-hour time interval is used i. Evapotranspiration from the lower zone as summarized by figure 4.10 and equations 4.18 and 4.19 (p. 42). Following are the modifications which have been made to SWM IV for use in the National Weather Service River Forecast System. 4.5.1 COMPUTATION INTERVAL The NWSRFS uses 6-hour input for precipitation. All computations are based on a 6-hour interval except: a. Infiltration, upper zone retention, surface and interflow detention, and lower zone retention are computed on an hourly basis. This is necessary because soil moisture ratios can change significantly during a 6-hour period with heavy precipitation. b. Percolation of water from upper zone to lower zone and groundwater storages is computed on a daily basis. 4.5.2 INFILTRATION CURVE The value of the maximum infiltration capacity as a function of lower zone soil -moisture ratio is defined as 4-3 b = CB/(LZS/LZSN)''°'^^'^ (4-4) This replaces SWM IV equations 4.1 and 4.2 and figure 4.5 (pp. 35-36). Figure 4-2 illustrates this new relationship. This change was needed to give more flexibility to the shape of the infiltration curve. The shape of the infiltration curve is very important in most watersheds. 4.5.3 IMPERVIOUS AREA RUNOFF It is assumed that most impervious areas are not subjected to interception storage; therefore, impervious area runoff is taken from the precipitation input rather than from precipitation in excess of interception storage as in SWM IV. 4.5.4 EVAPORATION FROM STREAM SURFACES AND EVAPOTRANSPI RATION FROM GROUNDWATER These two calculations, which were handled separately in SWM IV, are computed jointly in NWSRFS. The parameter K24EL represents the percent of the watershed subject to evaporation from stream surfaces and riparian vegetation. The maximum amount of stream and riparian evaporation is equal to K24EL multiplied by the watershed potential evaporation for that day. The water available for stream and riparian evaporation is equal to the impervious area (A) multiplied by the watershed potential evaporation plus watershed evaporation demand which was not satisfied from soil moisture storage. The stream surface and adjacent moist areas make up a sizeable portion of impervious area in many watersheds though rock outcrops and paved surfaces; buildings which do not allow evapora- tion also constitute a portion of the impervious area. The computed stream and riparian vegetation evaporation is the smaller of the two quantities, the maxi- mum or the available evaporation. 4.5.5 OVERLAND FLOW ROUTING Because of the longer time interval used in NWSRFS, the overland flow routing equations of SWM IV involving slope, overland flow length, and rough- ness are not used. The equation for the amount of fast response runoff that reaches the channel during each hour (ROST) is: ROST = SRCl • RX (4-5) where: SRCl is the percent of the water in surface detention (RX) to reach the channel. The Water that does not reach the channel is available to become infiltration, upper zone storage, or runoff during the next hour. The term overland flow may be misleading as some fast response runoff may be overland flow, but some may also be flow within the ground cover or upper layer of the soil. The soil moisture accounting in NWSRFS allows for three basic types of runoff: fast response (surface runoff), medium response (interflow) and slow response (groundwater). 4 - 4 4.5.6 ANTECEDENT INDEX TO GROUNDWATER INFLOW NWSRFS computes the antecedent index of groundwater inflow (GWS) as: GWS = KGS • (GWS + GW inflow) (4-6) where: GW inflow is the inflow to groundwater storage. KGS is the antecedent index recession factor. In SWM IV (equation 4.16, p. 41) the recession factor is a coefficient with a value of 0.97 on a daily basis. 4.6 WATERSHED POTENTIAL EVAPOTRANSPIRATION The basic evapotranspiration input to NWSRFS is the evaporation from a free water surface with no heat storage. The potential evapotranspiration of a watershed may or may not be equal to free water evaporation because of radia- tion properties of the watershed such as reflectivity and absorption, roughness of vegetation, heat storage capacity of the soil, and other factors. In NWSRFS the watershed potential evapotranspiration for a given day (EP) is computed by: EP = E • PE (4-7) where: PE is the free water potential evapotranspiration for the day. E is a factor that adjusts free water potential to watershed potential. The adjustment factor (E) is assumed to vary seasonally to reflect the seasonal changes in vegetation. In order to reduce the number of parameters for optimi- zation, the curve of the adjustment factor (E) versus time of year is defined by four parameters. In SWM IV an adjustment factor was used for each month. The four parameters are: 1. ELOW - The minimum value of the adjustment factor. The minimum is assumed to occur on February 15th. 2. EHIGH - The maximum value of the adjustment factor. 3. NEP - The Julian date when the adjustment factor reaches the maximum. 4. NDUR - The number of days during which the adjustment factor remains at the maximum. A sine curve is used for the transition between February 15th and the beginning of EHIGH and the end of EHIGH and February 15th. 4 - 5 Reference : Crawford, N. H. and Linsley, R. K., "Digital Simulation in Hydrology: Stanford Watershed Model IV", Technical Report No. 39, Department of Civil Engineering, Stanford University, Stanford, California, July 1966, 210 pp. Copies available through: University Microfilms 300 N. Zeeb Road Ann Arbor, Michigan 48106 Reference Number: 0P#55,431 Cost: $11.75 for Xerox copy 4 -6 PRECIPITATION OR SNOWPACK RUNOFF FREE WATER POTENTIAL EVAPORATION (K1,0A6EPE) (Watershed potentialX evapotranspiration v- ( nep.nour.ehigh, elow)/ ' ACTUAL V X ET / »vious\ REA V- IMPERVIOUS ARE Tfunction^ «. output ,' Figure 4-1— Flowchart of soil moisture accounting portion of the National Weather Service River Forecasting System 4 - 7 o q m • • • O II o 5 o ■o lO c o O CL ID o z CO O O en i w o > ^^ (/> V. M O -1 z Kl -J tf> \ K to • M _l o tf> u CM 1 tf) rsj ii d IT) 6 ^ ro CM • • • o o o dn0H/S3H0NI-q 4 - 8 CHAPTER 5. CHANNEL ROUTING 5.1 GENERAL This chapter describes the model of the channel system that is currently used in the NWSRFS. 5.2 FLOW ROUTING PROCEDURE Lag and K channel routing, as described by Linsley, Kohler and Paulhus in Hydrology for Engineers , is used. The essence of this procedure is to: (1) introduce a time delay (lag) to account for travel time of a wave through a reach, and (2) simulate wave attenuation in the reach caused by channel storage effects. The attenuation is simulated by routing the reach inflow, suitably lagged, through a hypothetical reservoir governed by the equation: ^=I(t)-Q(t) = K^. in which the reservoir storage constant K gives rise to the second half of the method name "lag and K." The reservoir storage is given by S, and its inflow and outflow are given by I and Q, respectively. 5.2.1 CONSTANT LAG 5.2.1.1 Local Runoff In the conceptual framework of the soil moisture accounting procedure, the runoff produced in a 6-hour interval is the flow volume delivered to the channel system in that period. The first step in channel routing is to apply a constant lag to this channel inflow. This is accomplished by the time-delay histogram. The channel system is divided into reaches which have equal travel time. Currently in NWSRFS a 6-hour time interval is used for routing computa- tions; thus, the channel reaches have travel times that are multiples of 6 hours. Each element of the time delay histogram is associated with a travel time zone. For example, element three is associated with a travel time between 12 and 18 hours. Each element of the time delay histogram is merely a summation of the fraction of the area contributing to all reaches with the same travel time. The total time-delay histogram is a tabulation of these summations and must equal unity. Figure 5-1 shows an example of a time-delay histogram containing seven elements. To account for areal variation in runoff, each element of the time-delay histogram can have channel inflow from separate soil moisture accounting computations. In the example in figure 5-1, the first four elements have channel inflow computed using mean basin precipitation and soil moisture parameters from area number eight, while the last three elements use area five to get channel inflow. 5-1 The time-delay histogram (TDH) may be obtained in one of two ways. The first parallels unit hydrograph analysis and is described in section 7.6.1, part c. The second (more subjective) method is to divide the basin into isochrones of channel travel time, assuming wave speeds over various portions of the reach. Computation of the time-delay histogram for the local area at Hattiesburg, Mississippi as shown in figure 5-2 by the isochrone method is shown in table 5-1 . Table 5.1 --Computing the time-delay histogram for the local area at Hattiesburg, Mississippi Compa rison: Six Instantaneous hour interval Units of channel Six -hour interval channel time- contributing time-delay channel time- delay histogram Interval area histogram del ay histogram from UHG method 0-6 hours 4 .007 .003 .053 6-12 40 .075 .041 .098 12-18 49 .091 .083 .098 18-24 52 .097 .094 .093 24-30 32 .059 .078 .083 30-36 60 .112 .085 .072 36-42 80 .149 .131 .070 42-48 115 .214 .181 .075 48-54 62 .115 .165 .081 54-60 34 .063 .089 .079 60-66 10 .018 .041 .074 66-72 .009 .064 72-78 .043 78-84 .017 538.0 1.000 1.000 1.000 It should be noted that for channel systems where it is difficult to determine travel times a more reasonable first approximation to the TDH can usually be obtained by utilizing the unit hydrograph. 5.2.1.2 Upstream inflows The constant lag of an upstream inflow is obtained as described in section 7.8.3, step a. This value represents the time in hours for a channel wave to travel from the upstream inflow point to the reach outlet. In figure 5.2, constant lags of 30 and 12 hours were obtained for upstream inflow points 1 and 2, respectively. 5.2.2 VARIABLE LAG Some channel systems exhibit a lag that varies with inflow. In the NWSRFS the total lag consists of the constant lag component plus a variable component. 5 - 2 \ The variable lag is applied to upstream inflows and local runoff after constant lag has been applied and after these lagged flows have been added together. An example of a variable lag curve is shown in figure 5-3. (It should be noted here that the method of inputing the variable lag curve varies between programs. The input for the verification and operational program is the same and is described on card 20C appendix F and card 21 C appendix G. Variable lag input for the optimization program is described on card 37 appendix H.) As an example of the application of variable lag using figure 5-3, suppose Ic = 36,000 cfs. An increment of 5,000 cfs would be lagged 8.35 hours, an increment of 5,000 cfs would be lagged 6.25 hours, an increment of 10,000 cfs would be lagged 1.7 hours, and the last 6,000 cfs would be lagged 0.35 hours. This is illustrated in figure 5-4. The result is to allocate 16,063 cfs to the present period under consideration, 1,777 cfs to the next 6-hour interval, and the remaining 2,160 cfs to yet the next 6-hour interval. A few appropriate comments: a. No negative lags are allowed. b. Large lag value jumps from one table entry to the next should be avoided. c. The minimum lag value shown in figure 5-3 is zero. This is because it is expected that any further lagging will be done in the constant- lag operation. d. The variably lagged flow values are "interval values" rather than instantaneous values. An interval flow value would be an average flow over a 6-hour interval (say midnight til 6 a.m.) whereas an instantaneous flow value would be appropriate at the end of a flow interval (say 6 a.m.). e. The method of obtaining a variable lag curve is given in Hydrology for Engineers (section 10.10) by Linsley, Kohler and Paulhus. 5.2.3 ATTENUATION BY CHANNEL STORAGE This is the "K" part of the routing. The attenuation by channel storage is simulated by routing the lagged flow through a hypothetical reservoir with storage constant K. The reservoir inflow will have undergone both constant lag and variable lag, so let's call it ly to distinguish it from the constant lagged flow I^, of the previous section. The hypothetical reservoir is governed by the equation: where S is the reservoir storage, K the reservoir storage constant, and I and Q are the reservoir inflow and outflow, respectively. The above equation 5 - 3 is exact for instantaneous value, but is used to estimate the behavior of the hypothetical reservoir over a 6-hour interval. In particular, it is used as: i - Q = K^ This equation is not necessarily exact. T (identically the lagged inflow I ) is the average inflow during the period. The interval values Q and (dQ/dt) are estimated by instantaneous outflow values as: Q = (Q2 + Qt)/2 '(|5r= (Q2 - Qi)/At Here Q-. is the instantaneous flow at the flow point at the end of the last time period, a known quantity. Solving for the desired instantaneous outflow at the end of the period (At = 6 hours) gives: For some channel reaches, the same K value is sufficient for all flow levels. Other channel reaches require K as a function of flow (variable K). Figure 5-5 shows a sample variable K curve. As an example of the use of this curve suppose the midnight flow (Q-,) was 33,000 cfs and the average lagged inflow for the 6-hour interval midnight-6 a.m. is computed as I = 26,000 cfs. The simulated 6 a.m. flow would be obtained as follows: a. Interpolate between the K vs. outflow points to obtain K: K = 15.0 + (11.3-15.0) X (33,000-30,000) (37,000-30,000) = 13.41 hours b. Plug into routing equation ^6 a.m. = 26.000 (^) . 33.000 0^) = 30,440 cfs 5.2.4 SUMMARY Figure 5-6 summarizes the computations of constant lag, variable lag, con- stant K, and variable K that have been described in the preceding sections. 5 - 4 5.3 SELECTION OF FLOW VALUES A control parameter, input by the user, tells the program whether to route the observed flow values for the flowpoint or whether to route simulated flow values downstream in the verification program. Route Simulated Route Observed Route values in the simulated flow array SFW6( ). Try to route values in the observed 6- hour flow array 0FW6( ). The word "try" is used because if the program is told it has observed 6-hour flow and then encounters one or more days of missing data it must take alternate measures. These are as follows: first, try to fabricate observed 6-hour discharge for the given day(s) by adjusting the simu- lated 6-hour discharges by the ratio of observed mean daily flow to simulated mean daily flow. This, of course, would not be possible if mean daily flows are not input at the flowpoint or if mean dailies are missing for the particular month. If the program is unable to fabricate observed 6-hour discharges for a particular day, then the second alter- nate measure is the last resort: route the simulated flow array downstream. 5 - 5 MBP AREA No. 8 BASIN TIME -DELAY HISTOGRAM ELEMENT NUMBER FRACTION OF BASIN AREA 1 .05 2 .10 3 .15 4 ASSIGNMENT OF RUNOFF TO HISTOGRAM ELEMENT: AREA NO. 8 .25 5 .20 6 .15 7 .10 AREA NO. 5 Figure 5-1. -Assignment of channel inflows to histogram elements 5-6 Inflow Point # 2 [lag to IPT = 12 hours] Inflow Point # 1 [lag to IPT = 30 hours] Outflow Point IPT Subarea #1: Leaf River above Collins, Mississippi, [headwater, area = 752 mi 2] Subarea #2: Bowie Creek above Hattiesburg, Mississippi [headwater, area = 304 mi 2] Subarea #3: Leaf River at Hattiesburg, Mississippi, [local , area = 704 mi 2] Figure 5-2. --Channel lag values for flowpoints above Hattiesburg, Mississippi. 5-7 90 80 (85, 4.5) (75, 6.4) 10 M- O M- O (/> -a c to O -o O) CD 4-> 10 e o 1 5 10 15 Variable lag in hours Figure 5-3. --Sample Variable Lag Curve. 20 5-8 I > i~ _ 1 1 >♦- u o . vo \ - - f- o - - o CO o VO - 1 1 •I- -o CO .^ k SJ.0 J.0 spuBsnoii:^ ul mo[j 5 - 9 (A «<- U -o s- a; O) +j IT} s- I— c -o O t/) s: c OJ to -C fO +J J3 S- I— O OJ <+- $- Qi W > 0) CU 3 (/) >■ I I CM I «T3 o ARS W-3 Watershed Sleepers River, Vt. Sky! and Creek, Upper Columbia Snow Lab. Upper Castle Creek Central Snow Lab. Leaf River, Collins, Miss South Yamhill River, Whiteson, Ore. Meramec River, Steel vi lie. Mo. Mad River at Springfield, Ohio French Broad River at Rosman, N. C. Bird Creek, Sperry, Okla. Monocacy River, Frederick, Md. 00 o m i-i vO o oor^ooov£)foa\0<'r-»o ■-I O in O "H eg O m CM o 00 r- CO o m r^ o o in vx) o 0^ O rH o O o a> .H rH O <-{ rH rH O C3V in m CO m t>» O o • • • • • in • • • • • • r-. CN rH o iH O 0^ O sf r^ O CTi vo m r^ CNfOCMfOinOOOOOCNrHrH fO o in O "H rH CN ON CM sj-inm r^cococMiH cNr^omomosOcsiH** CO o tH CM tH rH CM iH in CM m •* tHOCMOCOOOr>.rH CM r^ CO CO ^a-iHiH-vTOOrOcTiO rH O O O CM vo in o o rH iH tH oNinmoinrHiniHvo 0«*r^COCMvO(T>OiHCMrH in in o CO CO iH 00 m 00 00 r» sf cm CMOOCjNCMOOOOCOin^rH o in vo CO o vo o in cMr-~o^oin en :r. zz Lu _i 2: o 3 a: en ui 3 00 ^ X t-i si Q. ZD rvirvicQ SLC_)>-cDc\jQ.n:_iLLjQ rj_ic_3 a.(_)i .EQ.0)LEAPYR = 1 LAST=LASTDA( (LEAPYR+1 ) .MO] ) NN=LAST*2A IF (MHR2.GT.NN) MHR2=NN DO 151 MHR=MHR1 »MHR2 j= (MHR-MHRl )»IFL K = DO 152 I=1»IFL N=IFL-I 152 <=<+(L( J+I )*( 10**N) ) M = DO 153 1 = 1. IFL N=I-1 153 M=M+(9*( 10»*N) ) FACT=0.01 IF (IDP.EQ.l) FACT=0.1 PX(MHR) =K*FACT nM=M»FACT M = M-l TDM=M»FACT IF (PX(MHR) .EQ.DM) PX (MHR ) =99 .99 IF (PX(MHR) .EQ.TDM) PX ( MHR ) =99.98 151 CONTINUE GO TO 155 160 CALL 0UTM0(PX.NN.IST1.ISTA1.IYR1,M01.RGNAME.NM0SC.NRECS) IF ( ISEQ.EQ.9999) GO TO 170 IST1=IST ISTA1=ISTA M01=M0 IYR1=IYR DO 157 MHR=1.745 157 PX(MHR)=0.0 GO TO 154 C CHECK FOR MISSING MONTHS AT END OF RECORD 170 IF (NMSG2.EO.0) GO TO 175 DO 171 I=1.NMSG2 NYP=( I-l )/12 IYR=IYR1+NYR M0=M01+I-12*NYR IF (M0.LT.13) GO TO 172 M0=M0-12 IYO=IYR+l 172 LEAPYR=0 IF ( { IYR-4»( IYR/4) ).EQ.O) LEAPYR=1 B - 13 IF (PX(MHR) .FQ.99.99) GO TO 202 MTD=0 GO TO 200 202 DO 203 I=MHR1.MHR 20'? PX( I )=PX(MHR) MTD = GO TO 200 201 IF (MTD.EQ.O) MHRl=MHR MTD=1 200 CONTINUE PX{7^6) =IST PX(747)=ISTA PX(748)=IYR PX(749)=M0 WRITE (1) PX NRECS=NRECS+1 NM0SC=NM0SC+1 PRINT 900 PRINT 901»RGNAME»MO» I YR PRINT 902»NUM LAST=NN/24 SUMPX=0.0 DO 210 IDA=1,LAST DSUM^O.O MHR1= ( IDA-1 )*24+l MHR2=IDA*24 DO 211 MHR=MHR1 .MHR2 IF( {PX(MHR) .GT. 90.0) .OR. (DSUM.GT. 90.0) ) GO TO 212 DSUM=DSUM+PX(MHR ) GO TO 211 212 IF (PX(MHR) .LT.99.99) GO TO 211 DSUM=99.99 211 CONTINUE IF ((( IDA-1 )-5*-{ IDA/5 )) .EQ.O) PRINT 903 PRINT 9 0A» IDA. (PX(MHR ) .MHR=MHRl ,MHR2 ) .DSUM IF (DSUM. EG. 99. 99) SUMPX=99.99 IF (SUMPX.LT.90.0) SUMPX=SUMPX+DSUM 210 CONTINUE PRINT 905»SUMPX OUTMO FORMAT STATEMENTS 900 FORMAT ( IHl ) 901 FORMAT ( IHO , 20X , 29HH0URLY PRECIPITATION DATA FOR , 2X , 3A10 , 5X » I 2 , llH/,12) 902 FORMAT ( IHO , 3HDAY , 14 . 23 I 5 .6X , 5HT0TAL ) 903 FORMAT ( IH ) 904 FORMAT ( IH » I 3 » 24F5 . 2 . FIO . 2 ) 905 FORMAT ( IHO » 5X , 5 IHM I SS I NG DATA = 99.99 — MISSING TIME DI STR I BUT I0N = 99 1.9 8.5 5X,14HM0NTHLY TOTAL=.F10.2) RETURN END B - 14 APPENDIX C MEAN BASIN PRECIPITATION PROGRAM SECTION C.l MBP PROGRAM INPUT SUMMARY SECTION C.2 SAMPLE INPUT FOR MBP PROGRAM SECTION C.3 EXAMPLES OF OUTPUT FROM MBP PROGRAM C-1 I SECTION C.l MBP PROGRAM INPUT SUMMARY *** MBP INPUT SUMMARY »»» »*» THIS PROGRAM CALCULATES MEAN AREAL PRECIPITATION FOR ONE OR MORE AREAS OR »** BASINS AT A TIME. THE PROGRAM IS PRESENTLY DIMENSIONED TO HANDLE UP *»* TO TEN (10) BASINS HAVING AS MANY AS TWENTY (20) PRECIPITATION *»* STATIONS. *»» NOTE... TO CONSERVE CORE MEMORY THE C(J.8l7) VARIABLE *»* ARRAY SHOULD BE DIMENSIONED TO THE EXACT SIZE *»* NEEDED. FOR EXAMPLE* THE ARRAY C(J.8l7) SHOULD BE *** DIMENSIONED* *»* C( 10,817) FOR PROCESSING 10 PCPN STATIONS **» *»» IN ANY CASE J CANNOT EXCEED hO . *** NUMBER OF YEARS — MAX I MUM.LE . ( 400/ J ) *** *«* *»* TO CHANGE THE NUMBER OF AREAS OR BASINS THE PROGRAM *** WILL HANDLE AT ONE TIME. CHANGE THE DIMENSION OF THE **» ARRAYS SWX(J,i!fO) AND BASINID{J) ...WHERE J IS THE **» DESIRED NUMBER OF ARFAS. AT PRESENT J=10. *»» *»* INPUT... DESCRIBED AS FOUR (4) GROUPS. *»* *** GROUP (1) FIRST CARD - CONTAINS THE NUMBER OF BASINS (NBASIN) AND THE *** DESIRED OPTIONS PLUS (NTRANS) WHEN NEEDED IN 1615 FMT. »*» *** *** OPTION SELECTION DESCRIPTION *** *»* OPTl=0 — COMPUTE GRID POINT WEIGHTS FOR EACH STATION. *** 1 — COMPUTE THIESSEN WEIGHTS FOR EACH STATION. *** 2 — READ IN PREDETERMINED STATION WEIGHTS AND (X,Y) GRID *** COORDINATES. »*» *** OPT2=0 — TERMINATE PROGRAM AFTER PRINTING OUT STATION WEIGHTS. *** =1 — CONTINUE PROGRAM AFTER PRINTING OUT STATION WEIGHTS. *** READ IN PRECIPITATION DATA, PLACE »»* IN MASS STORAGE AND COMPUTE MEAN BASIN PRECIP. *** *** 0PT3=1 — OUTPUT MBP IN HOURLY INCREMENTS *** =2 — OUTPUT MBP IN 3-HOUR INCREMENTS *** =3 — OUTPUT MBP IN 6-HOUR INCREMENTS *** *** 0PT4=1 — PRINTOUT (ONLY) OF MBP IN STD. FORMAT. *** =2 — PRINTOUT AND PUNCH MBP IN STD. FORMAT. **» =3 — PRINTOUT AND PUT MBP ON TAPEl »** **» 0PT5 METHOD OF INPUTING HOURLY PRECIPITATION DATA *** =1 — HOURLY FROM NWSRFS-NCC TAPES. (TAPE2) »** =2 — HOURLY FROM NWSRFS WORKING TAPE (TAPE6) *** =3 — HOURLY FROM STD. FMT. CARDS C-2 *♦* ♦»* 0PT6=1 — PREFORM PCPN CONSISTENCY COMPUTATIONS *»* =2 — NO CONSISTENCY COMPUTATIONS ♦ »* ♦»» 0PT7=1 — DO NOT USE NORMALS »** =2 — USE MONTHLY NORMALS AS PART OF THE EST, OF MISSING DATA *** »NOTE* 0PT7=2 SHOULD BE USED IN MOUNTAINOUS AREAS »*» **♦ 0PT8 METHOD OF INPUTING NON-RECORDING PRECIPITATION DATA *** =1 — NON-RECORDING FROM NWSRFS-NCC TAPES. (TAPE3) *»* =2 — NON-RECORDING FROM STD.FMT. CARDS ♦ ** *»* NTRANS NO. OF RECORDS TO TRANSFER FROM TAPE4 ( PREV lOUS OUTPUT TAPE) *** TO TAPEl (CURRENT OUTPUT TAPE) AT START OF RUN (0PT4=3) **» »»» ♦ ♦» *** NEXT SET OF CARDS CONTAINS THE NUMBER OF »*» HOURLY STATIONS, TOTAL NUMBER OF PCPN STATIONS *** PLUS PRECIPITATION STATION NAMES **» THEIR CORRESPONDING GRID COORDINATES, ONE CARD PER »** STATION, RECORDER (HOURLY) STATIONS MUST BE PLACED AHEAD *** OF NON-RECORDER (DAILY) STATIONS, USUALLY IN ALPHABETICAL *»» ORDER. *»* *»» FIRST CARD COLS, 01-05 NO, OF HOURLY STATIONS ♦** COLS, 06-10 TOTAL NO, OF STATIONS *♦* *»» REMAINING CARDS *** FORMAT FOR EACH CARD AS FOLLOWS... *»* *** COLS, 01-25 PCPN STATION NAME *** COLS, 28-30 X COORDINATE *** COLS, 38-40 Y COORDINATE *♦* NOTE.,,,TWO STATIONS CAN NOT HAVE THE SAME COORDINATES ♦ ** »»♦ **» NEXT SET OF CARDS CONTAIN NORMALS *** FOR OPT7=2 ONLY*** *** 1, ONE CARD PER STATION **» 2. STATIONS IN ORDER AS ABOVE **» 3. MONTHS IN ORDER JAN-DEC *** CARD FORMAT (12F5.2) *»# ***»*»**«»%*****»***»**#*****»******«**#*»*****#*»********»*****«********»»**#♦* ♦ *» *** FOLLOWING WILL BE THE CARD DECK(S) DESCRIBING *** THE AREA(S) OR BASIN(S) TO BE PROCESSED. ONE DECK PER BASIN. »»* **» **» *»» GROUP (2A) STRUCTURE OF BASIN DECK(S). *** FOR OPT1=0 OR 1 »** *** FIRST CARD COLS. 02-80 BASIN IDENTIFICATION. C-3 I **♦ »»» *»» »** **» *** *** *** »** »»* *** *♦* *** *** *** ■)(■■«•* •»■)<•* **■«■ *** *** *** ♦»* **» »** *»* *** *** *** *** *»* *♦* *** *** *** »** *** *** *** *** *** *** *** *** »»* *** *** *** -;<■** »** GROUP (2B: NEXT 80 CARDS - BASIN GRID MAP. CARD 82 COLS. 01-10 GRID SCALE ( MI /GRI D LENTH) IN FORM XXXX.XXXXXX STRUCTURE OF BASIN DECK(S). *** FOR 0PT1=2 *** FIRST CARD COLS. 02-80 BASIN IDENTIFICATION. SECOND CARD COLS. 01-05 BASIN AREA IN SQ. MI LES ( I NTEGER ) NEXT SET OF CARDS CONTAIN PREDETERMINED STATION WEIGHTS. ONE CARD PER 16 STATIONS. STATIONS IN ORDER THAT THEY HAVE BEEN READ IN. FORMAT FOR EACH CARD IS AS FOLLOWS... 