K/ GrZLi/iL U.S. DEPARTMENT OF COMMERCE National Bureau of Standards Rate Constanl of Gas Phase Reactions £/3,cX " ; 'Y >> a o u 8. & Digitized by the Internet Archive in 2012 with funding from LYRASIS Members and Sloan Foundation http://www.archive.org/details/rateconstantsofgOOkond COM-72-10014 Academy of Sciences of the USSR Order-of-Lenin Institute of Chemical Physics Rate Constants of Gas Phase Reactions Reference Book V. N. KONDRATIEV TRANSLATED BY L. J. HOLTSCHLAG EDITED BY R. M. FRISTROM Issued January 1972 Translation Performed at the Johns Hopkins University, Applied Physics Laboratory Funded Under the RANN Program, NSF Contract No. GI 12 A Publication from the Office of Standard Reference Data National Bureau of Standards U.S. Department of Commerce Washington, D.C. 20234 Distributed by National Technical Information Service Springfield, Va. 22151 ABSTRACT This survey of the kinetics of bimolecular and termolecular reactions covers the literature to the end of 1969. Gas-phase reactions of neutral particles have been surveyed, rate constants are presented in consistent units and a number of reactions have been critically evaluated. A table of equilibrium constants has been added to the English edition as well as a bibliography of rate constant compilations and sources of evaluated kinetic infor- mation. 111 CONTENTS Abstract „ iii Foreword to the English Edition v Foreword 1 Introduction 5 Atom Reactions 9 Radical Reactions 119 Reactions of Saturated Molecules and Electronically Excited Particles 237 Remarks 259 Literature 384 Thermodynamic Tables 4o6 Compilations of Gas-Phase Chemical Kinetic Data 425 Programs concerned with the Collection and Evaluation of Chemical Kinetic Data 427 IV FOREWORD TO THE ENGLISH EDITION The gathering and evaluation of chemical kinetic information is not a new endeavor in science, but it is a weak link in the chain of information from research worker to practitioner. The past decade has produced a wealth of kinetic information of great potential usefulness in science, technology and engineering, much of which has yet to be applied. The synthesis of such widely scattered items of information into a conveniently usable form is best accomplished by a specialist of wide experience; an onerous task which can be done only at the expense of one's personal research interests. Therefore, chemical kinetics is fortunate that such an eminent specialist as Professor Kondratiev has undertaken this important task. Professor Kondratiev has made an exhaustive search of the literature and compiled reaction rate data in consistent units. Where possible he has made a critical evaluation of the data to derive best estimates of Arrhenius parameters. He deserves the thanks of the scientific community for this public service. We in the Fire Science Problems Group at the Applied Physics Laboratory, The Johns Hopkins University, have been keenly aware of these problems. The objective of our program, which is supported by the RANN Division of the National Science Foundation (Research Applied to National Needs), is to gather scientific and engineering information relevant to fire problems and to make it available in a usable form that is also suitable for teaching purposes. Since chemical kinetics is one important aspect of fire research, Dr. Ronald Walker of this laboratory suggested that we perform a service to the scientific and engineering community by making Professor Kondratiev 1 s compilation available in an English translation. Mr. Lester Holtschlag of the APL Technical Information Division agreed to undertake the translation and serve as co-editor; he has carried the major burden of the pro- ject. Technical editing and supervision were undertaken by Dr. Robert M. Fristrom of the APL. At the outset of the project we contacted the Office of Standard Reference Data (OSRD) at the National Bureau of Standards which administers the National Standard Reference Data System (NSRDS). We spoke with Dr. D.R. Lide, Jr., Chief of the Office, Dr. L.H. Gevantman, Program Manager for Chemical Kinetics and Dr. D. Garvin, Chief of the Chemical Kinetics Information Center at NBS . They welcomed our effort as a useful addition to their program in the compilation, evaluation and pub- lication of chemical kinetic data. They offered to arrange for the publication and dissemination of this document as part of the OSRD data series. This offer will be of great value in making the work available to the scientific community. The editors decided that the utility of the compilation would be increased by the addition of thermodynamic equilibrium constant information which allows the derivation of the rates of the reverse reactions. These were calculated from data taken from the JANNAF Thermochemical Tables using a program available at the APL. In addition a supplementary bibliographic list of other compilations and sources of evaluated chemical kinetic information has been added. A number of people have contributed to the preparation of this reference work. In order to take advantage of the original tabulation, equivalent English call-outs were superimposed on the original Russian, a meticulous task which was started by Mrs. Helen Redmiles and brought to completion by Miss Sally Bumgarner. During this process some of the original typographical errors were eliminated. Miss Sally Bumgarner also typed the major portion of the translation, with assistance from Mrs. Evelyn Smith. Mrs. Nell Blake typed the equations in the "Equilibrium Constants" section. Mr. Michael Robison proofread the final manuscript, as did the two editors. Mr. Stanley Favin programmed the thermodynamic calculations of the equilibrium constants. Professor Robert F. Sawyer of the University of California made a number of constructive suggestions in connection with this table and the manuscript . Professor Kondratiev was most cooperative and graciously furnished an errata sheet to the Russian edition which has been incorporated in the present edition. We wish to express our thanks and appreciation to Professor Kondratiev for all who will benefit from his labors. Despite the best efforts of those concerned with this publication, it would be surprising if errors were completely absent. The editors would appreciate receiving notice of such oversights, so that corrections can be made available for future compilers. L. J. Holtschlag R. M. Fristrom vi FOREWORD Data on the rate constants of chemical reactions are appearing in the chemical literature in an ever increasing volume. Hundreds and thousands of data items relating to the most varied reactions have accumulated to date. From time to time attempts are made to compile summaries of all the known data for individual classes of reactions. As a rule, all these summaries amount to a simple compila- tion of data taken from various sources; only in very rare cases is an evaluation of the reliability of these data made. Tables of properly estimated rate constants are required for the following classes of reactions: 1. Gas-phase reactions of neutral particles, 2. Ion-molecular reactions in the gas phase, 3. Homolytic liquid-phase reactions, 4. Heterolytic reactions, 5. Topochemical reactions (reactions in solids), 6. Electrochemical reactions. Handbooks on the first (except for monomolecular and isomerization reactions) and third classes of reactions have been prepared in the Chemical Physics Institute of the Academy of Sciences of the USSR, and work is proceeding in the compilation of handbooks on the other classes of reactions (except for electrochemical reactions). The present handbook refers to the first class of reactions . Two years ago the author of this handbook made an attempt to collect, in the form of tables, the available literature data on the rate constants of elemen- tary chemical reactions in the gas phase. The author was aware, of course, of all the difficulties inherent in collecting and critically evaluating the kinetic constants, but nevertheless decided to carry the work through, although only in the first approximation. The result is the compilation of the present tables, which cover a large part of the investigated gas-phase reactions, excluding reac- tions of monomolecular decomposition of complex molecules and isomerization reactions. The tables presented in this handbook include exchange reactions of atoms and radicals, addition and recombination reactions, radical decomposition reactions, and also reactions of saturated molecules and electronically excited particles. The handbook was put together primarily on the basis of original work published in various scientific journals. In preparing the handbook account was also taken of survey articles and of tables published in such journals as "Chemical Reviews", in collections such as "Progress in Reaction Kinetics" et alia, as well as in the monographs of Schumacher, Kassel, Trotman-Dickenson, Benson et al. A large portion of the data published up to 1969 has gone into the handbook. Critical evaluation of the kinetic constants involves difficulties of both objective and subjective nature. The objective difficulties specific to kinetic constants stem primarily from the nature of the tabulated material, which in contrast to thermochemical and thermodynamic data and data from a number of other branches of science and technology, characterizes a substance not in the statics sense, but in the dynamics sense, being essentially not a characteristic of the substance, but of the process. Here is revealed in a particularly dis- tinct manner the difficulty arising from the fact that the theory of a chemical process, in contrast to the theory of structure, is still in the initial stage of development and only in rare instances can yield sufficiently well-founded data which will permit correct estimation of a given rate constant, in particular, correct determination of the temperature-dependence of a constant. A striking illustration of the difficulties inherent in the inadequate development of the theory is the problem of the fulfillment of Arrhenius ' law in a broad temperature interval. The problem of the temperature-dependence of a rate constant is inti- mately bound up with the problem of energy exchange in the activation collision of molecules, a problem which has also not been deeply investigated. Elaboration of the theory of energy exchange is therefore one of the prerequisites for the solution of the theoretical problem of the temperature-dependence of a rate constant, Furthermore, one of the objective difficulties is, in many cases, insuf- ficient information on the reaction mechanism, as well as the presence of side reactions, which are difficult to take into account. Quite frequently it is necessary to consider heterogeneous reactions taking place in parallel with the basic homogeneous reaction. It is possible to cite many examples of how inadequate insight into the reaction mechanism has led to errors in determining the rate constants of chemical reactions. Exact knowledge of the reaction mechanism is one of the necessary conditions for reliable determination of these constants. Severe difficulties also arise in determining the rate constants of interaction of atoms and radicals with various molecules when these active parti- cles are produced in an electrical discharge or by photochemical means: usually formed along with them are other active particles, which distort the reaction kinetics and thus affect the accuracy of rate-constant determination. One such difficulty is, in particular, the generation of hot particles, i.e., of particles having surplus energy considerably exceeding their mean thermal energy. This excess energy makes the hot particle more reactive than particles whose energy corresponds to the reaction-zone temperature. Hence, it is clear that reliable rate-constant values can be obtained in this case only if measures are taken which will lead to thermalization of the hot particles. . Finally, among the difficulties which must be classified as of both objective and subjective nature are those associated with inadequate cleansing of the reagents of impurities which alter the reaction kinetics. Here, too, we know of a large number of examples illustrating how insufficient attention to reagent purity has led to erroneous reaction-rate values. Insofar as difficulties of a purely subjective nature are concerned, here it is necessary above all to point out that very often the information on reaction conditions published in original articles proves to be inadequate for a critical evaluation of the measurement results and for comparison of the results of a given paper with those of other papers. In particular, instances are not rare in which the authors do not indicate the temperature at which measurements were made. For example, the experimental temperature in the case of pulsed photolysis is far from being always given. Moreover, as a result of the recom- bination of active particles at the high particle concentration typical of such experiments, the temperature may be considerably greater (by tens of degrees) than room temperature. In addition, in measuring the rate constants of monomolecular reactions or of addition and recombination reactions, the temperature range in which the measurements were carried out is by no means always indicated. For this reason it is frequently impossible to judge whether a given reaction is taking place in the