16F5.2 PREDETERMINED STATION WEIGHT GROUP (3) NEXT CARDS CONTAIN THE BEGINNING AND ENDING DATES FOR THE PCPN RECORDS, INITIAL SEQUENCE STD FMT CARD NUMBER AND THE NUMERIC BASIN IDENT NUMBER (XX-XXXX.X) FOR EACH BASIN. THE BASIN IDENT IS THE BASIN OUTFLOW POINT STATE AND STATION INDEX NUMBER. FIRST CARD COLS. 04-05 STARTING MONTH 09-10 STARTING YEAR 14-15 ENDING MONTH 19-20 ENDING YEAR 22-25 INITIAL STD FMT CARD SEQUENCE NO. FOR OUTPUT NOTE. ..WHEN USING NCC TAPES MISSING DATA IS FILLED IN FOR ALL MONTHS FOR WHICH A GAGE WAS NOT ACTIVE. SECOND CARD COLS. 01-09 BASIN IDENT NO. IN FORM XX-XXXX.X 10-18 (8 BASIN IDENT NOS. PER CARD) 19-27 64-72 THIRD CARD ONLY NEEDED IF 0PT5=1 OR 2. (1615) FORMAT 0PT5=1 NWS STATION NUMBERS( NOT INCLUD. STATE NO.) OF EACH RECORDING STATION TO BE USED ON TAPE2. NOTE. ..STATION NUMBERS .GT, 9999 SIGNIFY DUMMY STATIONS AS DISCUSSED IN WR I TE-UP ( 3 . 3 .2 ) NUMBERS LISTED IN ORDER THAT THEY ARE ON TAPE(S). OPT5=2 NUMBER OF RECORDS TO SKIP BEFORE READING EACH RECORDING STATION FROM TAPE6. NOTE. ...EXTRA SKIP IS NEEDED BETWEEN TWO STATIONS WHICH ARE ON DIFFERENT TAPES TO TAKE CARE OF EOF. NOTE EXTRA CARD GOES HERE WHEN HOURLY DATA IS TO BE READ C-4 *** FROM TAPE. THIS CARD GIVES THE NUMBERS OF THE **» TAPES, IN SEQUENTIAL ORDER. WHICH CONTAIN THE DATA. *♦* FORMAT IS 8A10 LEFT JUSTIFIED. CARD IS NOT USED IF *** ONLY ONE TAPE IS USED. BUT IT MUST STILL BE READ IN. *** TAPE CHANGING PROCEDURE MAY DIFFER ON OTHER SYSTEMS. ♦ ** *** *»* FOURTH CARD ONLY NEEDED IF 0PT8=1 (1615) FORMAT *** NWS STATION NUMBERS (NOT INCLUD. STATE NO.) OF *** EACH NON-RECORDING STATION TO BE USED ON TAPE3. *** NOTE. ..STATION NUMBERS .GT. 9999 SIGNIFY DUMMY *** STATIONS AS DISCUSSED IN WR I TE-UP ( 3 .3 .2 ) *** NUMBERS LISTED IN ORDER THAT THEY ARE ON TAPE(S). *** *** *** NOTE EXTRA CARD GOES HERE WHEN DAILY DATA IS TO BE READ *** FROM TAPE. THIS CARD GIVES THE NUMBERS OF THE *♦* TAPES. IN SEQUENTIAL ORDER. WHICH CONTAIN THE DATA. *** FORMAT IS 8A10 LEFT JUSTIFIED. CARD IS NOT USED IF *-»* ONLY ONE TAPE IS USED. BUT IT MUST STILL BE READ IN. *** TAPE CHANGING PROCEDURE MAY DIFFER ON OTHER SYSTEMS. *»* *** *** FIFTH CARD NEEDED ONLY IF 0PT8=1 *** OBSERVATION TIME FOR EACH NON-RECORDING *** STATION FOR THE FIRST MONTH OF THE RUN. *** (16F5.0) FORMAT — USE MILITARY TIME **» ■)<•** **» REMAINING CHANGES IN OBSERVATION TIME AT NON-RECORDING **» CARDS STATIONS. ONE CHANGE PER CARD. MUST BE *** (GROUP 3) IN SEQUENTIAL ORDER IN TIME — STATION *** ORDER DOES NOT MATTER. *»* *** COL. 1- 5 STATION NO. IN RUN *** COL. 6-10 YEAR (LAST 2 DIGITS) *** COL. 11-15 MONTH *»* ' COL. 16-20 NEW OBSERVATION TIME ♦ »* *** LAST CARD PUT 99 IN COL. ^-5. *** *** **NOTE** MAXIMUM OF 9 CHANGES PER STATION *** ARE ALLOWED. *** *♦♦ ♦ »* *»* GROUP (4) PCPN DATA DECKS FOR EACH STATION. THE FIRST CARD FOR EACH *»* STATION MUST HAVE AN INITIAL SEQUENCE NO. EQUAL TO ONE (0001). *** THE PCPN DECKS ARE PLACED BACK TO BACK. HOURLY STATIONS FIRST *»* FOLLOWED BY DAILY STATIONS. THESE DECKS MUST BE IN THE SAME *»* ORDER AS THE ABOVE MENTIONED STATION COORDINATE CARDS. THE *»* LAST PCPN DECK IS FOLLOWED BY A LAST CARD INDICATOR. IE. IN *** COLS. 01 THRU 04 THE NUMBER 9999. *** **NOTE** GROUP (4) IS NOT NEEDED IF ALL PCPN DATA IS ON TAPE C-6 ******************************************************************************** * LAST SET OF CARDS (ONLY NEEDED IF CONSISTENCY SUBROUTINE IS USED) * » * DOUBLE MASS PLOTS AND CALCULATIONS ARE DONE FOR THE » FOLLOWING. EACH STATION AGAINST ALL OTHER STATIONS AND * EACH STATION AGAINST OTHERS IN A GROUP TO WHICH IT IS ASSIGNED. * IF THE STATION IS NOT ASSIGNED TO A GROUP IT IS PLOTTED * AGAINST THE DOUBLE MASS OF GROUP ONE. * * FIRST CARD. * NUMBER OF GROUPS ( NGROUPS ) . 15 FORMAT MAX = 3 * NUMBER OF STATIONS IN EACH GROUP. 315 FORMAT MAX=32 * REMAINING CARDS (ONE FOR EACH GROUP) (TWO IF MORE THAN 16 STA IN GRP) * RUN NUMBERS (DETERMINED BY READ IN SEQUENCE) FOR EACH' * PRECIPITATION STATION IN THE GROUP. 1615 FORMAT » * *NOTE^ CONSISTENCY SUBROUTINE IS CURRENTLY DIMENSIONED FOR * 20 PRECIPITATION STATIONS AND 10 YEARS OF RECORD * ******* **»**»************-K^******** *************#*******»***»*»»*********»***«♦* (3-6 I SECTION C.2 SAMPLE INPUT FOR MBP PROGRAM 3 7 18 COLLINS. M FORREST, M LEAKESVILL SHUBUTA 2 RALEIGH, M ROSE HILL PURVIS, MI MIZE,MISS LAUREL, MI BAY SPRIN HATTIESBU COLUMBIA, WHITE OAK SUMRALL,M PRENTISS, NEWTON, MI PAULDING, MONTROSE, LEAF RIVE ISSISSIPPI ISSISSIPPI E, MISSISSIPPI , MISSISSIPPI ISSISSIPPI 7SW,MISS. SSISSIPPI ISSIPPI SSISSIPPI GS»MISS. RG,MISS. MISS. ,MISS. ISS MISS. SS. MISS. MISS. R NEAR COLLINS 1 1 1 1 1 11 11 11 HI 1111 11111 11111 11111 nil 111 1 11 11 111 nil 11111 11111 mil mil mil mil mil mil mil mil mil mil mil mil mil mil 22 26 74 67 24 46 28 22 44 36 34 6 17 22 5 43 49 39 ,MISSISS 11 mm 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111 mum 11111111 11111111 11111111 11111111 11111111 11111111 iiimii 11111111 11111111 11111111 11111111 11111111 11111111 iimiii 11111111 11111111 11111111 37 78 5 49 61 63 5 50 40 57 17 14 60 23 36 79 60 66 IPPI 11 nil nil nil nil nil nil nil nil nil nil nil nil nil nil nil nil nil nil 11 1 1 1 1 11 11 111 111 nil 111 111 111 111 111 11 1 1 1 1 C-7 mil 11111 nil nil 111 11 1 11111 mil mil mil mil mil mil mil nil 111 11 1 nil nil nil 11111 11111 nil nil nil 111 111 111 11 1.11 SOWIE CREEK NEAR HATTIESBURG, MISSISSIPPI C-8 c C GRID MAP — BOWIE CREEK NEAR HATT I ESBURG jMI SS. C i.n LEAF RIVER LOCAL AT HATT I ESBURG »M I SS I SS I PP I C C GRID MAP — LEAF RIVER LOCAL ABOVE HATT I ESBURG jMI SS, C 1.11 1 68 9 69 1 2-4720.00 2-47 25.002-47 3 0.0 195 204 140 356 52 52 356 E05820 C C OFFICE OF HYDROLOGY STANDARD FORMAT C DAILY PRECIPITATION CARDS C 9999 3 7 6 5 1 2 5 8 10 13 15 4 6 9 16 17 18 3 7 11 12 14 C-9 :: 3 3: 3 3: 3 3: 2 >+i a I l>) n oL (/) hIi l>) (/I 4- C/O 0. Ml I/) o|) HH t>i a^ t4 t/i on on M (/I 1+ 3 oti ^ i-H on on Ht i: 0*1 r^ 01 C) . : • cr «i n -a «[ (/I I M C) o chono'it/it^onotjonohonoionohonobooc/bon n a. ui o) Q. t-< on 0) H- I- H- ct «i « "i « <^ t- H- I- ht- 1- H- I 1/1 oj) ifl (/) on oti z Z z z z o o o o o »-( l4» HH h+« t-l *- ►i- t— t-^ »— d ! >- on on on on on 3 3F I ": :i 3: ^ j: 3 — h- t- I on on on ( C-10 c-n o: Of :i :3 z Cl o c 313 C/) l/l to <: a <: c » J" -; ■ p^ th if\ r > c I c3 ^ • cr r^ o> ^ - r ) T^ r» ► ih CO t/) I/) 00 00 n :) 3 5 D 3 =3 :> C) O C) o o o c> :: X 3: I T I :: II II II II II I oi 3 1> t-> C> O t> C_> C) C_) C) - 4^ < <[ CD C3 z to c/) n » c/i c/i 11 O WH l-l H i^. 00 < 1- _J -I * •3 O o <3 L . LL li- U_ U- Ll_ I _ C3 as I IJ UJ I CD C3 CD Cp LLI ai UJ LJ 00 Cn t/1 CT Uf LU Ll) IJ ^ Z. ^ .'. tp ^ : 0004^ 3 p Z3 :3 □3 cp CD (3 Cl: tE A: Q^ (,: tf t- h- t- ^- (h (« c/1 00 (/I 00 (T H 1-1 H M H-l M H C3 C3 C3 a ei) O CD :3 ^ CD CD < 23 O £() i CM on o {/I ttI £ P % ci ^ a I i i f<3 00 -I d) >- ct> % -> r 3 ! 3; O dj X CJ H dj HH * I i H3 00 ! I- t*) o • I— I I r^ >-cii T ! \ J) c^ 4i CO on «p H-1 t> H cJ, .- X 1- - "^ 03 V cv 3: _) or >- ro 00 _i o c ro C3 Cl C3 • + • °1 ^ Ck CT CT ci ro ci I jt o sb o h^ o »v4 o ■■ • t • a 1 CD C^ CD O C) fH ci (Ni C3 dl C7 • r • C> CJ C) o o C) CD C3 CP O C3 CD 4) O CD CJD CD (p CD CD ct> CD CD (£3 C3 CD cJd CD tt) CD cId O CD (VJ CD ^ tt> o cb C3 O C3 CD CD (^D O I C) CD Ct> CD 03 CD CD C^ Cd (P C^) O C5 O I CD C3> CD I O Q> CD t C » CD CJ CD or Cp CD Cp C3 o QJ C ) CD C3 CD CD Cp CD CD eJ3 CD cp CD 4? o dD CD

' I o o 1 C; CD 1 C3 o 1 C> CD cb CJCDC3CDCJC3C3 CD CD CD I ^|, D C3 CD C3 O O C^D cp CD 03 i 11^ u> -Jh • -1 CM r> C-12 • ■rlh- -j-u>r*^L\o-rtt-iM)(\jvj) t-( 4< cvj rj tH O' I ^ ^-i -;r .x) aj in r ■> in C ^ in a > ■r-* CD ^ rjj ro ^p T^ vi» vD 0' cvj ^ , ro <*i STcsj-cxicfJorocDh. o^^6-3-tnvDrl- in ci> th rvj in ro 4" Ln i^ Ln > or o T< (\j cu ^ ^J r5 J- o» c I ro OJ r«-. r« -^ o^ r-) J- 'I ». 5 «X) ^. r^ Q) f) ^ ■ r- f ■ t%j ■* ^ coapcC(i^_ D u) f*J ci> in c cr u' in 03 rC C-IS DOUBLE MASS PLOTS — INDIVIOUSL STATICN AGAINST ALL OTHER STATIONS COLLINS, MISSISSIPPI FORREST, MISSISSIPPI LEAKESVILLE.I^ISSISSIPPI ♦ IS 1.5 DECREE LINE HASS/STA 0.0 10.0 1.0 * . 3.0 132 5.0 - 6.0^ 7.0 ♦ ?.o 3 ♦ 2 11.0 -tJ.O - - 13.0 + + 15.0 31 + 2 17.0 19.0 3 + 21.0 + 2 . 23.0 2*-.0 25.0 3 + 1 27.0 29.0 ♦ , 31.0 3 .+ 33.0 J . _2_ 3 214.0 25.0 26.0 27.0 13 2 28.0 29.0 30.0 31.0 2. 32.0 33j_0 31 + 31.. 35.0 . + . 2 It 36.0 37.0 - 3 ♦ . 2 1 ♦ . 38.0 3S.D 3 ♦ . 1.0.0 ■.1.0 - -; .♦ 2 <.2.0 8 8 8 8 8 8 8 99 9 £ 9 9 9|9 9 9 9 S 9 9i9 9 9 9 9 5 9 60 61 52 6J 64 6f 919 H 9 9 Sj 9 9 9 9 8 9 9 Li 1 66 67 68 63 70 71 72 73 71 75 76 77 78 79 1 jiMM>^«*» II IB ■ STATION ID 00000000000000 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 111111111111111 222222222222222 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 444444444444444 555555555555555 666666666666666 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 99999999999999 3 4 5 6 7 8 9 10 11 12 13 14 15 16 BP 16810 BSC STATION NAME 000 000000 00000000000 00000 000 00000000000000 00000 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 36 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 82 63 64 111111111111111111111111111111111111111111111111 222222222222222222222222222222222222222222222222 333333333333333333333333333333333333333333333333 444444444444444444444444444444444444444444444444 555555555555555555555555555555555555555555555555 666666666666666666666666666666666666666666666666 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 9999999999999999999999999999999999 99999999999999 17 IB 13 20 21 22 23 24 25 28 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 « 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 80 61 62 63 64 0000000000000000 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 1111111111111111 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4444444444444444 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6666666666666666 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 9999999999999999 65 66 67 88 69 70 71 72 73 74 75 76 77 78 79 80 D - I I TABLE D-6 PROGRAM TO PROCESS U.S.G.S. MEAN DAILY FLOW TAPES FOR THE NATIONAL WEATHER SERVICE PIVEP FORECAST SYSTEM PROGRAM DAILYF ( I NPUT ♦OUTPUT , TAPE 1 . TAPE2 . TAPE3 = » PUNCH ) C r PROGRAM TO PROCESS U.S.G.S. MEAN DAILY FLOW TAPES FOR THE C NATIONAL WEATHER SERVICE RIVER FORECAST SYSTEM r r INPUT REQUIREMENTS. ..U.S.G.S. 7 TRACK MAGNETIC TAPE (336 BYTE RECORD). r SEE TABLE D-h FOR DESCRIPTION. PROGRAM WILL HANDLE r UP TO A 3360 BYTE RECORD (THAT IS UP TO A BLOCK OF TEN r MONTHS OF DATA ) . C C OUTPUT. ..CARDS OH STANDARD FORMAT CARDS r TAPE — NWSRFS TAPE FORMAT (31 WORDS PER RECORD, NO HEADER RECORDS. C WRITTEN MONTHl (STAI ,... .STAK) , ,MONTHM ( STA 1 , . . . » STAK ) r OUTPUT LISTING OPTIONAL C C PROGRAM NOTES....... ( 1 ) IF ONE DAY DURING A MONTH IS MISSING THE DATA C FOR THE MONTH ARE PRINTED FOR REFERENCE, HOWEVER, THE r ENTIRE MONTH IS SET TO MISSING DATA FOR TAPE OR CARD OUTPUT. r ip) THE PROGRAM CAN HANDLE UP TO 10150 MONTHS OF DATA C r******************************«-*********************i^*** *********************** r****************** ************************************************************* r PROGRAM CONTROL CARD STREAM (-******************************************************************************* r "^15 OTYPE = KTAPE OUTPUT) OR ZERO (CARDS OUTPUT) r LISTING = 1 (LIST OUTPUT) OR ZERO (DONT LIST OUTPUT) C NSTAOT = NUMBER OF STATIONS TO BE OUTPUT (NOT GREATER THAN 500) C NTAPSIN = NUMBER OF INPUT TAPES (NOT GREATER THAN 20) C PARPASS = 1 (OVERIDE PARITY ERROR ON READ) C = (BOMB JOB IF TAPE PARITY ERROR) (-**»**************************************************************************** r RAlO TAPFID(J) THIS CARD ONLY IF NTAPSIN GREATER THAN ONE C IF NTAPSIN=1, OMIT THIS CARD (OR CARDS), THIS r MAY BE UP TO THREE CARDS GIVING UP TO 20 TAPE NUMBERS. (-******************************************************************************* C RliO IDENTF(I) STATION IDENTIFIERS ( USGS DOWNSTREAM ORDER NUMBER) r LISTED IN DESIRED ORDER OF OUTPUT. NO MORE THAN 500 C STATIONS. (8 DIGIT NUMBERS AS DESCRIBED IN U.S.G.S. C WATER SUPPLY PAPERS BEGINNING WITH WATER YEAR 1970. (-********* *********************■)(•*******■«■*******•«•**■«■#*•!<•**********■«•*************** C 41"^ BEGYR = BEGINNING YEAR (FOUR DIGITS) OF REQUESTED OUTPUT C BEGNO = BEGINNING MONTH ( JAN= 1 ,DEC= 1 2 ) OF REQUESTED RECORD C FNDYR = ENDING YFAR (FOUR DIGITS) OF REQUESTED RECORD C ENDMO = ENDING MONTH OF REQUESTED OUTPUT f**»***************************************************»**-)t******** ****** ******* r***»*********************************************#***************************** c r ************************************************************************ ****-**^(-* r FILF ASSIGNMFNTS. TAPE] INPUT TAPE(S). TAPE2 OUTPUT TAPE. TAPE3 MASS STORG IMTFGFR OTYPF.FILLED.PULLING,BEGYR,BEGMO,ENDYR,ENDMO,TAPElD» 1 RFK'ORD.PARPASS»YEAROT,CDSEQ .FOUND, YEAR DIMENSION TAPEIO(?0), INDEX ( 10151) »FILLED(10150) .KWORD( 10 ) , 1 0UTARAY(?1 ) . IDENTF( 500 ) »FL0W(?1 ) . BUFF ( 336 ). FOUND ( 500 ) COMMON /SCARD/ FLOW.MONTHOT.YEAROT, IDENTF.K.CDSEO DATA (? DECODE ( 132,8032 »BUFF( IDX)) T DENT , YEAR , MONTH ,M I S , (FLOW( JF) , JE=1 ,12 ) 80^2 FORMAT ( 3X , I 8 » 1 9X , I 4 , I 2 , 5X , I 7 , 1 2F7 . ) IDXN=IDX+1 3 DECODE ( 135,81 32 ,PUEF( IDXN) ) ( FLOW ( JF ) , JF = 1 3 , 3 1 ) 81^2 FORMAT (2X,1QE7.0) GO TO 3 7 1^ DFCOf^P' ( 1T8,80 3-^,PUFE( I DX ) ) I DENT , YE AR , MONTH , M I S , (FLOW( JF) , JE=1 ,12 ) 80^3 EOi^MAT (9X, I8,19X, 14, I2,5X, 17,1 2E7.0) IDXN=IDX+13 DECODE ( 141 ,8133»BUFF( IDXN) ) ( FLOW ( JF ) , JF= 1 3 , 3 1 ) 81^^ EORMAF (8X,19F7.0) GO TO 37 ^4 DECODE ( 134, 8 34, BUFFI I DX ) ) I DENT , YEAR ,MONTH ,M I S , (FLOW( JF ) ,JF=1,12 ) 80^4 FORMAT ( 5X , I 8 , 1 9X , I 4 , I 2 , 5X , I 7 , 1 2F7 .0 ) inXN = TDX+13 DECODE ( T^7,8T 34,EUEE( IDXN) ) ( FLOW ( JF ) , JF = 1 3 , 3 ]) 81'^4 EOPi^AT (4X,19F7.0) GO TO 3 7 ■y^ DECODE (1-^0, 80^5, RUEF(inX)) I DENT , YE AR ,MONTH , M I S , (FLOW( JF) , JF=1 ,12 ) 80^5 FORMAT ( IX , I 8 , 1 9X , I 4 , I 2 , 5X , I 7 , 1 2E7 . ) inXN= IDX+13 DECODE (133,8135,PUFF( IDXN) ) (ELOW( JF) ,JF=13,31 ) D - 11 8135 FORVAT (19F7.0) 37 REKOPD^REKORD+1 IF (PEKORD.GT.NREK) REKORD=0 GO TO 50 C 4=. IF ( ITPNOW.LT.NTAPSIN) GO TO 46 IF (PULLING. FQ. 1 ) PRINT 9 ] 58 . MONTHP , I YE ARP GO TO 100 46 XFTAPE = TAPEID( ITPNOW) ITPNOW = ITPNOW + 1 XTAPF = TAPEID( I TPNOW) C SEE NOAA CDC6600 USER HNDBK 7.22 FOR CHANGER SUBROUTINE CALL CHANGER(TAPE1 ,XFTAPE»XTAPE. 1) REWIND 1 GO TO 2 '^O IF ( IDFNT.EO.LASTID) GO TO 60 IF (PULLING. FO. 1 ) PRINT 9 1 58 ,MONTHP , I YEARP Q1RB FOPv»AT (IH ,'=iOX,nHRECORD ENDS , 3X , I 2 » IH/ , I 4 ) LASTID = IDENT ^2 DO S-5 I=1,NSTA0T IF ( IDENT.EO. IDENTF( I ) ) GO TO 58 5^ CONTINUE IF (NFOUND.EO.NSTAOT) GO TO 100 PULLING = GO TO 20 58 IF (FOUND (I).EO.O) GO TO 59 PULLING=0 GO TO 2 ^9 NF0UND=NF0UND+1 PRINT 9159»I,IDFNTF(n , MONTH, YEAR 91^9 FORMAT (14H0FOUND ST AT I ON , I 4 » 1 OX , 3H I D= » I 1 , 1 OX , 1 3HREC0RD BEGINS^ 1 1X,I2»1H/,I4) FOUND ( I ) = 1 PULLING=1 GO TO 64 60 IF (PULLING. FO. ) GO TO 20 64 KMO = 12*YEAR + MONTH MONTHP=MONTH IYEARP=YEAR IF (I^MO.LT.MOSBEG) GO TO 20 IF ( VMO.LF.MOSEND) GO TO 70 IF (NFOUND.EO.NSTAOT) GO TO ] 00 PULLING = GO TO 2 70 KEY = (I-1)*M0S0UT +KMO -MOSBEG +1 NDAZ = MODAYS(MONTH,YEAR) MIZZ = DO 7=. MZ = 1,NDAZ MEL =FLOW(MZ) IF (MEL. NF. MIS) GO TO 75 MIZZ =1 75 CONTINUE IF (MIZZ. EG. 0) GO TO 80 PRINT 9 075 » YEAR, MONTH, IDENTF( I ) , ( FLOW(MZ ) ,MZ = 1 ,NDAZ ) D - 12 907"^ FORMAT (20H0MISSING SYMB. YFAR »I4.7H MONTH , 12 . 5X , 3HI D= . I 8 . lOX , 1 A(/8F10.2) ) C**»» r IF MISSING DAY(S). MAKE WHOLE MONTH MISSING GO TO 20 80 FILLED(KEY) =1 KEYP=KEY+1 CALL WRITMS(3.FL0W,?1,KFYP) GO TO 20 C r NOW FINISHED READING INPUT 100 IF(OTYPF.EO.O) GO TO 205 IF(LISTING.EO.O) GO TO 105 PRINT 9101 .BFGMO.BEGYR.ENDMO.ENDYR 9101 FORMAT (30H1MEAN DAILY FLOWS FROM (MO»YR) , 2 I 5 ♦ 5X . 2X ,4HTHUR , 2 I 5 ) 1C5 MONTHOT = BEGMO YEAROT = BEGYR I DO 1^0 J=1.M0S0UT MOHAZ = MODAYS(MONTHOT, YEAROT) DO 140 K=1»NSTA0T IF (LISTING.FQ.l ) PRINT 9l06» K, IDENTF ( K ) .MONTHOT , YEAROT 9106 FORMAT (lOX.lOH STATION . I 4 . 5X ♦ 5H I DENT , I 10 . 1 OX , I 2 . IH/ , I 4 ) KFY=M0S0UT*(K-1 )+J KEYP=KEY+1 IF (FILLED(KEY) .NE.O) GO TO 110 r DATA MISSING THIS STATION MONTH DO 107 ND=1 .MODAZ 107 FLOW{ND)=-9.0 PRINT 9108 9108 FORMAT ( 20H MISSING DATA MONTH ) GO TO 113 no CALL READMS(^»FLOW ,^1.KEYP) g 11^ IF (LISTING.FQ.l) PRINT 91 1 ^ ♦ ( FLOW ( IF ) » I F=l »MO0AZ ) ■ 9 m FORMAT (4 (/10F12.2)) WRITF (2) FLOW 140 CONTINUE MONTHOT = MONTHOT +1 IF (MONTHOT .LE. 12) GO TO 130 MONTHOT = 1 YEAROT = YEAROT +1 130 CONTINUE GO TO 299 70S DO 7^5 K=l .NSTAOT PRINT 9000 MONTHOT = BEGMO YEAROT = BEGYR Cn5EO=0 DO 230 J=1»M0S0UT MODAZ = MODAYS(MONTHOT»YEAROT) IF (LISTING.FQ.l) PRINT 9106. K . I DENTF ( K ) .MONTHOT .YEAROT KEY = M0S0UT»(K-1 )+J KEYP = KEY+1 IF (FILLED(KEY).NE.O) GO TO 210 C DATA MISSING THIS STATION MONTH D - 13 207 ?10 299 DO 207 ND=] .^l FLOW(ND) = -9.0 PRINT 9108 GO TO 213 CALL READMS(3»FLOW.31»KEYP) IF (LISTING. EO. 1 ) PRINT 91 1 3 . ( FLOW ( I F ) . I F^ CALL 5TDCARD M0NTH0T=M0NTH0T+1 IF (MONTHOT .LE. 12) GO TO 230 MONTHOT = ] YEAROT = YEAROT +1 CONTINUE CONTINUE STOP END I 1 .MODAZ) FUNCTION MODAYS (M»NY) INTEGER DAYSINM DIMENSION DAYSINMC 12) DATA DAYSINM /3 1 » 28 . 3 1 » 30 » 3 1 » 30 . 3 1 ♦ 3 1 » 30 . 31 » 30 » 31 / MODAYS = DAYSINM(M) IF (M.NF.2) RETURN MNY = 4*(NY/4) IF (MNY.EO.NY) MODAYS = 29 RETURN END SUBROUTINE STDCARD NOTE. ..THIS ROUTINE TO PRODUCE STANDARD FORMAT CARDS IS SPECIFIC FOR THE PROGRAM DAILYF DUE TO THE FACT THAT A MONTH HAVING ONE OR MORE DAYS MISSING ON THE INPUT TAPE WILL BE TREATED AS HAVING THE ENTIRE MONTH MISSING. COMMON INTf^GER niMFNSI 1 FMAT(4 DATA (M 1 999999 2 999999 DATA DATA DATA DATA DATA DATA OATA r^ATA DATA (F (E (F (F (F (F (F (F MX /SCARD/FL DAYSOT»Y ON FL0W(3 ,8) .FORMT IZVAL(MZ ) ,9999999, 8,9999999 MAT{ J,l ) , MAT{ J,2) . MAT( J,3) ♦ MAT( J,4) , MAT( J,5) » MAT( J,6) » MAT( J,7) , ^AT( J,8) » ENTRY /O, OW, MONTHOT EAROT,CDSF 1 ) » I FLOW (-^ (4) ,DIGFDF ,MZ=1 ,9) , ( 99999999,9 8,99999999 J=l ,4)/31H J=1.4)/31H J=1,4)/31H J=l ,4)/31H J=l ,4)/3iH J=l ,4)/31H J=1,A)/31H J=1,4)/3]H 26,17,13,1 , YEAROT, 0,DIGFDE 1 ) , IDENT C(8 ) ,MIZ MAXVAL(M 99999999 8 / ( 14,211 ( 14,211 ( 14,211 ( 14,21] ( 14,211 ( 14,211 ( 14,211 ( 14.211 0,8,7,6 IDENTF,K,CDSEO C, YEAR, HIGHSD, DEL F(500), MXENTRY{9), VAL(9) ,MAXVAL(9) Z) ,MZ=1 ,9) 79,99,999,9999,99999 » ,8,98,998,9998,99998,999998, 16, IH. ,21 1 I6.1H.,2I1 I6»1H. ,211 I6,]H.,2I1 I6»1H.,2I1 I6,1H.,2I1 I6,1H.,2I1 I6»1H.,2I1 5/ 13,512,2612)/ 13,512,1713)/ 13,512.1314)/ n, 512. 1015)/ 13,512. 816)/ 13,512. 717)/ 13.512. 618)/ n»5I2» 519)/ D - lU PATA IFLC0DE.I24. (DIGFDFCt J) »J=1»8)/1»24,2»1»0»5»6.7,8»9/ DATA IZERO.IONE. I2»I27 /0»1»2.27/ C < IS THE STATION INDEX DAYSOT = MODAYS ( MONTHOT , YEAROT ) innOUT = IDFNTF(K) ini=IDDOUT-]00»( IDDOUT/100) N=ini-10*( IDl /lO) M=in]-N ln=( IDDOUT/100) YFAP^ YEAROT- 100* (YEAROT /I 00) IF (FLOW( 1 ) .FQ.