high-pressure region (first-order monomolecular reaction or second-order addition reaction) or in the low-pressure region (second and third-order reactions). From all that has been said above it follows that the measured rate constant and the formula established on this basis can be considered sufficiently reliable only if very thorough account is taken of all possible experimental errors and if an evaluation is made of the validity of all the assumptions. Unfortunately, this is not nearly always done, as is evident from the many instances of appreciable discrepancy between the rate-constant values measured by different authors, often greatly exceeding the range of the errors ascribed by the authors to their measure- ments. In choosing the most reliable rate-constant values, therefore, it is usu- ally necessary to follow, wherever possible, theoretical considerations (even though the theory of elementary chemical reactions is still far from perfect and is incomplete, as indicated above), that is, considerations based on errors that are probable or possible under given experimental conditions or when a certain method is used, or simply considerations of a statistical nature. The least-squares method is normally used to find the most probable Arrhenius formula for the rate constant on the basis of data obtained at various temperatures (assuming that these data have identical weight). Without doubt, this method is more accurate than, e.g., the frequently used averaging method, in which the arithmetic mean of the logarithms of the pre-exponential factor of all the measurements (all with the same weight) is chosen as the logarithm of the pre- exponential factor, and the arithmetic mean of all the measured values of the act- ivation energy is chosen as the activation energy proper. With regard to the weight of the individual measurements, since an objective and fully reliable determination of each particular measurement is practically impossible, when examining a large number of data, all data not greatly different from each other are usually assigned the same weight, namely 1, while all the other data are assigned the weight 0, i.e., they are simply disregarded. The reliability of some methods used to find the rate constant frequently arouses serious doubts, forcing us to assign zero weight to the data found by them. For instance, it is often necessary to cast doubt on the results of rate-constant measurements under complex flame conditions. Such complexity is due to the presence of a number of competing active particles in the flame zone, and as a result different kinds of assumptions, sometimes ill-founded, must be made in determining the rate constant of this specific reaction. Considerable doubt must also be placed on data obtained as a result of calculating some macroscopic measured quantity (induction period, temperature profile of a flame or of a detonation wave, etc.) by means of computers. A rather cumbersome system of kinetic equations is sometimes the basis of such calculations, and the rate constants of the reactions contained in the system are chosen such that the desired macroscopic quantities are described quantitatively in the best manner. The distinct ambiguity of this method of finding the most probable rate constants detracts from its reliability and explains why constants obtained in this fashion are often completely unacceptable. From all the material collected on chemical gas-phase reactions it can be concluded that even though adequately reliable and exact rate-constant values are available for a certain, now rather large, number of reactions, an even larger number of reactions are characterized by unreliable constants that must be remea- sured for an exact determination, or do not have quantitative characteristics at all. In preparing this handbook the author received invaluable technical assistance from V. D. Grammatchikova, and also from T. M. Litvinenko, S. S. Polyak and L. Yu. Rusin. A certain small portion of the material was collected by V. Vo Azatyan. The author expresses his deep gratitude to all these colleagues. I also wish to thank Dr. G. Huybrechts (Belgium), who sent us the kinetic data obtained in Prof. P. Goldfinger's laboratory, and Prof. W. Jost (Fed. Rep. Germ.), who submitted data from his laboratory. V. N. Kondrat'ev INTRODUCTION The rate-constant tables for the various particles (see the table of contents) published in this handbook are set up as follows. The reaction is given in the first table, the temperature or temperature range in which the rate con- stant of the given reaction was measured (denoted in what follows by k) in the second, the common logarithm of the constant pre-exponential factor A, expressed in terms of k, k - AI° exp ( - §- in the fourth, the number n in the fifth, the activation energy E in kcal/mole in the sixth, the method of studying the reaction or of obtaining the given atom or radical (see below) in the seventh, references to the literature sources in the eighth, and remarks in the ninth. The rate constants of first-order reactions are given in sec" 1 , of second-order reactions in cm 3 mole" 1 sec" 1 and of third- order reactions in cm 6 mole" 2 sec" 1 . In the case of monomolecular reactions, when they are of the first order (high pressures), the reaction is represented by the equation AB = A + B, and when they are of the second order (low pressures) by the equation AB + M = A+B + M. In those cases when the order of the reaction is not established or when it is known that it is intermediate between the first and the second, the monomolecular reaction is represented by the formula AB -» A + B. The addition or recombination reactions are represented in exactly the same way by the equation A + B = AB when these reactions are of the second order, by the equation A + B = AB + M in the case of a third order reaction, and by the formula A + B -» AB if the order of the reaction is unknown or intermediate. Exchange reactions are represented by the equation A + BC = AB + C or AB + CD - AC + BD. As regards the methods by which the reactions were studied, the reaction conditions, e.g. thermal ("therm."), photochemical ("photochem.") , radiation-chem ("rad . -chem. ") etc., including pulsed photolysis and pulsed radiolysis, are indi- cated in the appropriate column, as a rule. "Pyr.", "photol.", and "radiol." denote, respectively, pyrolysis, photolysis and radiolysis. "Photo-Cl 2 M denotes photochlorination, "photo-ox.", photooxidation. "Fl.", "rare, fl." or "diff. fl." : "atom, fl." denote flame reactions: highly rarefied, diffusion or atomic; "shock" denotes shock-wave reactions. "Flow" and "stat." denote the jet or static methods of reaction; "horn, react." denotes reaction in a homogeneous reactor; "cr. beams" denotes reaction in crossed beams. "Calc." means that k is calculated theoretically; "est." means that k was found on the basis of general considerations and indirect data. "Dis.", "m.-w. dis.", "cond dis." and "pulse dis." indicate that the corresponding active particles were obtained in an electric discharge, microwave discharge, condensed discharge and pulsed discharge, respectively (in the case of nitrogen atoms, "act. N 2 " is often used instead of "dis."). "Hg photo." means the active particles were obtained photochemically using Hg as the sensitizer; "photo-ex." indicates photo-excitation; "int. ill." is intermittent illumination; "rot. sect." is the rotating sector method. N + NO = N 2 + means that the oxygen atoms were obtained by this reaction, the nitrogen atoms being obtained from dis- charge in nitrogen; "N0 2 tit." denotes titration of oxygen atoms by the reaction 4- NOg =02+ NO. "W" denotes that hydrogen atoms were obtained from an incan- descent tungsten wire. "Spect.", "mass-spect . " and "EPR" indicate the detection or measurement of concentrations by spectroscopy, mass spectroscopy and from the EPR spectrum, respectively; p -» means the para-ortho conversion of hydrogen. The ignition limits ("ignit. lim."), in particular, the lower limit ("low lim."), inhibition ("inhib.") or the thermal limit ("therm, lim.") denote the corresponding methods of measuring k; the diffusion cloud method, "diff. cl."; "comp.", determination of k by means of a computer. "From k_ and K" means the determination of k by the formula k = Kk_, where k_ is the rate constant of the inverse reaction and K is the equilibrium constant. The temperature is given almost everywhere in degrees Kelvin; only in rare cases (in a number of remarks) is it given in degrees Celsius. In the latter case the temperature is written as T°C. A is the generally accepted symbol for the ratio of the k of the dispro- portionation reaction to that of the recombination reaction; cp is the ratio of the k of recombination of the R^ + Rg radicals to the square root of the product of the recombination rate constant of the R L + R-l and R 2 + R 2 radicals. The recombination rate constant is often denoted as k p . The prime denotes electronically-excited particles; the star denotes unstabilized particles (in particular, particles formed in addition reactions). In some cases the thermal effect of the reaction is given (in kcal/mole) . The figures are taken from the handbook of V. I. Vedeneev, et al. "Chemical Bond Rupture Energy. Ionization Potential and Electron Affinity," Publ. House of the Acad. Sci. USSR, Moscow (1962). In a number of cases an attempt was made by the author to find the most probable value of k or the most probable formula for k. As a rule, in those cases when the measured values of k differ from each other by a factor no greater than \ and when there is no reason to assign either weight (1 or 0) to the indi- vidual data, the formula for k was calculated from these data by the least- squares method. The calculation was made using the measurement data obtained at a certain temperature as well as data calculated by the formulas given by the authors for the extreme temperatures of the temperature interval they studied. (A dash is placed in the appropriate rows under the "literature" column; the lit- erature is cited in the remarks.) In a number of cases the formula obtained in this manner for k is evaluated as the most likely and is used as the standard formula for obtaining other formulas from it. The formulas chosen as standards and the formulas accepted as reliable for some reason or other are denoted by the letter R (in the last column of the tables), denoting the formula which can be recommended as the most reliable. It is probable that such an evaluation could be given to a considerably greater number of formulas. But the author considers it more proper that such an evaluation be made by people directly concerned with measurements of the correspond- ing rate constants, and therefore more informed as to the conditions under which these measurements were made and as to all the possible error sources. The tabulated expressions for k of a number of atom and radical reactions with hydrocarbons over a wide temperature range usually do not allow for the fact that, in reality, the measured constant represents the sum of constants for de- tachment of H atoms from various positions in the hydrocarbon molecule. Within a moderate temperature range, however, k = E ^ is fairly well described by the simple Arrhenius formula. ATOM REACTIONS Reaction T°K Igk ! Ig A i • E Method 1 Literature Remarks H + H 2 = Hg + H 283-373 - 14.32 7.75 dis. ,H 2 [6133 1,2,1668 ti - 12.88 6.0 n n n - 13.73 7.25 ii [613,5263 291 7.88 - ' - - Hg photo. [1104 3 300-444 - 15.07+ig r -1/2 9.21 W [1318,13813 3 723-1023 - 13.96 6.86 therm. [15403 4,5 753 12.04 - - - ti [1338 3 873-1023 - 13.91 6.61 n [516,515, 5l93 5 1000 11.70 - - - - [9953 283-1023 - 12.06 1/2 5.5 - [17123 6 ii - 13.7 7.5+1 - [15243 7 ii - lf.06 8.0+0.5 - [15923 n 280-1020 - 13.66 6.86 - - 8 H+HD=H 2 +D- 0.8 700-1000 - 13.39 5 7.14 therm. [15403 4,9,10 900 11.72 6 - - - n n 1000 11.89 - - - ti n ii 11.98 - - it [5193 ii 11.57 - - n [1873 5 H + DH = HD + H 700-1000 - 13.33 6.53 therm. [ 1540 3 4, 11 1000 11.83 - - - M [ 519 3 H ♦ D- x HD + D - 1.0 368-468 - 12.64 7.30+0.1 w [13803 12, 13, 14 450-750 - 13.66^0.13 9.39+0.30 dis. f flow , EPR t 15853 700-1000 - 13.65g 7.36 therm. [15403 4 850-1000 - - 6.55 m [5193 1000 12,08 - - - m * 15 n li.78 4 - - - u [ 1873 5 1200-1700 - 13.7 7.5 m [1523 283-1023 - 12.00 1/2 6.5 - [1712 3 6 368-1000 - 13.49+0.20 8.91+0.5C - - 16 H + 2 = OH + - 600-850 - 12.41 1/2 18.0 fl. [17453 17 - 16.6+0.3 733-873 - 14.04 16,0 low lim. [17353 758 | 9.83 - - I - fl. [13873 773-823 - 13.62 15.2 low lim. [783 773-873 - 13.86 o 15.7 fl. [17573 793 9.43 - - - low lim. [783, n 9.70 - - fl. [13873 Reaction I T°K Ig k 1 Ig A n E 800 - 1000 L4.21 5 ±0.10 5 16.2i0.4 803-933 - 14,01 16.3 813 9.78 - - - 840 - 930 - 13.89 15.9i0.8 843 - 913 - 13.92 16.0 858 - 933 - 14.01 16.4 863 - 923 - 14.14±0.18 17.6i0.6 873 - 923 - 13.53i0.15 I5.5i0.6 890 - 1350 - - 18.9i0.9 900 - 1052 - 14. 01^0. 05 16.6il.2 900 - 2000 - - 16.5 915 10.20 - - - 960 - 1080 - 15.00 17.75 975 - 2060 - 13.98 14.7 1100 11.17 5 - - - 1100 - 1500 - 14.78 18i3 1290 - 1667 - 13.89 14.45 1400 - 2500 14.9 17.6 1400 - 3000 - 14.3 n 16.7 1650 12.15 5 - - - L700 - 2700 - 12.78 V2 17.75 293 - 1500 - 14.33i-0.30 16.6i0.8 n - 12.62 1/2 15.9 293 - 1650 - 14.31*0.28 16.5i0.7 295 - 1575 - 14.34 16.5 310 - 2060 - 14.19i-0.07 16.73t025 H + O, = OH ♦ Og ♦ + 77.5*0.8 300 13.20^0.08 >12.4 - - - H ♦ Og + Hg » HgO ♦ ♦ OH'? 