-9) GO TO 110 HIGHF = FLOW( 1 ) DO -^0 L = 2»DAYS0T IF (FLOW(L) .GT. HIGHF) HIGHF=FL0W(L) 30 CONTINUE r NOW FIND NUMBER OF SIGNIFICANT DIGITS r NOTE THIS SECTION ALLOWS MAXIMUM OF TWO SIG, DIGITS r PAST DECIMAL POINT (CFS IN HUNDREDTHS). ALSO LOOKS r FOR LOW ORDER ZEROS. DO -^S KEXP = 1 ,8 NPOW = 2-KEXP DO -^^ KDAY = 1 .DAYSOT IF (FLOW(KDAY) .LT.O.Ol ) GO TO 34 FP = FLOW(KDAY)»10.0**NPOW+0.0001 IFP "= FP FIFP = IFP DELT = FP -FIFP IF ( ARS(DELT) .GT, 0.001 ) GO TO 40 34 CONTINUE ■^■^ CONTINUE KEXP=1 NP0W=1 GO TO 40 C C KEXP = 12345678 r NPOW = 10-1-2-3 -4 -5 -6 C NDFDPT = 21056789 C (NDFDPT GOES IN CARD COLUMN 6) 41 PRINT 9041 .MONTHOT, YEAROT, IDDOUT . 9041 FORMAT (26H1NEED SIGNIF DIGITS MONTH , I 3 ,4X ,4HYEAR » I 5 , 4X , ■ 1 7HSTATION,I10) STOP r r NOW NEED NUMBER DIGITS FOR HIGHEST FLOW 40 LOWNSD = KEXP IF (HIGHF. GT. 0.001) GO TO 43 KEXP=0 GO TO 50 43 DO 45 KEXP=1,S FP = HIGHF * 10.**(-KEXP) IFP = FP IF ( IFP.FO.O) GO TO 50 45 CONTINUE GO TO 41 D - 15 I 50 HIGHSD = KFXP HFL = HIGHSD +3 -LOWNSD IF ( (DFL.LT.l ) .OR, (DFL.GT.9) ) GO TO 41 IF (DFL.EQ.l) DFL=2 NPFDPT = DIGFDEC(LOWNSD) NPOW = 3-LOWNSD DO 55 L=l .DAY50T IFLW=FLOW(L)*10,0**NPOW+0.1 IF { IFLW.EQ.MIZVAL(DFL) ) I FLW=MAXVAL ( DFL) IFLOW(L) =IFLW 5^^ CONTINUF C r OUTPUT ADJUSTED. NOW PUNCH IT NUMCnS = ( (DAYSOT-1) /MXFNTRY(DFL) ) +1 NUMLTD = DAYSOT - MXENTRY ( DFL) * ( NUMCDS- 1 ) C NUMCDS = NUMBER OF CARDS FOR MONTH C NUMLCD = NUMBER OF DAYS ON LAST CARD KDF = DFL-1 FORMTd ) = FMAT( 1,KDF) F0RMT(2) = FMAT(2»KDF) F0RMT(3) = FMAT(3.KDF) F0PMT(4)=FMAT(4»KDF) NUMCOM = NUMCDS-1 MXFNT = MXENTRY(DFL) DO 60 L=1.NUMCDM NFD = (L-1)*MXENT +1 NLD = L*MXENT CDSFQ = CDSEQ +1 PUNCH FORMT, CDSEQ, DFL »NDFDPT. ID.M,N,I24, IFLCODE , I 24,NFD .MONTHOT , 1 YEAR , { IFLOWCKIF) .KIF = NFD,NLD) 60 CONTINUE NFD = NUMCDM*MXENT +1 CDSEO=CDSEQ +1 PUNCH FORMT, CDSEQ, DFL, NDFDPT, ID,M,N,T24, IFLCODF, I 24 ,NFD ,MONTHOT , 1 YFAP ,( IFLOW(KIF) ,KIF = NFD, DAYSOT) RETURN 110 DO ] 12 JZ=1, DAYSOT 112 IFL0W(JZ)=99 CDSE0=CDSEQ+1 PUNCH 9112»CDSEQ,I2»IZFRO, ID,M,N, I 24 , I FLCODE , I 24 , lONE , MONTHOT , 1 YEAR , { IFLOW(KIF) ,KIF = 1,26) CDSFQ=CDSEQ+1 PUNCH 9112,CDSEQ,I2,IZER0,ID,M,N, I 24 , 1 FLCODE, I 24 , I 27 , MONTHOT , 1 YEAR , ( IFLOW(KIF) ,KIF=27, DAYSOT) 9112 FORMAT ( I 4 , 2 1 1 , I 6 , IH. , 2 I 1 , I 3 , 5 I 2 , 26 I 2 ) RETURN END D - 16 APPENDIX E TAPE PREPARATION PROGRAMS SECTION E.l PROGRAM NWSRFS2 TAPE ( ?» NWSRFS STANDARD TAPE FORMAT) ♦ ♦* **» »»« »*» »»* ♦ ♦♦ #♦* **♦ ♦ ♦# »** »♦* »** ♦»♦ *»* «»» «»« ♦** »»♦ »«« »«« «•« »•♦ »»» ♦ »♦ »»» »»» »«« »»» *«» «»« «»« *♦» ♦♦» *»« »»« »*« »»« *»» «•« »•« PROGRAM NWSRFS2( I NPUT .OUTPUT , TAPE 1 . TAPE5 ) THIS PROGRAM READS VARIOUS HYDROLOGIC DATA IN STATION OR SUB-AREA RECORDS (STANDARD FORMAT), ARRANGES THE DATA INTO MONTH RECORDS. THEN LOADS ON TO MAGNETIC TAPE AS STATION MONTH RECORDS. THE DATA ON TAPE IS THEN IN THE APPROPRIATE FORMAT FOR INPUT TO NWS HYDROLOGIC DEVELOPMENT PROGRAMS. INPUT... FIRST CARD SECOND CARD THIRD CARD FOURTH CARD 15 NUMBER OF BASINS 80H HEADER INFORMATION (ZERO IN COL. 1) 15 BMO - BEGIN MONTH 15 BYR - BEGIN YEAR 15 TYPE(l)- NO. OF MEAN AREAL PCPN PER BASIN TO BE LOADED ON TAPE 15 TYPE(2)- NO. OF PE RECORDS PER BASIN TO BE LOADED ON TAPE. 15 TYPE(3)- NO. OF TEMPERATURE (6-HR) RECORDS PER BASIN TO BE LOADED ON TAPE. 15 TYPE(4)- NO. OF MEAN DAILY DISCH RECORDS PER BASIN TO BE LOADED ON TAPE. 15 TYPE(5)- NO. OF 6-HR DISCH RECORDS PER BASIN TO BE LOADED ON TAPE. CARD FOUR IS FOLLOWED BY THE STD FMT DATA DECKS. EACH DATA DECK HAS A LAST CARD INDICATOR. IE. COLS. 01-0^ 9999 WITH THE REMAINDER OF THE CARD BLANK. DATA DECK TYPE MUST FOLLOW THE SAME SEQUENCE AS INDICATED ON CARD FOUR ABOVE. CYCLE BACK TO THE SECOND CARD FOR EACH OF THE BASINS E-1 »*• GENERAL REMARKS «•» »»• **» (1) TEMPERATURE DATA MUST ALWAYS BE IN A FIELD OF THREE(3) »»» ON STANDARD FORMAT CARDS *»» »»* (2) THERE CAN NEVER BE MISSING DATA IN TYPE(l) AND »♦* TYPE(2) CARD RECORDS »»« ♦** (3) MISSING 6-HR AND 24-HR DISCH (TYPE(5) AND TYPE(4)) **» DATA ARE STORED ON TAPE AS A MINUS NUMBER (-9.0»-99.0» ETC) *♦* *»» (4) MISSING TEMPERATURE DATA (TYPE(3)) ARE STORED ON TAPE »** AS 999,0 »»» **» DIMENSION DATA (52) jXt 125) ♦TYPE (5) ♦ INDEX (4801) »NDAYS(12) DIMENSION TDATA(52) INTEGER SEON,F,D»CODE»HR,DA,YR,DATA,EVENTS.TYPE»STATOT INTEGER STAN0»Zl,Z2»ZYR, BRANCH INTEGER BMO,BYR DATA (NDAYS( J) ♦J=1.12)/31.28,31»30»31.30,31»31»30»31»30.31/ MINUS=1R- REWIND 1 DO 40 J=l»4801 40 INDEX(J)=0 CALL OPENMS(5»INDEX,4801»0) READ I.NOBASIN 1 FORMAT (15) DO 2 JBAS=1»N0BASIN »♦» »*» READ HEADER INFORMATION COLS. 02 THRU 80 (LEAVE COL. 1 BLANK) ♦** READ 10 10 FORMAT (49H 131H READ 25.BMO»BYR 25 FORMAT(2I5) *»* »»» READ NUMBER OF AREAS OR STATIONS FOR EACH TYPE OF DATA. »»» **» TYPE(l) - NUMBER OF MEAN AREA PRECIPITATION (6-HOUR ♦»* INCREMENTS) ENTRIES. »»* TYPE(2) - NUMBER OF POINT OR MEAN AREA P. E. ENTRIES. **» TYPE(3) - NUMBER OF POINT OR MEAN AREA TEMPERATURE ♦♦» ENTRIES. ♦»* TYPE(4) - NUMBER OF MEAN DAILY DISCHARGE POINTS. »*» TYPE(5) - NUMBER OF 6-HOUR DISCHARGE POINTS. »»» »** THE ABOVE DATA MUST BE IN 0/H STANDARD FORMAT AND BE ENTERED IN THE *»* SEQUENCE DESCRIBED ABOVE. EACH POINT AND (OR) AREAL RECORD MUST »»* COVER IDENTICAL DATA PERIODS. »*» 16 READ 20, (TYPE(J) 0=1.5) ^2 20 FORMAT (515) STATOT=TYPE(l)+TYPE(2)+TYPE(3)+TYPE(^)+TYPE(5) STANO=0 Zl=TYPE(l)+TYPE(2) Z2=Z1+TYPE(3) DO 30 J=l»125 X( J)=0.0 IF(Zl.GT.O) GO TO 30 IF{Z2.GT.O) GO TO 35 X( J)=-9.0 GO TO 30 35 X(J)=999.0 30 CONTINUE 98 STAN0=STAN0+1 NSEQN=0 IF(STANO.GT,STATOT) GO TO 500 IF(STAN0.GT.Z1.AND.STAN0.LE.Z2) GO TO ^00 BRANCH=0 99 READ 100»5EQN»F.D»IDENT,INCR»CODE.HR»DA.MO»YR,(TDATA( J) »J=1»52) 100 FORMAT ( I4»2I1»A9»I3»5I2»52R1) IF(SEQN,EQ.9999) GO TO 301 DO 3 I=l»52 IF(TDATA(I ).E0. MINUS) TDATA( I )=1R0 DEC0DE(10»4»TDATA( I ) ) DATA(I) 3 CONTINUE 4 F0RMAT(9X.I1) NSEQN=NSEQN+1 IF(NSEQN,EO.SEQN) GO TO 12 PRINT 11, IDENT»NSEQN.HR,DA.MO,YR 11 FORMATt* STATION *A9* SEQUENCE NUMBER »I5,10X,4I5) STOP 12 IF(SEQN.NE.l) GO TO 101 NOMO=0 MOX=MO 101 IF(MOX,NE.MO) GO TO 3001 .001 IF=(52/F)»F L=(52/F)-l MISS=0 DO 7 I=1,F MISS=MISS»10+9 7 CONTINUE IK = DO 5 I=1»IF,F IK=IK+1 ITD=0 DO 6 J=1.F ITD=ITD*10+DATA( I+J-1) 6 CONTINUE IF(STANO.LE.Zl) GO TO 38 IF(ITO.EQ.MISS) ITD=-ITD 38 DATA( IK)=ITD 5 CONTINUE 200 IF(M0.NE.2) GO TO 201 B-S XYR=ZYR XYR=XYR*0.25 ZYR=ZYR/4 YYR=ZYR IFCXYR.NE.YYR) GO TO 202 NDAYS(2)=29 GO TO 201 202 NDAYS(2)=28 201 NDAY=NDAYS{MO) INC=24/INCR EVENTS=INC*NDAY J=(DA-1 )*INC+1 IF( INCR.6T.6) GO TO 2011 M=HR/6-l J = J+M 2011 M=J+L IF(M.GT. EVENTS) M=EVENTS NDIF=J-1 IF(D.LT.5) EXP=-D IF(D,EO.O) EXP=0.0 IF(D.GT.4) EXP=D-4 DO 203 K=J.M N=K-NDIF X(K)=DATA(N) X(K)=X(K)*10.0**EXP 203 CONTINUE MOX=MO IF(BRANCH.E0.2) GO TO 401 GO TO 99 ^00 IX=1 IF{BRANCH.EQ.2) IX=4 GO TO 303 3001 IX=3 IF(BRANCH.E0.2) IX=5 GO TO 303 301 IX=2 3 03 N0M0=N0M0+1 JX = N1=EVENTS IF(N1.GT,31) Nl=124 IF{N1.LT.32) Nl=31 N2=(N0M0-1 )»5TAT0T+STAN0 CALL WRITMS( 5»X.N1.N2) DO 304 J=l»125 X( J)=0.0 IF( (STANO.GT.ZD.AND. (STAN0.LE.Z2>) GO TO 36 IF(STAN0.GT.Z2) X(J)=-9.0 GO TO 304 36 X(J)=999.0 304 CONTINUE M0X=M0X+1 IFfM0X.GT.12) M0X=1 GO TO (99t98»l001.401.200) »IX 400 BRANCH=2 B-4 NSEON=0 401 READ 402»SE0N»F»D.IDENT,INCR»C0DE.HR.DA.M0»YR,(DATA( J) »J=1»17) 40? FORMAT ( I4.2I1»A9.I3.5I2.17I3) IF(SE0N.EQ.9999) GO TO 301 L = 17 NSEQN=N5EQN+1 IF(NSEQN.EO.SEON) GO TO 13 PRINT 11,IDENT,NSEQN»HR,DA»M0.YR STOP T^ IF(SFON.NE.l ) GO TO 403 NOMO=0 MOX=MO I 403 IF(MOX,NE.MO) GO TO 3001 GO TO 2 00 ♦ *» »** LOAD DATA FROM MASS STORAGE ONTO MAGNETIC TAPE. »»» 500 K=N2-STAT0T+1 M=STATOT PRINT 505 505 FORMAT(lHl) PRINT 10 DO 510 J = 1»K",STAT0T IC = DO 520 L=1»M M2=J-1+L NSTA1=TYPE(1) NSTA2=NSTA1+TYPE(2) NSTA3=NSTA2+TYPE(3) NSTA4=NSTA3+TYPE(4) IF(L.LE.NSTA1 ) GO TO 501 IF(L.LE.NSTA2) GO TO 502 IF(L.LE.NSTA3) GO TO 501 IF(L.LE.NSTA4) GO TO 502 501 .Ml = 124 60 TO 503 502 Ml=31 503 CALL READMS(5»X»M1»M2) IF(M1,EQ.31) GO TO 31 IC=IC+1 WRITE (1) (X(N) ♦N=1,M1 ) PRINT 325tIC.BMO.BYR ID = 1 LZ = 1 LLZ=16 21 PRINT 22.ID.(X(N).N=LZ.LLZ) ID=ID+4 LZ=LLZ+1 LLZ=LLZ+16 IF(LLZ.EQ.128) LLZ=124 IF(LLZ.GT,128) GO TO 520 GO TO 21 31 IC=IC+1 WRITE (1) (X(N) .N=1.M1) B-5 PRINT 325»IC.3MO,BYR ID = 1 PRINT 23»ID.(X(N) ,N=1.10) ID=11 PRINT 23»ID. (X(N) ,N=11.20) 10 = 21 PRINT 23»ID» (X(N) ,N=21.31) 520 CONTINUE BM0=BM0+1 IF(BM0.NE,13) GO TO 510 BM0=1 BYR=BYR+1 510 CONTINUE 2 CONTINUE 22 FORMATdX, I2»4(4F8.2»*/*) ) 23 FORMAT(1X,I3.11F10.3) 325 FORMAT(» DAY*22X*STAT ION *I3.5X*M0NTH *I3»5X*YEAR *I5) REWIND 1 STOP END B-6 SFrTION E.2 PROGRAM SUPERTP MERGE NWSRFS STANDARD FORMAT TAPES PROGRAM SUPERTP ( I NPUT .OUTPUT »TAPE1 »TAPE2 »TAPE3 .TAPE4) C NATIONAL WEATHER SERVICE RIVER FORECAST SYSTEM (SUPER TAPE) ♦ »♦»»»»*****»*»»****»»*«•»»»»***»***«*»*****«*««■*»****»»**»**»*»**«*»*****»*♦#»»» C INPUT SUMMARY #♦»♦»»»»#»»*»»*«»*»«***♦»»***»»«****»*»*•*********»*****♦*«»*»******»**»***»**»»» ♦CARD NO. FORMAT CONTENTS »♦»»*»»*«»»»♦»«**»***»*»***»*»***♦»»»*»**»***«»**»**»*»***«■»♦**#»»*»♦*»»**«♦**»» C 1 8A10 HEADER CARD COLS 2-80 AVAILABLE ************************************************* **1t**********1i-***************** C 2 15 TOTAL NUMBER OF DATA TAPES PLUS ONE C (TAPEl IS FOR WRITING THE COMPLETE DATA SET) C 15 NUMBER OF MONTHS OF RECORD FOR PASS ONE ( MOSUB ( 1 ) ) C PASS ONE TRANSFERS DATA FOR THE FOLLOWING PERIOD C BEGINNING MONTH UP TO EARLEST TIME WHEN ONE OF C THE DATA-TAPE RECORDS ENDS C 15 NUMBER OF MONTHS OF RECORD FOR PASS TWO (M0SUB(2)) C THIS EXTENDS THE DATA SET MOSUB ( 2 ) MONTHS BEYOND C PASS ONE C 15 IF MORMO = JUST ONE PASS C MORMO = 1 TWO PASSES ARE REQUSTED C 15 BEGINNING MONTH r 15 BEGINNING YEAR (USE FOUR DIGITS) »»♦♦*»»*»»»»»*♦»*«*»**«*•»»»«**«**»******»*****»**»**«*»**»»*«•«****»**«•**««*♦*»** C 3 515 NUMBER OF RECORD ADVANCES FOR EACH TAPE USED C »»»»♦»»«»»*»**»♦****»*»*»»»*»«*■«•*»*»**»****»*»****♦***»***♦***»***♦»*****»***«♦* C 4 515 NUMBER OF MBP RECORDS/MONTH ON EACH TAPE USED (PASS 1) #♦»*»»»*»»»«*»*♦♦*»**«*«#»»**«*»*»*»»**•)(•«■»*»»««•****«■*»*****«*■*«***#»**♦**#«■»*»♦* r «5 515 NUMBER OF PE RECORDS/MONTH ON EACH TAPE USED (PASS 1) C 6 515 NUMBER OF TEMP RECORDS/MONTH ON EACH TAPE USED (PASS 1) ♦ ♦♦»»•«»»»»»*«*«♦«*»«*»**«***«*»*****«»«********«•**■«•««-***«■*«♦****•»******«»**«♦«■« C 7 515 NUMBER DAILY Q RECORDS/MONTH ON EACH TAPE USED (PASS 1) ♦♦••*»»♦*•»♦««■»»»»»♦»*»***«»«*««**♦«**#********»♦**•)(■*«♦****«•*****»♦»*#*»**»*#»*♦ C 8 515 NUMBER 6-HR Q RECORDS/MONTH ON EACH TAPE USED (PASS 1) •»»»♦»*»»♦»»»*»«♦♦**»»♦#*»»«************»*»«*♦*******♦»*»*»*********»»********«■« C 9-13 REPEAT CARDS 4 THUR 8 USE APPROPRIATE NUMBERS C FOR PASS 2 (ONLY IF TWO PASSES ARE REQUESTED) »••»*»»»»»♦*»»♦»**»««*«#»««»»«»♦»♦»»»»*»*«»*«»»»**»*«*«*«**♦»*»*»»*»»»**»»»«*»»» niMFNSION PX(4»31 ) »PE(31 ) .TA(4.3] ) ♦OFW24(31 ) »0FW6(4.31 ) »A(8) .IDAR 1(5) DIMENSION IA0V(5) ♦M0SUB(2) ♦TPXR(5) .TPER(5) ♦TTAR(5) »T0FW24R(5) . 1T0FW6R(5) INTEGER TPXR,TPER»TTAR,T0FW24R.T0FW6R.BM0»BYR READ 319»(A( I) ♦1=1 .8) READ 1100»NTAPES»MOSUB( 1 ) ♦M0SUB(2) »M0RM0»BM0»BYR READ 1100. ( IADV( I ) ♦1 = 1.5) READ 1100^(TPXR( I ) ♦Irl^S) READ 1100.(TPER( I ) .1=1.5) E-7 RFAO 1100. (TTAR( I ) .I = l»5) READ 1100» (T0FW24R( I ) .I=l»5) RFAD 1100»(T0FW6R( I ) » 1=1.5) •?19 FORMAT(8A10) 1100 FORMAT(6I5) lOARd )=0 IDAR(2)=0 IDAR(3)=0 IDAR(4)=0 IOAR(5)=0 DO 100 I=1.NTAPES REWIND I inAR( 1 )=IDAR( 1 )+TPXR( I ) IDAR(2)=IDAR(2)+TPER( I ) IDAR(3)=IDAR(3)+TTAR( I ) inAR(4)=rDAR(4)+T0FW24R( I ) IDAR(5)=IDAR(5)+TOFW6R( I ) 100 CONTINUE DO 101 I=1.NTAPES r«=IADV( I ) IF (M.EO.O) GO TO 101 DO 102 J=l »M READ (I) 102 CONTINUE 101 CONTINUE ML = 1 IFCMORMO.EO.l ) ML=2 DO 200 KK=1»ML NMO=MOSUB(KK) DO 103 J=1.NM0 DO 104 N=2.NTAPES K=TPXR(N) IF (K.EQ.O) GO TO 104 DO 105 L=1.K READ(N) PX WRITE(l) PX 105 CONTINUE 104 CONTINUE DO 106 N=2.NTAPES K=TPER(N) IF (K.EO.O) GO TO 106 DO 107 L=1.K READ(N) PE WRITE(l) PE 107 CONTINUE 106 CONTINUE DO 108 N=2.NTAPES K=TTAR(N) IF (K.EQ.O) GO TO 108 DO 109 L=1»K READ(N) TA WRITE(l) TA 109 CONTINUE 108 CONTINUE E-8 00 110 N=2.NTAPES K=T0FW24R(N) IF(t(:.EQ.O) GO TO 110 DO 111 L=1.K t?EAD(N) 0FW24 WRITE(l) 0FW2A 111 CONTINUE 110 CONTINUE DO 112 N=2.NTAPES K=T0FW6R(N) IF(K.EQ.O) GO TO 112 DO 113 L=1,K READ(N) 0FW6 WRITE(l) 0FW6 113 CONTINUE 112 CONTINUE 103 CONTINUE IF (MORMO.EQ.O) GO TO 200 IF (KK.E0.2) GO TO 200 READ 1100* (TPXR( I ) ♦Isl »5) READ 1100»(TPER( I ) »I = 1 t5) READ 1100»(TTAR( I ) .I=l»5) READ HOC* (T0FW24R( I ) »I = 1.5) READ n00» (T0FW6R( I ) » 1=1 .5) 200 CONTINUE M=M0SUB(1 ) IF (MORMO.EO.l) REWIND 1 PRINT 320 320 FORMAT ( IHl ) PRINT 319. {A( I ) .1=1.8) DO 321 1=1. M IC = DO 322 K=1.5 IDA=IOAR(K) IF ( IDA.EQ.O) GO TO 322 GO TO (323.324.323.324.323)K 323 DO 326 J=1.IDA IC=IC+1 PRINT 325.IC.BM0.BYR L=l LL = 4 READ(l) PX «500 PRINT 400.L.( (PX(N.NN) .N = l .4) .NN = L.LL) L=LL+1 LL=LL+4 IF(LL.EQ.32) LL=31 IF(LL.GT.32) GO TO 326 GO TO 500 326 CONTINUE GO TO 322 324 DO 327 J=1.IDA IC=IC+1 PRINT 325.IC.BMO M=M+M0SUB(2) .BYR E-9 L=l READd) PE PRINT 406»L»(PE(N) tNsl tlO) L = ll PRINT 406»L. (PE(N) .N=ll»20) L = 21 PRINT 406.L,(PE(N) »N=21»31 ) 327 CONTINUE 322 CONTINUE BM0=BM0+1 IF (BM0.NE.13) GO TO 321 BM0=1 BYR=BYR+1 321 CONTINUE 325 FORMAT(* DAY*22X*STAT ION *I3»5X*M0NTH *I3»5X*YEAR *I5) 400 FORMAT( 1X,I2»4(4F8.2»*/*) ) 406 FORMAT( 1X.I3»11F10.3) END E-10 I APPENDIX F VERIFICATION PROGRAM - INPUT AND OUTPUT SAMPLES SECTION F.l PROGRAM NWSRFS4 INPUT SUMMARY FOR VERIFICATION SECTION F,2 SAMPLE INPUT VERIFICATION SET ONE SAMPLE INPUT VERIFICATION SET TWO SECTION F.3 EXAMPLES OF OUTPUT FROM VERIFICATION F-1 SECTION F.l PROGRAM NWSRFS4 INPUT SUMMARY FOR VERIFICATION C INPUT SUMMARY FOR VERIFICATION ♦»»»»#*»»»»»*»»**»*»*»***♦**»*»*«**♦»«»»*»*«*«»♦*»•»»*«««»»»»«»»»♦**#»»»#«»»#*»»» ♦CARD NO. FORMAT CONTENTS »*»*****»»«»*»***»**»*»»*****«»*«****»*»**»»♦♦*»*****»*»*«»»»*»**»*««»*«»**»#*»* C 1 20A^ BASIC RUN INFORMATION SUCH AS DATE.ETC. »**»»»«*»*»****»*»♦***»»*»*»♦*»»*»»*«**»*»****»»#*««*»»*«*»*»#»»**»»»»«##»*»**»# C 2 20A^ BASIN NAME »»»*«»*»»*»»»»»»»**»***»*»»»*»**»**»*»»»*««**»**»«*»*«»««**»*#»»»*»***»#*»«#*♦*» C ? 15 NO. OF MBP AREAS USED IN RUN (NGAGES) C 15 NO. OF PE STATIONS USED (NPEGS) C 15 NO. OF STREAM-FLOW-POINTS USED (NPTS) C 15 NO. OF UPSTREAM INFLOW POINTS NEEDED FROM OUTSIDE C AREA BEING RUN (NPTSUP) C 4 15 NO. OF MBP AREAS ON INPUT TAPE C 15 NO. OF PE STATIONS ON TAPE C 15 NO. OF MEAN DAILY FLOW-POINTS ON TAPE C 15 NO. OF POINTS WITH OBSERVED SIX-HOUR DISCHARGE C THAT ARE ON TAPE C 15 NO. OF UPSTREAM INFLOWS FROM OUTSIDE RUN AREA C ON TAPE ♦»*»*»»*»♦»»»»*»**»#«»»»*»*»»»»»**»**»»«***»«♦»**«»**»«»»*»»**»*»»*»*****»»««*** C 5 15 FIRST MONTH OF RUN C 15 FIRST YEAR OF RUN (LAST 2 DIGITS ONLY) C 15 LAST MONTH C 15 LAST YEAR *»»»»»»*»»»»**»«»«»»*»*#**#*««********»»»»»*»****»»#*«*«»»*«»»#*»»*«»*»**»«»♦*»* C 6 1615 IDENTIFIES THE MBP AREAS ON TAPE TO BE USED IN THE RUN, C ALSO DEFINES THE PRECIP. AREA ORDER FOR THE RUN. C 1 TO (NGAGES) VALUES ARE NEEDED. C E.G. 5 MBP AREAS ON TAPE* ( NGAGES ) =3 . CARD 7=4.1.5 C THEN THE 4 TH GAGE ON TAPE WILL BE GAGE 1 FOR RUN. C 1 ST GAGE ON TAPE WILL BE GAGE 2 FOR RUN. C 5 TH GAGE ON TAPE >/ILL BE GAGE 3 FOR RUN. »»»»»»****»»»**»*»***«»»*»*»*»*»***♦»»»»»»*♦««*»****»*»**'*»»»»***»»»»«*******»*♦ C 7 10A4 NAME OF PE STATION C 15 NEP C 15 NDUR C (REPEAT CARD 7 FOR EACH PE STATION (1 TO NPEGS)) — ORDER OF READ DETERMINES C PE STATION NUMBER FOR THE RUN) »»*»»»»*♦*#***»»*»»«*«*****»»*»«»****»*»****«»♦************»«»»♦»****»*«******** C 8 1615 SAME AS CARD 6 ONLY FOR PE STATIONS. ***»♦»»**»»»**»*******»****»♦***»»*****»#*»»******»*»»************»*»***»»***»*» C 9 1615 ASSOCIATES PE STATIONS TO MBP AREAS C ] TO (NGAGES) VALUES ARE NEEDED C E.G. (NGAGES)=3.(NPEGS)=2. CARD 10=2.1.2 r THEN THE 1ST PRECIP AREA WILL USE PE FROM NO. 2 C PE STATION C THE 2ND PRECIP AREA WILL USE PE FROM NO.l P-2 C PE STATION C THE 3RD PRECIP AREA WILL USE PE FROM NO. 2 C PE STATION ♦»»»****»**»»*»»*»»»*♦*»«»*»*»*»***»»*»*♦»*»«**»»♦»»***»*♦*«»»»»»»»«»»*»»»»»**#♦ C ]0 1615 SAME AS CARD 6 ONLY FOR MEAN DAILY FLOW STATIONS C (VALUE =0 IF NO M.D.F, FOR A PARTICULAR FLOW-POINT) ♦»»»•»»**»»***»»»♦»»»»»**»»»***«*«»***»»»**♦*«»**»**»*«*»*»»»*♦*»»*»»»*♦**»**♦♦» C 11 1615 SAME AS CARD 6 ONLY FOR SIX HOUR OBSERVED DISCHARGE C (VALUE =0 IF NO DISCHARGE FOR A PARTICULAR FLOW-POINT) ♦»*»**«»»#*»**»*»»»»**»»***»**»*»*»*****»*»»**»**»«»♦*»**»***♦*»*»»***♦*♦»**♦*** C llA 1615 SAME AS CARD 6 ONLY FOR UPSTREAM INFLOW STATIONS C FROM OUTSIDE CURRENT RUN AREA C (ONLY NEEDED IF NO, OF UPSTREAM INFLOWS ON TAPE.GT.O) *»»»«•*»**»♦»**#»♦»»*»»»*»»«»**»*»***»**»*»»**»#*****♦♦»**»*»*»»**♦♦*»*♦»♦**♦**♦ C 12 1615 TYPE OF ROUTING TO BE APPLIED TO REACH ABOVE FLOW- C POINT (1 TO NPTS) EQUAL TO 1 FOR NOW C 1 IS FOR LAG AND K ROUTING INCLUDING VARIABLE C SEE CHAPTER 6 OF WRITE-UP FOR ADDING OTHER ROUTING C PROCEDURES, *»»»»*»»»***♦»♦»»»♦***»**»*»»**♦«»*»♦♦**♦♦*»»«♦«»*♦♦«**«»**»♦♦«***«*»*»*«»**»»»♦ C 13 1615 FLOW TO ROUTE DOWNSTREAM (1 TO NPTS) C =1 ROUTE OBSERVED OR BEST ESTIMATE OF OBSERVED C =0 ROUTE SIMULATED »»»»♦»»*»*»♦»**«»»»»»*»»»»*«»«♦»*»*»*»«**«****»«***»*»»»»»»*»♦«**»*■)(■*»»»»»♦**»#» C 14 15 =1 STORE CHANNEL INFLOW ON TAPE =0 NO C 15 =1 DO ROUTING ONLY USING CHANNEL INFLOWS PREVIOUSLY STORED C ON TAPE =0 NO C 15 =1 SAVE 6 HOUR FLOW AT EACH FLOW POINT ON TAPE FOR USE C AS UPSTREAM INFLOWS LATER =0 NO C 15 =1 PLOT SIX HOUR FLOW FOR ALL PERIODS WHEN OBSERVED IS C READ IN, =0 NO C 15 =1 PLOT MEAN DAILY FLOWS BY WATER YEAR FOR FLOW-POINTS C WHERE OBSERVED DATA IS READ IN AND PLOT IS WANTED. C THIS IS A PRINTER PLOT, =0 FOR CARD OUTPUT FOR C CAL-COMP PLOT PROGRAM C 15 TAPE NO. OF CHANNEL INFLOW TAPE C 15 TAPE NO, OF PRECIPITATION TAPE C 15 TAPE NO, OF MEAN DAILY FLOW TAPE C 15 TAPE NO, OF SIX HOUR OBSERVED DISCHARGE TAPE C 15 TAPE NO. OF PE TAPE C 15 TAPE NO, OF SNOW DATA ( TA,TD»U,QI ,OA,QR ,TS,WE ) C 15 TAPE NO, FOR SAVING SIX HOUR FLOWS AS FUTURE C UPSTREAM INFLOWS C 15 TAPE NO, FOR UPSTREAM INFLOWS FROM OUTSIDE RUN AREA C 15 =0 NO STATISTICAL SUMMARY C =1 MULTIYEAR STATISTICAL SUMMARY PLUS PUNCH M,D,F, IN C STANDARD FORMAT C =2 MULTIYEAR SUMMARY ONLY C =3 YEARLY AND MULTIYEAR SUMMARY C =4 YEARLY PLUS MULTIYEAR PLUS PUNCH M,D.F. CARDS C 15 =1 OUTPUT MONTHLY FLOW VOLUMES AND MOISTURE STORAGES, =0 NO ♦•*»♦»»»»»»»*«*»*««»»*»**»»»»»*»»**»»»*♦»«♦«***»*»♦«*«»♦**♦*#»»»»*»»«»♦»»»»»»»#» C 15 15 =1 SNOW IS INCLUDED. =0 NO SNOW C 15 =1 OUTPUT WATER YEAR MEAN DAILY FLOW SUMMARY TABLESt I F-S c 16 5A4 c 4F5.2 c .F5.1. c F5.2, c 2F5.1. c F5.2 c C =0 NO TABLE OUTPUT C 15 =1 OUTPUT DETAILED SOIL MOISTURE OUTPUT FOR SELECTED MONTHS. C =0 NO DETAILED OUTPUT »»»*«»**»»«♦«***»♦*»»«»«»*****»♦«»«*»»♦«»»»»««♦♦«»*#»»«»»*»»»«»«*»»»»#»♦»»«*«»»» C 15A 1615 MONTH AND YEAR (2 DIGITS) FOR WHICH DETAILED SOIL MOISTURE C OUTPUT IS WANTED. (UP TO 8 MONTHS CAN BE OBTAINED) C (THIS CARD ONLY NEEDED IF DETAILED SOIL MOISTURE OUTPUT C IS ASKED FOR) *♦»*»»»*♦•»*»*»««»*♦*«♦«**»«»»**»*»»»»»»»»»♦*»»»»»»»**»*«*»«»«*«»»«*»»*»»*»»#»»* »*»»♦»♦»»»»»**»*«*»»*»»«»»*»»»»«»«»*«♦»»»«***»»»*«»*»««»«#♦♦»«««»««♦««»»»»»*#»#* C**NOTE** REPEAT CARDS 16 THROUGH 19 FOR EACH MBP AREA (NGAGES) NAME OF MBP AREA SOIL-MOISTURE VOLUME PARAMETERS MOD. STANFORD WATERSHED MODEL ORDER OF PARAMETERS IS — K1.A.EPXM.UZSN»LZSN»CB.P0WER.CC»K24L (PARAMETERS DEFINED IN SECTION 4.3 OF PACKAGE WRITE-UP) »»»»*»»*»♦»»*»*****»**»«»*«««***«»*«»»»»*«*»««*»»»*♦»»*»♦*»»»*««»*«»»«»»»»»*#»»* C 17 20X. EVAPOTRANSPIRATION PARAMETERS FOR SOIL MOISTURE C 5F5.2 ORDER IS K3»GAGEPE »EHIGH.ELOW ,K24EL »*♦«««**»»»»«»»»****»*»«*»»**»***»»*»»**»*♦»**»♦»*»»»*»»»»»»»*»»»*****»»»»«»»»♦* C 18 20X, SOIL MOISTURE TIMING PARAMETERS- C 2F5.2» ORDER IS C F5.4. SRCl ,LlRC6»LKK6.KVtKGS C 2F5.2 *«•»♦»•*»»»»»«««****»«*«*»»»»»*»»»»«»«»»»»»«*«*»»**»*»**»»»»»»»*♦*«»*»»»««»«»«#» C 19 20X» SOIL MOISTURE INITIAL CONDITIONS C 7F5.1 ORDER IS UZSI »LZSI .SGWI ,GWS I »RESI ,SRGXI ,SCEPI C UZS=UPPER ZONE STORAGE C LZS=LOWER ZONE STORAGE C SGW=GROUNDWATER STORAGE C GWS=ANTECEDENT GW INFLOW INDEX C RESrSURFACE DETENTION C SRGX=INTERFLOW DETENTION C SCEP=INTERCEPTION STORAGE *»»«»»»*»»»»***»**♦«»**»♦*»♦»*«»***»*«»***»»♦«*«***««««»**»»»»**»*»»«**»♦*»*»*»* C**NOTE**CARD 20A IS ONLY NEEDED WHEN THE NUMBER OF UPSTREAM INFLOWS C FROM OUTSIDE THE AREA BEING RUN IS.GT.O ( NPTSUP.GT .0 ) C 20A 7A4 NAME OF UPSTREAM INFLOW POINT C 2X.F10.0 AREA OF UPSTREAM INFLOW POINT (TOTAL AREA ABOVE GAGE SQ.MI ) C REPEAT CARD 20A FOR EACH UPSTREAM INFLOW POINT (1 TO NPTSUP)) C ORDER OF CARDS DETERMINES FLOW-POINT NUMBER FOR RUN C FIRST UPSTREAM INFLOW POINT IS ASSIGNED FLOW-POINT NUMBER C EQUAL TO (NPTS+1) ETC. E.G. IF NPTS=3 THEN THE FIRST C UPSTREAM INFLOW POINT BECOMES FLOW-POINT 4 FOR C THE RUN. »»»»*«**»»»*»»*«*»#»«**«*»«»»«*»««»*»«»»*»#«*»»*«*»*♦»■»»»»»»»*»*»»«»»»»»*»*»#»** ♦»»»»*»♦»»»»»«««»»»*»*«#»»»«»»»**»*»#»»»»»*«***»«»»*«»#»»*»»»«#*»»»»♦*»*»»»*»»»# C*»NOTE»* REPEAT CARDS 20 THROUGH 23 (IF ALL NEEDED) FOR EACH FLOW-POINT C WITHIN RUN AREA (NPTS) C ORDER OF CARDS DETERMINES FLOW-POINT NUMBER FOR THE RUN. C NOTE... ALL FLOW-POINTS UPSTREAM FROM GAGE MUST HAVE A SMALLER RUN F-4 I C NUMBER THAN THE GIVEN GAGE — EXCEPT FOR UPSTREAM INFLOW-POINTS C FROM OUTSIDE THE AREA BEING RUN(SEE CARD 20A) C 20 7A4 NAME OF FLOW-POINT r 2X.F10.0 TOTAL AREA ABOVE FLOW-POINT IN SQUARE MILES C tF5.2» CONSTANT K ROUTING FACTOR IN HOURS =0.0 IF VAR. K USED C 15 =1 USE VARIABLE K =0 NO C 15 =1 USE VARIABLE LAG =0 NO C 15 ROUTING INTERVAL IN HOURS (MUST=6 FOR NOW) C 15 NO. OF VALUES IN TIME-DELAY HISTOGRAM FOR LOCAL AREA C 15 NO. OF UPSTREAM INFLOW POINTS TO LOCAL AREA (NUPIN) C THESE CAN BE UPSTREAM INFLOWS FROM OUTSIDE OR C INSIDE THE RUN AREA C 15 NO. OF POINTS TO DEFINE VARIABLE K VS OUTFLOW CURVE C 15 NO. OF POINTS TO DEFINE VARIABLE LAG VS INFLOW CURVE ♦»*#*#**#**»*#*»******«**»«**»************»**»«•*«**»»*****»««***»»**»»»*»♦»**»»» C 20B 8F10.0 VARIABLE K VS. OUTFLOW CURVE IF NEEDED K IN HOURS C MAXIMUM POINTS TO DEFINE CURVE IS 10 (THUS 3 CARDS) C VALUES READ IN PAIRS (FLOW,K) C SO 4 PAIRS OF (FLOW.K) CAN GO ON A CARD C K AT ZERO FLOW MUST BE FIRST POINT C CALCULATIONS USING K ARE BASED ON A LINEAR C INTERPOLATION BETWEEN POINTS C K VALUE FOR HIGHEST DEFINED FLOW IS USED FOR r ALL FLOWS ABOVE THAT DISCHARGE ♦**»»*«*#**********♦*»**♦»****#»*»»****»*»*♦*»*»♦♦»**»*«»**♦»*«*»»♦*»»»»*»♦»**»* C 20C 8F10.0 VARIABLE LAG VS. INFLOW CURVE IF NEEDED LAG IN HOURS r MAX.PTS=10» VALUES IN PAIRS ( FLOW .LAG ) . 