2 !*) ♦ 11.1 1100 - 1900 11.30 - - - H+OHsHg + O- - 1.9*0.3 300 300 - 2000 9.54 12.76il.O 5,8il.5 410 - 730 - 12.72 7.5 960 - 1080 - 12.74 7.37 370 - 1670 13.03 7.97 H + HgO ■ Hg ♦ OH - - 14.7*0.3 300 - 2000 960 - 1080 14.48il.O 14.84 21,1*1.5 21.62 . 1 Method Literature Remarks low lim. [973,9743 18 ignit. lint. [1698 ] est. [87] ignit. lim. [1700.1699] ■ [17561 19 M [1758] n [1703] H m shock [1126] fl. [1707] shock [1440] fl. [469] comp. [1408] 20 shock [699] 21 fl. [534] a [534,531] shock [700] 22 comp. [1326] shock [247] n [1378 ] 23 shock [1173] - [81] 24 - • « - [93,91] 25 - [1590] 26 - - 27,28, R dis. , flow [1243] atom. fl. [607] 29 shock [137] 30 - [1628] from k_ and K [895] 31 m [1491 J comp. [1408] 32 from k_ and K - 33 from k_ and K [895] comp. [1408] 34 12 Reaction T°K H ♦ DgQ = HD ♦ OD - 16.0^0.3 H + LgO = ^^ ♦ D ~ - 1.820.6 H ♦ H0 2 = 2 OH ♦ 37.&2 H ♦ HOg = Hg ♦ 2 ♦ ♦ 56.3*3,3 H ♦ HgOg = Hg ♦ HOg + ♦ 16±2 H ♦ HgOg = HgO ♦ OH ♦ ♦ 68.4±0.4 H + HgS = Hg ♦ HS ♦ ♦ 12.6 H*Pg = HP+P + ♦ 96.6±0.9 1000 - 1130 1285 - 1500 300 - 2200 1072 288 - 457 300 773 300 - 773. 293±3 300 743 - 803 960 - 1080 room 743 - 803 297 300 - 478 323 - 425 Igk 288 294-565 <9.7 9.556 lg A 13.57-0.25 15.0 14.03 14.86 >12.78 13.85 £11.3 < 10.78 12.25 13.93 14.23 14.62 16.39 14.62 13.48 12.72 12.82 i2.72 3 14.06 14.08+0.05 1/2 1/2 19.9±0.6 25,5 20.43 21.8 11 2.0 11.8±2 18.22 9±2 Method Literature Remarks 2.7 3.0±0.2 4.2 4.0 1.5 4.0 1.5+0.3 2. 45±0. 15 2 .'4 +0.2 fl. dis. Hg photo, dis. , flow comp. mass spect. dis. , flow comp. n dis. comp. photol. n photol. H-jS photol. calc. est. est. photochem. mass spect. dis. , flow [1153 531,537 3 [472,468] [472,471,469] [471] [616,615] [264] 565,892] [91] [1726,1723] [565,892] [91] [1408] [565] [91] [969] [969] [436] [1562a] [1562.435] [1228,1287] [1287] [1287] ■ [1003] [17231 [ 1 724 ] 35 33 36 37 38 39 40 41 42 43, 41 44 45 46 47 48 49 50 13 Reaction T°K Igk 1 IgA 1 n E 1 Method Literature Remarks H + Cl 2 = HC1 + CI ♦ 196-296 - - - 1 rad. -chem. t 438 ] 52 + 45.1 273-335 - 12.36+0.3 1/2 ] .41+0.43 photochem. [944 3 53 11 - 14.47 ? 3,0 - [43^944,1491. 54 11 - - - - - [8291 55 294-557 - 14.50 1 1.73+0.15 mass spect. [17231 n - 14.57+0.04 1 1.8+0.3 dis. f flow [17241 298 12.05 - 1 - photochem. [167] 56 298-373 - - 1.0+0.5 - - 57 300-1100 - 15.10 2.2 calc. [1010] - - 12. 94^ 0.68 2.7 est. [1287] - - 12. 64^ 0.68 2.7 a a 196-335 - 14.25+0.25 2.01+0.35 - - 58 H ♦ Br- = HBr + Br + d 273-575 - - 1.0 therm. [1148] 59 * ^1.3 303-575 j - - - - n [1961 60 303-575 - 12.81 1/2 1.1 therm. [198, 305] 61 n - 12.83 1/2 0.9 - 1200,196,1712] R 1300-1700 - - - - shock 1233] ^1400 - - - n [235] 62 H+I 2 =HI+I+ 34.84 303-533 - - - - photol.m [12293 68 326-473 - - - - N [7953 69 375-462 - 12.59+0.11 1/2 0+0.25 photochem. [1616] 63 387-471 - - - - photol. [1383] 64 633-738 - 13.0+0,2 1/2 0+0.5 therm. [1446] 65 667-800 - - n [1449] 66 H + PCI = HP ♦ CI + - - 12.25 4 0.68 3.2 est. [1287] + 76.1+0.5 — - 11.7 1/2 3.0 N ■ H + C1P = HC1 ♦ P + - - 12.74 8 0.68 1.9 est. [1287] + 45.2+0.2 — - 11.7 1/2 3.0 ti Ht-HFsHg + P- - 31.8+0.5 3700-6100 3800-5300 12.3 13.0 35.0 35.0 shock , est. shock [184] [828] 67 14 Reaction H + HC1 = I^ + CI + 1 .1 H .+ DC1 = HC1 + D H + HBr = H 2 + Br + + 16.6+0.1 H+HI=H 2 +I+ + 32,85+0.10 H + CIO = OH + CI + + 38.0+0.3 H + CIO = HC1 + + + 38.9 H + C1 2 = H0C1 + CI + + 63+10 + co 2 = - 24.35+0.3 H + C0 2 = OH + CO - H + C0 2 = + HCO - - 95. * H + HH, = H 2 + BH 2 - - 0.7+2 T°K 195-373 195-497 901-1071 n 298-1000 195-1000 195-1070 900 303-575 463 821-984 970-1300 633-738 667-800 973 Igk 12.11, 13.36 13.52 300 - 1275 1000 - 1200 1000 - 4000 1072 1073 - 1323 1217 - 1345 300-1700 423 680 - 780 13.11+0.07 8.92 Ig A 11.5+0.2 13.34+0,14 13.4 13.857 13.6 12.4 11.16 11.91 3 11.71+0.28 13.47+0.15 11.884 13.79 12.20+0.2 12.05+0.07 12.88 12.77 1/2 1/2 -1/2 0.68 1/2- 16.30 13.74 8 12.8 15.477 13.42 6 14.07 12.415 -0.766 1/2 1/2 1/2 0.68 0.67 2.9+0.3 3.5*0.2 5.2 5.2 4.5 4.0 4.0 4.7 3.1+0.4 3. 70+0. 25 1/2 1/2 1.109 ^3 hO .9+1. 8 2.19 0.48+0.35 +0.25 4.8 Method dis. , flow dis. » flow therm. 11 from k_ and K 18 1.: 25.11 23.5 25.9 33,3 33.0 25.18 98.70 10 - 15 11+1 therm. therm, dis. ,p -» therm, comp. therm. from k_ and K therm. dis. , flow from k_ and K fl. fl. therm, fl. from k_and K calc. dis. f l° w therm. Literature [ 379] [1588] [1436] [1436, 554] [43] [43, 1712] [1287] N [379, 547] [1436] [198, 305] [410] [1434] [1409] [1446] [1449] L799] Q287] Q287] [586] [1290] [532,533] [771] [469,471] [1505] [532] [349,1289] Q 290] [1364] L518] Remarks 70 71 72 73, R 74 75 76 77 78 79 80 81 82 83 47, R 15 React ion T°K Igk lg A Method Literature ' Remarks H + HgH* = Hg ♦ HgHj + ♦ (28,2-5) H + HgH^ xHH, ♦ HHg + ♦ 44*5 H + 1^4 3 BH 3 + HH 2 H + FD, = PD-H + D ij = PD^ H ♦ » 2 = OH ♦ H 2 ♦ + 62.7 H + H 2 = HH ♦ HO - - 30.7*4 H ♦ HOp = OH + HO + ♦ 29.6=1.8 H + HHO = Hg ♦ HO ♦ ♦ 55.5*5 843 - 963 298 - 440 296 - 478 293 - 349 763 - 893 423 813 - 973 900 900 and 1357 1200 - 1800 1357 423 - 1800 H + HHO = OH + NH - - 13.8*8 H ♦ HOC1 = HC1 + NO ♦ ♦ C66) 300 500 - 540 633 300 - 630 226 293 1600 - 2000 2000 ~7 10.63 11.46 13.61*0.12 11.54 3 '13.0 0.08 10.40 300 13.46*0.05 13.92 14.20 >10.48 >9.78 12.72+0.24 12.67*0.11 13.37 4 14.48 13.7 * 0.4 13.95*0.21 11 1/2 13.7*0.6 2.0 ~7 2.6 15.0*0.5 15 - 20 11.85 16.0 13.0*1.5 L3. 53*0. 72 30 14.73 > 12.1 ~11.48 12.59 11.3 1.74 <4.0 inhib. dis. ; {i ow Hg photo. p * O dis. f flow Hg photo. dis. t flow dis. , flow therm. . 1/2 1/2 1/2 1/2 1.20-2.38 0.9 13 dis. , flow est. dis. f flow [1752] [1364] [1701 [622,1364] [1102] [1364] [1097.1099, 10$8] [469,470] [469] 1533,528,544] [469] [470] [1288] [1243] [13441 [49] [390] [386] [258] [708] [1288] [12881 [1288] [3791 84 86 87,88 89 90 91 92 93 16 t ! Reaction ! T°K Igk IgA H + SP 6 = HF + SF^ H + CI* 4 = Hg + CH, + + 1.7-2,0 H. + C 2 H 6 = Hg + CgHc + + 6.3±1.0 1300 - 1940 372 - 436 485 - 803 600 - 700 673 - 763 773 - 873 843 - 933 883 900 970 - 1300 1100 - 1900 n 372 - 1880 372 - 1900 500 - 800 500 - 2000 298 298 308 353 - 436 405 - 512 473 513 - 593 773 - 873 10.47 10.54i0.24 783 - 893 813 843 - 933 903 980 - 1440 298 - 473 300 - 1500 n n 285 - 1440 7.13 6.91 6.86 6.91 7.16 8.18 9.48 15.3 10.01 11.78 13.11 5 14.52 13.92 5 13.08 13.90 14.30 13.48 13.8*0.3 14.25 5 ~14.5 13.3 13.7li0.35 12.14 14.32 13.98 13.40 13.86 14.14 10.21 14.12±0.20 14.12i0.25 14.16 5 i0.06 £ 14. Olio. 08 30i5 4.5 7.4*1.1 9.1 15.1 14.1 10.6*1.0 8.0 11.5*1.5 8.2 12.6*1.0 12.6 12 - 13 12.90*1. 14 1/2 Method 6.2i0.1 8.6 7.5 11.9 16 9.5 9.7*2.0 4.4 9.7*0.5 9.71±0.5(; 9.90*0.1' 9.57*0.14 fl. w dis. , flov photol. inhib. fl. inhib. n fl. comp. fl. calc. dis. dis. dis. * flow y radio). dis. from k_ and K fl. inhib. therm, fl. dis. Literature I Remarks [863 3 [163] [8453 [943] [1746] [1757] [1696] [1695,1704] [473] [1409] [539] [539.473] [473] [94] [541] [277] [1423] [1522] [331] [1522] [ 14303 [161] [1646] [1423] [ 1312 ] [1757] [1766,1767] [93,96] [ 1698] [177] [541] [89,80] [93] 94 95 96 97 98 99 100 101 102 103 104 1678 105 106 107 108 109 110 111 17 Reaction T°K Igk lg A Method Literature Remark: H + C,Hg s Hg ♦ CjHr, « ♦ 9*2 298 n 7.45 7.44 n 6.63 n 7,34 300 - 445 - 300 - 473 - 333 - 450 - 368 - 443 n - 405 - 512 - 773 - 873 - 793 11.66 813 - 893 - 843 - 933 _ 303-800 - 333 - 933 - ♦ ^Hg* (10) 298 7.25 308 - 523 - 318 - 488 - 333 - 450 - 793 11.71 843 - 933 - 300 - 793 - 320 - 930 - H ♦ iso -C^q = ^ ♦ ♦ C^ + (14) 300 - 474 305-523 - 773 - 813 n - 793 11.96 300 - 793 - 300-800 - + C 5 B 11 298 7.58 H ♦ iso -CcH 12 = H^ ♦ + c 5Hl1 298 9.57 13.91 14.09 14.12 13.72 12.2 13.56 5 12.12 13.90 12.95*0.08 13. 81*0.37 13.01*0.15 11.8 13.82 12.72 13,9*0.2 12.61*0.30 11.6 12.23 14.01 14.0 * 0.2 13.27*0.09 1/2 1/2 8.17 8.2 8.2 7.49 7,0 8.4 10.3 9.03 7.2 7.83*0.79 6.22*0.36 1/2 1/2 1/2 6.3 7.1 6.7 7.5*0.5 5,24*0.64 4.7 7.6 6.33 6.8*0.5 5.33*0.17 dis. B M n photol. Hg photo. dis. w n 7 radio!. fl. inhib. n n n dis. dis. 7 radiol. dis. inhib. n 7 radiol. dis. inhib. n ii dis. Hg photo. [1522] [1522,1428] [1522,1518] [1367] [436, 83] [279] [906] [905] [905, 83] [1646,1644] [1757] [83] [1767] it [1698] [83] [1367] [1425] [1646] [906] [98] [1698] [98] [1646] [ 1595] [1767] n 198] 112 [1367] [968] 102 113 104 114 115 102 117 116 118 119 102 104 n 116 118 120 121 18 Reaction [ T°K i Igk Ig A n E Method Literature Remarks h + (ch 5 ) 4 c = n 2 + 295 V.03 4 _ _ _ dis. [1522 3 ♦ CI^CCCHj)^ + 9±3 H + n -C 6 H 14 = Hg + 289 7.6 - - - Hg photo. [1104 3 122 + C 6 H 13 298 7.22 - - - dis. [1367 3 H + C 2 H, = H 2 + CgHg 313 >12 - - - dis. [1560 3 1200 - 1700 - 12.6 therm. [152] H + CgH^ = Hg + C 2 Hj - 773 - 873 _ 13.06 6.3 fl. [1757] - 0.7 793 - 863 - 11.89 1/2 8.6 inhib. [1766,1767] 104 813 11.40 - - - n [97] 123 843 - 933 - 12.93^0.15 7.2i0.5 ii [1701] H + Cj&s = Hg + C ? H 5 773 - 873 - 12.24 2.5 fl. [1757] H + trimethylethylene = 291 11.86 5 _ _ _ Hg photo. [15] = H 2 + C 5 H 9 H + cyclo- C,H 6 = Hg + 298 6.69 - - _ dis. [1367] + cyclo- CiHc H + cyclo- C^Hg = H 2 + 298 7.75 - - _ dis. [13673 + cyclo- C^H~ H + cyclo- Ce^o = H2 + 298 8.23 _ _ _ dis. £1367] + cyclo- CcHg H + cyclo- CgH^ = IL, + 298 7.95 - - - dis. 11367] + cyclo- C 6 H 11 ft 7.55 - - Hg photo. [1104] 122 H ♦ C^ s ^ + C 2 H - 298 10.71 - - - W [1511] 124 - 10±10 773 - 873 - 11.89 3.6 fl. [1757] 1000 - 1700 - 14.30 19.0 comp. [248] H + C 6*S = ^ + C 6 H 5 + 298 >8.48 - - _ dis. [ 13673 + 1 773 - 873 - 13.90 6.2 fl. [1757] H ♦ C 6 HcCH. = H 2 ♦ 773 - 873 - 12.78 2.2 fl. [ 1757] ♦ C 6 HcCH 2 + 20 1200 - 1700 - 13.5 6 therm. [152] 19 Reaction T°K Igk lg A Method Literature Remarks H + CHzOH = H 2 + CHgOH H + CgHcOH = Hg ♦ + CgH^OH H + n-c H„OH = Hg ♦ *+ C,H 6 0H H + iso-CjH^OH = Hg + ♦ CjHgOH H + ""C^HgOH = Hg ♦ ♦ C^HqOH H + tcrt-C^HgOH s Hg + ♦ [C 4 H 9 0J H ♦ CH,SH = H 2 ♦ CHJ3 H ♦ CgHcSH = H_ + ♦ CgHjS H + n-CjH^H = Hg + + n-C 3 HJ3 H + n-C^HgSH a Hg + + n-C^HgS H ♦ CH,OCH, sL+ ♦ CHgOCH, H ♦ (CH^O = Hg + ♦ CgH^O H ♦ HCO = Hg + CO H ♦ HCBO s Hg ♦ HCO 773 - 873 823-903 773 - 873 843 - 963 863-963 773 - 873 843 - 963 863 - 963 863-963 323 - 493 room room? 298 298 300 1000 - 1700 300 476 - 573 523 - 673 8.52 7.35 13.3 10.41^0.11 13.12 12.12 13.38 5 13.08 13.44 13,37 13.39 13.32 13.24 11.60 1/2) 7.1 8.5 5.5 8.1 6.5 6,3 6.4 5.1 5.3 4.6 < 5 2 JO inhib. fl. inhib. inhib. fl. inhib. inhib. inhib. photol. photol. CHJ3H photol. photol. photoLC-HcSH photol. photol. dis. dis. dis. | flow comp. dis. | flow photol. n [ 1757] [ 17483 [1757] [1755] [ 1753] [1757] [1753] [1753] [1753] [969] [1433] [817] [969] [ 1433] [969] [969] [ 1521] [ 1521] [1184] [248] [223] [300] [ 1094] 19 19 19 19 19 19 125 127 126,48 128 129 130 131 132 133 134 20 Reaction H + DCDO = HD + CDO H + CH,CHO = Hg + CHjCO H + CH,COCH, = H 2 + CH^OCHj H + CHgCO = CH, + CO + + 5±7 H + (C 2 H 5 ) 4 Si = I^ + ♦ (C 2 H 5 ) 3 SiC 2 H^ H ♦ CH,? = HP + CH, H ♦ CF,H = Hg ♦ CP, H + CP^ = HP ♦ CP, H ♦ CH,C1<^ HC1 + CHj H 2 + CH 2 C1 H + CH-C1 HC1 + CH C1 2 C1 2< H 2 + CHC1 2 H + CC1 2 D = CC1D + HC1 H CHC1 + DC1 T°K la k 523 - 673 n 600 - 1000 n 623 - 723 300 - 813 523 - 673 298 298 773 - 873 298 - 873 298 793 858 - 933 336 - 374 970 - 1300 336 - 1300 300 700 1323 - 1523 463 463 298 <9.35 7.50 10.89 12.34 Ig A Method Literature ! Remarks 13.00 11.68 11.79 11.83 13.50 11.60 13.45 13. 66^0. 02 12.76 12.50 4 12.70 14.53*0.32 13.02 14.66 1/2 1/2 1/2 1/2 7.6 8.385*0.04 3,0 2.67 2.7 3.67 16.2 4.24 3.0 3.8 11.2 5.0 14.42± +0.69 7.83 42.2 >7.2 <5.8 photol. low lim. photol.HCHO photol. dis. dis. fl. dis. t flow upper lim inhib. from k_ and K comp. from k _and K therm. , flow dis. ,P • dis. ,p «• O dis. ,H; [1094] £87] [4] [1094] [ 1521 ] [722] [ 1757] [321] [88] [ 1758] [24] [1409] [1740] [410] [410] [363] 135 136 137 138 139 140 141 142 143 144 49, R 145 21 Reaction T°K lg k ig A Method | Literature ! Remarks HCl + CHC1- H ♦ CHC1,/ - Z 5 ^H 2 + CClj 463 - <4.3 dis. iP*0 [410] H + CDC1, = HD + CC1, room - - _ _ dis. , Hg f flow [363] 146 and HCl + CDC1 2 H + CC1, = HCl + CC1 2 298 - - - - dis. , H 2 [363] 147 H + CC1 4 = HCl + CC1, + 294 - 473 - 11.34 1/2 3.45 dis. [1539] + 55-2 463 - - <3.3 dis. ,P * [410] H + CH,Br = KBr + CH, 463 - - <3,2 dis. ,P ■* [410] H + CH,I = HI + CH, 463 - - <3.2 dis. ,p * [410] H + CHClBr = HBr + CHC1 and HCl ♦ CHBr 298 - - - dis. . tt .H 2 [363] 148 H + CCl 2 HBr = HBr * room _ _ _ - dis. , Hg, flow [363] 149 ♦ CClgHandHCl + CClHBr H ♦ CClgHBr = Hg + + CClgBr , HCl + CClHBr room - - - - dis. t "?' flow [363] 150 H + CPClg = HCl + CPC1 298 _ — - - dis. 9 Hp [363] 151 and HP + CClg H ♦ CCljP = HP ♦ CClj and HCl + CC1 2 P room - - - - dis. i "2» flow [363] 152 H + CP,Br = HBr + CP, 970 - 1300 - 15.64 17.45 comp. [1409] H + CClgBr = HBr ♦ CC1 2 298 _ _ - - dis. , Hp [363] 153 and HCl + CClBr H + CCl,Br = HBr ♦ CC1, room - - - - dis. f Hp, [363] 154 and HCl + CCl 2 Br flow H + C 2 HjCl = HCl + room 10.76 - - - photol. HI [1314] 155 + C2 H 3 H + CgHjCl = Hg + room 10.93 - - - photol. m [1314] 155 ♦ C^Cl 22 Reaction H + CgHcI = HI + CgHc H + CgP^Br = HBr + CgF^ H + C 2 P^Br 2 = HBr + + CgF^Br H + CH 5 NH 2 = H 2 + [CHH 4 ] H + (CH 3 ) 2 NH = H 2 + + [C 2 NH 6 ] H + (CH ? ) 5 N = H 2 + + CHgCCHj)^ H + CgHjNE^ = H 2 + [OgHHg] H + (C^H^gNH = B^ ♦ L c 4 NH io] H ♦ (C 2 H 5 ) 5 N = ^ + H + n-C^HoHH-, = H w + tCjNHg] 2 - "2 H + n-C^H 9 NH 2 = H 2 + * Wo r H ♦ CH 3 N 2 CH, = CH 4 + + CH 3 H 2 H ♦ Hg(CH 5 ) 2 = CH 4 + + Hg + CH, H + H + H = B^ + H *2 T°K 463 970 - 1300 970 - 1300 843 - 963 863 - 963 883 - 963 883 - 963 853 - 958 853 - 943 883 - 963 868 - 958 383 293 Igk lg A Method Literature M 300 »• n 303 6.31 14.7 <15.35 15.93 16.01 16.30 16.11 16.30 16.0 12.54 13.21 13.86c 13.10 13.63 4 13.94 13.14 13.06 <4.5 11.5 14.5 9.1 10.8 11.8 8.7 9.2 10.5 8,0 7.6 ^6 is. ,p -* O comp. comp. inhib. inhib. inhib. inhib. inhib. inhib. inhib. dis. , H- dis. dis. d 's. » flow dis. dis. calc. dis. [410 3 [1409] [1409] [1748] [1754] [1754] [1749] [1751] [ 1751 ] inhib. [1749] 19 [1750] [756] 1437,1438, 1491 [139] [1413] [173 [1717] [18] Remark: 19 19 19 19 19 19 [723] 156 19 157 158 23 Reaction T°K Iq k Ig A Method Literature Remarks H + H ♦ Ka = Hg + Ua' (3 2 P) H + H + Na = Hp_ + Na' H + H + He = H 2 + He 1700 2500 2500-5500 2800-5000 2900-4700 2950-5330 3000 3000-3500 3500-4800 4500 5500 300-35U0 1250-1750 1500 296 1900 190-350 213 213-349 H + H + Tl = H- + Tl' 15.7 16,95g 15.04 14.95 4 14.567 17.16 15.86 15.86 15.67 15.45+0.05 291 15.36+0.05 293 15.35+0.08 296 15.75+0.03 349 15.30+0.06 960-1080 - 1700 14.54+0.24 1900 15.34 2800-4500 - 2800-5000 - 2900-4700 - 2950-5330 - 3800-5300 - 200-5330 - 1500-2000 14.9 40.75 19 19.3 19.70 21.26 33.40 17.47+0.29 16.59 17.03 17.4tl.7 -7 -1 -1 -1 -3/2 -4.9, -1/2 -0.5 -0.68 1-0.7+ +0.7 18.17c 17.81 18.17 6 18.0 17. 