4 PAIRS PER CARD C LAG AT ZERO FLOW MUST BE FIRST POINT C CALCULATIONS USING VARIABLE LAG ARE BASE ON C LAGGING THE VOLUME OF FLOW IN THE INTERVAL C FLOW(N) TO FL0W(N+1) BY THE AVERAGE LAG FOR C THAT INTERVAL ( LAG ( N ) +LAG ( N+1 ) ) *0. 5 C LAG VALUE FOR HIGHEST DEFINED FLOW IS USED FOR C ALL FLOW ABOVE THAT DISCHARGE *****»»♦»*♦*»****♦***»**»»***********»**»»***«»»«*»*»*»»*«#»♦*»»«»**»»*»»»»*♦»»» =1 IF M.D.F. PLOT WANTED FOR THE FLOW-POINT =0 NO M.D. OBSERVED FLOW MUST BE READ IN TO GET PLOT MAXIMUM PLOT ORDINATE FOR M.D.F. PLOT BASE FOR FLOW INTERVAL CALCULATIONS IN STATISTICAL SUBROUTINE (GUIDE — FLOW THAT IS EXCEEDED 25 PER CENT OF THE TIME) USGS STATION IDENTICATION NUMBER (NEEDED IF STD. FMT CARDS ARE TO BE PUNCHED) ♦ ♦♦#»*»»♦*»**»*♦***»»»**♦«*«**♦*«*«»#*«■)(■»*****»«**♦♦*»««**«»*♦♦♦«»«»««»#*»♦»»*»» C 22 30X. TIME DELAY HISTOGRAM (MAX, NO OF POINTS=30) C 10F5.2 HISTOGRAM IS FOR LOCAL AREA SUMMATION OF VALUES=1.0 C 23 30X» MBP AREAS TO BE ASSIGNED TO EACH ELEMENT OF THE TIME-DELAY C 1015 HISTOGRAM MBP AREAS DESIGNATED BY RUN NO, WHICH C IS DETERMINED BY THE ORDER CARDS 16 TO 19 WERE READ. *♦«**»*»#♦*#*«*#*****»*»*»********«»***«♦»»«*«**«»»»*♦»**»*»»»««»♦♦»*««-♦»*»♦»♦»» C 20D 30X. RUN NO. OF EACH UPSTREAM INFLOW POINT TO LOCAL AREA C 515 NEEDED IF (NUPIN. GT.O) *»#*»»*»♦»*»»»»*******»*****#******«*»«*»♦*«*♦*»**»**»»•*♦»»»»»*»**«*»»*»»»»*»»» F-6 C 21 40X,I5 c C FlO.O c FIO.O r c c IX, A9 c C 20E 30X» CONSTANT LAG FOR EACH UPSTREAM INFLOW POINT C 5F5.1 (LAG IN HOURS) C **NOTE** TOTAL LAG CONSISTS OF CONSTANT PLUS VARIABLE COMPONENT *#««»***»*»»*«»***»******»*********«*»*»»»***«*»******«♦*«»♦*********»***»**»*»♦ *»»**♦»»»**»*»«»*****»***»***********»***»»**************«♦«**«*»»*»»*****»**»** C 24 415 NUMBER OF RECORDS TO SKjP ON TAPES 1 TO 4 TO POSITION C THE TAPE CORRECTLY FOR THE INITIAL MONTH C C DATA INPUT DESCRIPTION C C A. BASIC DATA CAN BE ON MORE THAN ONE TAPE (IN ORDER BY MONTHS) C IF ON ONE TAPE MUST BE IN FOLLOWING ORDER C 1. MBP AREAS RECORD SIZE=124 SIX HOUR PCPN IN SEQUENTIAL C ORDER FOR THE MONTH C 2. PE STATION RECORD SIZE=31 DAILY PE C 3. M.D.F STREAMGAGES RECORD SIZE=31 DAILY FLOWS FROM C USGS WATER SUPPLY PAPERS C MISSING DATA IS READ IN AS NEGATIVE NUMBER C ENTIRE MONTH MUST EITHER BE ALL VALID DATA OR C ALL MISSING DATA. C 4. SIX HOUR DISCHARGES RECORD SIZE=124 C DISCHARGE AT 6 A.M. .NOON. 6 P.M. .MID. FOR EACH DAY C IN SEQ. ORDER FOR THE MONTH C MISSING DATA IS READ IN AS NEGATIVE NUMBER C C B. OTHER DATA IS EITHER GENERATED BY THE PROGRAM IN A PREVIOUS C RUN OR IN THE CASE OF UPSTREAM INFLOWS. THESE CAN BE GENERATED C BY A PREVIOUS RUN OR THE TAPE COULD BE PREPARED. C IF PREPARED IT IS THE SAME FORMAT AS SIX HOUR DISCHARGES r EXCEPT NO MISSING DATA IS ALLOWED. P-6 I SECTION F.2 SAMPLE INPUT VERIFICATION SET ONE NATIONAL WEATHER LEAF RIVER BASIN- 3 1 3 10 16 10 60 9 3 8 9 SERVICE RI MISSISS VER FORECAST SYSTEM SAMPLE OUTPUT IPPI 6 62 JACKSON. MISSISSIPPI 1 1 1 2 1 1 2 MBP OF MBP OF MBP OF MBP OF MBP BOWIE MBP BOWIE 1 2 3 1 1 1 61 62 COLLINS.MISS COLLINS.MISS COLLINS.MISS COLLINS. MISS CREEK CREEK MBP BOWIE CREEK MBP OF BOWIE CR HATTIESBURG LOCAL HATTIESBURG LOCAL HATTIESBURG LOCAL MBP HATTIES LOCAL LEAF RIVER NR LEAF RIVER NR TIME DELAY TIME DELAY GAGE AREA GAGE AREA BOWIE CREEK 1.0 .28 .90 0.0 1.0 .28 .9 0.0 1.0 .28 .9 0.0 .0 1 5 .0 1 5 .0 1 35 .50 .0 1.20 .1.0025 .0 .60 37 .24 .0 1.1 .1.0020 .0 2.0 35 .50 .0 1.2 .1.0020 .0 1.5 BOWIE CREEK TIME DELAY GAGE AREA LEAF RIVER AT LEAF RIVER AT TIME DELAY TIME DELAY GAGE AREA GAGE AREA UPSTREAM INFLOW UPSTREAM LAG 1836 648 COLLINS MISS. COLLINS MISS. COLLINS MISS. COLLINS MISS. COLLINS MISS. COLLINS MISS. NR HATTIESBURG NR HATTIESBURG BOWIE CREEK BOWIE CREEK HATTIESBURG HATTIESBURG HATTIE LOCAL HATTIE LOCAL HATTIE LOCAL HATTIE LOCAL POINTS .030 .080 1 1 .105 2 .054 .075 3 3 1 30. .05 .60 15.0 0.0 .212 .84 10.25 0.0 .05 .60 12. 0.0 752. .050 .073 1 1 304. .140 2 1760. .097 .064 3 3 2 12. 90 60 7.5 0.0 .925 0.0 5.85 0.0 .865 0.0 7.5 0.0 .90 0.0 8.0 1 .055 .064 1 1 12.6 1 .210 2 9. 1 .098 .044 3 3 .33 2.85 0.0 0.0 .91 2.4 0.0 0.0 .33 2.85 0.0 0.0 20000. .059 .061 .052 .043 1 1 1 1 10000. .170 .155 2 2 30000. .093 .083 .018 3 3 3 .37 0.0 ,417 .180 ,37 .00 6 18 1500. .064 .069 .032 .023 1 1 1 1 6 8 1000. .095 .075 2 2 6 14 3000. .073 .070 VOL PAR ET PARM TIME PARM INITIAL VOL PARM ET PARM TIME PARM INITIAL VOL PARM ET PARM TIME PARM INITIAL 02-4720.0 .072 .080 .081 .014 1 1 1 1 02-4725.0 .050 2 2 02-4730.0 .075 .079 .077 SKIP TAPE RECDS k P-7 SAMPLE INPUT VERIFICATION SET TWO NATIONAL WEATHER SERVICE RIVER FORECAST SYSTEM SAMPLE OUTPUT LEAF RIVER BASIN MISSISSIPPI 1 1 1 2 10 1 6 3 10 60 9 JACKSON. 1 1 5 1 2 1 9 62 MISSISSIPPI 90 60 10 1 1 1 2 2 1 HATTIESBURG LOCAL 1.0 .035 .50 .05 7.5 .33 2.85 .37 .00 VOL PARM HATTIESBURG LOCAL .28 1.0 1.2 .60 0.0 ET PARM HATTIESBURG LOCAL .9 .1.0020 12. .90 TIME PARM MBP HATTIES LOCAL 0.0 5.0 1.5 0.0 0.0 0.0 0.0 INITIAL LEAF RIVER NR COLLINS. MISS 752. BOWIE CREEK NR HATTIESBURG 304. LEAF RIVFP AT HATTIESBURG 1760. 9. 6 14 2 LEAF RIVER AT HATTIESBURG 1 30000. 3000. 02-4730.0 TIME DELAY HATTIE LOCAL .054 .097 .098 .093 .083 .073 . 070 .075 .079 .077 TIME DELAY HATTIE LOCAL .075 .064 .044 .018 GAGE AREA HATTIE LOCAL 1 1 1 1 1 1 1 1 1 1 GAGE AREA HATTIE LOCAL 1 1 1 1 UPSTREAM INFLOW POINTS 2 3 UPSTREAM LAG 30. 12. SKIP TAPE RECDS F-8 II z z K> V, a H ti t/l »- UJ Ui u z «I 4 IS a U ! ! i P-9 o o OO J- C=> O o J- IT fM I li. 2 EC Q. jC C ill-' M ' er OIQ. tulcp e a: 'z CD < a I z o c: o o If IT I P-10 M * 3 O i-l »1 fl (vj HwBojnn Of) ^ rt w4 S3 (\^ to ^ •H^locNj^,^ "cw rwo O.H»!OMrHO a ft » ii. » > _ift «t «t (« Cj a: luj UI UJ liJ I e X I-* « W !^ t <- a a. _i o o _i -I I i ! k r-u i 3 P-12 I o e o o o o • • o o o n •^ (T «sj ▼^ o o • • O (T C\J ^ o o • • o o o o o o o o • • o o o o o o o o • • o o o o o o o o o o • • o o O iT ro CC o o o c ro PO IT ec CD e? O CD PJ XT- J- J- CV fir. (M CM PJ PO 3 vO 3 O 3 O • • 3 y> J- H CD M PJ 3 CD • ■ n eo H CT» M ^ 3 o • • J- ro 3 O 3 a 3 O • • 3 O 3 O 3 CD P CD • • CD O D PJ O CD o o CD O • • CD CD O o o e? CD • • D CD O O CD CD o o CD O • • CD O D CD J- ro CJ O kC P-' PO PO CD O O O • • D O O O O O O O C CD rvj PJ PJ CD in LP cr cr O CD • • •H ^ Po ev J- -* tH *-* • • S pr IT \C -* J- • • J- ^ PJ po K P. 3 CD « • n vo M rj 3 O • • n ro H PO M PJ • • o ro D CD 3 CD 3 O • • <0 \D \J PJ CD a CD CD J- J- "0 PJ n o 3 CD r CD n ^ 4- in o o n CD n PJ n lo CD O cr 00 ■o J- CD CD • • CD OO PO PJ -A o o CD CD ^ O D O • • CD CD ^ PO Po IT. IT. in D «-! CM PO ■r^ ^ CM (7 J- PO ^ *-< N J- cr PJ 3 o 3 O 3 CD 3 CD CD CD 3 O H CD 3 CD => O CD O CD O CD O O CD CD p D CD CD D CD CD CD CD O CD O O CD CT O po ro CD O IT P^t CM CM CD O CD O O C CD CD CD O c o o c PJ CM ro ^ in in -r-t 1-t PO PO ■rH ■rH •^ tH cr cr ro ro cr cr • • J- ^ PO ^ P^' cv D O D O D O • « 3 O D PJ O K- -t -H 3 O • • *■ O D N. H ^-t 3 O • • M PJ 3 O 3 O 3 O 3 CD 3 O • • 3 O P O CD CD CD er CD CD • • D O D CD CD PJ C3 O • • o CD J- D PJ CD CD CD O CD N J- PJ ^ CD o CD OC PJ -rH CD O CD CD CD CD CD O CD O CD CD • • ^ cr cr p^ J- J- ^ PJ ro ro r^ w cr *c* ro K. r-i r-l CC n." OC N tM ro J- -* PJ PJ 3 O 3 O 3 O • • 3 O H cr J- H ^ 3 O r OO n -* 3 O M PJ 3 O 3 CD 3 CD • • 3 O 3 CD 3 CD 3 O 3 CD t3 CD P O P CD CD CD • • 3 O CD O o a CD O CD CD • • CD CD CD O O CD C3 O « • CD O OO -rH CD CD ■rH iH CD O • • 1-1 ^ o o o o • • CD O CD O C CD D CD • • CD CD ro 00 \C J- ^ J- iH -H PJ (V ro m • • r-l W ^ iH rr ro •H 'tH • • r^ p^ J- -* • • PJ CM 3 O 3 O 3 CD 3 O r a* O CM • • Kk eo ■o eg H -rH 3 CD 1-4 rH 3 O 3 O 3 O • • 3 O 3 O 3 CD 3 a • • 3 O a CD a CD 3 CD 3 CC 3 S CD CD O PJ O CO CD O CD O o m cr CP CO CD o O CD pr PJ •rH -* -H D O CD O CD CD Ct CD CD O CD CD t-l O tH o J- J" tM PJ ro PO «-i -rH •-* -H PO PO -rH Ti • • Jf ^ J- J- • • PJ pj D PO 1-4 ^ H CD • • 3 PJ 3 sD M r^ 3 O • • n iH O -J- 3 CD rH H 3 CD 3 CD 3 O J- yD M O 3 O • • 3 in J -rH 3 CD 3 O • • [T CD c m 3- PJ 3 CD • • T J- C CD n PO 3 O • • •o p». cr cr CD O D CD • • rD (T rH O D O => O CD CD O CD C- CD c= o °° pr. J- PO J- • • ro- OC J- J- ■rH ^ 1-* -rH J- PJ ro PO ■rH -rH K -* eo r^ ^ J- CM PO \C »£ CM CM n cr o in H O • • H o cr ». o o ^ o o • • D ^ rH ro o po 3 O • • o ^ H ■rH 3 CD 3 O r PO M J- D O V- CD n -rH rH PJ J- CD 3 O \J CP •o J- n m M D CT^ J- CD iX) O CD iD J- Fo cr CD CD • « P^ P^ •H O *H ■rH C O PJ o m o rH CD O O • • o iC P^ lO OO rH ■r-« -3- *r PJ p.; • • irH 1-- rH W IT IT rH rH • • CD C3 CD C3 If IT ^ rH PJ PO 3 rH M CM • • O rH O PJ ro C PJ H CD o ro 3 CD • • 3 cr rH CD 3 CD 3 O O PJ 3 CD 3 CD ^ Pw 3 CD 3 CD 3 CD 3 O r> cr H rH 3 CD & cr r PJ H Pj 3 O ^ cr CO P^ O CD TT OO P CD O O c a C CD O CD • • rH O • • J CD J- PO PO M PJ • • rH rH tH iH kC rH in IT r- ■rH • » CC vD cr cr • • p.- ro p- P^ PJ cv J- CD 3 O 3 CD • • O r ^ O %£) M PJ 3 O 3 ^ o in M PJ 3 O O CO 3 a 3 O 3 O 3 CD 3 CD 3 CD 3 CD rH O 3 O =3 CD 3 O 3 O 3 O 3 CD CD CD 3 C 3 O » • CC p^ lC in rH rH CD O • • OC CD S P^ O CD • • o o CD CD • • CD O CM N- ro CD • • rH ■rH J- J- CM CM CM M • • w-t rH rH rH in in rH rH CD O cr o IT IT • • 1* rH P- 3 CO M T^ 3 O • • n in 3 O 3 CD 3 O 3 O 3 O CD O 3 O 3 O 3 O 3 CD 3 CD 3 CD n o 3 O 3 CD 3 O CD CD CD c: • • CD CD ■M CM rH rH CD O • • rH ^r in J- CD O CD C= CD CD CD C5 CD O O CD • • ir> "X* -» CM m IT ^ rH IT IT PJ PJ CM PJ ^ -r^ T* rH P^ Pw J J- m in J- ^ • * CC 1 3 O 3 CD 3 CD 3 O O CD H ■rH H -H 3 CD • • n CO H CD rH wA P o • • NJ PJ 3 O 3 O 3 O 3 O 3 CD 3 CD =) O 3 CD CD CD 3 O P o P° P CD CD O CD O P CD CD CD CD CD c: O CD O CD sD OC P^ O c: P' c PJ CM o o CD O C3 O o cr O C3 • • CD O CM rH ro CM J- J- • • CM CM pJ CM • • ■3- J- • • ^' pv- rr fo • • rf rH 3 CD 3 O 3 O 3 O J- f*. 3 O^ rH O 3 O NJ ^O CD cr rH O 3 O NJ PJ 3 O 3 O 3 CD 3 O O CD 3 O 3 O 3 CD CD O 3 CD CD CD • • CD CD O PJ CD O 3 O CD CD in CD (SJ C O 3 O 3 CM 00 ■^ .X) 3 O CD O er vr C3 O 3 C CD C- CD O c:- cr- D CD • • o o rH J ^ J- rH ^ (M CM Pj CM ,:,: rH ^ O ff -* ro • • rr CM • » CN pr rH rH pr r^ ! t 3 3 • 3 O r 3 3 H r 3 NJ 3 3 3 3 CD 3 3 3 3 3 CD 3 n D 3 J- rH 3 CD 3 CD -3- cr ro • « « OP • • -i-l »-) PO PO » • PO K ^ J- • • £, K a- CM PJ rH PC PO J- J- IT IT « • o o CD c: IT IT • • CC O^ OC PO • • CC J- IT K J- rf ^' ir cr eo «0 IT PC J- • • • • ^ J- (T cr • • CC eo cr pp rH F-15 : ^ o I >D O^ kO [ »< ^ |h rco t4 loo I I o j 0=1 ^5 IT r>- ro h- * cy r<- .IT J- ^ cr fo fo fy ro ▼H IT r^ -H J- CJ «o o ; • • • «5 U^ K 1 1 Z _l I _l CJ 15 > O iO: ; O L. z: i-i m ii. 2 1/1 a o o u cr 1- o a ;i- u; cc a t- s: I 10 rt J- M ISl •] • • Is (/■ if o ,«« zV' c 2 M|U-' -J _i er lU. _l t; IT i«t ojuj r> o li-f or li. :I (/I a o o u »- 103 M O 0-' »- ll.: CQjQ. K a |r I, F-U I 3 O 3 C3 1 4- (T ■ i^ in ) ■o n ■ X> 00 M J- I M 0> IS ^ N) to D ■» ►o (»J to (VJ \J M rt (TV •> »< M CM H ro n in n in t ^ ^ D flO O vD . J^ fO ' » J- o in n tvj C CO n CO ' n T^ i s (\j ' 7^ (M n r>. 3- vO \j J- T <0 o o (» W I o •* I H ^ (n C3 I H *H r tn i n 00 ■O K \J PJ n CM n (\j >- o >> h. U> vC D in 4' <+ 4- « » ♦ » » » • • » » » » O' ! I I M r U I I I 3^3^ n in » J- H CO »■ J- \J ■H T ro SJ J- II I I rj M PJ ( ■ *-* 'PJ po J- «-* I !! II I ) K |»r fo »o J- T^'tvj ir II I m m IT J- »-i po r; J- th I I |l I I I n «c .^ tT w K PJ rn I * .rH PJ rr J »H ,<^ fr I J »j I I |i I ;i I ff O* -CT^ C lO^ O CM tr J- «-! P. tr I I I II I o e C3 *H '^ •-• ,* ^ CJ PO ^ ^ CM ,» »H CM C J' »J ,p^K>^*j']*inir lO .» ^ • « I in IT C «4 V4 3 C» • • M ■H o ON. ^ in • • H -H » 00 <5 J- M PJ • • • • « • • • • • • • + » • • • • • .» -^ 1 1 >e K • • »in M xO H ^ sO = lf> • • o n M PJ • • • • • • + + • • • » • • • • • 1 K K 3 O • • 3 O r, ^ >. K D >0 « • H m D (A • • • • + + • • • • » » • • 1 • 9 O • • * o r «o o» e in n • • n o r fo n -t n K • • • • + • • » » • • • • • • 1 1 3 O • • J> ca J< \D H ^ • • H tP >. in • • • • • • • • • • + • • * • • • Co n 1 1 cr c 3 O • ♦ 3 0* » h> » o» H O H •.-< rM PJ • • n ^» ^ <5 O 3 ^ H »^ • • • • • • • * ■ • • • 1 1 o ^ in 3 O H 'H ^ M M W * J- • » + + • • • • PO fO 1 1 o o CM tVl 3 O • • 3 y pj • • e o o * r> • • 4. • • • • PO M 1 1 "^ ■^l Pu PJ • • 3 * fo M w iH W • • N ^0 n fO » • • • • • • « • • • • • • • • • PO Po 3 O 7> K • • >« O 3 fv 3 eo H » • » • • • • • • • • P.. n 1 • «\J M Po PJ 3 O • • rl OO H tO in n * • • 3 ro n PJ \J eo ■» in • • • ♦ • • • • • • » + • • • • J- «-! ) 1 «vj v.. PO M 3 O • • o ro M OO J> jf n n n • • n cy * n n r«. * rr> • • • • • • • • • • » + • • •f • • PJ r 1 1 to tr po Co 3 O H in aj y o o ro x> n in o cr M eo O PJ • • • • • • • • • • • • • • » + » tr J- (VJ PJ 3 o n . in M P>l n PJ • • •H M T^ N PJ • • • • • • • • • • • • 4- » » • • • • J- ^ 1 1 J' ir CVi po 3 O • « n in = ^ n * \j PJ a J- • • H PJ tr « tr OO • • • • » • • PJ rr, t • in IT PJ PJ 3 O • • K O PJ M PJ C OO * lO » PJ H -H M PJ »0 • • *> ro rt in £ in H ^ • • • • • • • • • • • • » • • • Pj it 1 1 >C tC Po PO • • •-I vO n vO H PJ \J lO • • H O 00 OO n 1^ M ro • • • • • • » » ♦ i • * 1 1 «c M ^ * * n lO • • X) PJ n ro n in • • • • 9 • » » + » 1 P^ . <0 » -» a to • • n PJ = OO V cr • • • • • • » 4- * • • • • 1 i ! frl o * in » OO • • •» J- tr- -^ a tr • • • • • • • • * » + + • • • • CM Ki 1 1 cr cr a o • • D CM a 0* f» -* • • N ^ i-t 00 i^ CO • • • • • • » • • * • • • • 1 1 cr o PJ ro 9 a • • O * » r>. • ro • • J' n w \j in n J- • • • • • • • * * + • • p. f~ 1 1 e o ro i»5l i 3 C3 • • V 00 s « M OO O PJ 3 J- • • D to O * «5 »4 O lO • • • • • • • • • • • • * * » + • • J- -H • • ro to 3 03 • • >> r» » o n ro M PJ o to • • >- in o M • • ' • • i • c\j th ro CO !*«- cr e\i «o D ir> r^ ro L* vD ^ CM ^J :« OO (M ••;••• fO PO kO lf\ !f\J 3N ^D kO (SJ CJ VH ^ V-l ^C J- Cd (M i-H ir» J- '*o CD 'ct* (J^ »-( O CO vD J- o !ir ^ -^ ■ • ! • • • JN. O^ ^ \D ^O • • I • • >0 OC K. OO ^ X !oo ro M fy |t^ ^ I CO «X) jf^ oo L* vD fo itr r*- flo ^ J- :*£> (T lev. oc o [flO PO '^-f eg IT ! a- c lO i iD ^H C3 00 |(SJ vD r)|po CD 1^ cvj cr h-. *c 'it J- o> l^ (T UN oc C3 (NJ C3 h^ pn kC ; J- O" or IV' r*^ t^ r.! ^ IT ^ W PC K r^. hfc *r vD r-> k£» O I J- CT ^* CO ITi }PO CO IT kD P>- ji-t K. iTi sd" ro :po cd J- ICNJ P*. 00 .J- OJ 00 CVJ oO iC ^ QO CO lO LT CT" iro oc cr if\ *0 I oc t-" (T *^ ICO J- cj CD cv. cr N ^- p«- J- J- h- ^ h* pr to \D O^ K »£ ilf\ J- rj (T r^ J- I -* J- fO IPO PC ^ ;h- ^ aO tVJ 00 CD J- »-t -H CM CVJ kC O^ 'CT' o rO <0 C\J -H N CVJ CM OJ OO •H N- OO QO vO ^^ «-< I J- CM PO CD ir*. ir> ITS r^ CO CM 'ITi ^ M N- ,CM O ; J- po ;po Po la^ CM cr o iCM CM :(M CM ivH OO UN «-« pr ]*c J- 'm CT VC O h- C3 fC PO loo vC CT^ fO U". rj CO u\ •-^ P'^ PO ^ CO K (V :J K IT I -ir OO lf» *H (vf (r> OO LT o r^ U^ OJ ^-* o \£) IT' CVJ ~ ^ m j^ PO j^iiT) '•-< »-i P^ O-icj pr, «r Ici »c p^ rf c? •-I C\. PO J- I IMJ- "H •rH m PO PJ'CJ (O u> v cr ^ ^ J- PO J- cv. *H ^ in ^ AT 00 »D P^ •H P^ >C J^ IT J <\J ^ 03 CVJ k£) OO S. OO N. J- \S> kD in nj w N PJ -J- f^ t^ 1-1 J- PO CM M fo P^ OO 00 PJ PO -ol P» PO PJ PJ PJ PJ PJ p^ p^ PJ IC ^ if -H pj inl -* "I CO iH IT c: p^- iT vT m PO 1-1 00 ro cr o P: PJ • • P' pjli-t I :i^ ji-l iHJpo IT !»c cr >d|pj cp- :hi^ N. iH cr en ■H PJ J- PO cc cj ^ CO m hw ico p^ .* o X 1. z J 1. z 13 L> ►-< a J t-4 a • PJ • • in . »< »< a » OO * N • •-« [\j • n H PJ o * PO [T> K> ^ D r^ m ^ J3 *> 1-4 1-4 • C3 • PJ * J- .-• ro n PJ a PJ CO • ■>« • J- J- • in • J- • O^ • 1-1 PD CO OO O P^ S PJ m 00 vf . in • P^ 00 cr CO iC K 1-4 1-4 • OO • iD D m vC PJ .a- M J- M c • If • I^ oc IC J iH CV J .» • .» . ^ P^ CD PO * r- 1 • in • c 1 I loin CP c\. : |ir PJ 1^ p» i 1-1 • sC • m J- -i . « > II- V o § i i r-iT Z o M es a Hi o a > D O • • • • £» ^D H ^ A O • • rl CM ■ • • • • • • • • • • • • • * * wi CM 3 O S O 3 O 3 O • • NJ (M H in • • = -s • • • • • • • • • • • • • • • • 3 O 3 a • • 3 O 3 O • • *> K 3 OO \J «4 • • • • • * • • • • • • • • • • • • • IT ^ 9 e • • 3 O • • •-I ^ • • H O 3 to • • • • • • • • • • • • • • • • • • • • 3 O 3 O • • 3 O 3 O • • M O • • • • • • • • « • • • • • » » • • 0> D 3 O • • 3 O 3 O NJ to H *4 3 *D 0^ in £ UN • • • • • • • • • • • • • • » » • • -r-4 rv 3 O 3 O • • 3 O 3 O • • H ^ • • • • • • • • • • -r4 •"! 3 O 3 O • • 3 O 3 O • • O M rl ^ 3 O^ X) LA H CO M CM • • M CM H ^ • • • • • • • • • • • • • • • • «H CM CM rj 3 O 3 O • • 3 O • • 3 O rl W •M O • • n J- SJ (M H ^ • • • • • • • • • • • • • • • • N CM 3 O 3 O • • 3 O 3 O • • 3 O V *-l NJ (M H T-t • • • • • • • • • • • • • • • • • • » » IT \0 CM CM 3 O • • 3 a 3 O • • (A M CM H W M O • • 3 0> M W • • • • • • • • • • • • • « CM CM A O 3 O • • O 3 e • • D «0 M CM F« ^ M O • • 3 J- M CM H «-f • • • • • • • • • • • • • • • • • • • • 3 O 3 O • • 3 O 3 e • • 3 O O PO rl ^ 3 O t\ ro M CM • • • • K 3 'H • • 3 O • • M ^ O K. •4 -r-l M K • • H CM H fM • • • • • • • • • • • • • • CM W O CM • • 3 a • • 3 ^D t ^ r 4- fi (^ • -H • • • • • • • • • • » • • ^ IT 3 a 3 O • • 3 O 3 O • • O CM M <^ • • -» D -* • • • • • • • • • • • • • • • • • • • • + • • 3 ^ 3 O 3 O 3 O O N. M O* M W • • c o «.* o M CM • • • • • • • • * » • • CO cr 3 O 3 O • • 3 O 3 O • • H •-« r^ •4 ^ fl CO -* -t • • • • • • • • • • • • • • D a* M f". • • 3 O • • o \s\ H ^ • • IN r*. T W • • • • • • • • • • • • • • • • * » • • N K •-4 «-( 3 o* • • 3 O • • 3 O fi J- M w4 ^ a» » CM '^ «H 3- vD r O • • • • • • + • • *• • • » j Jt IT i 3 O • • 3 O 3 O o w K M J- • • • 3 l»0 • • • • • • • • • * » • » * • • CV; rj ^> r o • • 3 O « • o o T> in - J- u> • • -t lf\ o « ^ in • • • • • • • • • • * i 1 i 3 O 3 O O 3 D 3 O 1 J- M => n in • • ^ J- H ■H n vD • • • • • • » « • • » • • • • » in V fV) 3 o 3 O • • 3 O 3 O • • 3 O O ^D n (M n ^ o n C CM r pj • • • • • • * ! i • • CVI CM 3 O 3 O • • 3 O 3 O • • 3 CO M U • - n » M J If 3 C = N s D r-l D • a S a o o o • o • c? CO s n ^ •5 in • • £1 UN • • • • • • • • + • • + • • • • w O • • 3 O • • 3 O \J O X> ITt H « D P^ K- CO H J- H ^ • • • • • • • • • • • • • • • • 7^ CJ 3 in • • 3 O • • 3 O 3 C3 P lf> »* Pw H W 3 PO o in J- PO J!5 • • + • • • • • • • • • • J- IT D ON r J- 3 O • • 3 O = <= 3 .C » CVJ H CM ■O ^ H -H • • • • • • + • + • • •• • • • • • • • • 3 O = o • • 3 O is >. J- c o H (\i F\ (T J" UN H ^ . + + • • » • • • • • • • • • • • • OO (T 3 O 3 O • • 3 O 3 O o o o o ^ fo BO O • • LO CO U> J- n o • • 4- • • m • • • • • • • • • • • • • o o 3 O o 3 O S O X> lA * fy ^ ro • • J^ CM ■o rj n PO • • • • • • • • • • • • • » • • M M 3 O 3 O • • 3 O 3 o • • 3 O * UN 3 lA M -rt H M » (^ r O H in • • • • • • • • • • • • « • 3 ^ 3 fO • • 3 O • « 3 O t* n 1 CM H W H ^ • « n J- y J- D CO • • • • • • • • + » • • IM (M 3 O 3 O • • 3 a 3 O • • 3 O >. eo M w rt W n (M [JN CO 3 ^ • • • • • • + + • • CD a 3 in 3 in • • 3 3 O • • 3 PO n • « ■•^ o D J- M O « • • • • • • • • • W J- \i p*- o o • • o 3 O 3 €3 3 O O O n ■iH • • n PO D cr •^ \£> n PO • • • • • • • + • • + • • • • IT \C 3 O O 3 O • • 3 O 3 O ^J \D £ Pw H T* *. T^ £> J" cr pw 3 P^ X> \D • • * * • • • • • • • • K> in \J o a o 3 O a IT. a CO o cr NJ ^ r-l (O ^ *£) r-t O O O • • • • • • • • • • + » • • 3 in 3 PO • • 3 O • • 9 O H •H n -* ■H -rH n -H ^ vO i) cvi H ■»-< • • • • • • • • • • » • • • • 3 O • • s o D t^ r-4 CO * in • • J- in n th n ^ rH M « • • « + » • • IT »p 3 . • • * -H J- .H n n N ro • • « • 4> • » • • 3 O • • o o o o fM O^ D C3 M -H «-* O \i in ^ flO EO -M * * • • • • CD O 3 O s o D O 3 flO H Cd f\j • • • • • • fNJ CM ; ■^ CD H O O 3 O • • 3 O 3 ^ Nj a Si c= U CP /> ■r^ H 3 \0 iJ • - >o a vD J cv D ■r^ E y5 • a M 3 • a a to ■H O o • C3 lC »^ D • O • o o J- r-( O • o • o o PJ tH • e: o • eo o • o • o kO o • o o J- o c • o ♦ c; CM If- 2, . r 1 EC «-( i.' 3 O • • 3 O • • 3 O O PO * CJ H W H C3 30 (T • • • • • • • • • • • • + * • • 3 ^J a w s o • • 3 O O oo H O H ^ QO CSJ • • H T^ 3 ■H D UN • • • • • • • • • • 4- • • ^ IT 3 O 3 O 3 O 3 O • • 3 O O W 3 O H «H \i C* • • f» a 3 O • • o • • D O oo in • • j> in ^ J- • • + + m • 3 C3 3 O • • 3 D 3 CD • • £) ro 3 in 3 K o cr H CT^ • • • • • * • • + » t4 «-a 3 O 3 O 3 CD 3 O • • »5 CSJ \i (T O tD Si w • • • • • • PJ PO <-4 w 3 cr 3 O 3 3 O • • O CM o ^ >- N. O PO 3 ^ D in • * • • • • • • 4- + • • rf IT 3 ^ 3 O 3 3 O • • Sj 03 O P^ r* CO r cr n in VJ (Vi • * • • • • + + • • o M O • • O 3 O • • M (\J n o »« 03 D o • • r> PO O oo NJ CM • • • • • • • • BO n M N. * -H H (M • • + + 3 o • • 3 O 3 a 3 a 3 T-t * J- \J vO O vO 3 (T O *D \J CM * J in no nj n C3 Si o • • CD S C3 • • 3 C3 n in O CM M CM NJ 00 • • x> in 3 in O CO M -r4 • • • • • • • • • • n PO 3 w4 • • 3 O • • 3 O M 00 »- CM r4 W O 'T-l • • O CM O -rH O W r4 T^ • • • • • • • • • • OC «-4 O M O • • o 3 O • • 3 O O PO H T-l H ^H H ^ • • n cr n -3- J^ cr • • • « + + * * rvi PO w a 3 o CD 3 O ii 3 O H ^ M ^ M PO 3 J- 3 O H ■»-< • • • • • • 3 O 3 O • • 3 O 3 O • • 1 J- IT 1 3 O 3 O 3 CD 3 a 3 ^ C CM ^ ^•. 3 a> n CM * ■*■ O PO • • • • • • 4- 4- • • X. K 3 O 3 O • ■ 3 CD 3 O • • D CM n * J- c <=> «- -»■ H ro N (VJ 4- * » 4- • • M (VJ 3 C3 3 (3 3 O 3 O • • VJ vD 3 vD (V J- rv vD 3 r^ iv l^ VJ (VI • • • • i (M nj j 3 O 3 CD 3 O 3 a • • <^ v4 * PO * J- 30 in • • • CO M CM * • * • 4- 4- * • ■M CM H CM M r- • • CM 3 O • • JO o rH xD J- PO ro -^ 00 • • n ^ 3 (O M O • • • • • * * + fr> ro P-SO J . IJ C3 i. IJ . » O >; m iU \D [/) oo 3 -1 w 3 oo E s >J = . O - « • a: • a 4 => CD =J O 3 O 3 O T« in ^s • • • • • • + • • * 4- * m • • • j • • 3 O 3 M 3 O O O \J J- r . \D X) -3- ^ CO •o ^ • • . J 1 i ! . .i ! 1 » J- IT Lol= = .^ C3 tt C3 •opj 3 C3 O O . ... . 3 a ^ o 3 o p cy H fo p^ ro o ro (Ni CM T> fo ^ £■• 0. « C *- o . . 9 O * o i-t w ;\ «0 . . • • • • i 1 j • • t a O CD 1-1 O °° oo s^ rvi M lO o iM PO in in • • • • . . . ' 'l i i i i • • + * + • • 3 O 3 ro ^r^ J- J- J- s. oo A J- • • • • • • • • I * • • • i * it' 3 9 O • • 3 O M M s^ fO H ^ • • c in N (T f« o • • • • 1 i i • • Lo 3 O 3 O \J OO V N. r >D ^^ u> O tH 1 • • 1 ! • • • • * oc a 3 O 3 O 3 O 3 C3 • • rvj f^ ^ cr tSJ «o • • C3 P«J • • • • • • • • • • • • i i i + » 3 »D 3 O s o . . o in •O PO • • • • • • • • . . • *i i 1 • • 1 • . ' 1 1 + *i • »l • •' (V k' 1 D ro M o 3 O . . ^ in n in . . o ^ 3 PO ho PO • • 1 • • j ! 1 1 . .j + + » * • •' ^ m 3 PO 3 in 3 CVJ 3 O 3 (r n in n in K^. EC CT M (J> ■O -» • • • • • • • • i i + + » » \J o 3 C3 . . 3 O . • 3 O n ^0 y c o t>. H J- H N. n O PO D in O J' O h. D o r N. 3 to . . » • • • • 1 : • * 1 j . .1 • • ' fr 3 O 3 O • • 3 CD 30 lA M W 3 ir» T» 00 D ^ H CT * W • • • • • • • • • • • • • • + • * + 3 C3 3 CD 3 O 3 O X> J- cr \D • • H • • • • • « • • • • 1 • -1 • • » 1 ■^ » • •! i J- IT, i 3 O 3 O H lO 3 PO D in * PO M <0 * « >» in . . * • 1 i • • » + » 1 It N M oo 3 O >! j ^ PO * J- ^ 00 M OO CO o * J- . . . . i i » » 1 * 'j OC cri i i 3 O 3 O 3 O *> J- O (O * cn iC to n .H «? PO • "i i . « » » ' 1 3 r^ 3 ^ 3 3 O n PO O PO . . H IC T P- \J PO • • I • • • • 1 » » ' *! tvj ro' ^ ^j 1 1 3 O 3 O 3 O • • M OJ •o to ft PO • • H (T DO r^ ^i w • • • • • • i • • • . I ED 03 CD O o a • • H C3 o ro D J- • • ^ tr« NJ CSi • • • • • • • • 1 i 1 j » » , 1 ! 3 O 3 O . . • PO T' OO N PO n -r^ T 1^ O PO M PO • • 1 1 i • • 1 • .! * * 1 . .! i j 3 O . • 3 O 3 O . . O 00 o in rvj pj n PO . . n \D O PO M PO • • • • • • » » • • M CVi 3 CD 3 O 3 CD 3 O t^ fO M M 3 N. W-* O M PJ • • • • • • « • • • • • • • • • » » • • CV. fSJ| 1 3 O 3 O • • 3 CD ^ ro 3 O o to • • H -H • « • • » » • • CO ai • rj NJ o NJ 3 O • • D O ts ro NJ w o rt CNJ 7* UN NJ \0 • • • • • • • • • • • • • • 1 i ••1 i 1 *! » • • O wt F-21 1- N -« J- J • Jj 1. 3 O Jj • > o J o rt w4 a iJ • - UN «a ro J o> 3 /I C3 a o N o o • a a BO «-t o o « o o lD • o J- o o • D M • O • C flO o o • o o xC o o o o o • o * -J 13 • -> z ^ • • • • ■H * 00 J- oo 4- -H »-( O • • • * * » * a o a o M o X> CO ^ J- « • o vD oo vO • • * + » y =3 3 O • • • J- • • ^ 00 n J- • * • • + » • • o o 3 o • • X) in •o ro o J- • • r^ ro ■O M • • • • • • » • eo a^ ^J u> a o y sO oo ro rvj pj • • • • t4 W • • o =3 O « • o tn M CvJ CO (M n LA • • » » • • 3 CD 3 O 3 O » PJ H r^ • • 3 O 3 O 3 a • u> rt o \J PJ >. fO • • Ti 00 • • • • » » 3 tSJ 3 CO 3 O o J- H T-4 o A CO • • » » CO a- 3 O 3 O 3 O • • 3 in D f^ o uo ^ 00 r J- M to • • • • + + 3 W a o • • 3 C3 • • r J- n >o n fO o in ^ iC O M • • » * » M fO y c3 3 ro 3 C3 \J Pd O yD \1 CM \1 iD D in r^^ o \j evj • • • • J- m M (M H CD 3 O C3 3 O • • n J- N CM ■0 nj o in M (\J » » n M NJ CD • • 3 O • • 3 <\J o * • CM ro 3 CD 3 O 3 CD 3 O t CP o «> M ^ * CM t »C D in M CM • • • • » » • • n J- H o 3 O 3 CJ^ H -H n lO n r-l 3 N M -H • * • • • • » » *4 ^ 3 C3 3 O 3 CD 3 O «. J^ n N. O (M M in M CM ^ r»* H ^ • • CD cr 3 O 3 O 3 O • • 3 OO M ^ •*. W iN J- • • • • » If CVJ CJ 3 O 3 a T» W H ^ H cr ■o J- « • • • • • » » pj ro CM CM H J- 3 o O vD in H ^ M cr •~ vC * J- • • • • " * d IT ^ CM O O • • 3 O o in n is H ■*-» O 00 H h* n CO * • iC N CM CV M 03 3 CM 3 CD » • ■. CT> vO H ^ 3 O • • ^ -* 3 -H M CM » * 00 UN 1! vO U T< n 3 o U • - (\i a (T J .H 3 c 3 \J s • D o o • o a lO r-( O J- D • O O CVj D • O O *H • D • O = D • O o iO a o . c o .a o rvj ? * (^ 1 IT ^ n ro 3 CD sj a O C3 • • NJ CO ■0 J- • • • • + « • NJ -H • • 3 O J- «\i 3 ^ •*. ro • • • • • • • • 4- » * 4> • • J- IT P ° 3 O 3 O 3 O o o D J- M rj VJ *D D in ^ t\j J r-l W • • • • » » 3 (\J 3 O = O • • o in H ^ r\ to • • ^ in H »H • • •• • • • • • • » » w4 w^ f\ J- = -i- 3 O SI CO * CO • • • • • • • • • • • • • • • • » » 3 vD 3 -H • • 3 O • • 3 ITS <^ \D f4 *H • • J- in DO o • • • • • • • • • • • • » • 3 in 3 o • • 3 CD • • n e3 D ^ H iH O o 3 >C \j CO M -1 • • • • • • • « • • » » H irv 3 O • • 3 O • • o in U3 in ■rH -H ro cr pj in in K> • • • • • • * » • • O wi 3 O 3 Q 3 o a n o r\ in »H ■»-« D \0 £\ \0 r\j ■«-» • • • • • • • • » » • • CS, IT M ev; n J- • • 3 O 3 a n in H • • rt CD ^^ ^ • • • • • • • • » * • • «H evj 3 O 3 O • • o 3 O • • s o H -H OO (C • • • • • • • • • • + + ■^ CD O CD O 3 O \i r«. M CD r>j M * • • • • » • in >r O CD 3 o '^ vO 3 in \j w a J- ■O CO n vD [>J CM • • • • • • • • • • • • n in 3 CD * J- ■O CVJ K. CD ^ J- J- o ro J- • • • • • • • • • » 3 O 3 CD [3 a T J- to in o ^ H CM 3 CO O PO • PO Z -* «» « vj a* o m » -< » PO l> CO • * PH o • UJ /) m » Tl H CO M (>. JN ^ JN PV = PC • o u tn z » • • • • • • • « • • • • • • z » «H r^ H H • ^ -1 s J CD H- « — * t-t ^ u. ON • J- L. t t- II '^ •H \J •H 3 O C CM JN J- [JN »H • M - II VI SI 0^ rt J- CN CM rt PJ JN W JN N • J- 1 UJ A «I • • • • • • • • • • • • • • Ll 1/) a • m 1 o oo H ^^ CT V |v H CNJ O i£ IN ■rH JN CT D vC M ON • PC ^ ^ Q CD O • .1 u. D vO V UN M ON c ro r-t Pv H UN • 1-t • • _l iJ u. C J D a\ C CO a ON o J- » fv • Pv V UJ I- • ^ Ul T ir CT IN (JN JN o J- V lO • CJN J- Of u • y^ o • • « • • « » « « » • » • • M a; 3 • D o o J • o O o »- O Q^ 03 00 XI J- rM o O IV *5 ^ * UN I O - CD kr . z Q!- O (M f. (T o C ON » CM A o n K • J- II z a: D • UJ 1 or K O ^ ■H C3 VCI H fO o o i) ON « CM jj «r 4? • C S 0> D H D q; lf\ o m - er O fO CM * -rt rH »H . CO i. ►- >- (rt ^ ^ '^ D eo nr E u I CK O 0^ 00 UN ON UN DN CM iN CT> IfN J- • CJ- D z k: • — 3 O J- C U^ »< fvj rg n r> J- * IV ^ (r . PC z kr . I ►-( a • • • • • » • • • • • • • • J. P-* If • X u; J- (M J- J' CM J- B rv iC J- iC UN . CO D X u • < fO BO NUN rt CM CO CM ON 00 M IC • 00 J >S3 ON ■H ON iD J- iX) o • CVJ — 2 /) • M 3- *-< ** fM J' o Jt *-( o fT CM ^' UN IC K • r rN U' a • Z o 1 »- — z • • • «-4 • • 1 • • rH 1 CM • • • • • • D o a: (/I £ UJ 1 1 1 Ui r ►- l-i z Q >c • PO o 1- C/1 e> a^ UN tk CO J- S CM m sD V J^ • PC ON 1/1 • 2 |v c:) If ^» CM UJ q; 2 Z CO CVJ CM (NJ ro CM J- J- pv PC UN w K <0 -.-1 oc UN D CM O tH OO • CT c u (O « \£l O • CM -J •t • 4 C ■H ■H UN • .c z c • -1 CQ i: m t-l CD (/I o W CT CT 2 • T Ul O xD UN ro ■n' iC C3 OC PC OC PC a . UN 0' *I • M > 2 c u\ ro CT CM cr -^ PC ^ UN OC pv • PC CM Uj UJ • O Q:: < • • • • • • • • » • • • • « » c^ z . 0. U. U. o- rv UN T^ IC IV • c oc u^ K J- •rf tr VC -H >o Pv J vC . CM n CD CI a- • LJ ro tr -< r CT u- ro J- ^ ec U' CT OC PC ^ w4 1H • »r D »-l CVJ U- U' CM -J • v^ or O UJ U-' >- >- 0^ u< m • ti- • d • U • >- T Z> tn z c _l u. > • g^ : z . I Uj od C 0. - 2 ^ => »- • Ui D o h- > O 2 OC ft (k: V I? Q. • 1- 2 z O 2 Uj CI C -5 Ul < U- X ft. « -5 T 13 UJ • 1-1 _l c a 1-t > • if «-' Z \n J- M CM r vc — • CC Z nC -* 1-1 z D J PC J- CM UN. c • J. oc > vC 1- ^ /I m CT CM K w 2 V CM If J- CM 1 1 iH K iH vD O 1^ n J- O PO * • O UN V ON rt J- « • * ON = CM O PV /N ,H C tC UN CN CM \l J- » nD • • V 00 ^J iH M c: tr PC * pv r ON rt rv r-l iH JN J- IM 00 10 iH rv iH C 02 1 T- CJN ^ nT M «J fNJ CM 1 1 V CO o V ^ * «0 ON pv 1 CM 1 V 00 ■0 J lO N CM (O fO iD CM O 1-1 rr w o iH -» CM >C .» O-' OC CM * nD •■ ICN • • H 1 0- J- C ON • • J PC ^J (V tM 1 VPO CM vO [M CT J- PO ON CNJ 1-1 J- ic cr cr >c CM IV li^ u- lO ■H 1-1 CVi Cv j^ P- Nfl IM CM O 1^ C pv C ^ PC UN C CJ D O IP o ■H PO JN nD * o M UN » ^ IH PC ■C Pv » NO H PO V 1-1 JN »C M -f Xi CM t\ Pv • • ON CM D PO x> ro • • o o H iH £ iC S> c= V o X) J CC •C IV a- j^ 1 CM V O H UN ON 00 •H 1 ON UN >c CT 1-1 O V P^ ■O ON 1-1 1 1 V CM IC o (M Pv CM CJN 03 J- rv J- l\ o iH ,C K PC vO \£ nO PC C UN CV' 1H J- rv ^ 14 UN •r-l 1-1 UN PC • iH • o • IM • O • IT • IC\ • ON . UN • fH • 0- . rN_ • • • V . ON • |v . 1-1 • K • i : u • > • c • or . « • D • r • JN • • • H • CN • A • JN • CN • M • * • r • H • • CN • M . t • O • M • JN • M • O • rt • JN • JN • • • • c • r • * • 1 • • t • JN • 1 • s : M • V • JN • 1 • 1-1 • CM • IN . CN • ON • 1-1 • J- • J- • N • «- • r • ' : b I U •: > • C • CD •. a • I'l 1 F-24 UJ p) I -IBD OC UJ a o I O O 1 I I- D a- z pr o lj «t or tt: z Lu UJ . o NJP^ e o- JN J- O U". i-l PJ • PJ O K W UN ^ J- \i T< pg UN /N h- . PO J> r< ■,4 ON 3 (O 3 ^ |£ ON N. UN : • • 1 • • -^ * H i'^ •^ u> ON CO (VJ vC ^ (>J O PJ PJ lO ^ T* • • • NO \j ON y£ flo rs- r- cr lO ON o oo • r«. 1 ON ON y CT^ lO^ 0^ 1 ON 00 '^ K • ON kj> ^ J- « f^ pj ^C w J- N- o ON UN ON J- . NO o '*-! ir> eo ^r N. & CO vD UN [NJ ^ UN O • PJ oo o •^ ro PJ 00 • ON • • ' • • • • • • • • oo C3 • • • • U^ •r^n ■r* 00 »H /N ^ oo UN ^ UN k\j r«5 1 m M "~ M UN m PJ • UN ^ r^ «o T< rt to PJ »H 00 ON ON PJ !>. o J^ . ^ oo 1^ fO CO ON ON a • PO U^ tr. sO QO . vC tr^ o ON o- r^ o J- J- •rf UN • Pv •O \D •r^ T^ r^ J- ^-4 • oo -^ ^ i^ ', 03 J- • oo u^ CO ro pj to (O ON o J- NO O ^0 • ro a> UN »-i pj CO ro N5 J- l»5 UN N ON . 00 • • • • • O (-0 J- J- r^ UN OO r^ tn oo >C UN . fs. ! . N CO |l^ UN UN rN. oo PJ IN. J- PJ PO • UN j • ^ r»j iK N. U-. N. r^ ro to o^ UN PJ . UN . 1 li 1 ON « ij- ^5 1 1 |i 1 1 • ON 1 . . 1 1 . i D UN ;UN ON J- K, '»E W CO fN. PJ « . 1 • • ro ; • K »C '.rJ ON ON C3ir) 1^ ■^ J- r^ -H . ON, . l°°°-*. vT K ;(Nj ^^ IWN lO ".': . pi . . • • • • 1 * 1 l' tH W 1 i' • o , • ' • 1 • J- J^ liO eo fO UN.W tH o J- P^ ON • • PJ CO J 1 J OO UN ON o w UN lO CO J^ • ON K) «> ;*-! ON K N I^C •-( K UN o i< :": o J- to 1 CO 00 *H U" CN^' flO c^O^ • UN •H 1 •" .rC 1 1 1 • 1 tr UN .UN o ON CO J- O UN J- o PO : = ,(N0 M JM D UN ^ o~ fr «o ON ON J- • C3 lo o) r~j h~ o- fN. nc p^ J- ON ^ ON • cr ■H irt ,J- fO O f^ |(^ « M J- UN « . UN «M »c ,«No ro flo o' i(o K ty \^ PJ w . ON 1 !w 1 :' 1 1 1 1 1 1 1 • 1 ; ^ J- ,I»N oc K «C J^ IV ♦ UN T-i »C N er kC or CO UN i*-i (NJ OP ^ • «P • UN. Co ,»C ON J- 0- ,» PJ c «\) J^ PO . ON . • * ! * • ic\j c a ^- N I*-" u. .f. c ^ J- • J- ' • lo h- 'ON o U-. .» J- COON ON «H ON • -rH • i(NJ co|^ J- K Pnj ;ro J- , oo 00 r»N «~4 • r' • ^i« l>o ^ PJjf^. • • 1 UN CNJ . IN. K U- UN UN CO c^ CO T^ • *H • !- Q' tr • X • ,uj mice a < »- I • • CD X I « 3 I _| VI u; • or • 'C U. U.' O » C''!- t-i >- 3t- • UJ • IK > t; r (D » iQ: >- 2 ^ is a • K • C3 CU' «« Ul «.a « 3 D = U.' • < • |0 2 i 0-. u. »: a X -i -5 «j <« • X • ! t lo (J o or z UJ <3 I Vt iQ: UJ u, ON ^ UN J- • iC • P«* J- • J- o UN • ro • tO ON . ON . * • nO OO Pv ON J- .» UN UN • Pv . ON ^ p>- lO lo UN NO O • Ip • UN o 00 PJ ■^ J- IV cr . » • J >o (T 1^ c UN 1 ON 1 ON 1 CO ON 1 PJ 1 i • J- • 1 • PO PO 00 ON nO >o IV >0 • o • _l -J «-< J- P^ IV OOCN. Pv o- • o • « > • • • • • • • • • • .' Q: o: *-l •w* oo J- UN OC PO *-* • UN • u: UJ «H PJ oo o PO y^ UN vO • IV • t- ►- 1 ^H CNJ PO NO PJ o • rvj • 2 2 1 1 1 1 CM • 1 • »-t l-N 1 • (rt o J- (VJ UN IV PJ r • u- • u u er c PJ o u; o c CO • tr • K UN K cr N o c PJ • tC • c:: o • • • • • • • • • • • U u. CO •f-i N ON c? J- J . ^^ • > > »c •r4 p»- J- o PO J- u> • U' • or or ^ J- ON w ^ OC J- cr . 1*7 • u U; CNj J- >r PO . >c • (/^ l/J ^ CNJ • CD CD o C «-( O fN, PJ PO 00 ^ J • pv • PO *-l PO .0 J- ^■4 PJ ..-1 . UN . o c PJ PJ «-l *-< • ^ z . fN. PJ e e- o ^ UN PO p^ • o I iH tC J- tT o o N o PO PO • o .1 PJ nC UN o J^ PJ ON o- . UN . ^ pc- U- (JN J- ■a • w •! ' 1 1 1 1 1 1 1 1 u • u * o «H f- cv, C3 c e «-* UN > . > . •H ^C .» >£ o o N ON o • o • cv- vO u- c: J Pw' CD . ■r • ^ PO UN -i -H a ♦ II a. I/) >- CD I- 1/1 UJ z i/1 u. 3 S O » UJ _l z o u. o o ■j^ s- C <_) 1- < 1/1 a ") < r> tf. -« a I- II ui < lt, »- a: U UJ UJ C S Q. > Z o c c c o q: • • • o o o a- ct a o o o • • • • • * > o c o (/■, o CO X ^ o o o it O IT c 3 — o o ^ o o o O (\J o kD • • • o o o • • • • • • ;n o '\j '-'-'-" '-' ^ — nC u*> o o S vC J (V CO k: rv OJ i\j O t\j C7- aj en i: c c o m . • • 1— • _J o o o tvj rvj U, S. _J • • • s » < •o in x: i_i z z u. c vil o o o in iNj ^ r^ — UJ _l u o o o PnJ CO O f>J u.' _j i. a — — -■ _J • • • o o o rvi -1 4- -1 H- CE H-, □: cr cr C3- 3 • U Q 1- I/- . • . U.1 X a. 1- □: r I < Q- Z X o — <\j n ID — r\j n eD -1 (\j n a: a a: 0-11 (V n o K o o o o • • * • ^ n ^ ^ in (\j n vC -t in cc o o i~i o o^M— ••-•otvjnajfnn IT IT t^ c ^ o o -- o o in J ._ — o rv cc >t r- (^ in ■X) .-^ (T -t o o (VJ o o • • • • • o n ^ ^ o (VI r-- - >- in O X < •a < < < < 1- < < _) UJ _j UJ _J Ul a. _j □; UJ Q. UJ ct Ul oc O C < o < c < 3 3 O 1 1 1 O O t- UJ UJ UJ UJ UJ UJ _l _l in 2 C s: o ^ o u. u »-. t— t < •— t •- ^ c 0-12 luooooooooooooooooooooo ooooooo a, • •••••• • o^r^cccto^\OsOLO*3-o-4-irotnira'oooc'^c^^n^(\in(^J^^co vc^ocrcoinnirj o > • II a O * < o 2- vD o ^-1 o H- UJ O o z o l/l • t-H IT, rr l/l »-< ^^ o T A • + o in «v o 2 I (J or O o Qi a • 2" u.' o a: o a: -c I I I I I I I I I I I I I I I I I I I I I I I I I I I 0-19 UiOOOOOOOOOOOOOOOOOOOOOOOOOOOO o — o-*r^-J•l/looool^lno(J■^^^c--co^-r-o>(^r^.t'O^J'-<-"^^l £)(\ja*f^(\j>or^r^tr(\jo^r^-*(Vioo<-c < n i X ^ I I I I I I I I I I I I I I I I I I I I I I I I I I I I 0-14 UJOOOOOOOOOOOCOOOOOOOOOOOOCOCO ^••••••••••••« •• oo«Ch-Noonoir^o^ccr*-irtacr)oosCO*rvj»occcC'-J(\jf>j{\j{\jojf>j in cc o o >• . II .r o ♦ 4 o 2 -t O 1\J •-4 o ►- iij < t- ^- < Ul o -1 . 3 ^o c y A c ^^ ♦ ^^ (/: V (Vi II — « tt « « _l o — -JO ■o < x> u. — I — u.--(vn,j — (Vjn J -J ^i\jr'-^^(V'tr >}•— r\jr;-j^fVf^,j I I I I I 6-15 o o c c X o o o Q. • • • o o> o n IK in 00 o rvj ry n a • • • o or o — »C n r^ fo Q. tr fn o- UJ -* (\J •* 1- lij a (/) ac lij c 3 q: . . . 00c UJ h- 1/1 (vj vO oj 3 -• -H z ■5 <»■ CC n CT- rvj _) iT • • • ^H rvj fv > z CO (J- i\i ^ < rsj o^ — -t CO ^ — TJ M — J- — Z) • • • UI • a tn o o 2 2 U. O (/I o o^ o- 1 t- - < z < l-l a 2 o> :d m •-• --^ Ol a • II a s. <_! to ►- oc •3 »-H H- (/I UJ ct 1/-. 2 iT U- o 4 t-M t— 1 o CC O l/l a: CL 1/1 a. 3 j: o c • U.I z _i 2 a li. o o f— i/i r 1/1 u. y: < o U P- u < (/) Ll' a: -) -a U.' li' u- o X a c UJ • • • I o o o o o o •-ru '^ (>j 1 • • • ujo o o a. o o o UJ o c o o • • • o o o f*) CD (S CD 5C OJ (\J M _J o o o •^ o 00 o (VIO — o (JO 1^ o oi^ -• r- n 4- m • • • Ifl i/i a a UJ tr o o o UJ i- ujir o in 1- U! UJ 3 CO ^ CO UJ UJ z o • • • z 3 < Q. fu rvj (M < -1 (T a < < < > a 03 o o o o n -I n a -1 UJ n 0- fo IS < z • • • 2 f^ 3 >- -J Z t-H 1-^ O 1— 1 2 a > 2 o o o ^ •-4 0. o z UJ Min CD l/l UJ UJ 01 < IX _1 • • • a. ir tn q: 3 r>- 1/3 r^ ^ 3 l-H o 1- 1- t— I/) o (fl 1/3 V) a ^ o 4 l/l CK 1-4 Z O !M o t-M UJ ^ o ^ ft a o 1/3 l/l -H '^3 o o o • • • z s NJ o OJ O z z l/l o » o 3 . . . o 2 _J _l _l a »— 1 t-4 1— 1 t—t 3 »— o o o X o o o IS (/) (/I Z o o o l/l l/l OO c o CC o- o c o > > • • • • • « o *-■ 03 a < > C o o yi— e -• ^ -« o o o ^ o iT o s o o o a. «i ^ o c cr o (\j o o • • • UJ z o o o • • • > o » • • IT o (\J NH »-4 >-4 .-4 .H r^ V4 r^ ct K- < vO IT o o 3 J- ri CO u. cr 1/3 i: -• UJ _1 o o c c MO- — ^- »— > • • • ■» C _J O O t-' • • • CC Ct 0- ^ elf (V! •* -< -- O tvj If a r> ,_ ^ l/l (\J c d ■C (VJ r^ r^ o o o o • • • • J- r«j „ ^ ID (\j m n \C n a i~- o o o o • • • • r-i n ^ ^ in tvj n n vO ^ i/i CD o o -^ O • • • • a (\j _ ^ c (\j n (C n n If ir 1^ a o o f^ o o • • • • • IT -t ^ ^ c (\ a J r- r- IT •C f~k >- > in o J 1 < < « < < K < ■a _i UJ _J UJ -I UJ a _i q: uj a: UJ or UJ a: 1 IS o < o < o -'t~-r^.tj-r\j — eooooa a^««<. ••••••••• Ofnoi/>fvjno^cD'^u^r-r*)iro^^^.*^(Tnooa'ocD^'*^oa'o(\jcotrii/i'tirirn(^o>cirr^oo^fO u.ocecr^r-eD(^(*^mr^^^oo•-l-co-o-\c-ti/i-»-ccin O iij...... • ♦ 3 ^^ojOjn>tir)ii*i'£)r^o(Vjinco(vj'CO^(\i.*mh»r^r^r^mnoNOfvjcoi/>(\ja^r^>cir-*'*o I/) liJ I/) OD o O >- • II (T O «■ < o 2 o O (\J ■- n O I- LU 4 K- 1- < (/I c _l o — _l o vO < O O- li. -» ^ (V) O O 2 O *-. o 1/1 l\l s: A . ♦ o l/^ «* o 2 o ~ vC _l O -■ o o :s "3 -* o t- 2. I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ►— vONCvi>f^^-r-r-'XXGDco(T'3^c>a'ooocr-t.-H^^[\jf\j(\jt\jnmnr^4',j4-^ir!iriirLrtNCNC^Cvor^r^r^r^ K^^^^^^---.^^^^--*^^,-.c\J(^J(vrvJ(\Jf^J^yrvJr^J^VJ(^Jr^J(V(^J'\]OJr^Jf^o^;f^J^^-rv^VJf^.>rvJ^^J(^JfVJr^o,^)(^'f^^ 0-21 ujooooooooooocooooooooooootn^o^oi/ir^fvj^'a'ooirp^ir'-^oDvon^inn^fO or • orn(\jojc>C'-^ccincoo^o^^c\i(\juiO'f^a*ina'oO'r^*i)m^r>a'^(toX'£)cO'-*cD^»-*o^^^»o^r^ u.r^rironr)'^*c^iroocoCT>iricD^ocDa^^ccojo^nfvjno*tn^oc7'ir>xoo(\j^ir)ou>>o-*r^m^r^f\joo^ DC „„„_„«_^ O uj... ..«.....«•.•...«......... ......««.««......•• ^-<^J(^J'"r)--*»-<(VJ^oa3^(^Jnr^^n-t^O(^o.-^a)^com^m(^-*-o-"n ^-^c-"o^-<«r)0'l^^oc^ln<^oo■(^i'-l^oln'0-*^-r).»^-Moo^ _j„_t-Hr-o(\j — ooc^n-tc^•Xltt)(\J^.c^n•»r)^^c^J^^o^on.*>o<^4C^^n<^JC^^-l^n^J-«(^ > — Or UJ CD O o >- • II a: o ♦ < o 2 o O -C < tn o _l • zi — o Z A C — _l o *C < o a- ii. oj O o Z o (/I -I 3^0 X A . t/) ♦ O ^ I O UJ 1- X' or o o 2 UJ ~ •— ' + cr 1 U' ~ C o 3 •a '\j c t- _l I/- O * « « « 4 (\ir;-j--<\jrn^-.tvr'i^--fViri^--(\jr--*^(\jr>j-— .(\jr>-*^i\jri^--(\jr)^--«fvjr-;-J'-<\jroj'~<\iri^ I I I I I I I I I I I I I I I I I I I I I I I I I 0-22 looooooooooooooooooooooooocoiTicoa'r^o^fOirtrnh-fvjcD' • f^omo^ooDfOi/^n oO'iniriccifiirf^^o*0'oa'0'Oo^^flCf^o*cff'^oo^(\j^m(\jirtir(C(Mfn^-»r^^NCncr^onNor)f*-0' o^^^cf^J■*(^J*£) _joOGDcocccoi-t^no^n(\j^o^ir»x%0'-^n^*cor^fvjLrnfor-t*-r^co(VjvCi/)i/>'*o*r^^>*fficoiri^o^C'n'^ 3 (^J^nco(^Jeo■*oln(?>r)^-o(^JrtC^•a(\J^-m(^>0(^J(r)*o^n — coin o o UJ (VJ > 1^ q: UJ IT a> o O X • II a: o + < o z o o -t l-H -c O t- UJ < t- t- < t/1 o -J • o ^^ o X A o ^^ ♦ o cr. V >c H ^.f in « o Z o _J o -^ _J o vO < o IT- U. 03 •-« -3- • + H V UJ ^-' o u. • o 13 o z o ^« o (/I * X t- z (r ~ u. — • Uj Q z t- UJ o C I- • _J c a U.I o O o ^ ^p^f^jr^^^(\jr)Nj^ojfn^«(\jnst^(\jr^^^(vr>-t^f\jn^'-«ojr)^^c\jr)^^r\jrn-j^r\„ro-j z: I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I •-'OvO^{^(^r^f^j^(vj(yj(y;(vj(\jf\j(>jrufvi^jrvjfvjrv<\jr»j(vtv(\j(\)^j<\)i\ir\jt\;(\.'rvj'vi\j(\,(\j a-n t; o o c X c o o Q. • • • O K (\l ri Q: .t o o o >o o o n (VI o or r~. oc (V CO h- CO UJ O -H ^ or I/) ,^ o .-^ a UJ o o o Z) a • • • o ll.' I 1- i/> r^ r* o 3 a r^ r^ l- o o> _l or> • • • O > (VJ ir ro (/) r: (\j -n •5 K -f ir K T r i: o < Z u.' O ^ — w -i _' q; u_ _i u IS O o a < (_) li r: o ►-. n u. 3 l/l a o o Lu ►-. oc — O Q. H- uj X a >- tX S D < 0-24 SAMPLE INPUT AND OUTPUT FROM OPERATIONAL PROGRAM — EXAMPLE THREE 1 1 2 1 1 2 2 16 2 22 1 1 1 .25 9.0 2.73 0.0 0.0 0.0 .20 1 5 2 17 .03 .25 .55 .41 2 18 .25 .50 .01 .00 2 19 .65 .21 .16 .52 2 20 .09 .03 .61 1.56 2 21 .18 1.23 .91 1.30 2 22 .98 2 17 .05 .68 1.11 .96 2 18 .50 .61 .01 .00 2 19 .03 .37 .19 .20 2 20 .00 .00 .60 1.36 2 21 ,2U 1.01 1.28 1.46 2 2? .86 2 17 .03 .43 1.13 1.09 2 18 .60 .65 .13 .00 2 19 .13 .35 .20 .30 2 20 .03 .01 .65 1.45 2 21 .32 .97 1.10 1.25 2 22 .76 2 16 .095 2 17 .027 2 18 .098 2 19 .038 2 20 .025 2 21 .011 2 22 .022 2 16 394 383 380 375 2 17 372. 383. 490. 1931. 2 18 3458 4131 4875 4907 2 19 4403 4115 4419 4571 2 20 5361 6244 6631 6889 2 21 7863 10810 16009 19559 2 22 26680 2 16 236 233 232 232 2 17 230. 236. 1711. 3268. 2 18 4215 4650 4480 4080 2 19 3691 3350 2984 2511 2 20 2902 2882 2595 3049 2 21 3687 4729 6895 10339 2 22 ] L7420 2 16 1267 1239 1225 1225 2 17 ] L218. 1225. 1275. 7017. 2 18 ] L4071 17059 18179 18640 2 19 L8559 17919 17359 16419 2 20 ] L5144 13928 13287 13800 G-25 2 21 15126 18939 23351 26960 2 22 30089 2 1 2 1.3 3 1 2 .75 22 35000 40000 43000 2 23 45000 45000 43000 40000 2 24 37030 35490 33025 29950 2 25 26275 22220 18665 15190 2 26 12200 9560 7550 6250 2 27 5350 4660 4110 3650 G-26 O K 1 >- OJ Ui II (VJ a _j iij >- o 2 u. 2 *^ ■c Z o- t-( Z3 n a a. a. » a II a. HH 2 2 _l 2 O a: •-H U. o o Z) h- 1/1 S" CD 01 u. ic: 1/1 < o O P- UJ o < U1 HH lij or ~) < t- q: u o »— o I bJ < u. s a: fl 1/1 H-, d I- II UJ < LT (— a U.' Ul Ul o 2 a < < o o a < z a O-tT _l o o o bJ o o o .* c c o X o o o o o o •-■ <\J — a. OC o o o a o n -( n -J UJ r^ O- r^ o < s • • • z l-l 3 1— _l z H>4 o *-* 2 > l/l coo o in o 1- " z UJ rsj ui a> iTi UJ UJ < a -I • • • or or a 3 h- in r- 3 3 o »- 1- o l/l in tn 0. -1- o * • • X Kl O fVJ o z z in o D • • • 2 -1 _J _) t-H t-H 1— t »-H t— o o o X o o o l/l l/l Z o o o in in 12 o o o • • • « t—t cr > o o o m — * o ^ -I •-* o o o i^ c in o s o o c < y: coo o i\, o ■^ • • • z o o o • • • o o • • • in o nj h- t ^ LC cc in ^ M rvj 1\J O — f^ o U.' in :c C c c in • • • a t— I _J o o o . — 1 (V nj o u. z 2 _l • < • • • i/i D n c- r^ o o o o • • • • -« fO ^ ^ IT (VJ n n >C J^ in « o o ^H o • • • • 0> (VI ^ ^ o nj n 00 f) n u- ir t^ CT r~ o o f^ o o • • • • • IT J ^ ^ c (V cc J ro r- in>c -^ o- ^ o o M o o • • • • • o n rt „ o (VI f-- -* m n (VI o IT h- -t o- -c • o o •-H o o (\j • • • • • o o ^ ^ in (VJ -t in n (^ — o ro CD o in (^ o o ^« o o c • • • • • n in >- V >- in o X < < < < < < I- < < _i UI -J llJ _l U) a. _i (T liJ q: UJ ac UJ Q: 1 OO 1 o < o < 3 3 O 1 1 1 O O t- LJ Ul Ul iij UJ UJ _l _J in I o r o s o u. u. *-i *-i < ♦-♦ 4 ►-^ 0-29 UJOOOOOCOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO a •••••• •#...#. ................ .......... orooinojpno^oD^irp^niria^^^^^o^rooo'a'ooooooooooifioirioi/iooooooooo U-ccccr^h-cconmror'Oo^^r^vO-*ncc*£)^oircoooooooofna^fvju^f^ojN£)(7'0>oiri/>irNO^^ir I r>nfOPon^o^^^ccO'*'-^**irm(\j'^cccDttioir»coooooooo^oo^(\jc\j>o^(\jinLf>(VjnNO^N£) o Oi-Hf\jccf\jr^Lnr^^u^^c^^^f^^GC»c>*roir>vcc^sCO"ocooooooooocooooooocooc UJ«« • •• i-*co(\jor-oo(\jryco — — Ln-or^^o>c(vjvcmom»£)vOf^ _jn(V](\j(Vj(\)*>caj-cc(\jcoi/i(\jr-.CT-r-vOoinnmm* I ^ « ^ w (M (VI l/l CC o O V • II ct o + < o z o O o " J- o t- LJ < 3 « c i A O H-* + O l/l V LT, II ^ m « O 2 o »~4 • _J o «— 4 _l o vO < o o- Ij. o ^H n • + CD V UJ ^ o Li. • o O o ■Z. o 11 IP l/l /XJ • 1— t If, a l/l 1— t -^ o T A ■ + O i/) ^ C' Z o y-* o _l c oi _1 o h> C: 2 O o cr a • O o "S <■ in c I- rijrij^r\.'r^^^(\;m^^rvjrn^--f\jr)^-^(\jr)j-'-'(\irn^--'(\jrij-«(vir).j^(\irij--<(\iri-j-<(vri.j I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I sC-C^^-t^^-^-cccccrccOJ^l^^oooo^^'-^r-*(^JfV{\JOJm^nnn^st.t■tLOLPtnl/l^D^^^C^-l^l^^- o-so UJoooooooooooooooooooooooo(\joirr^^^on(D^^ooiD'3'r^cD>o^r^^»i-fvjcO'CD a on(^J(^JOlf)«ooUlooo-i/io>«ai-*rwririr>j.c-cwa'ono' lo•*o^on<^lnccc^no*^-inrMot^>c-toj \n «r^.»-»^^nn(^i(VJ(^J(\J(\Jnn^>oop-^(VJ^o^^l/l(^Jooc^^cu^-3■nn(^J(^JtVJf^J^>-<— <'- o ciooo(vj^o.*nr^4^ lij rj^ffroo^mccr-ioi/ioc, n.t(\ioi/ir^^oncc--xiri-»f^tc\ccrr--^^(\jao-cc X rt rt ^ (VJ (M (M.pJ rt « rt —1 (/I o o uj r«- > IM Q: liJ in cc o o >- • II q: o ♦ < o 2 o o -* 1- tu O I- llJ < I- I- < l/l o _) • O — O X A O l-H ♦ O t/l V ^ II ^ rv) • < _l o -< _l o >0 < O O- ll. CO Z O ►-. in i/i -1 o q: a 3 — o H) /\ • (/I ♦ o UJ ^ o •-• o I- (\l q: o o 2 a • UJ o sc: ct o V o o vD 2 UJ o T t- UJ o c 1- * _ o a U-J o n o 3 •a n O K o « « « « « Ujnjn^^ojrn,j^{\jrn^^(\jrn^^f\jrnj-^ojrnj'^c\jri^r^f\jri>t^(\jrn^'--rvjri-j^(vrisj^c\jri^ 2 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I t I I I I I I I I I I I I I I I I G-Sl UJOoooooooooooooocoooooooo^ol/lf^J^o(^Jooor>*o^nCT'0^o^'*r^a'^ooo a u.r)(VJOJ-<(^Jr^'-^^ln^--»ln"U^'"■*MODo(Vlr^ln-f>ooo>cnr^(^J^-(^*'<<^(VJoo-<(^r^<^o^^ln(VJ■tol^mf\Jc^>D(^J^^-*r^^J■ o Qon^^f\jn^oir»(V»-*o(\jccon>c^roo^oscO'*roa'»cO'c ^••••••••••••••« •• H-eo■*ot^n.ta)on>-<(^(^oJ•oooco^D(^^0(^J-*-*fO-»cOlnoo•-i^n^t^Cl/la)'Onoo>-"r^•*£^^»^o _JeDooooeoooJ■oo«r^(\Jooo•*ooco(\i^(^u^.*^OMoo^^lr)M-»ol^u^(^JeD^-l^-"(Vlr^J(^(^>o^Jl^•»nlO^ 3 «r)lnt--a'•-oln<^ml/^^(^Joon^-0(Vleo^f) I -«.- — — -<-<-<-Hfvj(\j<\j(Vjnn^>tin>Cvc>oi^f^t^N>c>ciinin-*-*rinn(\i(\j-i-« O o UJ (M I/) m o o >- • II a o ♦ < o z o O 4- i-r >0 O I- o ^1^ o I A o l-H ♦ o 10 V ■c II ^-' in « o z o )— 4 ■ _l o ■-H _J o -o < o (J- L. CO »-< -t • ♦ CD V UJ *-» o U. • o o o z o »^ o in * i—t or O _ o (T A • o + o IT. ^' o l/l o UJ rvj o n 1- UJ 1- 1- < nr X o o « • a: 1- ;r u: o Oj > z a: — + o u. — • * * ♦ _J V o z « a UJ o o o 3 < CC O K o « « * « « • t^J^'^■t--(^J^^-J--^y(^-t---J— (\ir)-t«ajr)-J--(V(^-i'-rvjri-t £ I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I t-t*£\0«of^r^f^h-cO(Xcocc(j*C'(Tc>ooc>o^Hr-H^-<--.(\jr\j(\jfVjrnri(*JfO-t^>tJ"L/>u^irLri^C'DNOvCt^r*^r^f^ I— ^^^^r-i^^^^^^^^^^^vJ^y^Jf^J^VJ^y(^Jfu(^JOJr^Jf^J^y(\J^VJ^^J{^J(V(^J(VC^Jf\Jf^J(\.'f^^(^J0Jf^J^VJ(V^J{\) 0-32 O c c LT X o m f^ a • • • o r- ^c ^ a » (\j — o M h- o n ^c f^ a r~ cc o oc (T •^ -I • • • < ^C f^ in t- o K a n cc cr vt 0- -c a 2 IT. r-. « 4; < r-j -t — nT :^ /) yr u < Z Li. O 2 — li. _l _J or UJ _l O O o o or -H x ►-. O Q. (- oJ X a (- a: s X < Q. ^ I 0-S5 APPENDIX H CALIBRATION PROGRAM - INPUT AND OUTPUT SAMPLES > SECTION H.l CALIBRATION MODEL (NWSRFS3) INPUT SUMMARY SECTION H.2 SAMPLE INPUT (OPTIMIZATION) SECTION H,3 SAMPLE OUTPUT (OPTIMIZATION) SECTION H.A SAMPLE INPUT (SENSITIVITY ANALYSIS) SECTION H.5 SAMPLE OUTPUT (SENSITIVITY ANALYSIS) H-1 SECTION H.l CALIBRATION MODEL (NWSRFS3) INPUT SUMMARY PROGRAM NWSRFS3( INPUT »OUTPUT , TAPEl »TAPE2 .TAPES tTAPEA ) **»»«♦»*»»**»******«*»***»*«**»***»*♦*»*»**«**»»****«»*«»»»»»*«»*»»»«»»**«*»»♦#» »»»»*«***«»********»*«*»*»****«»***»»«»»*»***»»«***»»»»***»*»»*»»»#»»#*♦*#«««*#« C NATIONAL WEATHER SERVICE RIVER FORECAST SYSTEM (OPTIMIZATION) C (SENSITIVITY) C (WARP) C INPUT SUMMARY #*»»»****»*♦»***»*«*********»»*»«**»*********»»****»*»»»***»»»********»»*»»##«#» ♦CARD NO. FORMAT CONTENTS ************«***************»******»**»»»«*»«««♦«*»**»»**»*»»»»*»»***«♦***♦»*»» CI 15 TAPE NO. OF PRECIPITATION TAPE C 15 TAPE NO. OF PE TAPE C 15 TAPE NO. OF TEMPERATURE TAPE(SAME AS PE IF NO TEMP DATA) C 15 TAPE NO. OF MEAN DAILY FLOW TAPE C 15 TAPE NO. OF 6-HOUR FLOWS(SAME AS DAILY IF NO 6 FLOW DATA) C 2 15 NO. RECORD SKIPS FOR TAPE WHICH HAS PRECIP. DATA C 15 NO, RECORD SKIPS FOR TAPE WHICH HAS PE DATA C 15 NO. RECORD SKIPS FOR TAPE WHICH HAS TEMP. DATA C 15 NO. RECORD SKIPS FOR TAPE WHICH HAS DAILY FLOW DATA C 15 NO. RECORD SKIPS FOR TAPE WHICH HAS 6-HOUR FLOW DATA *»»♦»**********«**»*******«**»*******»********************#**« *********-x-**»***** C 3 15 NO. OF MBP AREAS ON INPUT TAPE C 15 NO. OF PE STATIONS ON TAPE C 15 NO. OF TEMP STATIONS ON TAPE C 15 NO. OF MEAN DAILY FLOW-POINTS ON TAPE C 15 NO. OF 6-HOUR FLOW-POINTS ON TAPE ********************************************************************************** C 4 15 NO. OF MBP AREAS USED (NGAGES) C 15 NO. OF PE STATIONS USED (NPEGS) C 15 NO. OF TEMP STATIONS USED (NTAS) (NTAS=1 FOR OR 1 STA) C 15 NO. OF STREAM-FLOW POINTS USED (NPTS) OR C NO. OF UPSTREAM INFLOW POINTS NEEDED *********************************** *it****it****************i^* ************ ******** C 5 515 IDENTIFIES THE MBP AREAS ON TAPE TO BE USED IN THE RUN C ALSO DEFINES THE PRECIP. AREA ORDER FOR THE RUN C 1 TO NGAGES VALUES ARE NEEDED C E.G. 5 MBP AREAS ON TAPE » ( NGAGES=2 ) CARD 5. 1»4 C THEN THE 1 ST GAGE ON TAPE WILL BE GAGE 1 FOR RUN C 4 TH GAGE ON TAPE WILL BE GAGE 2 FOR RUN ******************************************************************************** C 6 515 SAME AS CARD 5 ONLY FOR PE STATIONS ******************************************************************************** C 7 215 IPEA(1)=1 , IPEA(2)=1 WHEN ONE PE STATION IS USED C IPEA(1)=1 . IPEA(2)=2 WHEN TWO PE STATIONS ARE USED *»«**»»«*♦*»***»**»***»********»****»**********»**»*****»»***»****************** C 8 515 SAME AS CARD 5 ONLY FOR TEMPERATURE STATIONS ******************************************************************************** C 9 215 SAME AS CARD 7 ONLY FOR TEMPERATURE STATIONS H-2 1 1 C (INCLUDE ITAA(1)=1. ITAA(2)=1 EVEN IF NO STA) ♦*#»»»*»*»*»»**«**»**«»»*»»*********»***»*************»******»*****»**«•»*#****** C 10 515 SAME AS CARD 5 ONLY FOR DAILY Q ******************************************************************************** C 11 515 SAME AS CARD 5 ONLY FOR 6-HR Q »♦»»**♦»»*«»»«»**»***»***»»*»**»******»*»*********»*»»»»»»**»»****»»******♦*♦*♦» C 12 15 NUMBER OF MONTHS FOR THE RUN (USUALLY 50) C 15 BEGINNING YEAR FOR THE RUN(4DIGITS) FIRST DAY OF C 15 BEGINNING MONTH FOR THE RUN BUFFER PERIOD C 15 CALENDAR DAY NUMBER FOR THE RUN DEFINES THE START C (BASED ON A 365 DAY YEAR) OF THE RUN C 15 SNOW=0 ******************************************************************************** C 13 8F10.4 LAND PARAMETERS C MOD. STANFORD WATERSHED MODEL C A»EPXM»UZSN.LZSN»CB»POWER»CC »»»♦»»»*»»»♦»*»»*»»***»*»»**»******»***♦»**#*********»»»»♦»♦♦*»*«*»«»*»»»»»»»»** C 14 2F10.4 AREA OF AREA(l), AREA OF AREA(2) **»»»*«***»»**»******«************««*»»«*■»*»*»*»*»»*»***«»*****»*»»****»♦**«•*»#» C 15 8F10.4 LAND PARAMETERS Kl FOR EACH AREA() ******************************************************************************** C 16 2F10.4 LAND PARAMETERS C K24L.K3 »****«»»»»«********»»*****»*»**#*»**»**»********»******»******»**********»»»*»♦» C 17 F5.3 UPPER LIMIT OF E CURVE (EHIGH) C F5.3 LOWER LIMIT OF E CURVE (ELOW) C 15 CALENDAR DAY NUMBER WHEN E CURVE REACHES C EHIGH (IF JUNE 1 NEP=152) C 15 NO. DAYS E CURVE REMAINS AT EHIGH (MINUS ONE) C (IF JUNE 1 TO JULY 31. NDUR=212-152=60 ) C F5.3 LAND PARAMETER K2AEL *»*»***♦*»»**********»*«***»**»»*»************»***»****»»**»»*»♦*«**»»*♦*♦»»*»*» C 18 2F10,A CONSTANT TIMES PE FOR AREAS 1 AND 2 »«*♦»»***♦»**»«*»******»*****»*******»***#*»*«*»***•»(■*»«***»«-»*»«**»*«#*******»♦* C 19 5F10.4 TIMING PARAMETERS C SRCl, OVERLAND FLOW (ONE HR ) C LIRC6» INTERFLOW (SIX HR) C LKK6» GROUNDWATER (SIX HR ) C KV C KGS »*»«*»***«*»******»«*******«*****»**«*»»*»*»«»»»*»»*»*»********»*»♦**»»*♦♦**♦»♦* C 20 8F10.4 SOIL MOISTURE INITIAL CONDITIONS C UZSI »LZSI.SGWI ,GWSI »RESI .SRGI »SCEPI PARAMETERS FOR OPTIMIZATION OR SENSITIVITY ROUTINE NDAY=NUMBER OF DAYS IN RUN (USUALLY 1522) IBUF=NUMBER OF DAYS IN BUFFER PERIOD (USUALLY 61) (ADD OR DELETE BY WHOLE MONTHS) NUMA= NO OF PARAMETERS TO BE CONSIDERED NPER IF=1 DDELTA(I) MUST BE IN PERCENT/100 IF=0 DDELTA(I) MUST BE AN ABSOLUTE VALUE KC= MAXIMUM NUMBER OF RESOLUTIONS BEFORE OPTIMIZATION IS TERMINATED MAXN= MAXIMUM NUMBER OF RUNS BEFORE OPTIMIZATION IS C 2] 715 C 15 C 15 c c 15 c 15 c c 15 c c 15 H-T C ABORTED (MAXN OVER-RIDES KC) C 15 MAXIN=3 »♦»»«♦»*»»»*«»*»»«*»**»»*»***»»*»»«»»♦»«»***«*♦«*»*«««»**»«»«»*»«*»«*»*»»«»«*»#« C 22 1615 PARAMETERS TO BE OPTIMIZED OR USED IN SENSITIVITY ANALYSIS SEE C PARM( ) ARRAY BELOW FOR PARAMETER NUMBERS (E.G. A IS NO. 9) C C NOTE TO ACCOMODATE (IN THE NEAR FUTURE) THE SNOWMELT SUBROUTINES C A NUMBER OF STATEMENTS AND ARRAYS PERTAINING TO SNOWMELT C ARE INCLUDED IN THE PRESENT VERSION OF NWSRFS3 C C AT PRESENT THE FOLLOWING PARAMETERS CAN ONLY BE CONSIDERED C FOR OPTIMIZATION OR SENSITIVITY ANALYSIS C PARAMETERS 1 THRU 22 C AND C PARAMETERS 47 THRU 50 C (SEE PARM( ) ARRAY BELOW FOR CORRESPONDING NAMES) C C THE MAXIMUM NUMBER OF PARAMETERS THAT CAN BE OPTIMIZED IS 16 C THE MAXIMUM NUMBER OF PARAMETERS THAT CAN BE CONSIDERED FOR C SENSITIVITY ANALYSIS IS 50 C THE ORDER OF THE PARAMETER NUMBERS IS NOT FIXED C EXCEPT Q ***♦»« C THE E CURVE PARAMETERS. IF CONSIDERED* MUST BE LAST AND C ORDERED FROM LOW PARAMETER NUMBER TO HIGH PARAMETER C NUMBER (47,48»49t50) C REPEAT THIS CARD IF NUMA GT 16 **»»»»»»**»»*******»»*«»*»***»»»*»*«**♦»»*»****»*«»*«»»*«»«»*«♦♦»««*#»♦»»»«»»»#♦ C 23 215 NEPDEL IS THE FIXED SIZE DELTA FOR PARAMETER NEP (IN DAYS) C NDURDEL IS THE FIXED SIZE DELTA FOR PARAMETER NDUR (IN DAYS) C (IF NEP AND NDUR ARE NOT TO BE OPTIMIZED C STILL INCLUDE THIS CARD) »*»»»»»»»»*«««***♦*»**»»»»»»*»»*»*»»»»«**********«♦****«♦*»«»***♦«*»««»**»****»♦ C 24 15 NUMBER OF PERIODS TO BE REMOVED FROM CALCULATING C THE VALUE OF THE OPTIMIZATION CRITERION — EXCLUDING C THE BUFFER PERIOD. FROM ZERO(O) TO A MAXIMUM OF C TEN(IO) PERIODS *»#**«»*»♦»*«♦»»♦*»*»♦«»«*»««»«♦»«*»«♦»**»****»»***»**«*»*♦«*»**»«*»*»«♦♦»♦*»*»* C 25 615 IF OUTPER=0 THIS CARD IS NOT NEEDED C 315 MONTH-DAY-YEAR (FOUR DIGITS) STOP CAL. CRITERION C 315 MONTH-DAY-YEAR BEGIN CAL. CRITERION C C REPEAT THIS CARD FOR EACH PERIOD TO BE DROPPED C 25B 15 ISENSE=0 NO SENSITIVITY ANALYSIS WE THEREFORE ARE C IN THE OPTIMIZATION MODE (IF ISENSE=0 THE C MAX VALUE FOR NUMA IS 16) C C =1 SENSITIVITY ANALYSIS (MAX VALUE FOR C NUMA IS 50 ) ♦*«»»»»»»»»»**«»»♦»»*»*«*»***♦*»*»*»*»»»»»**«*»«»»«»»«*«»»»•***»«»»«»*»**»»»»«»♦ C 25C IF ISENSE=0 THIS CARD IS NOT NEEDED C 1615 NUMBER OF + AND/OR - PERTUBATIONS FOR EACH PARAMETER C H-A C REPEAT THIS CARD IF NUMA GT 16 ♦*»*♦»»#»»»**«*»*»»«*»♦»♦»♦»**»**»**»»»♦*»»**»*«»»»*»*»»**»♦**»**»»«»»♦*»»»»»♦»» C 25D IF ISENSE=0 THIS CARD IS NOT NEEDED C 8F10.4 PERTUBATION VALUES FOR EACH PARAMETER I C C REPEAT THIS CARD FOR EACH OF THE NUMA PARAMETERS. C IF ISENSE=1 THIS CARD IS NOT NEEDED C 26 8F10.4 DDELTA(I) WHEN NPER=1 DELTA { I ) =ABS( DDELTA ( I ) *A ( I ) ) C NPER = 1 DELTAd )=DDELTA( I) C (IF MORE THAN 8 PARAMETERS IN OPT REPEAT CARD) *»*»»#»*»««»»»«««♦««*»«»»»***»»*»***♦»♦««««»*******»«»»****»»»#»»*»***♦*»♦»»#*»# C IF ISENSE=1 THIS CARD IS NOT NEEDED C 27 8F10.4 CHECKL(I)= LOWER CONSTRAINT ON A(I) C (IF MORE THAN 8 PARAMETERS IN OPT REPEAT CARD) *»»»*♦»*»****»♦»»*««*»»****»**»***«*»**»*»*»*»»»»«**»#**»«******»**»»«*»«»**♦»»» C IF ISENSE=1 THIS CARD IS NOT NEEDED C 28 8F10.4 CHECKH(I)= UPPER CONSTRAINT ON A(I) C (IF MORE THAN 8 PARAMETERS IN OPT REPEAT CARD) *♦*»»»♦»*»»»♦*«*»*♦♦*♦*«**«»«**«*»*»***»»*»»**»**********«»*»»*****♦»*»#♦»*»*«»* C IF ISENSE=1 THIS CARD IS NOT NEEDED C 28B F10.5 PCENTOT= PERCENT/100 CRITERION MUST AT LEAST CHANGE C IN KSTOP TRIALS OR ANALYSIS IS STOPPED C 15 KSTOP (SEE ABOVE) *»»»»»«*»*»»»«**»*»»»»»«»*»«*»*»«»**«***»♦»♦»***»»«»**«»******«*«#*««*«»*»»»♦*»» C 29 215 NUMBER OF NON ZERO ORDINATES IN THE CHANNEL C DELAY HISTOGRAM FOR EACH FLOW POINT (6 HR INT) *»»»»»*»*»»«****♦*♦****»*»»*»****»***«***»***»*«*♦****♦**«»*****»»»**»«**»»♦»*♦» C 30 215 FIXED LAG (IN HOURS) FOR EACH AREA() SEE CARDS 29,32» C 32A THE UPSTREAM AREA() FIXED LAG TRANSLATES ITS C HISTOGRAM TO THE DOWNSTREAM FLOW POINT. THE DOWNSTREAM C AREA() HAS A FIXED LAG OF »»*»»»»**»*»*»«»«*»«*»»«*»*»»»****«»**********»»*»»»**«*»»***»»****♦»»»#«*»»♦«»# C 31 15 INWARP=0 TK^ THE CHANNEL DELAY HISTOGRAM WILL NOT BE C MODIFIED DURII^iTHE OPTIMIZATION OR SENITIVITY ANALYSIS C .GT. THEN VERTICAL AND HORIZONTAL WARPING OF C the: histogram will be done during OPTIMIZATION c orIsenitivity c C 15 NOWARP= sequence NUMBER FOR HWARP PARAMETER. IF C HWARP PARAMETER NUMBER IS TH 5 TH NUMBER ON CARD 22 C THEN N0WARP=5. (VWARP PARAMETER NUMBER MUST ALLWAYS C FOLLOW HWARP PARAMETER NUMBER ON CARD 22) »»♦*»»»»#*«»*«♦«*»»»♦»*»**«»»«»**♦«»«♦♦«**»«****♦*»«*»♦»«*»#*♦*»*♦*»»»#«■»»»»♦»♦* C 32 IF INWARP=0 THIS CARD IS NOT NEEDED C 20FA.4 G(I) 2-HOUR INSTANTANEOUS ORDINATES OF THE MODIFIED C CHANNEL DELAY HISTOGRAM. THESE ORDINATES COME C NOTE — THE 2 HR FROM A CONTINUOUS CURVE FITTED TO THE ORIGINAL C HISTOGRAM IS FOR 6 HOUR DELAY HISTOGRAM. G(l) SHOULD EQUAL C THE TOTAL AREA. IF C TWO AREAS ARE ANA. C COMBINE THEIR HIST C C (READ IN (NELEMd )+NELEM(2) )»3+l G(I) ORDINATES H-5 C IF MORE THAN 20 REPEAT THIS CARD) »*»#»«»«*»♦*»»♦»»«»♦»«»»»»»»**»»*«»»♦*««»«»««*»♦»♦**#««♦«»»««««»«♦«♦*»*♦»«»»«»#» C 32A IF INWARP = THIS CARD IS NEEDED C 20F4.A DIMENSIONALESS ORDINATES OF THE CHANNEL DELAY C HISTOGRAM FOR FLOW POINT 1 — 6-HR INT, C (REPEAT IF 2 FLOW POINTS, IF 2 AREAS THEN BE SURE C HISTd.I )+HIST(2,I ) ORDINATES EQUAL 1.0) *«»»««***»*»»♦*«*«»»»*»*»*»*♦**»***♦»**»**»**»*♦»»*»*»♦»»*»»»♦**♦*♦*»»*»*«♦#»*#» »»»»»*»»»»»♦*«*♦**»»»**«*»»»****»***»***»«««*»»****»««♦**«»»»*♦»»»»♦»»*♦#»»«*»»» C 32B 15 VARL= IF VARIABLE LAG IS NOT REQUESTED C = 1 IF VARIABLE LAG IS REQUESTED C 15 VARK:= IF VARIABLE K IS NOT REQUESTED C = 1 IF VARIABLE K IS REQUESTED C 15 LOCAL= HEADWATER OPTIMIZATION C = 1 OR 2 LOCAL AREA OPTIMIZATION (LAND PARM) C LOCAL= 3 LOCAL AREA OPTIMIZATION OF JUST CHANNEL PARM C (OPTION 3 IS NOT PROGRAMED AS YET) C 15 NHWA IS THE NUMBER OF UPSTREAM INFLOWS WHEN RUNNING C UNDER LOCAL= 1 OR 2 »»»»»*»»*»«*»***»»«**»»***»»«*»»**«»**»»«*»»«*»*»***«**««»»«»*»«*»«♦*««#*»*♦»*»« C 33 415 IF LOCAL= THIS CARD IS NOT NEEDED C FIXED LAG (IN HOURS) FOR EACH UPSTREAM INFLOW C WHEN RUNNING UNDER LOCAL= 1 OR 2 »**»»«•»»»*«*****»**««*»»»*«*»»*»**»***»**»***«»»»***«*»**»■»»♦«*«»»»*»**»♦*##*#* C 34 F^.4 FUNCTION OF CONSTANT K ROUTING FACTOR C CSSR= (K-3)/(K+3) »*♦#*»»»»♦«»»*»«»«**»»«**»»««***«***»»*»»*«*»»»»*»»«««*«»*»♦«««*»♦»*»»#*«*»»#«»* C 35 15 IF VARL= THIS CARD IS NOT NEEDED C NUMBER OF LAG VS Q POINTS TO DEFINE CURVE (MAX=15) »»»#*«»♦**»**«*«**»**»««**»***»***♦♦**»»*»»**«»*♦*»**»«»«*»»********»#«#*»»*»*#» C 36 8F10.2 IF VARL= THIS CARD IS NOT NEEDED C FLOW VALUES DEFINING THE ABSCISSA OF THE C LAG VS Q CURVE (FROM LOW TO HIGH Q AND FQLAG(l) C USUALLY EQUALS 0.0) C REPEAT CARD IF NVL GT 8 »**«♦»«*»«»»«♦*»*******«»»*«»«»«*♦*»«*»»*#*»***»**»*******♦«***»»*«»»♦**♦♦*»»*»» C 37 8F10.2 IF VARL= THIS CARD IS NOT NEEDED C LAG VALUES (IN HOURS) DEFINING THE ORDINATE OF C THE LAG VS Q CURVE. THEY MUST CORRESPOND TO THE C ABOVE FOLAG( ) VALUES C CALCULATIONS USING VARIABLE LAG ARE BASED ON C LAGGING THE VOLUME OF FLOW IN THE INTERVAL C FQLAG(N) TO F0LAG(N+1) BY VL(N+1) C (NOTE DIFFERENCE BETWEEN THIS AND NWSRFS4 ROUTINE) C LAG VALUE FOR HIGHEST DEFINED FLOW IS USED FOR C ALL FLOW ABOVE THAT DISCHARGE C REPEAT CARD IF NVL GT 8 C 38-40 IF VARK= THESE CARDS ARE NOT NEEDED C IF VARK= 1 SEE CARDS 35-37 FOR FORMAT DESCRIPTION C C CALCULATION USING K ARE BASED ON A LINEAR C INTERPOLATION BETWEEN POINTS C K VALUE FOR HIGHEST DEFINED FLOW IS USED FOR H-6 I C ALL FLOWS ABOVE THAT DISCHARGE C (NOTE THIS ROUTINE IS THE SAME AS NWSRFS^ ROUTINE) *»♦*»»»»#♦»»#»»»*»»»*»*»»»»«*»»****»»»*»*»***»»«**»**«»»«»»♦»»**«-*«*»»*»»*««♦♦»» C 41 8A10 HEADER CARD (USE COLS 2 THUR 80) »»»»»»»«**»»»»**«»»»♦**»*»*««*»»*»*»*«»»*»**««*»«**»»«»*»**»*»»**»«*»*»*♦»»*»»♦* ♦*»»♦*»»»»*»»*»»»*»»««««»#**»***«**»«*♦»***«*»*#»**#»»»«**»*#»»*****»»»»*♦»♦»♦»» ♦»♦»»»»»*»*»»»»»*«*»»♦»*»*»*»»«»*»»»»*»«*«***«»»»»»****»**»»««»*»*****»»*♦«»»#*» C COMMON/OHG/X(50) .OPT IM,NUMA»KKK» I ZY ,NSTART .NDAY , IBUF.TR0,M2ER0. 1L0CAL»R0(31»4)»AREA(2) tMO(60) ,NMO,NGAGES ,SN0W,RC0F , 2NHWA»JDAYST,PARM(50) . I PARMA (50) »NEPDEL . NDURDEL.NXNEP ,NXNDUR tNXC. 3PER0UT(11) »PERIN(11) » ISENSE . I NWARP .NOWARP COMMON/OHMI/TPX,TPE»TTA,TFW24»TFW6.IPXS,IPES.ITAS»IF245»IF6S. 1PXIN.PEIN,TAIN,PTSIN.FW6IN»NPEGS»NTAGS.NPTS. 2RGIN(2) .PEGIN(2) »TAGIN(2) »SGIN(4)»SIXIN(4) »LYR,MOS,MOOUT ( 10) ♦ 3DAYOUT(10) .YROUT(IO) .MOIN(lO) ,DAYIN( 10) »YRIN(10) .OUTPER COMMON/OHML/A»PA.EPXM»UZSNtL2SN.CB»POWER,CC.K24L»K3.EHIGH.ELOW, 1K24EL»SRC1»LIRC6»LKK6.KV»KGS.UZSI ,LZSI»SGWI tGWSI »RESI .SRGXI,SCEPI » 2RATIOL»RATIOS.RATIOU»RATIOE,IPEA(2) .ITAA(2) .Kl(2) ♦PEADJ(2) . 3E(1530) .NEP.NDUR.NCOE. MONTH 1 C0MM0N/0HM0/DDELTA(18) .CHECKLdS) .CHECKH ( 18 ) .MAXIN.NPER .KC ,MAXN, IPCENTOT.KSTOP COMMON/OHMC/NELEM(2).HIST(2»35).CSSR.VARL.VARK»LAG(2) »LLAG(4) » 1NVK»F0K(15) »VVK( 15) tNVL tFOLAG ( 15 ) ♦VL(15) COMMON/OHMS/LPARM(60) .INC0EF(50) ♦PERTUR(50) ♦SENDEL( 50»8 ) COMMON/OHMW/G( 107) .ELMRAT INTEGER TPX,TPE.TTA»TFW24.TFW6.PXIN,PEIN,TAIN,PTSIN»FW6IN. 1RGIN»PEGIN.TAGIN.SGIN,SIXIN,DAY0UT»YR0UT,DAYIN.YRIN.0UTPER INTEGER SNOW,PEROUT,PERIN INTEGER VARK.VARL INTEGER PERTUR REAL LZSN.K24L»K3,K24EL,LIRC6»LKK6»KV,KGS»LZSI REAL Kl COMMON/XYZ/PXEC( 12500) »PEEC(3 200) ♦EPEC(3 200) ♦O24EC(3200) » 1R0EC( 12 500) »06EC( 2 5000) ,TAEC( 12500) »TDEC( 12500) ,UEC( 12500) » 20 1 EC (62 50) »QAEC(62 50) »TOEC(6250) .QREC(6250) ECS PXEC,PEEC.EPEC,024EC.Q6EC,TAEC»R0EC,TDEC,UEC,QIEC,QAEC,T0EC, IQREC DIMENSION HEAD(8) C READ PARAMETERS FOR DATA INPUT READ 1110»TPX»TPE,TTA,TFW24,TFW6 READ 1110.IPXS»IPES»ITAS,IF24S,IF6S READ 1110»PXIN,PEIN,TAIN.PTSIN.FW6IN READ 1110»NGAGES»NPEGS.NTAS,NPTS READ 1110»(RGIN( I ) »I=1»NGAGES) READ 1110»(PEGIN( I ) .I=1»NPEGS) READ 1110»IPEA( 1).IPEA(2) READ 1110»(TAGIN(I ) .I=1»NTAS) READ 1110»ITAA( 1) ♦ITAA(2) READ 1110»(SGIN( I ) tI=l»NPTS) READ 1110»(SIXIN( I ) »I=1»NPTS) READ 1110»NMO»LYR,MOS»JDAYST.SNOW 1110 FORMAT(5I5) Kl(2)=0.0 H-7 PEADJ(2)=0.0 NELEM(2)=0 C READ LAND PARAMETERS AND ET COEF READ 1003. A ♦EPXM,UZSN.LZSN»CB, POWER ^CC READ 1003.AREA( 1 ) .AREA(2) READ 1003»(K1(I ) .I=1»NGAGES) READ 1003.K2AL»K3 READ 1004,EHIGH,EL0W.NEP.NDUR»K24EL READ 1003.(PEADJ( I ) .I=1.NPEGS) READ 1003.SRC1.LIRC6»LICK6»KV,KGS READ 1003»UZSI»LZSI,SGWI,GWSI .RESI»SRGXI ,SCEPI 1003 FORMAT(8F10.i^) 1004 FORMAT(2F5.3..2I5.F5.3) IF(SNOW.GT.O) CALL SNOWPM ( TAIN,NGAGES»PARM ) C READ PARAMETERS FOR OPTIMIZATION ROUTINE READ lOOl.NDAY, I BUF ,NUMA .NPER »KC»MAXN,MAX I N READ !♦( IPARMAC I ) ,I=1»NUMA) READ l.NEPDEL»NDURDEL READ 1001»OUTPER IF(OUTPER.EQ.O) GO TO 10 READ 6» (MOOUT( J) »DAYOUT(J) » YROUT ( J ) .MOI N ( J ) »DAYIN(J) »YRIN( J) 1J=1»0UTPER) 10 READ l.ISENSE IF(ISENSE.EO.O) GO TO 12 READ l.(PERTUR( I ) .IsltNUMA) DO lA J=1,NUMA K=PERTUR( J) READ 1003»(SENDEL(J,L) .L=1,K) 14 CONTINUE GO TO 15 12 READ I002f (DDELTA( I ) ♦I=1,NUMA) READ 1002.(CHECKL( I ) »I=1»NUMA) READ 1002»(CHECKH( I ) ,I=1,NUMA) 1 FORMAT (1615) READ 1005.PCENTOT,KSTOP 1005 FORMAT(F10.5»I5) 1001 FORMAT(7I5) 6 FORMAT(6I5) 1002 FORMAT(8F10,4) C READ PARAMETERS FOR CHANNEL 15 READ 1110»(NELEM( I ) ,I=1,NGAGES) READ 1110»LAG( 1) ♦LAG(2) READ lllO.INWARP.NOWARP IF(INWARP.EQ.O) GO TO 41 FNEL=NELEM(1 ) ELMRAT=FNEL/(NELEM( 1)+NELEM(2) ) IL=(NELEM(1)+NELEM(2) )*3+l DO 43 1=1,107 G( I )=0.0 43 CONTINUE READ 1112»(G( I ) »I=1,IL) DO 40 I=1,NGAGES N=NELEM( I ) IJ=LAG( I ) H-8 DO 40 J=1»N K=J»3+( IJ/2) HIST(I»J)=(G(K-2)+G(K+l)+2.0*(G(K-l)+G(K) ) )/6.0 40 CONTINUE GO TO 44 41 DO 1111 I=1»NGAGES N=NELEM( I ) READ 1112»(HIST( I,K),K=1,N) 1111 CONTINUE 44 READ 1110.VARL»VARK»LOCAL»NHWA IF(LOCAL,EQ.O) GO TO 2500 READ 1110»(LLAG( I ) ♦I=1»NHWA) 2500 READ 1112. CSSR 1112 FORMAT(20F4.4) IF(VARL.EQ.O) GO TO 2501 READ 1110»NVL READ 3002»(FQLAG( I ) ♦I=1.NVL) READ 1002»(VL( I ) »I=1.NVL) 2501 IF(VARK,EQ.O) GO TO 2502 READ lllO.NVK READ 3002»(FQK(I ) ,I=1,NVK) READ 1002.