87^ 18.30 17.49+0.22 -1 -0.87 ±0.07 est. shock ■ a n H M n n fl. dis. , flow fl. dis. » flow dis. n dis. , flow n dis. dis. » flow dis. shock n fl. shock fl. [13763 [809] ti [1322] [829] [1220] [602] £1459] a [602] [809] [1737] [315] [1212] [1706] [707] [981] [983, 1491] [9831 [981] n [982, 983 3 [1706 3 [983] [1408] [1375, 1376] [707] [1459] [1322] [829] [1220] [828] [1246] 159, 160 159 161 162, 163 159, 164 159 165 24 Reaction T°K ! i it, Ig k Ig A n E Method Literature Remark H+.H + Pb=H 2 +Fb 1500-2000 - - - - n. [12463 H + H+H 2 =H 2 + H2 291 293 15.82*0,10 £l5. 83+0. 08 _ - - d's. , flow dis. [981] [1437] n 15.72 - - - n [18] it n n ■ n 16.21±0.04 15,97 16.20+0,03 15,53±0.07 16.13 - - — M n 11 n calc. [18, 1627] [1673] [1627] [982, 983] [965] 166 167 room 16.64 - - - photochem. [1404] a n 300 15.92+0.08 15.125+0.0^ 16.20 - - dis. 1 f low dis. [1413, 1491] [139] [20] 157 • 15.93 - - - Hg photo. [525] n 16.07 - - - dis. , flow EPR [1055 3 168 300 or 350 16.25+0.02 - - - dis. [9651 1072 15.50 - - - fl. [468, 469] 169 1400 15.94 - - - n [1339] 170 1700 15.3 - - - est. [1376] 2500 15.14 5 - - - shock [8093 2500-7000 - 20.6 -3/2 n n 2800-4500 - 18.41 -1 [14593 162 2800-5000 - 18.48 -1 n [1322] 159, 160 2900-4700 - 18.40 -1 a [829] 2950-5330 - 18.87 5 -1 n [1220] 159 7000 14.59 - - - n [809] - - 18.7 -1 - [1287] - - 18.3 -1 - a 290-7000 — 18.7810,15 -1.09 ±0.05 — — 171 H + H + H 2 = H 2 + N 2 1072 15.28 - - - fl. [469, 468] 172 1400 14,56 - - - a [1339] 170 1900 15.56 - - - a [707] 2080 ~16.34 - - - a [1072] 173 H+K+HP = H 2 +HF - - 18.87 4 -1 est. [1287] - - 19.0 -1/2 n n ~* •" 19.47 6 -1 n 25 Reaction T°K lq k Ig A Method Literature Remarks + H ♦ HgO = ^ + H 2 H+H+C0=H2+C0 H + H + C0 2 = Hg + CO, H + H + SOp = Hg + SO, H + H+M = H2+M H + N+M = NH+U H + -*- OH' (A 2 £ + ) -*■ OH + hV H + P + H = HP+H H + P + H 2 = HF+H2 H+P+OH=HF + OH H+F + HF=HF+HF H+F+H 2 0=HF+H 2 293 960-1080 1072 1650 1700 2080 1900 1900 2080 2080 1273 1500 1650 1750 2078 2250 2750 1273-^078 300 fe 16.7 15.28 16.34 15.3 17.17 ( 15.7 15.7 17.08 18.60 15.70 15.60 15.48 15.67 15.48 15.46 15.32 ^ 14.68 3.23iU.15 19.48 20.36 20.58 17. 54, 17.84 4 19 18.7 19 19 -1 -3/2 -1.5 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1.635 dis. shock fl. n fl. fl. n n shock fl. shock n fl. est. [983, 9813 [1408] [469, 468] [257] [1376] [1072] [707] [707] [1072] [1072] [468] 177 [878] ii [257] 177, 178 [488] 179 [1491, 1313] 178 [488] 179 [1287] [ 1068] [1503] [1287] [1287] [1287] [1287] [1287] 174 175 172 173 173 176 176 180 26 Reaction T°K Igk H + P+M = HF+M - - H + CI + Tl = HC1 + Tl« 1500-2000 15.9 H + CI + Pb = HC1 + Pb« 1500-2000 - H + CI + M = HC1 + M - - H + Br + Tl = HBr + Tl» 1500-2000 15.3 H + OH + Ha r H 2 + Na« 1500 16.34 H + OH + K = H 2 + K' 2300-2400 17.73 H + OH + He = ^0 + He 300 17.32 1900 15.86 H + OH + Ar = H 2 + Ar 960-1080 - 1307-1846 i5.73i50< 1400-3000 - 1700 15.48±0. 1900 15.81 H + OH + Tl = HgO + Tl» 1500-2000 15,3 H + OH + Pb = HgO + Pb' 1500-2000 - H + OH + Hp = HpO + Hg 1400 17,56 H + OH + N 2 = HpO + H 2 1072 16.95 1400 16.67 lg A 18.7 18.87 4 18 15.69 3 15.69 15.03 ? 19 17.94 4 16.47 ? 19.55 c 18.95, -1/2 -1 -1 1/2 -1/2 -1 -1 -1 -1 E o -3.05 -3.05 Method Literature Remarks calc. n fl. est. n ii fl. fl. fl. fl. fl. fl. [1287] [1287] n n [1246] [1246] [1287] n n [1246] [1212] [1661] dis. [1196] fl. [707] comp. [1408] shock [619] ii [247] n [1376] fl. [707] [1246] [1246] [1339 ] [469, 468] [1339] 181 182 172 27 Reaction T°K Iq k Ig A n E Method Literature Remarks H + OH + OH = HgO ♦ OH' H + OH + H^O = H 2 + + HoO H + OH ♦ C0 2 = HgO + + CO. H + CO + II = HCO + M H ♦ HO + E»'= HBO + He H + HO + Ne = HBO + H« H+B0+lr = HH0+JLr H + HO + H~ = HBO ♦ Hg H ♦ HO = HBO H+HO+M=HHO+M H + BO -»• HBO 1900 2080 1072-2000 2300-2400 300 960-1080 1072 1400 1650 1900 2080 2225 1900 2085 300 293 293 293 231-704 n 294 298 ■ 903 15.67 ~16.34 15.86 17.69 16.95 17.0 17.73 15.94 17.17 17.06 14.26 17.06 15.81jtQ.07 15.85^0.06 15.93+0.08 15.68 16.04 16 11.2 24.3 20.86 -2.42 -1 15.49 18.37+0.73 15.73 -0.9.+. +0.3 17 18.98, 15.55 5 -0.7^0.3 -0.6+0.2 fl. [707] [1072 3 [1661] dis. [1196] comp. [1408, 257] fl. [469, 468] n [ 1339 ] it [257] a [707] n [1072] n [1211] fl. [707] n [1072] g photo. , p -► O [525] -1/2 -1 0.7 -0,6 dis. , flov dis. f dis. , flow dis. , flov a n fl. therm. [390] [390] [390, 395] [395] [390] [390, 258] [386] [1406] [742] [1288] [258] [1288 ] [177] 183 181 172 184 176 185 186 187 188 28 Reaction H + 2 = HO£ H + 2 + He = H0 2 + He H + 2 + Ar = H0 2 + Ar T°K H + 2 + H 2 = H0 2 + Hg Igk Iq A 13. 50^ 293±3 16.33jp.13 293 15.88+0.04 225-293 293 813 960-1080 1100 1300-1500 1500 225-1500 225-1850 250-800 a 293-1500 293 u a m 293-319 293 and 793 293-803 300-647 700-800 770 793 813 293-813 16.13 15.90±0,04 16.065+0.11 15.23 15.915 15.52 15.4 15. 15+0.08 15.03 13.84 14.52 14.64 16.60 17.46 17.26 17.80 6 15.73 '16.16 15.92 15,30+0.05 18.12+0,22 14.93 20.37 5 14.67 19.09+0.51 -0.88 ±0,08 -1,8 -1..24 +0.19 -1,3+0.7 Method Literature -0.87+ +p.07 i -1.28± +0.09* -1.6+0,7 15,2 15.7 15.06 15.50±0.10 22.03+0.47 -2.08 ±0.17 -3.5 -1.3+0.5 -4,8 -3.55 -1.89i ±0.21 Hg photo. mass spect. dis. flow dis. , flow dis. dis. , flow dis. fl. comp. shock ■ d "s. t flow n Hg photo. photochem. dis. t flow dis. est. photochem. comp. Hg photo. ignit. lim. U. [264 3 [1725, 17233 [3953 [395 3 [982,395,378) [395 3 [3713 [793 [1408 3 [699 3 [620 3 [6a 3 [699 3 [6213 [395 3 [5253 [4013 [16733 [3953 [1328] [12213 [2643 [115, 7883 [91] [2653 [972] [1554] [99] [79] Remarks 189 190 191 192 n 193, 194 195 196 197 41 198, 199 200 201 202 29 Reaction T°K lg k IgA | j Method i Literature Remarks H + Op + CU = HOp + Op H + 2 + H 2 = H0 2 + + H 2 H + 2 + M = H0 2 + M H + 2 + CF^ =.H0 2 + •+ cp 4 H + 2 + SF 5 = H0 2 + + sp 6 H + S0 2 + H 2 = HS0 2 + + H„ H + S0 2 + H 2 = HS0 2 ♦ 273 14.08 293^d 793 - 293 17.24+0.18 293 - 319 19,39 1000 - 1350 1300 17.0 1500 ^16.63 1530 15.90 600 - 800 14.71+0.15 800 16.01+0.15 ~800 15.63 293 - 319 19.13 293 - 319 19.13 ILjO H + S0 2 + M = HS0 2 + H H ♦ CH, -^ CH„ 3H 3 H + CH, ♦ He = CH. + + He H ♦ CH, + Ar = CH. + ♦ At H ♦ CH, + ^ = CH^ + Hg 784 2000 1480-1660 16.85 1647 15.86 1660 16.13 ~ 2000 16.33 4 293±3 13.21+0.13 296±3 12,99+0.13 300 300 970-1300 970-1300 16.16 17.34 19.43 18.92 15,08 21.625 22.08 22.38 -2.5 -3/2 -1 -1 inhib. fl. fl. mass spect. II mass spect. mass spect. comp. comp. photol. [401] - [115] dis. [39&] photochem. [264] fl. [544] 11 II shock [621] fi. [473] fl. , comp. [17083 fl. [1695] 11 [1700,1554] photochem. [264] photochem. [264] 203 204 [1577] [874] [545] [876] n [875] [1727] [1723] [1727] [1727] [1409] [1409] 177 205 177,206,207 177,207,208 177, 209 210 211 211 30 Reaction T°K Ig k Ig A n E 1 Method Literature Remarks H + C 2 H 4 = C^ room 11.77^0.07 - - - pulse photol. [2201 n 11.73*0.05 - - - dis. , flow [1116,2203 296*3 12.05*0.16 - - - diff. cloud [17283 296 - 540 - 13.43 2.0*0.8 n [1728,1729 3 297 11.38 - - - Hg photo. [847, 973 212 330 - 520 - 13.0 1.82 radiol. [16443 215 813 12.37 - - - inhib. [973 216 298 - 813 - 13.47 3.18 _ M 217 295 - 813 - 12,86*0.22 1.64*0.36 — - 218 295 - 813 - 13.02*0.27 5 1.77*0,45 — - 219 H + CgH^ + He = OgHc + 296*3 18.2*0.3 _ _ _ mass spect. [1728,1723 3 + He H + Cg^ + Hg = C 2 H 5 + 293 16.79 _ - - Hg photo. [2893 220 + H 2 813 18.94 - - - ignit. lim. [973 298 - 813 - 17.75 1/2 0.98 - [973 221, R H + CgH^ + 2 a CgHc ♦ 813 18.81 _ _ _ ignit. lim. [97] + o 2 H + C^Hy, —*■ C^Hq 289 11.70 - - - Hg photo. [153 n 11.87 - - - N [15,11053 291 11.36 - - - n [11053 room 11.38*0,21 - - - dis. , flow [11163 298 10.94*0.02 - - - dis. , EPR [2453 213 n 11.08*0,04 - - - n [2463 213,214 300 - 463 - - 1.74 Hg photo. [4363 222 304 11.23 - - - n [2903 223 970 - 1300 - 13.60 1,58 comp. [14093 224 H + C 2 D^ = C 2 D 4 H room 11,77*0,07 - - - pulse photol. [2203 H + C^ — C 2 D^H room ~11.78 - - - pulse dis. [2203 H + CpHc, = ^o**c 970 - 1300 - 15,64 comp. [1409,1773 225 n + CpHj- -*- CpH/r 903 13.65 - - - therm. [1773 105 H + C^IL- 2 CxHn 293*3 11.87*0.14 - - - mass spect. [17283 329 - 513 - 14.02 3.7 radiol. [1644,1645, 1491] 215 31 Reaction H ♦ C 3 H 6 C,H 7 H ♦ C^IL, s C^i H ♦ C^Kg-1 ~*» C^Hg H + Cis-C^Hg = C^Hg H + cis-C^Hg-2 -B- -— (CHjXmCHgCHj H + trans-C^Hg-2 s H + trans-C^Hg-2 H CH^CHC^CH, H + ISO— I C^Hq = C^Hg H + — (CH 3 ) 3 C Method Literature Remarks 329 - 513 289 291 297 300 - 473 304 it 330 - 490 823-863 293 297 297 - 457 289 297 room 297 289 297 - 540 11.21 11.26 10.69 12.03 11.20 11.68 11,93-0.14 12.06 11,90 11.70 11.77*0.07 11.80 11,80 room' 297 423 - 500 289 297 12.33*0. 09 12,42 14,40 12.05 11.08 12,5 14,48 12.5 14.50 13.31 11,76 11.93 13.94 6 11. 97*0, 13 12,78*0.13 1/2 1/2 1/2| 1.52 3.83 2.2-0.1 3.1 3.5 4,9 2.72 1/2 3.5 4.9 2.72 1/2 2.2 0.8*1.0 0.02*1.00 radiol. Hg photo. n n n I! radiol. inhib. mass spect. Hg photo. radiol. [1644,1645, 1491 ] [153 [ 15,1105'] [290,11053 [847] [279] [290] Hg photo. n pulse photol. Hg photo. Hg photo, radiol. ij pulse dis. Hg photo, radiol. it n Hg photo. n [847] [1645] [1644.1645, 14913 [16453 [1108, 153 [847] [2203 [847 3 [1106, 15 3 [1645 3 [1644.1645, 14913 [1645 3 [2203 [8473 i [1644. 1645, [ 14913 [16453 [153 [8473 226 227 228,229 [1644,16453 17663 [17283 227 231 215 232 227 233 231 215 232, R 234 227 215 231 232 235 32 Reaction H + C^Hg C 4 H 9 H + cis-C 5 H 10 -2 = CjH^ H + trimethylethylene -*" C 5 H 11 H + (CH,) 2 CC(CH 5 ) 2 = C 6 H 1? fj + tetramethylethylcne — C 6 H 13 H + 2,3,3-trimethyl- butene-1 G 7 H 15 H + butadiene = C Wh H + butadicne-1,3 -— c H + %h C 2 H 2 = C 2 H 3 H +^ CgHg + Hg = CgH, ■*• + H, H + C 2 H 2 "*" C 2 H 3 ? H ♦ .CgDg -* GgHDg H + CHjCCH > C,H 5 JOJ 2® 289 320 - 457 289 297 323 - 475 289 395 - 500 297 •i 295 313 313 277 - 372 room 298 room 298 IgA 11.62 4 11.76 11.86 5 11.68 11.94 11.81^0.15 13.79 12.62^0.10 E 11.8 12.61 11.83s 12,71 4 12.22 10.10 10,38+0.06 17,96e 11.56 10.71 10.86 11.36c+ 13.97, 12,8+0,5 11.17 t 0.04 5 1/2 1/2 n Hg photo. Hg photo. Hg photo. 1,8-0.3 radiol 3.1 l.O2i0,30 Hg photo. Method 1.8 1.02 11.99+0,50 1/2 0,5+1.0 1.9 -0.28+ tl.OU radiol. Hg photo. radiol. 1.5 Hg photo. ii d's. , flow EPR n dis. , fow dis. , flow dis. ,Hp dis. jHg dis. f EPR Literature Remarks C1106] [15] [1106, 15] [1645] [1644.1645, 1491] [1645] 231 215 232, R [1106, 15] [847] 227 [1645] 231 tl 232 Q106, 15] 1645 1644.1645, 14$1 1645 847 ii 805 1560 1560 464 1116 1511 1115 245 231 215 232 227 235 236,237 238 33 Reaction H + cyclohexene H + C 6 H 6 = CgHr, H ♦ C 6 H 6 — C 6 H ? H + C^H C CH, — C ^jCHj — CyHg H + C 6 H 5 CH 3 -*• ? E + CH,COCH, -*■ ~*» iso — CvH r - ) T°K 289 320 - 475 3 V H + methyl methacrylatc -*• c c o. 5°^ H * CF, + Ar = CP,H + + Ar ♦ CP, + Hg = CF,H + ■2 H + C 2 P 4 -~ C 2 HF^ H + C 2 H,C1 — C 2 H 4 C1 H + C 2 C1 4 — C 2 HC1 4 289 room, 298 300 - 357 289 298 523 289 970 - 1300 970 - 1300 289 lg k IgA 11.90 11.03 11.81 10.56*0.07 10.38 ll.00i0.05 11.81^0.15 13.79 12.62*0.15 289 11.64 10.78 10.61 12.69 10.8 20.30 20.60 n Method Literature Remarks 1/2 3.5*0.3 4.9 2.72*0.30 2.9*0.6 -1 -1 7.5 Hg photo. radiol. n Hg photo. n pulse radiol. Hg photo. pulse radiol. therm. Hg photo. comp. comp. Hg photo. photol.HI Hg photo. , [1106, 15] [1645] [1644.1645, 14911 [1645] [15] [1106] [1356] [15] [1356] [120] 231 215 [15] [1409] [1409] [15] [ 1314 ] [15] 232, R 239 240 155 34 • ■ ' T' | Reaction T°K Igk Ig A n E Method Literature Remarks D + Hg = HD + H 196 - 298 _ _ 7.61*0.46 photol. DIandDBr 1 i [9703 241, 14 274 - 468 - 15.56* lgr ■1/2 9.40 W [1318,9951 3,242,243 450 - 750 - 13.63 4 ±0.09 7.61*0.20 dis. t flow , EPR [1585] 700 - 1000 - 13.62 6.23 therm. [1540,516] 850 - 1000 - - 4.85 n [519] 1000 12.40 - - - n n 1000 11.99 - - - H [187] 5 283 - 1023 - 11.99 1/2 4.9 - [1712] 244 400 - 1000 - 13.70*0,03 7,73* ±0.085 1 _ — 245 ,R D + HD = DH + D 700 - 1000 _ 13.23 4 6.37 therm. [1540,516] 1000 12.01 - - - n [519] 246 D + DH = D 2 + H 700 - 1000 - 13.32 5 6.61 therm. [1540,5161 247 850 - 1000 - - 5,6 n [519] 1000 11.90 - - - n n 248 1000 11.602 - - - n [187] 5 D + D 2 = D 2 + D 283 - 1023 — 11.71 1/2 6.0 — £1712] 244 358 - 468 - 13.08g*0.06 7.63*0.1 W C995] 249 873 - 973 - 13.54 6,8 therm. [519,526] 250,251 1000 12,06 - - - M [519] 252 D + 2 = OD + - 15.2 800 - 1000 - 13.93*0.11 14.9*0.4 low Urn. [972,973,974] 18. F 803 - 933 - 13.68 14.9 ft [1698] 823 - 963 - 13.46 14.2 inhib. [17221 19 800 - 1000 — 13.80*0.74 15.12* - - 253 D + I 2 = DI + I 633-800 - - - - therm. , stat. [14501 D + HC1 = DH + CI 900 12.00 - - - therm. [1436] - - - - 4.6 1 est. [993] D + DI = D 2 + I 633 - 800 - - - therm. » stat. [1450] 254 D + H 2 = HDO + H 288 - 457 - - 1 6.2 dis. [616,615] 255 573 - 873 7? Hg photo. [523] 256 1 35 Reaction D + D 2 S = D 2 + DS D + NH, = Niy) + H D + NH, = DH + NE^ D + PH, = F^D + H D + CH, = HD ♦ CI^ or CHjD + H D + CH^ = CHjD + H D + CH 4 = DH + CH, D + CgHg = C 2 H 5 D + H D + Cgflg = DH + C 2 Hc D + C 2 H 6 = CH,D ♦ CH, D + iso-C-H- = HD + * C 3 H 6 3*7 = D + CjHg = Cja^ ♦ H T°K 298 - 451 293 and 373 573 - 873 Gy3 - 833 953 - 1053 954 - 1061 843 - 943 693 - 893 373 - 473 293 - 373 373 573 - 873 298 - 398 523 - 673 386 - 581 293 298 M 298 - 398 304 - 733 299 - 581 371 - 761 358 298 Iq k lg A 6.94 7.25, 6.86 12.99 14.70 13.66 10.20 13.55 11.30 12.92 14.4 1/2 (J Method Literature! Remarks 1/2 5.0 7.73 9±1 nil 10,7 nil -N,10 12.9 14.4*0.5 <5 Ml 13±1 8. 