(VVK( I ) ♦I=1,NVK) 3002 FORMAT (10F8.1) C READ HEADER CARD 2502 READ 200* (HEAD( I ) , 1=1 .S ) 200 FORMAT(8A10) PRINT 201 201 FORMAT(lHl) PRINT 200»(HEAD( I ) ♦I=l»8) I=NM0/12 IC = NM0-12*I LYEND=LYR+I M0END=M0S+K-1 IF(M0END,LT,13) GO TO 50 M0END=M0END-12 LYEND=LYEND+1 50 PRINT 51»M0S»LYR,M0END»LYEND.IBUF 51 FORMAT(/» THE PERIOD OF RECORD BEING ANALYZED IS FR0M»2I5* THRU *I 12»I5,3X» THE BUFFER PERIOD IS THE FIRST *I3» DAYS*) MZERO=0 M0NTH1=M0S CALL INDATA CALL ECURVE C C AREA ADJUSTMENT SO THAT CONVERSION FACTOR IN CHANNEL C IS CORRECT WHEN TWO AREAS ARE ANALYZED AREATOT=0.0 DO 45 I=1,NGAGES AREATOT=AREATOT+AREA( I ) 45 CONTINUE AREA(1)=AREAT0T IF(NGA6ES.EQ.2) AREA( 2 ) =AREATOT HWARP=1.0 VWARP=1.0 H-9 PARM( 1)=UZSN PARM(2)=LZSN PARM(3)=CB PARM(/f)=POWER PARM(5)=CC PARM(6)=KV PARM(7)=KGS PARM(8J=K24EL PARM(9)=A PARM( 10)=K2AL PARM{ 11 )=EPXM PARM(12)=K1(1) PARM( 13)=K;1 (2) PARM( 14)=PEADJ( 1 ) PARM( 15)=PEADJ(2) PARM( 16)=K3 PARM{ 17)=SRC1 PARM( 18 )=LIRC6 PARM( 19)=LKK6 PARM(20)=CSSR PARM(21 )=HWARP PARM(22)=VWARP PARM(47)=EHIGH PARM(48)=EL0W PARM(49)=NEP PARM(50)=NDUR DO 17 1=1,50 INCOEF( I )=0 17 CONTINUE NXNDUR=0 NXNEP=0 NCOE=0 DO 2 I=1,NUMA J=IPARMA( I ) IF (J.EQ.O) GO TO 2 X( I )=PARM( J) INCOEF(J)=I IF(J,GT,46) NC0E=NC0E+1 IF{J.E0.49) NXNEP=1 IF(J.EQ.50) NXNDUR=1 2 CONTINUE LPARMd )=4RUZSN LPARM(2)=4RLZSN LPARM(3)=2RCB LPARM(4)=5RP0WER LPARM(5)=2RCC LPARM(6)=2RKV LPARM(7)=3RKGS LPARM(8)=5RK24EL LPARM(9)=1RA LPARM(10)=4RK24L LPARM(11)=4REPXM LPARM(12)=5RK1( 1 ) LPARM(13)=5RK1(2) H-10 20 22 21 2A LPARM(14 LPARM(15 LPARM(16 LPARMd? LPARMdS LPARM(19 LPARM(20 LPARM(21 LPARM(22 LPARM(23 LPARM(24 LPARM(25 LPARM(26 LPARM(27 LPARM(28 LPARM(29 LPARMOO LPARMOl LPARM(32 LPARM(33 LPARM(34 LPARM(35 LPARM(36 LPARM(37 LPARM(38 LPARM(39 LPARM(40 LPARM(41 LPARM(42 LPARM(43 LPARM(44 LPARM(45 LPARM(46 LPARM(47 LPARM(48 LPARM(49 LPARM(50 LPARM(51 LPARM(52 LPARM(53 LPARM(54 LPARM(55 LPARM(56 LPARM(57 PRINT 20 FORMAT (5 PRINT 22 FORMAT( 1 PRINT 21 FORMAT (1 PRINT 24 FORMAT ( 1 PRINT 20 IF (SNOW. =8RPEADJ( 1) =8RPEADJ(2) = 2RK3 =4RSRC1 =5RLIRC6 =4RLKK6 =4RCSSR =5RHWARP =5RVWARP =9RF0REST( 1) =9RFORE5T(2) =6RSCF( 1) =6RSCF<2) =8RMFMAX( 1 ) =8RMFMAX(2) =8RMFMIN( 1) =8RMFMIN(2) = 6RNMF( 1 ) =6RNMF(2) =7RUADJ(1) =7RUADJ(2) =9RFUC0EF( 1) =9RFUC0EF(2) = 5RSI ( 1 ) =5RSI (2) =8RDAYGM( 1) =8RDAYGM(2) =5RPLWHC )- = 4RT0PM = 2RAK = 2RAN =4RRAIX =4RSAIX =5REHIGH =4REL0W =3RNEP =4RNDUR =4RUZSI =4RLZSI =4RSGWI =4RGWSI =4RRESI =5RSRGXI =5RSCEPI (/) ♦55X*PARAMETER VALUES*/) , ( INCOEF( I ) .1=1,12) X, 12110) , (LPARM( I ) »I=1.12) X,12A10) ,(PARM( I ) ,1=1,12) X,12F10.4) EQ.O) GO TO 35 H-11 PRINT 22.(INCOEF(I),I=13»2*) PRINT 21»(LPARM< I) ♦I=13»2A) PRINT 24t(PARM( I ),I=13»24) GO TO 36 35 PRINT 22»(INCOEF( I ) ♦1=13.22) »INC0EF(47) ♦INC0EF(48) PRINT 21.(LPARM( I) ♦1 = 13,22) .LPARM ( 47 ) .LPARM (48 ) PRINT 24»(PARM( I )»I=13»22) ♦PARM(47) .PARM{48) GO TO 37 36 PRINT 20 PRINT 22,( INCOEFd ) ♦1=25,36) PRINT 21^(LPARM( I) ♦I=25^36) PRINT 24^(PARM( I ), 1=25^36) PRINT 20 PRINT 22^(INC0EF(I)^I=37,48) PRINT 21, (LPARM( I) ,1=37,48) PRINT 24, (PARM( I ) ,1=37,48) 37 PRINT 20 PRINT 22,INC0EF(49) ,INCOEF(50) PRINT 21,LPARM{49) ,LPARM(50) PRINT 24,PARM(49) ,PARM(50) PRINT 23 23 FORMAT(//,30X*(NOTE ABOVE INUMBERS CORRESPOND TO A ( ) SUBSCRIPT INUMBERS)*) PRINT 5 5 F0RMAT(//,10X*THE FOLLOWING PERIODS WILL BE REMOVED FROM CALCULATI ING THE VALUE FOR THE OPTIMIZATION CRITERION AND (MEAN Q , R)*) IF(OUTPER.EQ.O) GO TO 11 PRINT 7,IBUF 7 F0RMAT(/,15X*THE BUFFER PERIOD ( THE FIRST *I4» DAYS ) 1 DATE DAY NO.*) PRINT 8,(M00UT( J) ,DAYOUT( J) ,YROUT( J) ,M0IN( J) ,DAYIN( J) ,YRIN( J) , 1PER0UT( J) ,PERIN( J) ,J=1,0UTPER) 8 FORMAT(65X,2I3»I5* T0*2 13 ♦ I 5 ♦4X^ I 5* T0*I5) GO TO 9 II PRINT 7^IBUF 9 PRINT 25 25 F0RMAT(5(/) ,30X»INITIAL STORAGE VALUES*/) PRINT 21, (LPARM( I ) ,1=51,57) PRINT 24,UZSI ,LZSI ,SGWI,GWSI ,RESI ,SRGXI ,SCEPI PRINT 26 26 F0RMAT(5(/) ,21X*FIXED LAG*30X»CHANNEL DELAY HISTOGRAM*) DO 27 J=1,NGA6ES N=NELEM(J) NN = N IF(N.GT.12) N=12 PRINT 28,J,LAG( J) ♦ ( HI ST ( J,K ) ,K=1 ♦N ) IF(NN.LE.12) GO TO 27 PRINT 28^J^LAG( J) , (HIST ( J,K ) ,K=13 ,NN ) 27 CONTINUE 28 FORMAT(10X*GAGE*I6,5X,I5,12F8.4) IF (LOCAL. EQ.O) GO TO 30 PRINT 29 29 F0RMAT(/,5X*NUMBER OF HEADWATER AREAS*5X*C0RRESP0NDING FIXED LAGS* 1) H-12 PRINT 31,NHWA.(LLA6( I ) ♦I=1.NHWA) 31 FORMATC 1AX,I3»5X,5I5) IF(VARL.EO.O) GO TO 30 PRINT 32.(VL(I).I=1»NVL) 32 FORMAT(5(/)»10X*VARIABLE LAG*11F10.2) PRINT 33»(FOLAG( I ) ♦I=1.NVL) 33 FORMAT (10X*UPPER FLOW *11F10.2) IF (VARK.EO.O) GO TO 30 PRINT 34»(VVK(I ) »I=1»NVK) 34 F0RMAT(5(/) .10X»VARIABLE K*11F10.2) PRINT 33»(FQK(I ) ,I=1.NVK) 30 PRINT 201 PRINT 200» (HEAD( I ) ♦I=l»8) PRINT 3 3 FORMAT(//.40X*NDAY WATER BALANCE QUANTITIES (FOR RUN 1)*) PRINT 4 4 FORMAT (10X*SURFACE RO INTERFLOW IMPERVIOUS RO GROUNDWATER INTE IRCFPTION ACT. ET LOSS PREC. P.E. AVAIL ET BALANCE*) RATIOE=SCEPI/EPXM RATIOL=LZSI/LZSN RATI0S=SGWI*LKK6*( 1,0+KV*GWSI ) RATIOU=UZSI/UZSN NC0E=NUMA-NC0E+1 NXC=NXNEP+NXNDUR IZY = NSTART=0 KKK = CALL LAND END H-13 SECTION H.2 SAMPLE INPUT (OPTIMIZATION) 1 1 1 1 1 40 1 1 1 1 1 1 1 1 1 50 1961 8 213 .03 .30 .20 6.0 .25 2.0 .75 752.0 1.0 .01 .28 1.0 .50 1.0 91 60 0.0 .90 .10 . 0025 5.0 .92 0,0 6.0 1.4 0.0 0.0 0.0 0.0 1522 61 16 1 3 200 3 1 2 3 4 5 6 7 9 10 11 21 22 47 48 49 50 1 1 .03 .01 .03 .02 .02 .01 .002 .05 .05 .03 .02 .02 .02 .02 .02 .02 .01 3.0 .10 .75 .25 .50 .85 .001 .001 .01 .25 .70 .80 .10 61.0 1.0 .50 10.0 .50 4.0 3.0 20.0 .99 .06 .10. .75 2.0 2.0 1.3 .80 150.0 120.0 .005 3 18 1 11 1 11 ,0 00.023.03 6.044.049.0 51.05 3.055.0 56.057.058.059.060.061.062.062.063.064.066.067 .06 9.070.0 72.074.076.078.080.081.082.08 2.081.080.079.077.075.072.068.064.061.057 ,0 54.050.047.044.040.0 37.033.030.02 7.024.021.018.015.012.010 .500 NWS OPTIMIZATION LEAF RIVER NR COLLINS. MI SS. WYRS 62-65 (BUFFER 8/61-9/61) H-14 \ u. I I I o Z o ^^ i UJ r^ C) < 31 DO Of UJ ll. ^ 0^ ! u. UJ Z) o» K CD UJ 1 " 3 Q^ z U^ I «I kO 1- Q. 1 M ■H >o en •H a: 1 >- 00 z • V) :c M l-H or i: u. M 00 Z »-( M ^ —1 UJ tvj U >- -1 X « z z <1 Q^ UJ > z l-H n Of Ul m b. « (U (K -1 z UJ Q^ 1- U. «a rvj t-i CI I M t-t t— Of a. UJ a. M tu X I z ^ ro X o fH o o t-H O I o T< Q. o ■H Q^ O «a o 3: o I • o vp IT* ^ (VJ o vD o o IK o 1:; I ;^ t-l CI X (/I C) [Si C> 3 c» I ° H- r^ r^ cfl ro ^« q> -H (V ^00 :: in ^^ Cj) 03 -^ ir» r^ o tp LP 4- H-15 > ■H _) I. I => or 2S <: uj :i >- c> z Li C> Of I :: Lij I <; I- I -I «i <: 3 r CI o . 3 c> O u) _l u^ B-16 I i ' 1 er w tO o \D r* K o r*> fO-H-H vfrOTl -rjl-HU^ t \S\ < in \u I to O I a- tD 1 oil h- I J- J- ^ OS ▼H (T" f • * «4i oj Oh a) « 1 Ti ro Ti* r* J- r* ui o ty tJI tH ■»"l rl tH rc ■ri r* f4 Q. vo cL j5 -s- J I C3 -* r. u\ <■ CQ O Tt t4i ^ K> o ^. -rlt ^O OJ *■! OD -;■ M © ti) r^ ti CO \i* us fx. i • • • irt (T- (\J 4" tA N- r*- ^ O tH oo ro iTN r*i vi> us vli C» OO Ui ut us ■: a> us - at Ti \o r*' flO 00 to « ^ OO f • • us CT* ff* 00 ^ O «0 CO fv tT» -(-I C|^ • • P ro ro (T* vi rj f4. cy CP CU fsj J- -H M *H J- ■H CM \6 op ro IV N. <0 4" f • ^ o \c rv d» CO lf\ ro us ir\ u** ro ri. Iu^ o po PO un J- q> uS CO uS iA f*t> *=> plj ub vD cv PO •H us M J- PO W ^ CT* US ro ro OJ (T vi) eO CO J- PO ir« o cr rv cr> (T 1^ o (SJ O CO «i> PO c\j di U^ us V4 f\J CO iX> PO csj di OO c ) c\j eo >.) r^ fsj cjj J^ e> PO cr r- p^ <\j rj ■ i a (O us «> fsj tH W tSJ J- OJ \0 «0 CSJ ro J- oj (\i ro OJ «) US US OJ PO PO O^ OJ ^ 1^ ^ (VJ OJ OJ J- h- j^ ^ OJ o OJ OJ fO PO us jr 4- -H ro OJ OJ ff) d^ ii> vb Pk J- <0 ro t-t -rt OJ OJ 4- CO h^ ITi fo ■*-« qa OJ OJ us rf ro dj pp N. w 1*4 00 cr fV OJ ^ rf 00 « ro 00 ro cy rj OJ rij to eo rj OJ OJ ro OJ OJ H\ \D t^ C\J OJ 0) f\j u^ 0) 05 PO C J OJ OJ C3 vD CO (?) U^ P^ h • ^ y us ro C3 us <^ P> OJ tH «.) *H ro < 3 OJ \p C J OJ ^M J- rv ' -H Wj cp \0 uS ir J- fi f«. '«H «H J- ro otJ ^ PO c6 us ^ OJ ■O PO Ps. ^ J- (*• W OJ ro us o > OJ o • • • t • • ^ us vO 1^ a> CO ■»H cr PO rv vo \D I li) o us og ^ *H ff o 00 IS. h- vO r*. T-i cp C3 oil OJ ff* 06 PO t( tH (\J d^ CO i^ o r ri C3 dp v£} CO (7* tH C>J ^X> us Cy (T) (7^ e6 ^ P^ C^ 0(3 us a } OJ ct^ us C> f J I i- ^ V) ro u> ,- el) vD 4< rvj US ^4) N- r^ o fs- ro * fsj ftj ti) C3 us 4- vli ti T^ 01 r*» PO CI ^- r»- ft C) t£) U> 01 tI »:■ 00 J C^ \0 CI 0' kD *I Uf> flO IV eo ri up OJ lA cy hw C3 J- cr 3 PO OJ CVJ P) vD lis IS cr rv ?cr -1 us c I ^ . OJ u I us cv < I a I ^ c • (\j rs> I ^ IV cC IV tH OJ ro oo tD • tr \£) &* \ ' T^ O J- I r- PO OS ^p • P -1- ^ J- ^ OJ iD '•H i^s o rjj ijs us K J- OJ us CVJ OJ LO ! I fO -ri 00 csj K- J- Jh OJ <7^ ro J" . ■ ^ (T> Us N- J OJ ^ tH w ot OJ 'H -f UN cr OJ r^ i li) o r*S F • r PO OJ cy pO N Cn CSJ ^ us IV I Cr 00 Un tD r- %^i 4 (T> h- vp UN vO ro c- o f J 00 p*. us ^ t<) OJ l/N O f^ t^ I CT" ^ »D C J- -rt <0 J- ■»!< r+ ^ ch fvt) ro N^ IT* -i- 3::' I Trt ai C3 C C K u\ Mi J- U\ u^ L^ r. r-: w c) C rn ▼) u» cr> o) cSj u> fl) c<> ro -; ' co r- u> CO o I -H en ui L^ CO a ) lf\ J- a) 4" CT- L ^ d^ m C ro Lf( -4 v<) ^ * ( c\J 00 ) ofi CO L < J- IT. ob -t CT L> 4" to ) 4" cc c^ u> 4- 4 «£ vO CD N- ro L\ u^ r^- r=) C> ^P T^ IS (T U^ LN tH kD U \ Ch IT* L\ op t\i ro UJv CM N- ir> ^c t^ •»H ro £T» J- ro f\j 4 tfv cr -9- ro cvj CT" (Ti rt) J- v£> O > ro rf) o (\j vC J- r^ -H 4 ro rp ■ eg -Xi ' r^ ^^ ■ fO IfN IS\ t^ ro J- f\J J- o o ro r^ (T ro ro li) «D U> rs if» ep \p ro fo rf en e* ro CJ i^ ro CO ir» J- 00 r^ (j3 ro oj T ; ■H cn ro r»- J- fvj iK in CO o r- ro cp cn fo r>- CO <» 03 J- CO ■Jh ro i) jr N. qD rf> tn oj vp to 4j- vp ro oj CO ro C CO fh « ro -H qj ro L^ r- in ro CD (T- CT" L-\ iP CM cij in iH > J- C3 I (M L^ JT J- r- ■«rt -t <3 ro CJ o in J- in CO CO CO ^ ^ vC ^ ^D ^ O^ (M CJ 10 -* '^ •H CJ «i) ro ro (J^ ro «b \£} CM vp ro CJ ro (M (±> jr -d- -H o fo J- in 'H 03 kp CJ r*. Jf- CM <^ ^ s •»H ro rv ^£> -H ep in ro I ot) CM in 4- r^ r^ O «£) kO 4- f^ J- in r< cn cij ■H ro Tt4 vb 4 ^ ^ o r*. cy cn in ^■ I ro ^ U) 03 c) rt ro ^. u • y i^ ro ■»!< ri- in ro U) cn -- ' rft 4 r r- ro « ) •*i in c > r- N. L\ h- -r-l 0; c »xi -■ r- 00 o -:r r^ cn CD h • tv CO cb po d^ CO I vo iO CJ ro I ^ O cp LTt in CJ o r^ in N. q> -*■ CJ^ 4 00 -H rs. CO m o in (^ of* in T^ rl j r^ «i) cn o in 00 CJ in op in in -:■ 03 in op CT* op 00 CM s- o iTi ro N- r^ tW (\j CM * l^ vD "tH o CJ rs- r*. clj ci) CD 4- af> ^ r^ CyJ - ^ r- 03 4 fO vO e* iri in c) ro CT^ rv vO in c » in i^ i t cJ) J- o P|j 00 CO Ch vD ^ ^ J- <4) r»t> 00 f) ro t|i ro CO ro lii CV «£> c) vD «t ^ fo ro I or4.r^c±»oo4^*f^^' 4 ro L^ CO CO fU 4 ro 4- cp rv e) CO CO e ) 4 fo ri rv in I ■») tn in r-) CO CD r - cn c^ ct 00 r^ \j > CJ ct ro o ob ro cn N. 4 ro r') 4» -J tf rf) CT^ CT 4 ro rft CV CJ t4 rj- cn rp rp CO (t 4 CO cp -r o . .1- -* > r- 00 in c- r^ c vj ) in 1,) ri th c ■* ^p -^ r- in CO I 4 CJ . in in I K- ro P3 ^ r^ -r kt> vO r> CO CD 4 rv vD ,^ in CO r 5 00 a5 e; vp in in ^- cn rt> CO r*. L^ 4 r*' v3 rb CO f5 c CM -r qj tD o I J- r3 ' r^ •<■* rp ro r3 c3 CO ^^ -r r«- 1-t ro ro ,t- . Ti4 >p J- ro ^) - ro ^. 4- h. r pv yt 00 c> ( 4- »* J) OJ r- ■^ cn it ^ vD op ro cO h- cp r- in d3 o rp CO 00 4 in in ro i I o)cDoh-y344 T^ -tH tH tH CO 4 o> «X) ' J- 4 4 r) 4 I H-18 in vD N. -3- CO ^ vO ro ir\ ro ro T^i LP\ ro tH O «X) IS. U3 . ■ ro tfs h- (T iTt a> IT* CNJ t\j ro f-i vD oj ro a ) . vO w ir\ T^ if» o -4- CM c J a? CO ^ ► » • P C3 CO lf\ Oyj cj ^ tH Jj- -H 0:^ fO --T* ^ ro ? i J- PJ ^0 ) cy ro c\j -■C to Lft tH cp CO U3 eo (T ci oo r IS. ^ c ; ^si$ • • h ^ • » • • » c"5 in ir\ ^-) ro J- I I I ! o-> 00 r^ r- \D cr p"3 M ro v£ vO cp lA CO CM ro lA r^ ro CM (V ^ ro (M lf\ OD (M CM J- ^ uk C3 cr C3 CM CM uK OD N. O (M -* i^ h- iO l6 v£) (M C ^■) to f^ CM J' M tH C3 a? o6 (M ^- (M ob "^ ^ h- CM CT' IT* U> dD w vip r^ ro r-T J- CM CM J- c i N. CM J- ! -H lf\ O cr vD if» j UN iD LTi f • ^ ' LiS CT c? I r^ ■* r^ CM if( ro I ! ! ! oo -J- »i) P-) CM CC C3 CT- vO fv CM ^■ -if ro jS ro « r*") ir\ CM ro L CO J- fv cr en ct- (M ir» ro OOOO^O^f^JT^oCaB^-CT^CM(t<^w cOcaoCM-HUpJ'POCr'CMJ-^.CTi N-c3>x)ivco^voa*j-4"fo^^ > U'\ ■rH r>*. r>*. cr C3 1 ■ f) vo CM ^ r*b r^ H-19 j I r I 1 ^ ■4* o vl ' o q 1 « 1 •» 1 «» ■ 5 ^ 3 vC C9 « — u^ o •a 5 1 o 10 o t q: I • 4 UJ c9 -H ^M t- d> u^ { ^;t '- ! 3 d) (T o a> " I r^ l^ t4 CM !f, ^ li^ o i tr\ CI ifv cp un ( ir if« I -^ 1 :;-i IT, I 1^ •l "^^ H-2D • • c c c » • in c • 1 t4 U n • 4 o • c • . c G vH • c c o o in o • in c c T^ * c Ift fVJ m ^ K • v4 « (M • C e 4 O « n o -a- o ^ • * CNJ C a •r4 Ifl » US CO W 4 -* >C • C 1 CM e K c f» sr C3 f^ * N • • a> in u c ^ C 1 CO . J- in a> r- • .H o 4 u> vO W in CM o n • >o in ^ K ■H u» •r* •^ in • in N • nj M • r < * CO Ck: ■■-1 o o * t- Ti V) M « I j «i CO ! »^ < •I 0< I o is ,; i 4 in » tn pj •H « J- CO « o n » • • in t^ • o » < > o o • t- cn 11 • I in < ■ o 1 •; • ( « « < T< ( a, (i> .] ■H no •i pj • »! CT> «l O Tl c\ OJ 4- in in « T^ J- \C OJ » c M c r-- c » f o o » eo J- « to • CO in u c » c t4 c o 4 J- in (T » r^ f-l « CD « in %D tH » in CJ o> » ^o (M » (T • in J- * '<-« yO ^ in * o ■H -f * in UJ » ,H PO CO K » z » mo o » o » in o vO » o^ o » o » • CD a oo * c I ( ■ t J- * *\ ^ I «= flO CO in Hi o o o o o ; o o cS i = o o o cl S o 1 ^=3 O o o CD O o o * 1 C3 CD * *! s o * C9 1 2 • • k • • ; • • • • • • • ^cS • p <=> o o a o c? o o ro 5 cp o o c» \0 <=> J- CD J- o J- o i •t o 1 J. c J- O , •* <=> ro \0 fO \D (O v£> ro sO ro \£> -*■ *D ^ J5 S^ •H *D » ■H »£> » «■ tH^P ■H »£> » ^^ H ^.t" ro i*o ro fO s ro ro PO fO ro ro I fO n 1 " ■ CD o o cp o CD cb o ^ CD 4 o CD o ■ ° ' • • • ■ • • • • • * » • » • • ' » • 4 . ■■ O ^ CI CD o o o o o ^ o O o § o o c> a o ' o o o o o o o a a Q o C3 c» o c? ' o o ^ o o o * » ^ » » o O » o •i " o o o. o ra CD a ; o ^ o o C3 o CD ci» 1 °: * ^ o c* o o ■ o CD o CJ C3 o 1 o & o o 1 o o o 3 C3 o C3 C2» CD T3 CD o ♦ 4 o » ll. o o * o oO 00 CO « i C3 ^ I C ^ g IfN O ir\ p U\ C3 Lf\ CD in CD in o in o in o * * ir» o » 4< in o in CD » » in 4- * "'^ O O o o o o CD o CD o o 1 o o o ^ vD $ 0) >£ , <^ v£) ^ vD vD CD t 1 '^ ! f^ I O 4 m 4 ® ^ 4 ▼^ 4 4 » J- » : in * r>. 4 '^ in i\j ■i t *' vD ! nj « «0 • (T fO (T 4 ^ a • oo - ■ 4 I 00 • I * vj) I • ^• • I If n ]f » <; » fo c: if> <■' » CI • ► • ro (/I » Kl » I _1 J o I r» i r^ S I f I «3 ! rj cb I o 1 O ii I ir> I in «i T* » >C * .i. » 4; • B-29 CO c > I » II » >< » » r. * » ^- * 0) » r- » » f> » . » t\ » LI » (J » LV » <[ » t: » (> » I -I C> CM o * » 1^ - » : » u\ o> f^ * » 1 o> *w J _t » » Ifl (U ^ * » • •» vC r :: r th o o o > q; 4' K i i o » 5« o 9 o <4> ^ , » a% «x» • c ; • • 1 UN W » * o^ 1-i ^^ lo >o o • r UJ in q: vo a fo a o^ I IV- irt a ro a UJ * UJ r « ; Of "1 "" 1 I a ■n » K » ^ » to ►- * Q. o CO o l») * U- * UJ vC O » I in » <3 * UJ a ►- O UJ o » z trt H-26 I ! I I CT^ v^ (T $ » a » * » < I » K Z 2 i C\J o o o to »-H l-H 1-1 0^ i: X 5: r-i o o C) • Q^ Qc o: b. li. L. o o ci UJ UJ UJ > ■> •• O O C) -H r i: j: th UJ UJ LJ ^ Qi q; o: (T (7> o ci o cr o c> • Jf- C3 Cl C3 J- lf^ d) 4- tH -rH Tt (\J .- ^D ir> C5 (T c ro • ■*-* C^ Od vp c3 cr ' vD I • "^ ■ L • 1 03 33 * cj rj : p II » z 4 M or » o » a. CO tH -• I a) rH CO tH Uk o 4 . J- m » • a cr a 1^ * irt 4 LU u> vC M « r< J- vD O • I I H -27 Ifl ». ^ » M •I ^ rj cij * J- 11 » 1^ « « ifv o * s UN 4 W UN 1 (P «, vO 4 • *^ »• to « • «c rj »' UN « lu J- qo • n » -H J J) • « » o • o a t- vD to » M a i * rt a 00 a J- a IV a K a ON a uo a m a u\ a m a a H-28 • . . - ♦ iro euro cviM (v^ro.pjro (\» o> » • « • J- i J- ■* CJ< (T" a> ^ ■ri ^ ▼4 r^i rj h CM fO O I in ai u I O^ 1 . » J- » *! ^ ' '^ i j a; w I V) I" I 3 t OJ ro m ■ ♦ J- cr » in < » >c I I J- 1 * 1^ » r^ * CO * oo * • (r> »' • (^ r^ ' eo * r^ * ^ * fO * rj » •CM I I '^ » >D • • I I 1 (\J » -» * • , J m , 0 • • C>d » » » J » 4 CO » ir\ lf» CM 1^ • 1 m j ^- » K • CO > i • ♦ t4 » CO I I tO ; ^£ » * CM in I cr> a| >o • • ' ! ~ «, o » • «D in \D I * • 0^ CO 1 + » in * uj J " • in tf o J- ; . 4 CJ< 4^ r >o : 4 r^ « «H m • »0 < H-29 "I r! 1 2 1 1^ >. - ^ •H I ^ CT> U3 oh vO Uv <^ U% I ! ^ -T ^ <0 S ! :::3 ^ ^ vj) CT» i ^ cy* ^ f s 4 vD CT^ i t.D CT* vO O^ * *^ (T* vO li^ >0 :g ^ 3 5 * ^ » ■H * * ^ * \D er * » vO 0> 4 » k£ (T «> CO » 0! » N- » rc » ..M •| » vC 4- (jj (M ! * ' :; ITi * • r| 5 i 5 » J- CD ^ t\J * • rv J) J- .T, * ■ ' C3 » ^ * ' CO • in * c> f J M * IS- * -.-I » i , I * 4* ' * $* ,: * L^ * o * *f c: * C> : H-SO \ » 4 ^ I : 0> I •^ I '■ CI » c> 01 c t □ : ^> CI » u> qi » <: » u\ I I •H in »H lO t* ^ C3 vC J- ;^f •^^^ J ,. ! ^ I 1 ■>-4 I «l -.1 -r-l H-Sl •4- -4- CO f Z i 4- I "2 •H o o: q; L. li- « CI O LJ LU « ;• > C) o :: z: » LJ UJ ft r^ : « GO ♦ • ro * in » ^ IT rj Hi O) cb ! PJ I (TI J- \D * tH ' •O « vD ! - I ° ro o i» • in l-oi-: ! cr » • J- _i I CO , r^ J- I . o '4 " ■ « o- u; I 4 * 4 » PJ * M » 1^ i I 1^ in » 4 c^.^ * '1 tsj 1 r^ X' * rt 1 r*. 4 1 1 (T » ^1 1 » f^ i . "4 -J 1 j^ 1 J) % 1 1 1 1 xO 1 4 1 i: ■ < > a: o . o > ►- (/) 1 h-r 1 r 0. ih vc 4> o^ I cr I • • ro cy f*) 5i T IT J- J- :J UJ << * fo ri 1 CO N. I s »1 c^ vD I PJ ! in 1 PO ! PJ ») i J- « o PO I PO i "^ » PJ i u> I 1 I I "+ • — I J- ■H I " I ro th t « I ^ ■ < I i ;; ; \ ►; I ro r^ H-S2 wr«> ▼< ro ' ^n 11 « T< VO ,< vD ■rf vO T<>0 fO f^ ro fO 3 1 ^•cjj I ! H-n SECTION H.^ SAMPLE INPUT (SENSITIVITY ANALYSIS) 1 40 1 1 1 1 1 50 1961 8 213 .03 .30 .20 6.0 752.0 1.0 .01 .28 1.0 .50 91 60 0.0 1.0 .90 .10 « 0025 5.0 0.0 6.0 1.4 0.0 522 61 24 1 3 100 3 1 2 3 4 5 6 7 8 19 20 21 22 47 48 49 50 1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 -.10 -.15 .10 .20 -2.5 -1.0 1.0 2.5 -.15 -.05 .05 .15 -1.0 -.50 .50 1.0 -.25 -.40 .25 .50 -4.0 -2.0 5.0 10.0 -.07 -.04 .02 .05 .01 .05 .10 .20 -.025 - -.015 .015 .025 -.009 .04 .09 .19 -.25 -.10 .15 .30 -.10 -.05 .05 .10 -.10 -.05 .05 .10 -.13 -.08 .07 .22 -.30 -.20 -.10 .09 -.09 -.05 .10 .20 -.0015 — « .0005 « 0015 « ,0075 -.40 -.20 .20 .40 -.20 -.10 .10 .20 -.20 -.10 .10 .20 -.30 -.20 -.10 .20 .25 2.0 .75 .92 0.0 0.0 10 11 12 0.0 14 16 4 4 17 18 4 H-54 -.20 -.10 .20 30.0 60.0 90.0 30.0 30.0 60.0 -.30 -30.0 -59.0 18 1 19 ,0 00.02 3.036.044.049.0 51.053.05 5.056.057.058.0 59.060.061.062.062.06 3.064.066.067 .0 69.070.0 72.074.076.0 78.080.081.08 2.082.081.080.079.077.075.0 72.068.064.061.05 7 .0 54.050.047.044.040.037.033.030.027.024.021.018.015.012.010 .500 NWS SENSITIVITY LEAF RIVER NR COLLINS .MI SS. WYRS 62-65 (BUFFER 8/61-9/61) H-S5 «^ z o .M X o a o -Hi o (VII9 O »-< o X O O _J o ^ •* o 3£0 o a o (Mac o < o s o o o >-« ec u> a K bJ U. (ML O wa o < o X o I • I/) -> ^- «/) o O O ^ (M l/t (T >0 iij (^ u. -> ifl uo 1/1 ^ a o UJ o 3 O OO I/I 3 — ^ M -I ^ O < _J O > • «C ^ o — o o a o i/i« o — o o or o I/) o> o O (A U. CD 3 UI Ifl 3 t- o ^^ z Q ^H 2 t- O < a. ^ in tfi 3 >- u u « a: -J a a. < o u u »^ z »H O X o O O a: o •1 o t/i o ui o o; o 1^ o I/) o 3 O O o K r^ t* (/) n n « ,o — X o e -J UJ nif) >«(VI yO (VJ _l OO UJ • • z z < 1 in 1^ u o -« i/» n o o n o in o o • < o UI z 11 i-l o X o O o in -* (VI 2 o in o N o _IO n — o — — o — o -) o -* (T O. (VI 3 O O o Z O n o in o rsi o _i o HI c in «-• z q: -" zo mo N o 3(VI o— o (Vi o -' o -< o n Q. o (VI Ui o Z O l-t o in o tst o 3 o UlUi < < OO &46 w oooo^*^-^"^*oooooooofomn^*ooooon'*eo moor^oooonnoooooooooot^-nonr) Z oooo^^^^oooooooo^)rorosCoooo^(Xl<^^> rnoor^oooor)roooooooooooi/)^o^o UJ oooo^^^^ooooooooroDi^^oooocor^D'^ r*)ooDoooomr*)oooooooooo(C^^o^^<*i (J OOOO^^^^OOOOOOOODDD^OOOOOO-^KD rooor*ioooofnDoooooooooo<\jh-Oh-f*i q: oooo^^>o«ooooooooonr>r)>ooooo\0f*>^>4' r)oonooooromoooooooooo<4'i/toi/)f^ UJ •••••••••••••••••••••••••••• ••••••••••••••••••••••••• Q. ou^oo^4>o*o^oooooirti/toronn>ooooor^^ojir> r)oor>oooonnooomirooirttro<£QOi/)«om ll^ll II II II ll^tVJ II I^O^O'll'^l I II I U) ooooooooooooooooooooooooooooooooooooooooooooooooooooooooo 3 ooooooooooooooooooooooooooooooooooooooooooooooooooooooooo _J OOOOOOOOOOOOCOOOCOOOOOOOCOOOOO C OlTlTiriT'-'OOOOCOOCOOC oooocoooc < otrooooooooooooooou^oirooooircO'^r<>^u^ooo>-<<4'U^oinoomoiDoot/)Lnoou*iu^oiDOL/>oo > ^o*n-*■u^ool/>^fVJn■4■ou^lf^olnr)ooJoooo«OGO<^(^oo^--"(VJoooooO'^fyor^J^^o^<^o^a'<^o^^<\inli^^ nirr^ec •-* ^ ckj d ^^^moir \ ^^ ^^ X l/)(/)(/)(/)(/)(n(/)(/>UUUC>UiUJliJUJOUUU^^^^OOOOUJUJUJUJ ^^>»^XKXX^^^^^^^^^^^^O < ISIhilMlsiMMIMtsI XX3X ^^^^n-)-> lA < < < < UJ liJ liJ UJ CL a a> a (>jiri(vi(j>ir)*iA>o*irir-inr)o--flO(vi---»-*o>o-.*i/>i>-(vi-tr)(\jt^o>(\jirii>-oa)(j-oor)oo*»«,» <*^«)<^J'-mco-"coeoln*nn•»l/>l/>■*•»**•*^.*.»J•*J••»■(v)lno^oo-«t^c■l/l(\J^^^^'^'^-"(^'^<^ln'0-«^--•<^'^oo'\lo* Z ^ M .M ^ M ^^ » ^ ^ MMM ^MM M ^ _ ^ .MM M ^ WM ^M M^ M .M M M MMM MM .M « M » M M -■ M _.-.-.-■-.-.-•-. M u.M*nr-Mir>inr»(viMooj--»f~irM(\jiriCMMOor)*ir'"vDinooinooCT'**i/ir)>cminoo-0(J'(\i-"ir>-"Oon UJUir-i/i-<'---(\J\0<>flO<\jMr.o-inr-niri<\ir>^M(viirinri*rij-ino>eDi/i>ooo* Ooo^t^^^'*®oD^oO(^J^■^f^JO-*■r*)ooooc^co»coJcoon(CMO^coOM^^^^^f^l^J(^J^nM^nl/^^^cooO"0(^inMnou^lr>^onftJ t-o(M(\j«)oi/ii\jor)(?>*oo>oo — ^o<^J^~^n■»^-l^^-(Vl4•OM(^J^»e^oJo-tff■ Zo<^Jfyn^U1^^(\J<)0■»lrl(^J^^<^Jlrlr)^p^oool^)(^J'0^o^l(VlP^M(^J^^^.ocoo(VJ.»Mr)^^(7-^rl-ooo>i3•»>C(^i(^J.»(^JM,tooa)o>o■-»0'0^-u^(^r> a.o(vioj 0- 0- o^oo'O'O-a^a'tj' uinoMa)(j>j->ocoo>f-««inM(\iM^M(Moooi^eoO'0'o-oj-o-isO-*'-< i-inoooo(*)-«ina)(\jj-oi^>oor) — ■»oinor^r)(MovD<7--i«-»invOj^o — .ji^ina)ninco kO OOn^CDO^^^^CD M in D n 00 zi/>(vjCT'>oo>onMO>oi>-i^-tMi/>f\jos>ooiDjT~a) — O'nn-t.to^O't^aso-ooo.o^i-ir*- (Vl 1^ o-o-t-oinfvjoo o- * -t (VJ M ry liJ(>J<\iinr-iri-ocDo^r^ — 4^-•^f)n(^J-lr)oo.o-»^or^J^^J•,t^DJ•(\JOOJ■ a) o> oj-fjooirtojo-to (\J o- 1^ r> -^ ty' V>^o»iro*0'Ooa)o^(X)'*r*>roa'0*OfvjNCfO<\jM>OM»o^^r*-NO(Ei/>oin'*oi/ifvjrvja> — 0^ (J- 00 Moor^M>ocofvjrn (Vl in -0 o- llJ^-lnlnM-•*r-oaJonl/1ol^l^(VJooo<^oo^^JMoo<^oof^^D(\J^Oln^o^^-^o-^o^o^^l7>f^-< M 00 r~ o(vi/ir^»cor^o- nj in t^ « (U Q:f»i--h-coaa)r-ooci^vDO'— — <^^o^D<^)()Ol^oDl^^^r>■l^ool^r-^-^~^-- 1^ ooMO-i^o-r-r^i"- 00 CO CD r~ r>- CD ^-^^^^O^O^t^^O^<^^^^J*0*(7*0^^^0^(7'^^.f^i^r^Pt^i^rwr^i^f^t>-r^i^t>-i>-r>-i^i^t^ r^ f^ 1^ h- r^ t>- i«- 1^ r^ ju^u^iru^u^iou^iri/>irinir»iru^i/ii/iiru^u^irir)iririfiu^ir)iriru^ir>ii^i/^u^'j^Lrii/^iru^iru^i/^irti/^ii^u>u>irLO^ ^^u1l^u^lf>u1lnl/>^/^mlfllnl/>l/llnlnlrllnl/1ln^/>l/ll/1l/1U1l^lnl/lal^rl^rll/^l^l^l^/>^nlnl^ll/ll/1lrll^l/^u^ ^H^^^O^^^^^>000>0>C^^^^^^^^^<£>£^>0^^0^>0^^^vO*0^>O^^C>C »c -o -o -O-O-OO-C-O^-A -C -0 -0 -C -0 -0 H•^0^^*C^^^^^£^£'0^£^^O^C^^O^O^*O^O^C^O^^O^O^O>£0^>0^^^0^£^0C-0-£l-£)-C-£)-£> -C -C -£ -0 -£) -0 i-ii^i^r^f~f^f-i^r~i^i--i-i^r^(>.i^i^i^i^h-i^i-r-i^i-f«.i^i^i^r^r-r-l>.r--i^r-t-r~t^r-(>-i^ f^ f- (- i-^-t^r^(^i>-r-t~ t- t^ 1^ 1^ r- i«- zi^r-i^i^r^Kr-r-i>-f-r>-r^h-i^r^i^i^r^i^Kt^Kr-r-r-t^r-r^i^i^r-i^(^r-f~r-(^t«-r-i>-r- 1^ 1- r^ r-r-f-'f-'h-r*r--r- r^ f-* h- f^ h- f^ B-S7 C\J^OOOOOOOOOOOOO* (VJ^OOOOOOOOOOOOO fVJ^OOOOOOOOOOOOO (VJ^OOOOOOOOOOOOO* (XJ^OOOOOOOOOOOOO • •••••••••••••• OJ^OOOOOOOOOOOOO* 11 I I M rvj I I nil * ooooooooooooooo ooooooooooooooo oc■cooco^lV^*ooocc« i>-a)<>oo(vinoooo-«nr-o> • o* * o * to* *o* • o • • o • • o • • o • • o * * o • • o* to* * o • «o* • o • * o • • o • • o • • o • CO* I • o o o o o o o o o o e e • e o o e o o e o • • • • • o o o o nj « -^ (vi I I I «OC SC* AC* *0« • • • • • • * O • * C • • •• *•• *•* *•• o o o o < O O O O I o • * o o o < o o o o < O- (M rvj r) ■ • • • • • • iflaicn>-i>-ii-''-_i_i_)_njooo -J -i-i -1 • * X « • X * 1 -1 -• -H -« « » ^ t » sD » «>0« •^C• *^C* •vO* «_<• •—• «^» »"H« t-H* •_!