5- h 0. 5 7.8 10.13 11.4 •~6. 5 6.5*0.5 9.0 7.2 ~7.5 photol. dis. Hg photo. II therm. inhib. Hg photo. Hg photo. dis. Hg photo. radio], therm. n dis. Hg photo. dis. si pradiol. photol. D 2 S dis. Hg photo. photol. [4361 [615,616] [523] [1102] [518] [1720] [1102] [1142] [615,616] E1142] [523] [986] [1094 3 n EL5183 Q.429] [1522] [1518,1522] [986] [436] [1518] [1142] [752 3 [1367] 257 258 259 260 19 261 262 263 f R 264 265 264 266 36 Reaction E Method I Literature ; Remarks D + CjHq = DH + C^ + H D + n- c ^H 10 S I + C 4*9 D + iso -C 4 H 10 = DH + + C^Hg = n "C 5 H 11 D + H D + n^C^g = DH * D + (CH 3 ) 4 G sDEt + CHgCCCHj)^ D + n~f> h — Q 6 M 14 = n -C 6 &, 5 D * H D + n-GgH..^ = DH * ♦ C 6 H 13 D + CgH^ = CpHjD * D + C,H 6 s DH + CjHc D + butene-2 &JM * G D ♦ C^Bg s OgHD •»- E D + CgHg s C 2 H + C 2 H 2 D D + cyclo^C n = = DH ♦ cyclo""CiHc 298 298 298±1 298 - 573 298 - 573 1200 - 1700 293 298 7.50 7.20 7.81 c 7.04 13*7 14.14 13.5 dis. dis. 5,0 5.0 ^5 Hg photo. photol.DpS photol.D^S therm. dis. dis. [13673 E13671 [1104] [506] [436] [436] [152] [615,616] [13673 122 270 271 272 37 Reaction D + cyclo-C^Hg = DH + + cyclo - C^Ho D + cyclo-C cH 1Q = cyclo-CcHgD + H D + cyclo-C 5 H 10 = DH + + cyclo— CcHq D + cyclo-C c H 12 = = cyclo-C 6 H 11 D ♦ H D + cyclo-C H 12 = DH + + cyclo-Cc^-i'i D + CgH 6 = DH + C 6 Hc D + C 6 H 6 = C 6 H 5 D ♦ H D + CH,OH = HD + [CHjO] D + C^cOH = HD + + [OgHjO] D + n-C.^OH = HD + + CC 3 H 7 0] D + n-C^HgOH = HD + + [C 4 H 9 0] D + CHjOCH, = DH ♦ ♦ CHgOCH, D + HCHO = DH ♦ CHO D ♦ DCDO = D 2 ♦ CDO D + CD,CDO = D 2 ♦ CD,CO D ♦ CH,COCH, - DH + T°K 298 298 298 298 298 298 >7.83 298 >8.13 84-3 - 943 - 843 - 943 843 - 943 843 - 943 CI^COCH, 298 523 - 673 523 - 673 300 298 Igk 7.46 8.12 7.82 7.71 7.67 lg A 8.16 10.28^0.07 6.95, 12.21 12.65 12.63, 12.72 11.60 11.60 1/2 1/2 8.6 6.9 5.6 4.9 2.1 3.0 Method Literature Remarks dis. dis. dis. dis. dis. dis. dis. inhib. inhib. inhib. inhib. dis. photol. photol. dis. , f lo . dis. [ 1367 ] [1367 3 [1367 3 [1367 3 [1367 3 [1367] [1367] [1720] [1720] [17203 [1720] [1521] [1094] [1094] [1077] [722] 19 19 19 19 273 140 38 Reaction T°K la k Ig A Method Literature ! Remarks D + CHJJHg = HD + + [CNH 4 ] D + CgHJ^ = HD + ♦ [CgBHgl ' D + n- C,H < JIH 2 = HD + + [CjNHq] D + D + D=Dp + D D+D+Ar=Dp+Ar 843 - 943 843 - 943 863 - 943 300 2940 - 4895 3466 - 4520 3500 D+D + Kr = Dp + Kr D + D + D 2 = D 2 + D 2 D + 2 + D 2 = D0 2 + D 2 D + 2 + M=D0 2 +M D + C 2 H 4 3 C 2 H^D 2800 - 4500 3230 - 4895 3466 - 4520 3500 3500 2800 - 4500 2940 - 4895 3466 - 4520 3500 700 - 800 803 296 - 650 15.88 15.30 15,76 15.75 14.30 14.36 14.30 14,49 14.15 12.92 5 13.10 13.03 18.84 4 19.30 17,903 17.84 4 18.00 17.70 18,00 18.24 14,76 -1 -1 -1 -1 -1 -1 -1 -1 9,6 8,4 7.5 inhib. inhib. inhib. dis. shock shock shock shock a ss n n -4.35 11.77^0.21 1/2 1.6±0.4 ign mass spect. I 1720] [1720D [1720] [17] [1324] [830] [1324] [1459] [1458] [1459] [1324] [830] [1324] [1458] [1324] [1459] [1324] [830] [1324] [1458] [973] it. lim. [1019] 19 19 19 159,274 275 276 159,274 276 159,274 277 278 [1728,1723] 39 Reaction T°K la k Ha + Cl 2 = HaCl + CI Ha + Br^ = HaBr + Br Ha + I 2 = Hal + I Ha + HC1 = HaCl + + H - 4.2 Ha + DC1 = HaCl + D Ha + HBr = HaBr + H + 0.8 Na + HI = Hal + H + + 0.2 Ha + CH,F = HaF + CH, Na + CH^Fp = HaF + + CHpF Ha + CKE? = HaF + CHF t> 2 Na + CF^ = NaF + CF, ; ' a + C 2 F 4 = BaF + C 2 F 3 573 15.3 573-623 14.61 533 14.7 573-623 14-78 511 11.39 513 - 520-820 - 600 12.7 700 13.3 511 11.31 520 - 600 14.18 a >13.78 513 60U 520 548 520 548 520 548 520 548 520 Ig A Method i Literature! Remarks 15.1 14.7 7.3 <8.7 ~7.0 8.8 ^8.86 8.86 9.4 8.86 11.0 6.1*0.3 4.5 6.25 6.4±0.3 1.9 0.2 >25 ~18.5 •14.0 14.0 14.0 rare. fl. n diff. fl. -. fl. diff. fl. ?. fl. diff. fl. diff. fl. rare. fl. diff. fl. rare, fl diff. fl diff. fl diff. fl. diff. fl. E1250] Q249, 1653 [733] [1249] [127] [731] n [1363, 883] [127] [731] [1363] [1363, 883 3 [731] [1363] [1363,883] 1524 [732,1569] [1569] [1524] [1569] [1524] [1569] [1524] [1569] [1524] 279 280 281 280 281 281 279, 282 279, 283 279, 283 279, 233 279, 283 40 Reaction Na + C 6 F 12 = NaF + + C 6 F 11 Na + CH,C1 = NaCl + + CH, Na + CI^C^ = NaCl + + Cr^Cl Na + CHC1, = NaCl + + CHC1 2 Na + CC1 4 = NaCl + + CC1, T°K 520 548 Na + C 6 P 11 CF 5 = NaF + ♦ C 6 F 11 CF 2 Na + C^cCl = NaCl + + CgHc Na + CH 3 CHC1 2 = NaCl + + CH,CHC1 Na + CHgClCI^Cl = NaCl + Cr^ClCI^ 492 500-770 533 548 513 523 548 523 543 548 523 n 543 548 583 533-653 543 548 503 -"Hi 513 548 543 548 558 ig k ; 11.7 11.71 12.0 10.78 10.89 10.7 12.62 11.8 11.75 13.0 13.89 12.7 13.97 14.47 13.98 13.3 12.17 11.75 10.85 12.40-12.85 11.89 12.36 11.80 11.98 Ig A Method Literature! Remarks 14.75 7.1 7.5+1 10.0 4.9 7.4 2.0 5.0 3,5 8.4 10.2±0.5 7.3 9.4 4.9 5.8 7.0 diff. fl. rare. fl. diff. fl. ii tt diff. fl. n n diff. fl. diff. fl. diff. fl. diff. fl. diff. fl. [15243 [1569] [1524] [596] [733] [733, 514] [732, 1569] [733] [1746] [732, 1569] [717] [733] [732, 1569] [717] [733] [754] [732, 1569] [888] [423, 239] [733] [732, 1569] [733] [732] [733] [732] [511] 279, 284 279, 280 279, 285 279 279 279 ii 279 286 279 279 286 279 286 n 41 Reaction T°K Eg k lg A Method Literature Remarks Ha + n_c h 7 C1 = NaCl + + n-C Jh 520 9.4 534 10.39 n 11.00 548 11.06 Na + iso- C^HrjCl = NaCl + iso-C^Ep Na + CHgClCHgCJ^Cl = = NaCl + CH 2 C1CH 2 CH2 Na + CHjCHClCJ^Cl = = NaCl + CjHgCl Na + C^cCHC^ = NaCl + C^CHCl Na + (CH 5 ) 2 CC1 2 = NaCl + (CHj) 2 CC1 Na + n-C^HgCl = NaCl + + n-C^Hg Na + iso-C^HgCl = NaCl + + 'so-C^Hg Na+^-C^H^Cl = NaCl + Na + tcrt-C^H-Cl » = NaCl + tert-C^Hg Na + 1- iso-C 5 IL 1 Cl = • NaCl + I- iso-CcJL,. Na + C 2 H 5 (CH 5 ) 2 CC1 = = NaCl + C 2 H 5 (CH 3 ) 2 C 548 548 548 548 548 548 548 548 548 503 548 11.18 11.70 12.00 12.22 12.45 11,18 11,16 11.36 11.52 12.-33 11.92 9.0 9.2 8.6 8.6 7.8 5.4 diff. fl. diff. fl. diff. fl. diff. fl. diff. fl. diff. fl. diff. fl. diff. fl. diff. fl. diff. fl. diff. fl. diff. fl. [1524] [1317] [511] [732, 1569] [732, 1569] [732] [732] [732] [732] 279 279 286 286 286 286 [732, 1569] 279 [732] 286 [732] [732, 1569] [733] [732] 286 279 279 286 42 Reaction Ha + (CH 3 ) 2 CH(CH2) 2 C1 = = HaCl + (CH 5 ) 2 CH(C^) 2 Ha + CHjCCH^Cl = HaCl + CHjCCHg Ha + CHgCHCl = HaCl + + C 2 H 3 Ha + cis-CHClCHCl = = HaCl + CgHgCl U a + trans-CHClCHCl = = HaCl + CgHgCl Ha + CB^CCHv CI = HaCl + + C ? H 5 Ha + CHgCHCI^Cl = = HaCl + C,Hc Ha + CH,Br = HaBr + CH, Ha + CI^Brg = HaBr + + C^Br Ha + CHBr, = HaBr + CHBr- Na + C 2 HcBr = HaBr + + C 2 Hc T°K Igk lg A n E 548 11.40 - - - 548 11.36 - - - 548 10.66 - 10,4 548 11.45 - - - 548 11.29 - - - 548 10.96 - - - 533 12.54 5.3 548 12.3 - 6,0 471-516 - 12.78 7.9 513 13.37 - 3.2 523 12,57 - - - 548 13.0 - 4.3 523 L3. 47-13 .58 - - - 523 14.55-13.90 - - - 513 12. 71-1*. 98 ^ 4.4 520 12.44 - - - 536 12.70 4.9 Method diff. fi. diff. fi. diff. fi. diff. fi. diff. fi. diff. fi. diff. fi. rare. fl. diff. fl. n diff. fl. diff. fl. diff. fl. n n Literature [732] [7323 [732, 1569] [732] [732] [732] [511] [732, 1569] [596] [733, 5141 [717] [732, 1569] [717] [717] [733] [1317] [511] Remarks 286 286 279 286 286 286 286 279 287 279, 280 279 279 279 279 286 43 Reaction Ha + CH^BrCHgBr = NaBr -t + C 2 H 4 Br Na + CHgCHBr + C 2 H 5 x NaBr + Na + CH,! = Nal + CH, Na + CgHcI = Nal + CgHc Na + CiB-I-1 = Nal + Na + CHgCHI = Nal + % Na + CHP 2 C1 = NaP + ♦ CHPC1 Na + CP,C1 = NaGl ♦ CP Na + CPgGlg = NaCl ♦ + CP 2 01 Na + CPClj = NaCl ♦ CPGlg Na + CHPBr 2 = NaBr + ♦ CHPBr Na + CPBr, = NaBr + + CPBr~ T°K 520 542 513 523 548 513-543 549 513 536 500 520 583 583 583 528 523 Igk lg A n E Method Literature Remarks 13.3 - - - - [15241 12.36 - 5.8 diff. fl. [511] 2d6 14.51 Im 0.3 diff. fl. [733, 514] 279 13.66 - — - n [717] n 14.7 - n [732, 1569] ti 13.98 — 1.7 ditt. fl. [733] 279 14.30 - 1.0 n [511] 286 13.32-13.59 - 3,0 diff. fl. [733] 279 13.40 - 3.2 diff. fl. [511] 286 10.0 - - - - [1524] 10.7 — ^ [1524] 10.89 - 10.2 ditt. fl. [888] 286 11.50-11.66 9,0-9.5 diff. fl. [888] 286 11.79-11.96 - 8.7-9.2 diff. fl. [888] 286 13.68 - - - diff. fl. [717] 279 13.96-14.34 - - diff. fl. [717] 279 44 Reaction i T°K la k Na + (JH 2 ClBr = NaBr + + CH 2 C1 Na + CHCl 2 Br = NaBr + + CHC1~ Na + CHClBr 2 = NaBr + + CHClBr Na + CCl,Br = NaBr + + CC1, Na + CFjI = Nal + CF, Na + C 2 N 2 = NaCN + CN Na + CNC1 = NaCl + CN lg A i n i E Na + CNC1 = NaCN + CI Na + CNBr = NaBr + CN N& + CH^CN = NaCN + CH, Na + CI^CNCl = NaCl + + CB^CN Na + CNCB^CI^Cl = NaCl + CNCH 2 CH2 Na + C 2 H 5 OH = C 2 HcONa + + H 523 523 523 523 520 533 523 558 573 573 546 520 558 558 570 13.27 13.67-14.06 13. 75-14. 25 13.98-14.47 14.0 ~10.52 13,9 14.03 13,6 13.0 14,06 <6.6 13.85 5 11.77 12.78 2,0 1,7 1.6 2,2 7.5 4. 2*0. 3 Method Literature. Remarks diff. fi. diff. fl. diff. fl. diff. fl. diff. fl. diff. fl. diff. fl. diff. fl. diff. fl. diff. fl. diff. fl. [7173 [717] [ 717 ] [717] [1524] [733] [733] [511] [733] £733] [511] [1524] [511] [511] 279 279 279 279 279 286 288 286 [1176] 280 286 286 45 Reaction T°K la k Ha + n-Cj&pOH = s n_c HnOHa + H Ha + iso ~ CiH^OH = s iso-c BUOHa + H Ha + HOCI^Cl^Cl = HaCl+ + HCXJHgCHg Ha + CHjOCHgCl = HaCl + + CH^OC^ Na + CF,COF = HaF + + CFjCO Ha + CF-,COOH = HaF + Ha + CHiCOCl = HaCl + + CH,CO CHjC Ha + C0C1 2 = HaCl + + COC1 Ha + CHjCOCHgCl = HaCl 4 + CHjCOCHg Ha + HOOCCHgCl = HaCl + + HOOCC^ Ha + C 2 H 5 OOCCl = HaCl + + C 2 H 5 OOC Na + C^OgCCHgCl = = HaCl + C 2 Hc0 2 CCH 2 570 570 558 548 520 520 543 548 a 543 548 n 520 520 11.6 548 11.61 520 13.2 548 13,14 11.79 12.40 11.705 11.26 11.5 13.0 14.0 12.7 13.4 13.93 ~13.7 14.0 13.3 lg A Method Literature Remarks 7.0±0.2 5.3*0.5 7.6 8,5 1.7 3.2 ^2,5 1,7 7.6 3.8 diff. fi. diff. fi. diff. fi- diff. fi. diff. fl. n ii diff. fl. diff. fl. it diff. fl. diff. fi. [11763 280 [11763 [511] 286 280 [ 1569 ] [1524] [1524] [733] [732, 1569] [1569] [754] [732, 1569] [1569] [1524] [1524] [1569] [1524] [1569] 279, 289 279 ii 279, 289 279 279, 289 279, 289 279, 289 46 Reaction T°K Ig k Ig A n E Method Literature Rei Ma + C 2 H 5 2 CCH 2 CN = 320 11.6 _ _ _ _ [1524] = NaCN + C 2 H 5 2 CCH2 Na + CH,COBr = NaBr + 573 13.9 - 2.1 diff. fi. [733 3 279 + CH,CO 5 Na + C 6 H 5 F = NaF + C^ 520 <8.70 - - - diff. fi. [1317] Na + C 6 H 5 C1 = NaCl + 517 11.18 - 8.3 diff. fl. [514] + C 6 H 5 520 9.36 - - - 11 [1317] 543 11.80 - 7.2 n [733] 279 554 11.42 - 8.25 diff. fl. [514] 280, n 10.42 - 10.20 n [15313 290 Na + C 6 H 5 CH 2 C1 = NaCl + 513 ~14.7 - diff. fl. [733] 279 + C 6 H 5 CH2 548 ~14.7 - - - 11 [732] 286 557 13.73 - 2.5 n [511] n Na + C^cC^CH^l = 358 13.42 - 3.3 diff. fl. [511] 286 = NaCl + C 6 H 5 C 2 H 4 Na + CgHcCHCHCl = 548 12.98 - 4.3 diff. fl. [511] 286 = NaCl + CgHcCHCH Na + CgftcCHCHCHgCl = 548 13.89 - 2.0 diff. fl. [5113 286 = NaCl + CgHcCHCHCHg ■ Na + C 6 HcBr = NaBr + 496 13.17 - - - diff. fl. [5143 286 + C 6 H 5 517 13.21 - 3.52 11 n 280, a 12.78 - 4,55 n [15313 290 520 11.41 5 - - - diff. fl. [13173 n 11.4 - 7.8 - [15243 291 528 'ml 603 - 13,87 3.8 diff. fl. [15683 533 13.4 3.1 diff. fl. [7333 279 47 'eaction Na + C 6 HcCH 2 CH 2 Br = = NaBr + C^C^ Na + CgHcCHCHBr = NaBr-* + CgHcCHCH Na + CgHcCHCHCHgBr = = NaBr + C^CHCHCHg Na + ortho»CH 5 C 6 H^Br = = NaBr + CH^CgH^ Ha + meta-CHjCgH^Br = NaBr + CH,^,. p fe> 4 Na + para-CH,C 6 H^Br = NaBr + CHjCgH^ Na + C 6 H 5 J = NaJ + + C 6 H 5 Na + a-bromonaphthalene ~ = NaBr + C,,^ Na + /3-bromonaphthalenc s = NaBr + C^Hr, Na + ortho-PCgH^Cl = NaCl + FO-H, Na + meta-FCgH^Cl = NaCl + PC 6 H 4 Na + para-FCgH^Cl = NaCl + PC 6 H 4 T°K 553 543 558 520 520 520 500 1V..1 513 520 520 Igk 13.57 13.06 14.64 11.49 11.5 11,20 11.2 11,25 11.3 14.31 13.95 ^14.7 12.7 12.1 Ig A 520 10.32 n 10.3 520 9.78 n 9.8 520 9.11 n 9.0 2,8 4.1 0.2 7.6 8.3 8.2 0.855 1.74 10.4 11.7 13.0 Method diff. fi. diff. £1. diff. £1. diff. fl. diff. fl ti diff. fl. 11 diff. fl. Literature [511] Remark £511] [511] [1317] [1524] [1317] [1524] [13171 [1524] [514] [15313 [733] [1524] [1524] diff. fl. [1317] 11 [1524] diff. fl. [1317] n [1524] diff. fl. £1317] n [1524] 286 zse 286 291 291 291 286 290 279 291 291 291 48 Reaction Ma + ortho-ClCgH^Cl = = HaCI + C 6 H 4 C1 Ha + ortho-BrCgH^Br = HaBr + C 6 H 4 Br Ha + ortho-ClG 6 H 4 Br = HaBr + CgH^Cl Ha + meta-ClCgBflBr a HaBr + CgH^Cl Ha + para-ClCgHj.Br = = HaBr + CgH^Cl Ha + CgHcCHgCH = HaCH+ + CgHjCHg Ha + ortho-CHCglLBr s = HaBr + CHC C H„ 6 4 Ha + m eta_cNCgH 4 Br = = HaBr + CHCgH^ Ha ♦ P ara -CHCgH^Br = HaBr + CHC C H,, 6 4 Na + ortho-HOCgH^Br = = HaBr + HOCgH^ Ha + meta-HOCgH^Br = = HaBr + HOCgH^ Ha + ortho-CH,OCgrLBr = NaBr + CH,OCgH^ 520 520 n 520 w 520 n 520 520 520 n 520 n 520 520 it 520 13.35 12.59 12.6 11,92 11.9 11.62 11.6 9.8 18.32 13.3 12.56 12.6 12.80 12.8 12.20 6 12.2 11.82 11.8 11.90 IgA Method Literature Remarks 6,6 11,3 3.3 5,0 4.4 6.0 6.9 diff. fl. diff. fl. diff. fl. diff. fl. diff. fl. diff. fl. n diff. fl. n diff. fl. n diff. fl. n diff. fl. n diff. fl. [1317] Idif . [131?] £ 15243 £1317] [1524] [13173 [15243 [15243 £1317] [1524] [13173 £15243 [13173 [15243 [13173 £15243 [1317] 291 291 291 291 £1317] £1524 3 291 291,1676 49 1 Reaction T°K Igk IgA n 1 E Na + para-CH^OCgH^Br = 520 11,57 - - - = NaBr .+ CH,0C 6 H 4 Na + C 6 HcC0Cl = NaCl + 513 ~14.7 - + C 6 HcC0 Ha + ortho-CELOOCCgH^Cl = 520 18,« 6 - - - = NaCl + CH 5 00CC 6 H 4 Na + ortho-CH,00CC 6 H 4 Br = 520 13.78 - - - = NaBr + CH,00CC 6 H^ n 13.8- _ 2.2 H a + meta_CH,00CC 6 H^Br = 520 12,6 - - - = NaBr + CHjOOCC^ n 12.6 — 5.0 Na + para-CH,00CC 6 H 4 Br = 520 12,6 - - - = NaBr + CH,00CC 6 H^ n 12.6 ~ 5.0 Na + 2-Cl-py ridine = 520 12.68 - - - = NaCl + C 5 H 4 N Na + 3-Cl-pyndinc = 520 10.04 - - - = NaCl + CcH^N Na + 2-Br-py ridinc = 520 13,27 - - - = NaBr + CcH^N Na + 3 — Br-^yridme = 520 11.87 - - - = NaBr + (My Na ♦ mcta-CglLBr-pyri- 520 11.8 - 6.7 dme a Na Br ♦ C 6 H 4 - — pyridine Na + ortho-CgH.Br-pyri- 520 13.3 - 3.4 dmc = NaBr + CgH.- - pyridine Method Literature I Remarks diff. a. diff. fi. diff. fi. diff. fl. [1317] II [1524 3 diff. fl. [1317] n [1524] diff. fl. [1317] n [1524] diff. fl. diff. fl. diff. fl. diff. fl. [1317] [733] [1317] [1317] [1317] [1317] [13171 [1524] [1524] 279 291 291 *91 291 291 50 1 Reaction T°K Igk Ig A n E Method Literature Remarks Na + N 2 = NaO + Ho 535 13»06 4 - 3,8 diff. fl. [128] 280 Na + N0 2 = NaO + NO 525 13,60 6 - 2.4 diff. fl. [128] 280 Na + CH,N0 2 = NaO + 528 13,66 - 2.3 diff. fl. [128] 280 + CH,NO Na + CgHcNO, = NaO + 527 13,62 - 2.35 diff. fl. [128] 280 + C 2 H 5 ONO Na + C 5 H 11 ONO = NaO + 524 13,50 - 2.8 diff. fl. [128] 280 + C^ON Na + HgCl a NaCl + Hg - 14,3 - - - rare. fl. [1208] Na + HgCl 2 = NaCl + - 15,48 - - - rare. fl. [1208] + HgCl Na + BC1, = NaCl + BC1 2 543 11.67 - - - diff. fl. [754] Na + BBr, = NaBr + 543 13,39 _ _ _ diff. fl. [754] + BBr 2 Na + SiCl^ = NaCl + 543 11,60 6 - - - diff. fl. [754] + SiClj Na + SiBr^ = NaBr + 543 14,16 - - — diff. fl. [754] + SiBr, Na + GeCl 4 = NaCl + ; 543 14,69 - - — diff. fl. [754] + GeCl, Na + SnCl^ = NaCl + 543 14.545 - - — diff. fl. [754] + SnCl, Na + TiCl^ = NaCl + 543 14.0 - — _ diff. fl. [754] + TiClj 51 Reaction Ha + F01 5 a HaCl + + PC1~ Ha + AsCl, = NaCl + AsClg Na + SF 6 = Ha? + SP E Ha + SG1 2 - Had + SCI Ha + SgClg = HaCl + + s 2 ci ♦ FOClj = HaCl + POGlp Ha + Cr0 2 Cl 2 = HaCl + + Cr0 2 Cl Ha + BO = HaHO Ha + HO + H 2 = HaHO + + H~ Ha + 2 = Ha0 2 Ha + 2 + He = Ha0 2 + t He Ha + 2 + Ar = Ha0 2 + + At Ha + 2 + H 9 = Ha0 2 + '2 ■•■ "2 + Ho 543 543 520 543 543 543 543 SH3 533 533 523 523 523 533 673 Igk 14,18 14.17 13,3 14.80 14.36 14,12 11,0 17.0 12,3 lo ,28 18.08 18.20 18.22 17.61 lg A E Method Literature Remarks -7 diff. fi. diff. fi. diff. fl. diff. fl. diff. fl. diff. fl. therm. therm. therm. therm. therm. therm. n H [7541 [754] [1524] [754] [754 3 [7543 [754 3 [129 3 [129 3 [129] [7023 [7023 [7023 [129] [702] 52 Reaction Na + 2 + M = Na0 2 + M Ha + CS 2 + CjHg = = NaCS 2 + CjHg K + HC1 = KC1 + H K + HBr = KBr + H K + HI = KI + H if + 2 + M = K0 2 + M Us + 2 + U = Cs0 2 + M Zn + Cl 2 = ZnCl + CI Cd + Cl 2 = CdCl + CI Method ! Literature Remarks diff. fi. rare. fl. rare. fl. rare. fl. fl. rare. fl. rare. fl. [881] [316] [ 754] [1363] [13633 [1363] [881] [316] [3163 [1248] [1248] 292 2S3 294 294 295 292 53 Reaction T°K la k Ig A Method Literature Remarks H+H 2 =NH+H- - 20+3 H + Hg = NH + H H + 2 = HO + + 32.0 H ♦ Cl 2 = HC1 ♦ CI H ♦ Br 2 = HBr ♦ Br M ♦ I 2 = HI ♦ I H + IC1 s HI ♦ CI or HC1 ♦ I H ♦ IBr a HI ♦ Br or HBr ♦ I H ♦ HC1 = ? 293-623 300 3400 300 300-910 ■ 350 394-517 412-755 423-623 453-603 1170-1530 1575-1663 3400-7500 900-3000 300-3000 291 328 29i 328 283-323 288-308 291 328 291 328 323-718 ^ 14.7 ^8 11.48 6.78+0.5 7.7 8.24 8.40. 9.31 9.46 10.75 8.16 7.89 9.86 9.92 * 15 _ 13.15+0.02 11.47 ? 12.30 12.92+0,05 12.36 12.58 13.58 13.23 10,12 11.155 13,00+0.09 1/2 1 1/2 7,9+0,2 7.13 6,2 7.1+0.4 5,9 7.0 8.0 7.5 7.074 6.2 7.50+0,20 dis. est. shock radiol. dis. ,EPR n dis. , flow dis. ,flow therm, from k_ and K therm. shock 10.19+0.05 0.068+ +0.037 act. N 2 n act. N 2 n act. N, act. N. dis. t fi , o dis. , flc [15373 [12863 [104] [726] [1622] o [965 J [938] [388,398,384] [1066] [1552] [ 899] [894] [1015,1016] [1134] [689] n 296 297 [689] n [1240] [583] [689] n [689] n [1612] 298 299 300 301 302 303 54 Reaction T°K Igk Ig A n E Method Literature Remarks H ♦ HBr = HH ♦ Br 313 10.36 - - - dis. . ,low [11243 H ♦ CIO = HO ♦ CI room? $10.48 - - - dis. , flow [5853 H + ClgO = NCI + CIO room? 11.95±0.O7 - - - dis. , f'° w [585] fl + OH = HO + H room > 12,78 — - - dis. , flow [605] 320 13.56*0.01 - - - act. N 2 [311] 304 - - 11,7 1/2 5 est. [1288] 305 H + H0 2 s HH + 2 350 >11 - - - dis. , flow [965] H + HO = H 2 ♦ + 75,0 room > 12.38 _ - - dis. | flow [1546] 298 ^•11.60 - - - n [938] n 12.94*0.24 - - - n [758] n 13.09*0.14 - - - n [ 1241 ] n > 13.70 - - - n [939] 306 300 11,28*0,5 - - - radiol. [726] 296 476 - 755 - 13.47*0.09 0.2*0.7 dis. , flow [388.389,384] 1525 - 1912 - - - - therm. [ 1550] 307 1600 - - - - therm. « stat. [894] 308 3400 - 7500 - 13.20 shock [1015,1016] 309 298 - 1912 - 13.44 0.5 - - 310 H ♦ HgO = HO + Hp + + 186.4 room > 13.70 - - - dis. f flow [939] H ♦ HO, = products room 13,04*0.05 _ _ _ dis. t flow [1244] 311 (total reaction) 500 12.69*0.04 - - - n [1546] H ♦ H0 2 = HgO +0+42 293 - 708 _ _ _ _ dis. , flow [385] 312 room 12.67*0.09 - - - it [1244] 313,314 >300 10.25*0.3 - - - rad. -chem. [726,727] 296 H + N0 2 = 2 HO + 78.2 293 - 708 _ _ — _ dis. , flow [3853 312 room 12.55*0.14 - - - It [ 1244 ] [726,72?] 314,315 >300 10.48*0.5 - - - rad. -chem. 296 H + H0 2 = H 2 + 2 + ♦ 121,2 room < 12.43 - - - dis. t flow [ 1244 ] • 55 React ion N + N0 2 = N 2 + 2 O + + 3.2 N + N 2 5 = ? N + HNO = N 2 + H N + HNO = NH + NO N + C0 2 = NO + CO + 24 T°K ^ 300 Igk | lg A 11.83i0.59 10.08±0.3 N + C0 2 = ? N + 0, = NO + 2 + + 126.1 N + CH, = HCN + 2H HON + H 2 ♦ CT^ -*- (H.CH^) -~ - HCN ♦ Hp + H H + C 2 H 6 = H + C,BL = HCH + Ho + '3% = °^5 H + C T Ho = HH ♦ '3% = + CHjCHCH, H 4 n-C^Q = HCH ♦ + Hg ♦ Cj^ H + iso -C 4 H 10 = HCH ♦ ♦ 1*2 + C 3 H 7 10.7 11 291 - 523 550 298 323 - 673 11,28*0, 06 500 545 .- 719 273 - 403 279 - 568 403 - 703 336 and 523 273 - 623 348 and 523 373 and 533 ll.52i0.ll * 10. Method ; Literature ! Remarks 1/2 1/2 £ 9.6 3.4*0.3 10.76 9.72 11 .16*0.7 12.36 1/2 1/2 0.5i0.4 11 .98*0.67 12.72 10.25 10.20 11 1.7 7+1 7.0 5.6*0.6 5.5 3.6 3.1 dis. , flow rad. -chem. dis. dis. , flow dis. , flow [764] dis. r flo? dis. , ,, flow dis. , flow II act. N 2 dis. , flow act. N 2 dis. s flow act. N 2 dis. • ,-, flow dis. , flow Q244] [726, 727] [1023} Q288] [1288] [1688] [1241] [336] [34] [7653 [178] [867] [178] [867] [1205] [867] [73] [73] 313,314 296 316 317 318 319 56 Reaction T°K N + (CH 5 ? 4 C = ? N + C 2 H^ = HOT + CHj H + CHD, = ? N + C 2 D 4 = DCN + CDj N + C,H 6 = HCN + C 2 H 4 ♦ + H K + C,D 6 = DOT + C 2 D 4 + D H + C^Hq-1 = ? ♦ H? H ♦ (CH,) 2 CCH2 = = ^Hr^f] + H? N + iso-CV H Q = ? 273 - 388 388 - 724 273 - 378 291 - 523 295 room 295 - 672 313 n 318 320 325 338 - 697 340 423 n 473 - 601 320 - 550 Iq k Ig A Method Literature Remarks 313 338 - 697 340 320 - 550 320 - 550 340 340 320 - 550 10.32 10.25 10.99^0.09 10.18 9.73 ^9.84 ~10.6 ,9.94±0.24 9.79 10.25 10.76 9.46 12.14 11.09*3,75 11.32*0.06 10.32*0.04 1.5 6.6 0.915* *0.950 1.8*0.2 0.4*0.2 11.23 10.40 10.26*0.14 10.29*0.09 10.61*0.11 10.2 10.42 5 *0.21 11.18 10.95-0.15 11.19*0.13 10.89*0.15 0.7 0.76*0.38 1.65 1.02*0.27 1.31*0.23 0.55*0.27 act. N 2 diff. fl. dis. » flow diff. fl. dis. act. N 2 diff. fl. dis. » flow n 91 diff. fl. dis. dis. t flow ii n n dis. t flow act. N, dis. , flow [1033} dis. [1219 3 dis. , fi ow [7613 dis. , flow [7653 dis. , flow dis.. , flow dis. . flow dis. » flow [867] [676] [1689] [676] [579] [1004] [1124] [1033] [1219] [760] [675] [ 1219 ] [761] [1640] ff-i [757] [765] [579] [765] [761] [7611 [765] 318 321 322 323 324 325 326 327 327 327 57 Reaction T°K Ig k Ig A Method Literature Remarks H + as-C^Hg-2 = ? H + trans-C^Hg-2 = [C^] ♦ H? H + trans-C^Hg-2 a H ♦ (CHj) 2 CCHCH 3 a ? H ♦ (CH 3 )2CC(CH 3 ) 2 = = [CeH^H] ♦ H? H ♦ (CH 3 ) 2 CC(CH 3 ) 2 = ? H ♦ CHgCHCHCHg = = [C 4 H 5 H] ♦ H? H + cyclo-C,Hg = HCH ♦ + ^ ♦ CgH, N + cyclo-C^Hg = HCH ♦ H + cycl<»-C 5 H 10 = HCH+ ♦ H2 + C^ H ♦ C 6 H 6 = ? N ♦ CHjOH -*- H.CH,OH* -»» CHjH ♦ OH H ♦ C^OH = CgHcK ♦ + OH H + iso-CjH^OH = = iso-CaHJH ♦ OH H ♦ CH,CHO = HCH ♦ H^ ♦ HCO N ♦ CHzCH = 2 HCH ♦ H 320 - 550 340 320 - 550 320 - 550 340 320 - 550 340 323 - 623 333 and 523 383 and 543 500 303 - 755 300 - 593 300 and 593 296 433 - 733 10.22-0.11 11.37±0. 08 1.98*0.15 10.37-0.12 10.52*0.13 < 9.6 11.52^0.07 10.97i0.14 g.ioi i0.12 c 0.86i0.25 11.23i0.10 1.37i0.17 10.07 5 i io.05 5 10.06 11.3 11.4 9.99 10.20 12.08 11.84 1/2 1/2 9.17 3.2 4.9 5.3 3.0 3.2 3.4 2.6 1.7 dis. « flow dis. dis. t flow dis - flow dis. , flow dis. t flow dis. 1 flow act. N 2 act. N 2 act. N 2 dis. .;, flow dis. , flow 11 dis - ♦ flow dis. • 1 flow dis. , flow dis. . M flow [765] [7613 [765] [765] [761] [765] [761] [940] [940] [940] [765] [1419] [603] [603] [978] [577] 327 327 327 328 58 Reaction B + (CH 5 B) 2 =HCN + + H 2 + N 2 + CH, B + CH,P = ? B + CH,C1 = ? N + C 2 HC1, = ? N + trans- 2-C^Fg = ? B + C^Fg-2 = ? B + B -■- BJ> -* — B 2 + h* H + N + He = N 2 + He B + B + Be = H 2 + He H+B+Ar=H 2 +Ar T°K 323-673 500 500 500 500 298 313 Igk 297 298 300 196 - 327 ^9,6 ^9.6 ^9.6 ^9.6 10.69^0.17 10.50^0.13 7.27 14.61 15. 28*0.04 16.3 Ig A 1.9*0.3 293 15,24 297 15 .14±0.05 298 15 .14±0.04 300 16.0 5600 15,43 6000 15.95 6000 - 9000 - 6400 15.00 " 14.36 14.477 20.07 5 ±1 t2.0± ±0.4 T0.975i ±0.14 B + B ♦ le = B 2 ♦ Xe 8000 - 1500C 300 - 6400 300 6400 17.71 15.43 16.00 19.92 16,42 -1/2 -1/2 -1.6 Method dis. i flow dis. i flow d »s- , flow dis. | flow dis. , flow m. -w. dis. v flow cond. dis., flow dis. , flow [1657] Literature [34] [765] [765] [7651 [765] [1033] Remarks dis. » flow a dis. , flow dis. , flow n shock n [762, 763] [309, 313] [325] [313] [309] [762.763] [313] [325] [301] 329 330 331 [276] shock from k_ and K [ shock [301] shock shock [325] [32] [498] 331 332 333 334 59 Reaction I I T°K i Igk t 1 IgA n 1 E Method Literature 1 Remarks l + H + N = 3 2 + ' 300 16.43 - - - _ [325] 331 6000 - 9000 - 21.38 -3/2 shock [2763 332 6400 15.79*0,15 - - - n [16] n 15,50 - - - it. [325.276] 332 8000 - 1500 C 20.96*0.17 -1.6 n [32] I + I + OsHg* ♦ 0«( 1 S) room 14,56 - - - dis. , flow [1655] I^B+ijsfg + Hg 196 15.7.6 5 ± io.071? - - - act. N 2 [311] H + H ♦ H, = B 2 + H 2 90 - 611 - - - - dis. [381] 90 - 6400 - 14.7 -1 - 0.3 - n 336 196 15.51 5 -0.15 - - - act. N 2 [311] 196-327 - 14.477 t0.97 5 ± ±0,I4 b dis. , How n [313] ■ - 20.07^1 t2.0± ±0.4 n 273-453 15.45*0.06 - - - dis. , flow [763] 335 293 15.14 - - - dis. [309] 337 293 - 573 15.71 - - - dis. » flow [1686] 295 15.71jp.07 - - - dis. , flow [ 1067] room 15.91*0.04 - - - dis. t EPR [512] ■ 15,78 - - - dis. [1580] ■ 15.6* - - - dis. , flow [491] 297 15.08 - - - ■ [9783 298 15.14*0.04 - - - a [313] 800 15.79 — - - n [729] 14 89 - - - a [965] 15.2 - - - ■ [324, 512] 15.43 - - - n [1055] 338 15.05 - - - calc. [965] 15.4 - - - dis. , flow [105] 17.59 - - - - [325] 331 14.92 - - - dis. f, flow [965] 328 14.50,40,13 - - - ■ [909] ■ 14.80*0.13 - - a a 339 350 14.92 - - - ■ [965] 673 15.9*0.3 - - " n [71, 909] ■ 15.28*0.09 - - - ■ [909] ■ 15.59*0.10 - - - ■ a 339 60 Reaction 973 3400 - 7500 6000 - 9000 6400 3000 - 15000 300 - 9000 H ♦ H ♦ H 2 = H 2 + H ♦ B + K 2 = H 2 (B 5 ng) + H H ♦ H ♦ HgO = H 2 + ^0 B + B + C0 2 = H 2 + CO B ■► B ♦ H 2 = H 2 + M 2 H ■♦■ H ♦ CE,CB = H 2 + + CH,CB H+H+M=H 2 +M B + = BO« = NO + h^ T°K Igk 293 293 B + -•- NO* -•- BO + 300 ♦ hV(r') 300-1300 B + -•- BO' -»» BO + 300 *h>> (?) 300-1300 433-733 3400-7500 16.67-0.06 14,68*0.15 14.71 14.86 14.70 14.86 15. 56*0.10 196 15.53^0.05 196 15,995* ±0.035 298 15.4051 ±0.085 196 15.46±0.06 n 15.55±0.05 298 15.34±0.06 lg A 20.30 -3/2 16.42 20.39 5 ± -O.H5 16.30*0.36 7.06 6.85 6.61 14.55 16.04 7.72 7.48 -1/2 -1.6 t0.47 ±0.13 -4.5 -1/2 -0.35 -0.35 Method ! Literature dis. i flow shock H n n E713 [10163 [276,10153 [163 [325,2763 [32 3 dis. , flow [1603 dis. dis. , flow act. N 2 act. N 2 dis. dis. act. N 2 dis. n dis. , Bo f flow Remarks 340,341,332 342 329 shock dis. , n c dis. shock dis. dis. shock dis. [309 3 [1603 [312 3 [312 3 [3103 [3103 [3123 [3103 H [5773 [1015, 10163 345 343,329 344 [16573 [6913 [6913 61 Reaction T°K N + = NO'(C%) -*» NO + hv N+0+0=HO* 0'( 1 S) B + + He = HO + H« H+0+Ar = BO+Ar B + O+HgsBO+Hg N+0+B 2 =H0 + H 2 B ♦ ♦ H 2 s SO* H ♦ ♦ Hg -*• BO* ♦ + H 2 "*" HO ♦ Mg ♦ 293 Igk 8.49 15.03 15.13ip.05 room 15.47^0.05 hV (ft H + ♦ H 2 -*- HO» ♦ + H 2 -*■ HO + Ig + + hV Cf> 300 300 - 1300 196 16.04i0.04 196 15.68i0~.08 295 15.26 300 15.27 5 * 15.76 350 15.52 I + ♦ HgO s HO ♦ HgO 1 + + COg s HO •*■ COg H ♦ ♦ HgO = HO + HgO N + 0+M=NO + M 300 300 - 1300 298 196 298 196 n 298 room B400 - 7500 13,56 13.88 14.05 16.4li0.03 16.17i0.03 15.93i0.04 15.8li0.03 16.04i0.04 15. 89^0. 