« n ^ « — n r^ « • «— » (n* •-*« »n» «(vj* « r-^^r^^nnoi/iooDiTvOoo o »h o >o >o ir> ^£)^-c\JKa'P^•*n^o^^<^J^o^o* •* (D 't i/i <\j o ^-oi/io>(rr^f^ <\i« «ui« «in« sj-e •— « •in* •i/i« 0^(^^0*^0^0'^^^0*0^^00 l/^ ^ fO ^ (\J ^ f\J ^ (\J O^ h- ff» • •••••••••••••• rvi • r> • in • sc • ir • ^ • (Vl « « • • '^ o 00 •I « • « « * * in — (VJ • -■ • n • (\j » (VI cc M • i/> « • oj * • nj * (Vl (VI * xO « n (VI in (V (VI » n » r) 00 (^ • •* • (VJ o- (VJ • -. « • (u * * M « n (VJ • • in (VJ « m * • in * (VI (^ ■» • « (VI (> K « -t o >c rvi o) -" o (VI (VI •« « M .M ^ M n (VI « n .t ^e >(> in IT o o> (VJ • ►• in » n n o o o * n -« (n J- * i/f in in in (VJ ^ ^ ^ ^ ^ • • • • (vju^>cin-»'*nr-oon-*>coc>(vj in inr-or)^.»r»-oni/iLn*-f)» n» oo(»)oo-0(vifMocr-ino(>p-— <> (D(i»o©^o>o^orviini/^fvj'^in »coxocrc-»(vjj-r~oo« i~» ^ m^^(\Jo^coDr^^ccooo0« oDoin<>rn(>-H^.» — — oMom (^J^Cln-Clno^coojr~oo4« -«» '£)(Vjfvjrsjn(j*r--0(0%oooc\j^co co o(^-oo^n(\l-t»-r-— cDr-t^o>a3^-r»^o^^ — (VI ru « (V r~ * o^•<^•(^•n• * (VI * • r^ • O I (VI I (S -t in « c . * I « (VI -» • h- * (S o (^ • (VJ • ru 00 ui • o » (VJ (VJ -< in * CO • « (J. » « (^ « UJ • (S « UJ « • o « o * OO « UJ * ^0 r^ o M * « 1^ in . CD « o- « • » « o o in ♦ n ♦ vO» iij«r^*iij« o o ^C 00 in» ^■♦.*«-<« ^o — r^ n in • o • (VJ r- in 00 « a * o ■* -» * r- * « (^ * rt * (T • UJ • <* t * o « o * 00 « liJ * (VI IT (VJ • .» • in n • o * 1/1 ,» ^ 00 >o (VJ « o — r- »> h- •* n (^ n UJ Ul UJ UJ O) >o ^ ^ (T ■!- oi in CO •< in ^- 1^ o> — r» o> n (VI n .» n a r- 00 a> r- r» <^ (VI 00 -* in <^ 00(?'0*CT'^0^£• UJ« r^r^r^r*-r^r^r^f^r^r^r^f*-h-r*r* co r* r^ r* sO r^ >£> r*- o r^ ^ r^ IT. irinirinininipini/iinmirini/i in in in in in m inininmininininininmintninin* «in« »in« *ir« « ifi « «in« ain« iO\00>£>C>0>00>COO>0'£>0>0 o ^0 o O (VJ vC O^ *£ (n 'O -^ «c \£i\0«£>000000<£^>OvO«£>C CO >0 ^ >£ 'D ^ in O vO O >0 nO r-r^i^r-h-r~r^r^r-t^r~-r^r^r-r^» «r-» *f^» «t^« »h-« ef^* »r-« (VI OJ «i^« «^o* *in* *in« «>£)« oio* o O « UJ « in • in « -* -c • r- « cc « o^ « o ♦ (VJ * UJ * ^••<^•^-*c^• oo«uj«co«ui* o r- * r^ m in • in « * in « ■t -o -t -c \0 ^ >C 'C • f- • 1^ fVJ . •c * • (VJ . » UJ UJ UJ UJ in in in in « in i/t in in •^ «£ >£ >o >o • r~ r- r- r» t^ r- p- p- (VI .... 'C * « o • ax* >o in « O' • * <^ * -» h- 00 ^^ r- m •c n o o o o vO » in (VJ « • m in ■» • •* in « in • in » in « o • o • r> (VJ o (VI (Vl (VI ru (VJ « T « s • s T- • s • » « * z < • < o < * a o < * IT O < O < a: O < • a. iS < o < • IK O < • < • < • a o o • t- o »- o * 1- o • 1- U1 O o >- in o • 10 O • 1- 10 O • ►- lO o • 10 1- >-> « X I I •-1 « r X I I I X X I I B-S8 OOOO ^«D ooo o^«cmoDooo • 11^ ooooooooo ooooooooo oococoooo ooooooooo r^oooooooo 'M tL Q, a. Q. a a. a. cr. -JZZZZOQOO U 2Z Z2 n(VJ(\J(^J^o(^•-<^-4■ a»^f\ii/>or^i/>^r«. o<^i^-»o<^^(^oD(^J c*>^o<^^o^-tf^l^>ln (Co^ooKr^r^co o(VJ^o^>o(^)(^(^^ inoorooflon— lo of** i/t(vi«irh-t£^o(\j • •••••••• r* I n h* I (\j IT * II 11 I Ul Ui CO IM r^ n n r~ in ■» > o o o o o o o ♦ ♦♦♦♦♦♦ UJ UJ UJ liJ UJ UJ UJ ■* » "H (> in ,t r) •» >o « * * n o> h* <\j h- fvj r) in *o K ^ ^ tO ^H (*1 ^ •- n ^ -H o (VI r^ QD o (*i 00 r^ ^ 1-4 K ® «) r*. f»- fw CO UJ UJ Ui UJ r~ t>- r^ r>- ir in 1/1 in in m in in yC yO •c ^ tO o ^ nO r- r- t^ f' t^ r- r^ f- UIUJ in in mm •c >o * * * IlI UJ UJ 1^ h- r^ m m m m m m i£ o •o «o o r^ r- f^ r^ t^ r- B-S9 APPENDIX I THE OPTIMIZATION OF NON-MATHEMATICAL FUNCTIONS THROUGH THE USE OF WARPING COEFFICIENTS In recent years, advances in hydrology and other fields have resulted in the development of rather complex mathematical models. A problem which has grown at perhaps a more rapid rate than the models themselves is the fitting of the models to specific real world situations, i.e., the determination of optimum values of the model parameters. As the models have increased in complexity and as more powerful computing equipment has become available, a group of methods known as "hill climbing" have become popular. The basic concept behind all these is trial -and-error experimentation with the various parameters, each perturbation being followed by a run of the model with the new set of parameters. Some arbitrarily selected error criterion or "objective function" is evaluated after each run, and the next adjustment to the parameters depends on the effect that previous adjustments have had on the objective function. One difficulty which often arises in this process is that some of the rela- tionships in a complex model may be non-mathematical in nature. That is, instead of a mathematical function defined by one or more coefficients, a relationship within the model may be a curve which the model interrogates through a table look-up process. Since a curve or table cannot be optimized as described above, past practice has been to express the curve mathematically, and therefore approximately, or to optimize a series of discrete points on the curve as independent parameters. Neither of these approaches is wholly satisfactory. The first method usually distorts the relationship by using a mathematical function which does not have the capability of fitting the curve closely. The second permits the selected points to vary more or less independently when they are not actually independent parameters. The idea behind the use of warping coefficients is that the relationship will be expressed within the model in tabular form. Involved in the process will be an algorithm, the warp subroutine, which, by the use of one or more warp coefficients will warp or distort the relationship. The warp coefficients are the parameters which will be operated upon by hill climbing routine or "optimizer". Figure I-l illustrates the optimizing procedure. The model inputs a data set and outputs another data set. During the optimizing process, however, the model must be thought of differently. The normal input data set and the observed values of the output are stored permanently within the model. The set of parameters must now be considered the input, and the output is the objective function. As shown in figure 1, the process begins by supplying both the model and the optimizer with an initial set of values for the para- meters . I - 1 Initial Parameters i Optimizer Objective Function Revised Parameters I Figure I-l.--Flow diagram of the optimization procedure when there are no non-mathematical functions present in the model The model then computes the objective function and feeds it to the optimizer, The optimizer adjusts the parameters and furnishes the model with the new values. The cycle then continues. Figure 1-2 that this is tine and the not only the ning tabular illustrates the same process, but involving a warp routine. Note identical to figure I-l except for the inclusion of the warp rou- tabular function. In this process, the model receives initially beginning values of the numerical parameters, but also the begin- f unction. The beginning values of the warp coefficients are established within the optimizer at a value (probably either zero or unity) which produces no distortion of the tabular function. During the optimizing procedure, the optimizer treats the warp coefficients in precisely the same manner as any other parameter. After each perturbation of a warp coefficient, however, the warp routine is called to revise the tabular function accordingly. Note that the optimizer never "sees" the tabular function and the model never "sees" the warp coefficients. The following two points should be emphasized: First, there can be no generalized warping algorithm; each application must be tailored to the particular relation involved and be formulated to produce the type of distortion desired. Second, the degree of distortion is necessarily limited. This requires that the initial tabular function be some- where near the optimum value. This should not be considered a limitation of this technique alone, however, since it is a limitation of hill climbing methods in general . I - 2 Initial T"" ers Initial Warp Routine Tabular Function ' 1 \ ' 1 I 1 > Optimizer WarD Coeffim'ent.q Kevlsed Model Object ive Function Revised Parameters 1 I Figure 1-2. --Flow diagram of the optimization orocedure when there are non-mathematical functions present in the model A very simple example of a warp The curve represents the variable the lag at minimum discharge, Ql . L3 is the lag at the maximum disc coefficient. It is not to affect curve along with it but leaving i lished that the coefficient, CW, minus LI to the original L2 minus ing algorithm is illustrated by figure 1-3 lag function in a routing reach. LI is L2 IS the maximum lag at discharge 02 harge, Q3. The algorithm is to involve'one L or L3 nor the discharge value at the t anchored" at LI and L3. If it is estab- is to represent the ratio of the adjusted L2 LI, then the adjustment, DL is given by DL = (L2 - LI) (CW - 1) at discharge Q2 at^Ll or\3'to"thI"u??:al2e'a? !^''tI^ ''V' ''^'^ ''' ^^^ ^^^m zero uu Lfie TUN value at L2. Thus, where Ql <^ Q < Q2, where DL = (L2 - LI) (CW - 1) S_:-Q^ Q2 < Q < Q3, ■Q2 - Ql DL= (L2 -LI) (CW- 1)§^ I - 3 03^ 400 c/s C^' /JS Lag (hours) zo Z5 Figure 1-3. --Warping algorithm applied to a variable lag function where L1=L3 1-4 A tabulation of the curve in figure 1-3 along with the results of the algorithm using warp coefficients of 0.80 and 1.15 is shown below. The warped curves are plotted in figure 1-3. Discharge Lag Values Initial CW=0 . 80 CW=i.l5 Ql LI 5.0 5.0 5.0 25 5.8 5.i^ 6.1 50 7.5 6.8 8.0 75 9.7 8.6 10.5 100 12.5 11.1 13.6 125 15.1 13.3 16.4 150 17. U 15.3 19.0 175 19. U l6.9 21.3 200 21.0 18.2 23.1 225 22.1 18.9 2U.5 Q2 250 L2 22.7 19.2 25.3 275 22.0 19.1 21+.2 300 20.1 17.7 21.9 325 16.8 15.0 18.1 350 11.8 10.6 12.7 375 6.2 5.6 6.6 Q3 J+00 L3 5.0 5.0 5.0 As was noted, this is a simplified case since LI = L3. If LI and L3 are not equal, the problem is complicated slightly. The basic shift (at 02) may then be based on the mean of (L2 - LI) and (L2 - L3) and the formulas become Where Ql < Q < Q2, Where L1+L3 Q-Ql DL= (L2 -^^) (CW-1) 02:^ Q2 < Q 1 Q3, DL = (L2 - i^) (CW-1) SM Q3^ Figure 1-4 shows the curve of figure 1-3 with L3 increased to 15 hours The same values of CW are used and the adjusted curve is shown in the figure and tabulated on page 1-7. ^ I - 5 400 -I Q3 * 400 cfs L3 =IS hrs. CI4^^ / /5 T r 10 \s Lag" C ^ours^ Figure 1-4. --Warping algorithm applied to a variable lag function where LI f L3. 1-6 Discharge Lag Values 1 Initial CW=0 . 80 CW=1.15 Ql LI 5.0 5.0 5.0 25 5.8 5.5 6.0 50 7.5 7.0 7.9 75 9.7 8.9 10.3 100 12.5 11.5 13.3 125 15.1 13.8 l6.1 150 17. U 15.9 18.5 175 19.^ 17.6 20.7 200 21.0 19.0 22.5 225 22.1 19.8 23.8 Q2 250 L2 22.7 20.2 2U.6 275 22.0 19.9 23.6 300 20.3 18.6 21.6 325 18.2 l6.9 19.2 350 16.7 15.9 17.3 375 15.6 15.2 15.9 Q3 i^OO L3 15.0 15.0 15.0 The foregoing illustrates one of the simplest applications of the warping technique. The curve has simple properties and only one warp coefficient is involved. A second coefficient could be introduced to change LI, or L3. Another could change the value of Q2. The optimizer could then vary the coefficients singly or in combination, producing major changes in the shape and position of the curve. A second example is an algorithm for warping a unit hydrograph, which is an ideal subject for the warp technique. Where it represents one relationship within a hydrologic model, it must be optimized simultaneously with the model's numerical parameters. It cannot be expressed satisfactorily by a mathematical formulation. A reasonably close approximation to its optimum shape is always available prior to the optimizing run. An algorithm for warping a unit graph is shown beginning on page 1-13 as a computer program titled "Unit Hydrograph Warping." It involves two coefficients, The vertical warp coefficient, RV, raises or lowers the peak and the horizontal warp coefficient, RH, shifts it right or left. The algorithm generates the hydrograph in such a way that it passes through the new peak, has the same general shape as the original graph, and maintains unit volume . The warped hydrograph is expressed both as instantaneous ordi nates and as a "time distribution" graph. The program contains comment cards which completely explain the algorithm and no further explanation will be given here. The fol- lowing examples illustrate the procedure. Figures 1-5 to 1-7 show the effect of operating on the same unit hydrograph with various combinations of RV and RH, and demonstrate the characteristics of the algorithm. Figure I -5a shows the application of RV slightly greater and slightly less than unity. Note that I - 7 700 -I /N /?///>/ 6r^ph RM= /./ Ry^o.s RM^ /. O RM' A O 1 1 --^ r O ZO 40 bO SO \00 Figure 1-5.— Vertical distortion applied to the unit hydrograph by the warping algorithm j.s when the peak increases, the lower portions of the graph decrease and that unit volume is always maintained. In figure I-5b, an extreme value of RV (2.0) is applied. Note that volume is maintained by pulling in the sides and shortening the base. Figure I-6a shows the effect of a small vertical warp coefficient, 0.7. Note that the peak has become very flat. If RV had been even smaller, the algorithm, in order to maintain volume, would have generated ordi nates to the left and right of the peak which would have been higher than the peak. For this reason, the minimum value of RV that can be used without producing undue distortion is about 0.7, and the lower constraint in the optimizing routine should be about this value. Normally, the initial unit graph will be close enough to the optimum so that RV values less than 0.7 would not occur. If an initial unit graph is believed to be particularly weak, it might be well to shade the peak 1-ow since the algorithm can raise it further than it can lower it. Figure I-6b shows the effect of RH values greater and less than unity, which produce pure translation. Note that where RH = 0.7, a small amount of volume (5 percent) has been lost. This case, RH < 1 and RV = 1 , is the only situation in which the routine does not maintain unit volume. This is not particularly important since the usual application would involve values other than unity for both coefficients. Where RV ^ 1, the vertical warp routine restores the volume lost by the action of RH less than one. The warp routine always operates on the original unit graph and not on the one resulting from the previous warp. Consequently, if RV appears before RH in the optimizer parameter array, the loss in volume would probably not occur. If it does, the loss would be small. If the model uses the unit graph in "time distribution" form, there would be no loss since this is normalized to unity. Figure I-7a illustrates this. Application of RH = 0.8 reduces the volume, but the vertical warp with RV = 1.1 restores it, and the area under the warped hydrograph is equal to that under the original. Figure I-7b illustrates the effect of RV < 1 and RH > 1 . As noted previously, the routine presents the hydrograph not only in the form of ordi nates, but also as a 6-hour time distribution graph. The distri- bution figures for the initial graph and for the eight examples presented., are shown on page 1-12. This algorithm has been used with great success in the optimization of both the NWS and the Sacramento RFC hydrologic models. Runs were made in which the optimizer controlled sixteen numerical model parameters plus the two warp coefficients. Starting on page 1-18 is subroutine WARP, which is the same algorithm expressed as a program subroutine. I - 9 TOO -I T r 40 60 Time (^hrs.) too 700 n I r 2.0 A-o GO Time (^lors.) RV^/.o^ RM.=/,Z 80 Figure 1-6. --Vertical distortion (a) horizontal distortion (b) applied to unit hydrographs by the warping algorithm 100 I-IO /p.i/= //^ /P//- as 1 r 4-0 60 Time ( hrs.) too Too -I I I ( hrs.) Figure 1-7. --Horizontal and vertical distortion applied to the unit hydrograph 1-1,1 1.1 0.9 T1 0.7 1.0 1.0 1.1 0.8 x\V ■^- J., u id . u RH •-1.0 1.0 1.0 1.0 1.0 0.7 1.2 0.8 1.2 6-hr Period 1 .011 .010 .013 .000 .017 .05U .000 .0U7 .000 2 .055 .050 .060 .010 .072 .082 .010 .060 .013 3 .062 .057 .068 .013 .080 .li+7 .052 .102 .063 h .098 .09^ .102 .055 .109 .20i| .062 .180 .07^+ 5 .166 .17i^ .158 .231 .lUo .193 .09^+ .217 .103 6 .199 .218 .181 .378 .1U3 .139 .162 .170 .1U6 T .165 .172 .156 .222 .lUo .086 .198 .106 .160 8 .110 .107 .112 .071 .117 .Oii7 .168 .059 .1U8 9 .065 .060 .071 .017 .082 .023 .113 .029 .118 10 .033 .029 .038 .003 .oi+7 .013 .068 .015 .079 11 .017 .015 .020 .000 .025 .007 .035 .008 .Oii5 12 .010 .008 .011 i k .015 .OOU .018 .005 .02ii 13 .005 .00)4 .006 .008 .001 .010 .002 .OlU Ik .003 .002 .003 .ooU .000 .006 .000 .008 15 .001 .000 .001 .001 \ .003 t .ooU 16 .000 .000 .000 \ ' .000 .001 i .001 IT .000 .000 .000 .000 .000 .000 .000 .000 .000 1-12 C UNIT HYDROGRAPH WARPING. C C C HORIZONTAL WARP IS ACCOMPLISHED BY TRANSLATING HYDROGRAPH RIGHT OR C LEFT SO AS TO ADJUST THE TIME OF THE MAXIMUM ORDINATE BY THE C AMOUNT INDICATED BY THE HORIZONTAL WARPING COEFFICIENT, RH. C THAT IS. SHFT=(RH-1. )*GPT C WHERE SHFT IS THE NUMBER OF HOURS THE HYDROGRAPH IS SHIFTED TO THE C RIGHT AND GPT IS THE TIME OF THE MAXIMUM ORDINATE. FOLLOWING THE C SHIFT, THE FIRST AND LAST ORDINATES ARE SET TO ZERO. THIS MAY C RESULT IN A REDUCTION IN VOLUME UNDER THE HYDROGRAPH. THE VOLUME C WILL BE RESTORED HOWEVER DURING THE VERTICAL WARP. C C VERTICAL WARP IS ACCOMPLISHED BY ADJUSTING THE MAXIMUM ORDINATE, C QMX BY THE VERTICAL WARPING COEFFICIENT, RV. ALL OTHER ORDINATES C ARE ADJUSTED BY OTHER AMOUNTS SO THAT THE HYDROGRAPH CO-INCIDES C WITH THE ORIGINAL AT THE INFLECTION POINTS AND HAS THE VOLUME OF C THE ORIGINAL. C C THE ADJUSTMENT FORMULA IS C C 01 (K)=QI (K)«RV*( ( 1,+ATS*( l.-CRV) )/RV)»*B C C WHERE ATS AND B ARE COEFFICIENTS C CRV IS THE CURVATURE OF THE HYDROGRAPH AT THE ORDINATE C BEING ADJUSTED. IT IS DEFINED BY C CRV=2.*QI(K)/(QI (K-1 )+QI (K+l ) ) C CRV IS EQUAL TO UNITY AT INFLECTION POINTS, GREATER THAN C ONE WHERE THE GRAPH IS CONCAVE DOWNWARD AND LESS THAN ONE C WHERE CONCAVE UPWARD. C C WHERE QKK) IS EQUAL TO THE MAXIMUM ORDINATE. THEN, C QI (K)=QI (K)*RV C CONSEQUENTLY, IF THE CURVATURE AT THE MAXUMUM ORDINATE IS C CMX, THE COEFFICIENT ATS IS GIVEN BY C ATS=(RV-l.)/( l.-CMX) C C THE EXPONENT B IS DETERMINED BY ITERATION SO THAT THE C VOLUME OF THE ADJUSTED HYDROGRAPH IS EQUAL TO THAT OF THE C ORIGINAL. C C C SINCE THE COMPUTATION IS SENSITIVE TO THE VALUE OF CRV WHERE CRV C IS CLOSE TO UNITY, ROUNDOFF ERRORS IN THE INPUT ORDINATES MAY C PRODUCE AN UNEVEN ADJUSTED HYDROGRAPH IF THE ABOVE FORMULA IS USED C TO COMPUTE CRV. IN THE PROGRAM, AN ALTERNATE METHOD IS USED. FOR C EACH ORDINATE WHICH EXCEEDS TWENTY PERCENT OF THE MAXIMUM, THE C CURVATURE IS COMPUTED. ALL INFLECTION POINTS (UNITY CURVATURE) ARE C DETERMINED AND THE AVERAGE OF ALL INFLECTION POINT DISCHARGES IS C COMPUTED. THE RECIPROCAL OF THIS DISHCARGE IS OM. THE QUANTITY C THEN USED AS CURVATURE IS THE PRODUCT OF QM AND THE DISCHARGE AT C THE POINT IN QUESTION. THESE VALUES HAVE PROPERTIES SIMILAR TO THE C TRUE CURVATURE BUT RESULT IN A SMOOTH ADJUSTED HYDROGRAPH. C 1-13 c c C INPUT - 106 UNIT HYDROGRAPH ORDINATES. TIME TO 210 HOURS, ELEVEN C ORDINATES IN F6.0 FORMAT ON EACH OF NINE CARDS. SEVEN ORDI- C NATES ON LAST CARD. C RH AND RV IN 2F6.3 FORMAT. C DIMENSION 0(107) »QI (110) C C READ UNIT HYDROGRAPH ORDINATES. C 01 DO 04 K=l,10 READ 02»Q(1)»Q(2)»Q(3)»Q(4)»0(5)»Q(6)»Q(7)»Q(8).Q(9)»Q(10)»Q(11) J=11»(K-1 ) DO 03 N=l»ll M = N+J 3 QI(M)=Q(N) 04 CONTINUE C I C READ WARPING COEFFICIENTS* RH AND RV. ^ C READ 05.RH,RV C C DETERMINE GRO» VOLUME UNDER ORIGINAL HYDROGRAPH. DETERMINE QMX» C THE MAXIMUM ORDINATE AND ITS LOCATION IN THE ARRAY. SET ARRAY* Q C EQUAL TO THE ORIGINAL HYDROGRAPH. c i GRO=0. I QMX=0, i DO 07 K=l»107 i X=QI (K) Q(K)=X GRO=GRO+X IF (OMX-X) 06»07»07 06 OMX=X GPT = 2*(K.-1) 07 CONTINUE C C COMPUTE THE HORIZONTAL SHIFT. C SHFT=RH»GPT-GPT L = -l IF (SHFT) 09»20.11 09 SHFT=SHFT*(-1.) L = l 11 IF (SHFT-2.) 16»12»12 C C SHIFT THE HYDROGRAPH RIGHT OR LEFT AN INTEGRAL NUMBER OF TWO-HOUR C PERIODS UNTIL THE RESIDUAL SHIFT IS LESS THAN TWO HOURS. C 12 DO 15 J=l»106 K = J IF (L) 13»13*14 13 K=108-J 1-14 14 M=»C+L 15 QI(K)=QI(M) SHFT=SHFT-2. GO TO 11 C C APPLY THE RESIDUAL SHIFT OF LESS THAN TWO HOURS BY INTERPOLATING C BETWEEN ORDINATES, C 16 SHFT=SHFT«.5 DO 19 J=1.106 K=J IF (L) 17,17,18 17 K=108-J 18 M=<+L 19 01 (K)=QI (K:)+SHFT»(QI (M)-QI (K) ) 01 (1 )=0. 01 {107)=0, C C HORIZONTAL WARP IS COMPLETE. BEGIN VERTICAL WARPING PROCESS BY C DETERMINING THE MAXIMUM ORDINATE ON THE TRANSLATED HYDROGRAPH. C 20 OMX=0, DO 22 K=l,107 IF (OMX-OHK)) 21,22,22 21 QMX = OI(K.) 22 CONTINUE C C COMPUTE CURVATURE AT EACH ORDINATE AND DETERMINE THE DISCHARGE AT C EACH INFLECTION POINT WHERE THE DISCHARGE IS GREATER THAN 0.2*QMX C QMX=QMX».2 QM = 0. ER = 0. DO 31 K=2,105 BA=QI (K) BB=QI (K+l) IF (BA-OMX) 31,31,23 23 X=2.*BA/(0I (K-1)+BB) IF (X-1.) 24,30,24 24 Y=2.*BB/(BA+QI