02, 15.73i0.03 15,26i0.05 lg A In 16.95 5 -1,24 17.52 -1,4 21.30 20,00 -3/2 -1/2 Method photol. dis. , flow dis. dis. act. N 2 act. N 2 [3113 dis. [1067] calc. [965] dis. t flow [105] N [965] dis. i "ow dis. Literature Remarks [291] [1655] [1493] [1493] [311] [1655] shock » dis. dis. shock ) dis. act. N, act. N 3 dis. n act. N 2 dis. n dis. , flow [691] [691] [312] [312] [310] [312] [310] [1067] [1016] 346 347 348 349 350 351 62 Reaction T°K N + + U = SO' + M — room = HO + 11 + h>> H + Hg + N 2 = HHg + N 2 291 - 523 H + CN + H 2 = NCH + N 2 293 N + CgHg.-^ CgHgN 291 - 523 n H + CgHg = ? 330 - 550 U + propyne _ 11.78 >12.0 12.165* -0.105 13.27*0.14 n 12.32 11 12.51*0.05 298and410 - 300 - 3 12.52 300 12.62*0.06 280 - 410 — 39.1 39.5*1.0 22.9*3 41.7 4.4*0.8 14.5*2 25 22.4 15.5*1 28*3 32*4 25 25.0*0.8 27.2 13.02*0.13 P.3. 29-0.45 1.06*0.2 Q.70* *0.45 L. 16*0. 64 Method dis. . , flow therm. n 11 therm. , flow photol. HO^ 8 dis. , flow therm., stat. therm. , stat. , est. shock therm. , stat. 11 fl. fl. shock •1 n dis. , flow dis. 1 flow photol. N0 2 dis. photol. N0p dis. N0 2 tit. photol. H0o dis. 1 flow pulse photol. photol. H0 2 photol. , flow Literature [942,766] [16383 [894] [1629,1550] 1550,899,894 [1550,894] [835] [938] [896] n [1520] [896] [535] [530] [1520] [558? [698] [766,942] [941] [1353] [727] [931] [1241] [575,570] [941] [ 1416] [573,141] [ 1464] Remarks 373 374 375 376 377 368 378 379,380 381 379 382,383 1671 381 384 385 386 387 45 66 Reaction T°K Ig k la A Method Literature Remarks \ + HH = H0 2 ♦ H ♦ HNO s H0 2 + H + HNO = 2 + HH 0+ HHO = OH + HO + 53 + HHO, = OH + HO, o 16 ♦ of = 16 18 ♦ + 18 o ♦ o, = o 2 + o 2 ♦ o ♦ so, = o 2 + so 2 + ♦ 36.3-0.2 o + ci 2 = CIO + CI + + 6,2 298 295 298 298 - 402 188 - 373 n 188 - 910 273 - 353 n 278 - 298 room n 298 n 343 - 373 n 393 - 443 409 - 499 769 - 910 188 - 910 room. 1650 ~13 12.0*0.2 11.78 10.69^0.09 10.30 9.73 10.17*0.09 11.12 10.7 11 U.7 1/2 1/2 1/2 1/2 37.5 12.6*0.5 13.23 12.78 12.73 4 12.63 12.68 1.1*0.4 4,8 4.3 4.3*1.0 3.2*0.1 3.26 5* 1 13.53 11.98 12.36 13.26±0.35 13.37*0.09 12.57*0.39 ^12.0 174 - 396 M - 300 10.65*0.04 - - 1/2 12.75+o.H 11.34*0,14 12.274 3-67 1/2 5.7 5.6 5.0 * 1.0 4.1±0.5 5.6*0.5 3.73*0.61 >7 photol. R0 2 dis. dis. | flow photol. dis. , flow in 2 -Ar cr. beams m photochem. d; s- , H_. H+HO=H 2 +^5 dis. , flow n therm. n shock dis. , flow N0 2 tit. fl. 3.1 * 0.1 2.9*0.1 0.4 d 's. , flow H H( dis. /) + •f HO, flow [1288] [12883 [1288] [1288] [833] [224] [766,942] [835] [378] H [307a] [991,992] [307a ,991, 992,1538] [327] [397] [992] [1061,1062] [1241] [144,145] n [1761] [1731] [869] [889] [1177,545] [375] n [1187] [1287] 368 388,389 390 391 392 393 394,395 396 397 50 398 399 67 Reaction T°K 1 Igk I IgA n E + CIO = 2 + Cl ♦ room 12 - 13 - - - + 54.7 room? i 12.9 - - - 298 > 12.78 - - - - - _ - <2 + CIO, = o 2 ♦ CIO ♦ ♦ 60.3^ 1.5 298 <13.38 - - - ♦ ClgO s 2 CIO ♦ 29.2 room? 12.91* ±o.07 5 - — - 18 ♦ C0 16 Cl2 > = C0 18 Cl2 ♦ 16 298 9.27-0.09 - - - * HC1 = OH + Cl - - 0.8*0.3 295-371 11.36 12.2+0.14 0.64 0.9 4.8 > ♦ IE = OH ♦ H + 1000 - 4000 - 12.0 1/2 0.1 ♦ 18.4*3.3 - - 12.92 0.7 0.1 0+HH=BO+H* 67*4 - - 11.7 1/2 5 + HfU ■ OH + HH * * 11±2.3 - - 11.96 1/2 ♦ HH, s OB t HH, - - 2.6*2.3 300 - 1000 350 - 600 - 12.08 12.0 6.0 4.9 843-963 - 13.26*0.14 10.0*0.5 350 - 1000 - 12.04*0.10 4.99*0.26 ♦ HH, s HgO ♦ HH or Hi + HHO 348 - 458 - 10.05 <0.5 ♦ PH, » ? 293 - - 0.6 ■ 9.49 - - - ♦ HCH « HCO ♦ H 469 - 574 - 12.71 6 8.1*1.2 ♦ C1CH - HCO * Cl 524-625 - 12.17 6 6.9*0.7 + BxCH s HCO ♦ Br 546-634 - 13.14 6 9.7*1.2 Method dis. » flow 88 dis. . flow dis. , flow photol. HOg 8 dis. ,flow, EPR calc. dis. dis. | flow horn, react. inhib. dis. * How photochem. ignit. lim. dis. , H"2 dis. « Hg dis. , H 5 Literature [8893 [584 3 [3741 [374,375] [374] [584] [8351 [1287] |1707a] [1071] [1288] [12883 [12883 [8] [1632] [1752,1748] [1677] [1108,1100] [443.1101, 1188] [442] [442] [442] Remark" 368 400,401 402,93 68 Reaction + CN = CO + H + G£$2 = 'BC* 1 * c0 » SCO + CN * ICH = 10 ♦ CN ♦ CHg = CO + 2 H ♦ CHj = BCHO ♦ H ♦ CH 4 = OH + CHj- - 0,2±2 T°K Igk * CpHg eOHt CgHe ♦ + 4.421.5 ♦ C,Ho = OH ♦ C ! 3% = 3=7 570 - 687 535 - 680 570 - 687 room? 298 300 1210 - 1900 n 295 - 533 350 - 600 375 - 576 375 - 583 400 - 580 400 - 930 405 - 895 450 - 600 843 - 933 1220 - 1800 1600 295 - 1800 297 - 398 313 - 503 320 - 500 863-933 297 - 933 313 - 933 297 - 398 863-923 13.72i0.27 13.60 13,39 5 i0.05 * 10 ^ 13.25j 13.27^0.07 ^ 12,30 Ig A 2.4i0.7 ll.oi2.o 11.0*2.0 13.54 13.30*0.23 12.79i0.23 12.82 12.24i0.24 14.0 13.31 12.76i0.41 13.78 13.23i0.05 12.83i0.13 13.74i0.10 ~ 14.23 13.70i0.16 12,54 12.73 13.25i0.05 13.93 12.47i0.21 12.60i0.13 12.72 14.02i0.15 d 3.2 6.6il,5 7.3il.5 7.35 6.9il.5 10,0 7.8 6.8 8.8 8.7i0.7 7.7i0.3 8.?i0.8 ^10 8.99i0.38 5.2 6,li0.4 7.5 4.57i0.38 5.02i0.26 3.8 6.2iQ.5 Method dis. , flow dis. , flow N+N0=N 2 +0 dis. , H 2 , N+NO, flow dis. flow dis. , EPR dis. , flow tl. n dis. , flow n in M n n fl. therm, lim. dis t flow inhib. fl. Literature Remarks [1913 [13903 11913 [6583 [245,2463 [1184,11853 [5383 [2813 [13 3 [16313 [16333 [16783 [17113 [17103 [1584 3 [2453 [1695,17043 £539 3 403 404 405 406 407 408 409 Hg photo. dis. f flow dis. ,'flow »• TO > - inhib H+BO m H 2 +0 Hg photo, inhib. C1359 3 [16783 [1584 3 [1700a 3 [13593 [17033 410 411 412 413 414 * 412,415 69 Reaction T°K la k lg A Method ! Literature Remarks + n-C 4 H 1Q = OH + C 4 Hg 231 - 433 - + 13.54 4 i io.u 4 4 4.2i0.2 dis. , flow [507] room 10.32 - - - photol. N0~ [574 3 417 303 9.82 - - - dis. , flow from N+HO [16413 418,419 307 - 398 - 13.04 4.1 Hg photo., stat. [1046] 420 313 - 468 - 12.90 4,1 dis. , flow [16803 421 873 - 923 - 13.87^0.14 4.2 inhib. [1703] 231 - 923 - 13.94i0.12 4.80i0.20 - - 422 + 5ec_c^H 1Q = OH + 231 - 433 _ 13.45i0.15 4.2i0.2 dis. 1 flow [507] + ^-C^ 303 8.18 - - - II [1641] 423 313 - 468 - 12.9 4.1 II [16803 + (CH,) 4 C = OH ♦ + ^1 303 7.24 - - - dis. , flow Ofrom N+NO [1641] 424 + n-Cr^g = OH + 307 - 398 _ 13.21 4 3.3 Hg photo., stat. .[1046] 420 ♦ 0^5 0+ n-C 8 H 18 = ? 353 - 473 - 13.26 4.2 dis. 1 flow [1684] + 'so-C g H 18 = OH + 307 - 398 12.72 2.9 Hg photo. , stat. [1046] 420 + C 8 H 17 + C 2 H 4 = OH + C 2 H 5 (?) 570 - 660 - 14,ili0.I6 8.li0.5 inhib. [ 1701 ] + C 2 H^ = CH, + HCO 298 11.50^0.06 _ __ mm dis. ,EPR [245] 300 11.49i0.05 - - - dis. , " ow [1184,1185] + CoH* = products 195 - 715 - - - - dis. > How EPR [1587] 424a 297 11.79 - - - Hg photo. [1357] ♦ C 3 H 6 = ? 297 - 398 12.81 - 0.6 Hg photo. [1359] 532,412 361 - 482 - 12.24 3.0 dis. , flow [1679] 425 + C^Hg-1 = products 297 12.41 - - - Hg photo. [1357] + C 4 H 8 -2 = ? 363 - 523 - 12.41 3.8 dis. , flow [1684 1 425 + iso- C^Hq = ? 318 - 538 - 12.38 2.55 1 1 dis. , flow [1679] 425 70 Reaction i ■ + CgHg = CO + CHg * CHjCCH = CO + CHjCH ♦ C^BU = CO + CxHg + cyclo-C,Hg = OH + T°K 195 - 295 room it + cyclo — CjHc + cyclo-C^Hg = OH + + cyclo-C*Hn + cyclo-C 5 H«j = OH ♦ + cyclo -CcHq + cyclo-CgH.2 = OH ♦ + cyclo-CgH^i^ ♦ C 6 H 6 = ? + CH»OH = OH ♦ CHgOH 297 - 398 298 393 - 563 970 - 1660 468 - 573 1000 - 1700 298 300 297 - 398 298 - 398 298 - 398 298 - 398 298 - 398 353 - 493 298 - 493 338 - 493 298 Igjk 1.70±0.14 11.03±0.07 10.95io.09 11.08 10.98 4 10.96^0.02 43151005 11.59i0.11 11.95i0.06 lg A 13.41 5 11.24 12.7 11.28 11.49 12.78 12.68 12,88 13.73 j 13.1210. 41 13.24 ' <1 3,2 3,1 <1 2.5 3,4 3.8 3.9 2.6 2,8 4.5 3, 25*0. 69 4.7 Method dis. >"1U, U+HO * ■ dis. , How N. dis. t h+ho Hg photo. dis. , EPR dis. , fow fl. dis. , flow comp. Literature C363 n [36,11833 [1454] [930] [805] [1359] [245,246] [1682] [542] [36,1183] [248] Remark: 426,427, 412 428 429 dis. , EPR [245] dis. t flow Hg photo. 1 photol. "p® Hg photo. » photol. HpO Hg photo. , photol.HgO Hg photo. . photol. HoO dis. , , flo* dis. t flow Hg photo. » photol. RpO [1186,1183] [1359] [1444] [1444] [14443 [1444] [1681] [1681] [887] 412,430 431 431 431 431 432,433 434 433 71 Reaction T°K Igk lg A Method Literature i Remarks O + CH,OH = H 2 + HCHO ♦ C^cOH = ^0 ♦ + CH,CHO Jnd ^0 + HCH0+ ♦ CIL, + C^cOH = OH + + CH,CHOH + C 2 H 5 OH = OH + + [C^O] t- is"-C,Hr,OH = OH + + (CH,) 2 C0H + (CH,) 2 = OH ♦ + C^OCH, + HCO = OH + CO + HCHO = OH ♦ HCO + CH,CHO = OH + ♦ CH,CO + C 2 H 5 CHO = ? + (CH,) 2 = OH + + C^OCH, ♦ (CH 2 ) 2 = OH + + CH0CH 2 ? + CH^Cl = OH + CHgCl 347 - 400 343 - 523 298 903 - 963 298 307 - 398 300 300 1655 - 1680 300 - 1680 299 - 476 343 - 428 398 - 523 307 - 398 307 - 398 353 - 949 10.79 10.98 10.69^0.08 11.59 11.50= 11.71 12.78 13.11*0.12 13.8 14 14 13.02 4 i ±0.12 11.56 12.02 12,15c 10.20 13.25, 3.1 4.0 5.5±1.0 dis. , Mow dis. , Mov [16751 [1683] Hg photo. H 2 inhib. 2.5 [886] [ 1721 ] Hg photo. i [ 887 ] <5.5 3.3 H 2 Hg photo. dis. , Mow [1046] [11843 dis. , flow [1182,1183] from H+NO fl. 2.3 2.75 2.85 2.5 1.8 7.93 photol. RQ_ dis. , P , H + HO dis. , HOW dis. i Mow Hg phou H 2 llg photo. H 2 dis. j Hj [595] [417] [574] [282] [1685 3 [1683] [1049] [1049] [ 1624 ] 435 420 436 437 438 439 4i7 428 428 440 441 72 Reaction T°K la k lg A 1 Method Literature ; Remarks + CC1 4 = C0C1 2 + ci 2 or CO + 2 Cl 2 + C^ClCHgCl = 2 HC1+ ♦ CO + CHg + CH,P = OH + CHgP + C 2 P A = CF 2 + CP 2 278 - 370 353 - 473 + C ? P 6 = FCPO, CF,CPO + ... + c,p 6 = cp 2 o, CF,CPO,... + ... + CHjBr = OH + CH^Br andOBr + CH, 858 - 948 296 297 .- 398 296 297 297 - 398 297 - 398 + CH 3NH2 OH + [CNH, + = 2 (A 5 I+) = 2 + hV + = 2 + hV + + He = 2 (b 1 lg)+ + He 0+0+Ar=0 2 +Ar 638and949 843 - 963 2691 - 3259 11.76 10.32 3.33 3.14 11.67 room 14.0 11 14.51 n 14.53 300 15.11 350 15.36±0. 18 2000 13.40 3500 13.36 tl 13.71 6 ft 13.65 10.23 5 -0.2 13.08 12.89 12.26^0.09 12,20 11.88* 6.63 4.5±0.6 5.5 9.7±0.8 0.65±0,12 0.6 2.2 ~13.3 13.51 '6.0 5.9 d i s . t 2 , flow dis. 1 flow inhib. Hg photo. n SI Hg photo. a Hg photo. [15363 [1676] [1758] [1357] [1359] [1357] [1358] [13591 [ 1359 ] dis. ,H 2 [1624] inhib. 28.9-2.2 dis. , flow [1657] [1655] [1748] shock dis. . flow photol. 0o dis flow II dis flow EPR dis , flow s lock 442 443 412, 1673 444,445 412 446 [1172] [1655] [301] [1140] [1311,1140] [1055] [963] [1636,1637] [701] [304,1325] [275,1325] 19 447 448 449 73 Reaction T°K Igk Iq A Method Literature Remarks 3600 4000 4200 4535 - 5170 300 - 5000 ♦ ♦ At = 0£(b 1 Eg)+ ♦ Ar 0+0+Kr=0 2 +Kr + + I© 2 ♦ Ze ♦ ♦ Ha s 2 ♦ ♦ Ia'(3 2 P) 0*0 + o 2 ♦ 15.95 14.48 15.08 11.08 ♦ ♦ Hj s 2 ♦ ^ 3420 - 5325 3500 3000 - 6000 3500 1250 - 1750 room 3000 - 6000 3400-7500 3500 ■ 13.66 14.11 18.56 0+0+H 2 »0 2 +H2 196 196 + ♦ N 2 « 2 ( A 3 Z + ) + + v« +0 + H 2 = 2 (b 1 Zj) + 3400-7500 300-7500 45 15.11 14.99 6 15.147 15.90*0.03 15.68±0.08 15.21 15.00 10.88 10.79 16.90±25# 15.56*0.20 17.20*2556 17.67±15# 18.68±20# 20.34 -1 -0.64 ±0 • fc>4+ .or -1 -1 -1 -3/2 15.79 17.41i0.33 -1/2 -0.93 ±0.10 shock n n n dis. ♦ flow shock ii shock fl. photol. 0- shock [301] n n [1323] [1655] [1323] [701] [1325] n [315] [301] [13251 450 451 451 [1016, 1015] hock [304, 1325] n [275, 1325] n [1325] act. N. act. N 2 dis. , flow H+NO=H 2 +0 dis. , flow shock dis. , flow dis. , flow [311] [311] [1139] [1140] [1015 3 [1655] [1655 ] 452 453 ♦ H, 74 Reaction T°K Iq k Ig A Method 'Literature Remarks + + 2 = 2 + o 2 298±3 300 300 350 1500 - 2800 3000 3000 - 3800 3000 - 6000 3400 - 7500 3500 "vl5 15.0 15.02^0.12 <15.7 15.7 14.98i0.l4 14.48 14.91 ^ 14.30 15.3 + + fL,0 = 2 + H 2 3800 *2 + o + co 2 = o 2 + co 2 0+0 + U=0 2 + M ♦ + If = 2 (b 1 iL g) + ♦ M = 2 + 11 + hV + OH + 2 = H0 2 ♦ 2 + CO = C0 2 + hV 300 - 6000 360 - 520 16.32 room 14.99i0.05 3400 - 7500 14.66 14.20 14,68 14,90 14.30 14.6 18.6 - 1.8 39.64 18.20i2C$ 19.90 rl.22 -0.53 -7 -1 -3/2 18.4 15.99i0.35 12.96 3500 300 293 421 - 550 2943 14.30 10.60 16.7 3.90i0.05 5.58 15.40 -1 t0.41 io.11 -1/2 10.86 photol. Op pulse photol. dls - , flow dis. , flow , EPR dis. , flow dis. , flow calc. dis. flo* EPR dis. 1 scat. shock shock 11 11 shock 3.5 2.5 ± 0.6 dis. , fl° w pulse radiol. dis. , f' ow shock dis. , flow dis. dis. 1 flow shock [301 J [635,891] [891] [966,8913 [966] [900] [1015 3 [1055] [964] [925] [1421] [1323 3 [1016.1015, 3^3] [1325, 1324 J [304,13253 [275,13253 [10653 [17413 [ 1421 3 [16203 [16663 [10963 [13113 [1016,3033 [341,13253 [16573 [ 12853 [392,393 3 [1669,16703 [11713 454 455 456 457 458 459 460 461 462 463 75 Reaction + CO -» co 2 + CO + Jkx = CX>2 ♦ Ar •*• CO + CO = co 2 + CO ♦ CO + co 2 = co 2 ♦ ♦ CO- + CO ♦ 0- = COp ♦ o 2 •»• CO ♦ H s COg ♦ M ♦ CO ■*- CO- 0*IO> OHO* + HO a I0 2 ♦ hV T°K 338-532 373-523 1400 - 3000 2800 - 3600 room 470 room 293 470 293 room. 373-523 n 409-502 490 338 - 532 420 - 550 u 456 298 212 - 315 N 290 ~1600 ^2100 3750 230 - 3750 212 - 3750 Igk ~13.77 13,3-14.0 12.24 =■ 13.56 <14.7 <13.48 14.19 <13.7 11.70 13.81 7 12.30 12.16-12.36 7.58g±30# 7.17 ? ~6.00 5.48 5.38 Ig A 11.15 10.14 9.5 5.8 14.54 15.34 12.65±0.52 19.26 10 11 9.25. -1 1/2 2.1 3.7 -2.58±0.86 4.0 3.8 3.0 6.48 10.52 5 r-.2- -0.3 =1.2* 11,03 12. 39±0,46 -1.5±0.4 Method dis. , flow therm. shock , comp. shock photol. therm. dis. t flow dis. , flow therm. dis. i flow photol. therm. therm. therm, est. dis. f flow pyr. S dis. , ffoW I Literature [10363 [1739] [247] [214] [693] [1738] [889] [392] [1738] [392] (822] [1739] [1457] [1738 ] [604] [1230] [1036] [1669,955] [1669 ] [1160] [941] / Remarks 464 465 466 466 467 468,469 470 471 472,473 474 475 476 477 dis. , How [392] -1.59 T 2.01 1-0.16 -0.67 shock [449] [567,569] [889] [879.997] [255,256] [997] [997] 478 479 480 481 482 76 Reaction + HO + He = H0 2 + He + HO + He = H0£ + He + HO + Ar = H0 2 + Ar + HO + Ar = H0 2 + Ar ♦ HO ♦ Hg = H0£ ♦ Hg ♦ HO + H 2 = HOg + Hg T°K 279 293 Igk 279 16.31^0,04 293 16.26*0.03 n 16.42^0.05 room 16.44 n 16.34 279 and 293 293 + HO ♦ Hg s HOg ♦ Hg ♦ HO ♦ Og = HOg + Og 297 298 298 - 500 300 16.29*0.02 16.27*0.03 16.25*0.07 16.17 lg A 16.13 16.34 16.91 5 16.49*0.06 16.25 5 ~ 16.40 16.66 16.56*0.01 16.46 Method Literature Remarks dis. . , flow 16.32 212 - 315 - 14.954 n - 20.13 279 - 293 - 16.09 293 16.27*0.03 - H 16.43*0.05 - 300 16.46 - .700 - 2300 _ 17.98 212 - 2300 " 21 .43*0.23 15.15*0.06 dis. , flow dis. , flow dis. , flow dis. ( flow n -1.93*0.1 ;1.5± *0.4 |-1.8±0.4 -0.24 -1 t2.04 *0.09 photol. HOg dis. ,< flow, N0 2 tit. dis. , flow dis. flow N+HO=H 2 40 photol. HQ 2 dis. , flow dis. , flow n n ii ii dis. , flow SPR andN0 2 tit shock [11953 If [392 3 [1655a. 903, 1172a J [505,1195] OS [395,392] [730] [903,378] [1655a.903, 1172aJ [1655a,903, 1172a] [1195] [392] [574] [889] [938] [941] [573,941] [1655a.903, 1172aJ [392] n [1195] H [392] [1582] [558] 1669 483 1669 1669 484 485 387 1669 486 487 489 488 77 Reaction ♦ NO + 2 = HO£ + 2 + HO + HO = H0 2 + HO + HO + C0 2 = H0 2 + + CO„ + HO ♦ C0 2 r H0 2 + ♦ CO- + HO + H 2 = H0 2 «• ♦ H 2 + HO + CH 4 . s H0 2 ♦ + NO + H = N0 2 + 11 o ♦ o 2 = 05 + 2 ♦ He = 0, + He 0+0 2 +Ar=0, ♦ Ar T°K Igk room 213 and 294 16.31 16.40 16.54i0.06 16.57 16.53 16.39 279 16.31*0.04 293 16.27*0.02 room 16.39*0.04 296 16.65*0.05 300 14.99*0.05 973 15.86 1031 15.71 5 296 11.84*0.5 298 11.95 298 14.37 300 14.16 180 - 1000 ft - 188 - 373 H - 193 - 373 — 213 - 386 n - 293 14.72*0.08 lg A 16.13 12.52 20.70 12.95 22.73 12.90 13.23-0.05 21.87*0.54 Method Literature Remark; -2.6 ,8.4* *0.8 t3.0 ±0.2 -0-23 dis. , fk photol. NO dis. , flow dis. , now ,[16553.903, 1172aJ dis. , flow dis. , fi ow dis. , flow [1655a ,903, 1172a] [1655a .903, 1172a J [1195] [889 3 1669 1669 [1655a .903, 1172al [1655a .903. 1172a] [505] dis. , flow ,; [889] N0 2 tit. [890] dis. , flow therm. dis. pyr- Or -2.3 -1.8*0,4 -1.9 -1.66*0.1 py f - Og, flow : [1311] [896] [ 1351 ] [941] [1160] [904] [378] 490 1669 1669 1669 491 n 492,493 494 495 496 477,497 dis. , flow [378,377] [378] dis. , flow pyr. Og II dis. , flow [3773 [1160] n [395] 498,499 500 78 Reaction + 2 + H 2 = Oj + U 2 + o 2 + 2 = Oj + o 2 o + o 2 + o x = o 3 + ? + 2 + HgO = 0, + H 2 T°K 296 m 300 a 303-863 M 180 - 1000 300 303 - 863 343-373 388-403 300 Igk 14.28 13.99*0,09 14.15*0.11 13.92*0.05 14,30*0.09 213 - 294 - 283 14.78 294 14.0 room 13.97*0.27 it 13.59*0.11 room? ~15.7 it 14.17 room? - - 14.04±0.04 298 14.37 4 ■ 14.50ip.04 300 14.36±0.09 n 14.34 M 14.52 N 14.43 343-373 - 350 14.04 300-1000 - 200-43) - 15.34 lg A n E Method Literature Remarks _ _ _ dis. t flow [378] - - - pulse radiol. [1351] 501 - - - Pyr- 0g, flow [1731,904] - - - pulse radiol. [1355.] 12.78*0.05 -1.7*0.3 - [869] 502 18.09 -1.66 - a n 21.08*0.68 x2.73 *0.27 — — 503 - - - py. 3 , flow ° [9041 12.97*0.05 -1.7*0.3 - [869] 502 18.28 -1.66 it n 13.49 -0.7*0.2 dis. , flow [505] 504 - - - n [454] 455,505 - - - n [505] - - - pulse photol. [110] - - - dis. , How [900] - - - n [966] 506 mm — ^ m pulse dis. ais. , flow [1096] [1062] 1666 - - - - [307] 507 - - - dis. t flow [941] — pyr- Ox, flow ' a [1160] [904] - - - dis. , flow [728] 508, 509 - - - ■ [358] - - - pv- o T [902,889,890] 13.47 -0.89 therm. [145, 682] - - - dis. , flow [964] 455 13.09 -1.09 from k_ and K [1731] 15.89^0.75 -0.74 t0.30 — - 510 13.73*0.11 -0, 42*0 .15 - a 13.78 - 0.6 tnerm. [144, 145] 511, 512 14.41 0.32 therm., flow, from k_ and K [1660] 14.01 -0.4 therm. [991] - - pyr- T , NO, flow [904] 79 Reaction + Op + CO s 0, + CO + 2 + COp = 0, + C© 2 + 2 + H 2 = 0, + H-0 ♦ Op + CP^ = 0, ♦ CP^ + Op + s? 6 = 0, + SP & + 2 *M=0, + M + 60 = S0 2 + hV ♦ SO + Ar = S0 2 ♦ Ar ♦ S0 2 = 6000* + S0 2 ♦ Ar = SO, + At T°K la k 14.20 + SOo ♦ 2 ♦ ^ = SOj ♦ ^ + 8 02 ♦ 2 = SO, ♦ 2 213 - 386 n 294 room? 296 298 300 213 - 386 room? 300 300 300 room ? 300 784 295 room 299±2 300 14.41 14.57 ~15.6 14.99*0. 06 14.73 14.50 5 14.73 14.76 15.09*0.04 14.30 9.54 8.62*0.3 17.48 12.04*0.04 16.56 299*2 15.38*0.03 lg A Method ! Literature Remarks 13.92*0.06 20.92*0.68 + 2.4* ±0.3 -1.45±0.i4 ' 20.65±0.55 15.0 515.56 16.48 16.73 15,42*0.08 15.0 ±0.3 pulse radiol. pulse radiol. dis. , flow py- o pulse radiol. pyr. Og, NO, py- Og, NO, flow py- Og, NO, flow [1096] [1160] it [505] [1096] [889] [1160] [904] d i s . n » u 2» flow dis. dis. , flow photol. dis - , flow dis. n * 2' flow , Thorn. react - , EPR horn, react. inhib. dis. f flov [1096] [904] [904] [904] [1372a] [1392] [1332] [378] [834] [1490] [1154] [1155] [1577] [889] [1490] 513 514 495 515 516 «"■*• , 2 , [1154] flow . [1155] 515,517 80 Reaction o + so 2 ♦ so 2 = S0v+S0 2 + S0 2 + M = SO ? ♦ M + NOg = OHOg + HOg + Hg = NO, + Kg + HOg + COg = HO, + + COg + HOg + isc "-C^H 10 = = HO, ♦ ' so ^4^io + HOg + CgH 4 = HOj + CgH 4 + HOg + C,Hq = HOj + + C 3*8 T°K 299*2 + HOg + CPgClg = HO,+ + CFgClg ♦ CgH^ — CgH 4 2150 room 298 300*3 298 298 298 298 298 223 - 465 223 - 613 k N N 297 - 398 298. >nd398 298 - 400 300 - 400 313 - 503 1220 - 1880 220 - 670 Igk 15.96*0.19 16.15*0,04 16.48 15,3 12.98 12.78 17.0 17.18 18.48 17.81 17.93 18,28 Ig A 11.66 11.71 11.69 >10.7 13.39 13. 01*0. 15 12.925 /vl3.48 12.84 13.7 10.78 12.91*0.09 Method dis. ,0 ? , flc 2'' photol. NO 2 dis. . flow fl. d's. f flow photol.UOg photol. NOg 1.6*0.2 1.6 1.5 2.6 2.6-2.9 2.75*0.15 •1.35 1.57*0.12 dis. I flow photol. uo 2 pfiotol. dis. , flow Hg photo. photol. Hg photo, dis. , flow fl. Literature [1154] [8343 [8893 [1177] [9413 [570] [573] [ i74a ] [174a] [174a] [174a] [174a3 [507] [504] [574] [420] [419.418] [889] [ 1152 ] [13593 [420.1416, 4213 [4203 [541,420,416] [1679] [541] Remarks 515 518 519 477 520 521 522 522 522 522 522 523 417 524,525, 526 525 527 528,412 529 530 523 531 81 Reaction T°K Igk lg A Method 1 Literature Remarks ♦ C,H C -*- C 3 H 6 "*" c 3%° ♦ C^Hg — C^HgO + n-C 4 Hg-1 — C^HgO + 'SO-C.Hg -»- - C^HgO + cis- butene-2 -%► — W + trans— butene-2 — •>. + cis— 2-pentene — ». ■*■ CJUnP 5^0° + trimethylethylene -•» ^ C 5 H 10 + tetramethylethylene — C 6 H 12° 297-398 231 - 433 223-663 room 295 297 r 398 298and410 298 - 410 299 and 398 295 299and402 298 and 410 300 and 523 300 - 520 300 - 520 298 300 and 523 room 12.47 ( 12.48 12.21 13.11 12.96 13.00 13.04 13.08 13.17 13,04 13.07 13.61 13,72 13.73 5 12,81 13.45*0. 15 13.10 12,86^0.07 13.18 0.6 4.2i0.2 0.85 0.8*0,4 1.20 12.95i0,08 13.31 13.28±0.18 11.93^0.90 0.44 P0.35 13.36 0.1*0.4 0.4 0.34±0.27 0.36 Hg photo. n dis. , flow dis. , flow photol.H02, Hg photo. photol. HOg Hg photo. pulse photol. est. Hg photo. photol. jjo 2 Hg photo. photol. KQ 2 Hg photo, pulse photol. dis. . flow [419] [1359 ] [5073 [504] [574. 419 4i8] [1353] [1359] [1416] [420, 1359] [420, 421] [574] [1152] [1353] [420, 421] [1416] [504] 525 532,412 photol. ao 2 Hg photo. s - i flow photol.Hg +H 2 photol. NOo photolBg+NgO photol.Hg+N 2 photol.Hg+N 2 [574] [419,418] [421] [504] [419] [574] [419] [420] [420] [419] 533 534 535 536 417 537 533 536 535 538 538 417 525 525 525 525,539 525,539 525 82 Reacti on T°K Iqk lg A Method Literature Remarks + cyclopentene — »- -*> cyclo-CcHgO + cyclohexene _^, -*• cydo-C 6 H 10 + C 6 H 6 — C 6 H 6 + C 6 HcCH, ■*- C 6 H 5 CH,0 ♦ ^CCPCHj -*■ C,H 5 PO + HgCCHCHgP «•» C,HcFO + HgCCHCHgCHgP -*» + PgCCHCHj -»- — C 3 H 4 P 2 + B^CCHCP, •*- C,H,P,0 + CPaCHjCCHp •*- -•- CPaCHjCOCHg (oxide) and CP,CH 5 CHCHO + HgCCCHjCFj -•- + CHgCO ■*• CHgCO^ 393 - 494 393 - 493 298 13.19 13.15 11.72 - photol. « Hg+NoO photo 1., Hg+NpO 4.7 4.0 Hg + N0 2 , flow Hg + H0 2 , flow Hg photo. Hg photo. Hg photo. Hg photo. Hg photo. Hg + H 2 Hg photo. [4203 [419 3 [420] [1141 [862] [1152] [1152] 11152] [1152] [1152] dis. , flow [321] [1152] 525,539 525 525,539 [1153] 545 540 541 542 543 544 546 83 Reaction T°K lak lg A Method s + cos = s 2 + CO S+S+Ar=S£+Ar S + COS + M = C0S 2 + M S + CS 2 + U = CS, + M Se + CpH^ -*- CH 2 SeCH2 Se + C,H 6 -~ CHpSeCgH^, Se + butcnc-l — • — CH 2 SeC,H 6 Se + cis- butcnc-2 -*• — C^SeC^ Se + trans— butcnc-2 — •> -*■ C-H, 2 H 4 SeC 2 l» 4 Se + isobutenc •* -~ CH 2 SeC 5 H 6 Se ♦ l-pentene _•. — CH 2 SeC 4 H 8 Se + 1,3-butadicnc _•- -*■ C H 2 H 5 SeC 2 H 5 Se + C H,C1 — C 2 H 3 -+■ CH 2 SeCHCl Se + C,H 5 C1 -» -*• CH-SeC^H-.Cl gSeCgHjC Se + acrylonitrilc —■■ ■— CH 2 SeCHCH 2570 302-412 301 302 and 418 302 and 418 302 and 418 302 and 418 302and/fl8 302 and if!8 302 and 418 302 and 418 302 ± 3 302 and 418 11.78 14.86 15.45+0.15 17.45+0.15 11.53+0.15 11.16+0.10 13. 01*0. 16 13,09+0.15 13.465+0.15 13.25+0.20 13.19+0.21 13.33+0.20 -13.38 13.68+0.20 12.82iQ.26 -12.08 2,81+0,20 2,35+0.23 2.25+0.23 1.21±0.27 0.59+0.27 1.01+0.25 2.21+0.44 0.88±0.25 2.44±0.28 shock dis. pulse photol. pulse photol. [ 113] Literature Remarks pulse photol. CSe 2 pulse photol. CSe~ pulse photol. CSe~ pulse photol. CSe pulse photol. CSe pulse photol. CSe-, pulse photol CSe- pulse photol. CSe pulse photol. CSe pulse photol. CSe„ 0.72+OJ30 pulse photol. CSe 2 [736 3 [513] tll3] 1292] [292] [293] [293] [293] [293] [293] [293] [293] [293] [293] [293] 547,548 549 550 551 551 551 551 551 551 551 551 551 551 84 Reaction F + IU = HP + H F + HH = HP + N P + HE, = HP + BH HHg P + HH, = HP + HHg P + OH = HP ♦ P + HgO = HP + OH P + Cl 2 m PCI + 01 P ♦ HOI = HP + CI P + HHO = HP + HO P ♦ P 2 = Pg + PO P + CH^ = HP + CH, P + CgHg ■ HP + CgHc P + CjHg = HP + + CH,CH 2 CHp T°K 298-351 405-435 1000-4000 3800-5300 288-318 198-351 198-351 213-293 lg A 14.08 12 11.89 13.31 >13.48 10.39 12.7 12.15 10.0 11.79 11.63 11.7 12.46 11.7 11 10.15 11.75 12.79 12.28 11.38 14.08+ ±0.07" 13.777 13. 52+ +0.04" Method Literature 0.69 -0.12 1 0,68 0,68 1/2 1/2 1/2 0,68 1/2 1/2 0.68 1/2 0.68 0.68 1/2 1.71+ ±0.22 5-7 2.5 3.75 8.0 8.0 5.7 0.6 1.0 0.9 0,8 6.0 0.2 7.0 6.0 0.6 0.5 0.5 0.6 >15 1.21+ +0.0B 0.28 0+0.025 therm. fi calc. shock calc. est. est. it est. 19 photol. FoO therm. therm. [1109,548, 549,547] [1005] [1071] [828,1287] [1228,1287] [1287] [1287] [1287] [1287] [1287] n [1287] [1287] [1287] [1287] [608] [548,549, [547] 1548,549, 547] Remarks 552 553 552 233 552,554 85 Reaction T°K Igk Iq A Method ] Literature ! Remarks P + C,Hq = HP + ! 3% = + CHjCHCH, P + n-C^Q « HP ♦ ♦ CHgCHgCHgCH, P * "-C^H-jq = HP ♦ + CHzCHCHgCH, P ♦ iso-C^Q = HP ♦ + CHgCHCCH,^ P ♦ iso-C^Q = HP ♦ ♦ (CH 3 ) 5 P ♦ (CH,)^C b HP + P ♦ cyclowC_Hg a HP + ♦ cycla-C-H- P ♦ CP» = p 2 ♦ cp 2 ? ♦ OP^ s p 2 + CP, P ♦ CHgPCHgCHgOH- s a HP ♦ CHPOHgCHgCH, f ♦ CHgPCHgCHgOH, a ■HP + CHgPCHOHgOH, P ♦ CH2POH2CH2OHZ « a HP + CHgPCHgCHCH, 213-293 213-293 213-293 218-293 213-293 213-293 213-293 1700-3000 1700-3000 293 293 298 <12.93 13.35 13,45 13.10+ +0.03" 13.45+ +0.06" 13,37+ ±0.05" 13.65+ +0,06" 12.84+ +0,07" 13.75+ +0.07" lo,45+ +0.10" 12,0 12.0 1/2 1/2 + 0.025 + 0.07 + 0.065 + 0.07 ± 0.08 + 0.08 + 0.1 55.6 85.63 therm. therm. therm. therm. therm. therm. therm. [548,549,547] [548, 549-, 547] [548,549,547] £548,549,547] 552,554 552,554,555 552,554,555, 556 552,554 [548, 549, 547]|552, 554, 555, 556 shock , est. therm. therm. therm. [548,549,547" 1 548 > 549, 547] [1133] [1133] [581] [581] [581] 552,554 552,554 557 557 557 86 Reaction T°K Igk lg A | n Method ! Literature Remarks P + CHgFCHgCHgCH, = = HP + CHgPCHgCHgCHg F + CHgClCHgCHgCHj = = HF + CHgClCgHjCH, F + CHgClCHgCHgCH, = = HP + CHgClCHgCHgCHp F+F+Ar = F 2 +Ar F+F+M = F 2 +M F + CF + Ar = CF 2 + Ar F + CF 2 + Ar = CF, + + Ar F + CF, + Ar = CF^ + + Ar 293 294 294 1700-3000 2600-3700 1700-3000 1700-3000 13.45 13.68 13.45 11.16, 14.10, 26.75+0.17 46.17 31,99 1/2 -2.85 +0.62 •9.04 -4.64 -12.115 2.29 2.85 therm. therm. therm. shock , est. shock [581] [531] [581] [1133] [1287] [1128] shock , est. shock t est. [1133] [1133] 557 557 557 87 1 Reaction T°K Ig k Ig A n E Method Literature Remarks CI ♦ Hg , ici + h 210-300 _ 5.8 photochem. [1257] 251-456 - i3.O634O.il 4.3*0.2 dis. f flow 273 9.52 - - - dis. C1330] 298 9.91 - - - n n 298-308 - - 5.9 photochem. [768] 523 11.68*0,04 - - - therm. [43] 901-1071 - 13.8 5,9 n [1436] - - - 5.24 calc. [1352] - - 14 5.5 - [1287] - - 11.45 1/2 5.0 - n 273-1071 - 13.92*0.03 5,48*0.14 - [547] 55.8 298-1000 - 13,9 5.5*0.2 - [43] ■ ■ - 12.69 1/2 5.0 - [43, 1712] a CI + HD = HC1 ♦ D ■ 243-343 " 13.83*0.04 5.97*0.15 photol. (jj^ 1232,167,547 559 DC1 ♦ B CI ♦ D 2 w DC1 ♦ D 243-343 - 13.76*0.05 6.61*0.16 photol. CI3 [1232] 560 273 and 305 - - 7,1 photochem. [1334] 561 303 - - - - photochem. 15211 562 303-451 - 14.02 6.67 m [344] 563 240-450 - 14.17*0.30 7.03*0,43 - - 564 CI ♦ HE s HC1 ♦ T * 235-344 - 13.79*0.04 6.03*0.15 photochem. [868] 565 TCI ♦ H n - 13.78 6.04*0.02 M [868, 547] 243-343 - 13.82*0.04 6,28*0.15 photol. Cl 2 [1232] 566 CI ♦ DT * DC1 ♦ T H 243-343 - 13.73*0.03 6.90*0.14 photol. Clp [1232] 567 SCI f D • CI + T 2 s TCI ♦ T 243-343 - 13.73 7.17*0.14 photoi.(Jl 2 [1232] 568 CI ♦ Bag a HaCl ♦ Ha 573 13.78 - - - rare. fl. [1250, 883] 573-623 14.18 - - - ■ [1249, 165] CI ♦ Oj = CIO ♦ o 2 294 >11.6 - - - photol-Cl 2f flow [ 376] CI ♦ F 2 s JC1 ♦ * - - 13.88 0.67 0.3 est. [ 1287] 88 Reaction T°K Igk Ig A n E CI ♦ ci 5 = ci 2 + Clg room £14,23 - - - CI ♦ ClBr = Cl 2 ♦ Br 293-333 - 12.24*0,24 l.ljjM CI ♦ Br 2 = ClBr ♦ Br 293 ll.35jtQ.12 - - - CI + C1I = ci 2 + I 303-333 - 11.7 4.5 CI ♦ HC1 = Cl 2 + 273-335 - ~14.26 49 + H - 4-5,1 N - 14.33 47.5 CI + HH « HC1 + H - - 12.34 0.68 0.2 CI + HHg s HC1 ♦ HH - - 11.71 1/2 CI ♦ HH, s HC1 ♦ HHg - - 11.65 1/2 0.1 CI 4- HClg = Cl 2 + HC1 259-373 - 11.93*0.04 1.94 CI ♦ HClj = Cl 2 ♦ HC1 2 293 ^ 12,5 - CI + H 2 = CIO ♦ H 2 876-1031 - 14.11 33.5 CI ♦ HBO = HC1 ♦ BO - - 11.40 1/2 CI ♦ HOC1 = Cl 2 + HO 298-328 - 13.06*0.2 1.06±Q,3 n - 11.59 1/2 0.75 CI ♦ C10 2 a 2010 294 ^ 11,7 - - - CI + cio 2 = Clg ♦ o 2 room? - - - - CI ♦ ci 2 o = ci 2 ♦ CIO - ^ 11 .6 - - - CI ♦ C0C1 = ci 2 ♦ CO 283-313 - 12.05 1/2 1.94 298-328 - 14.6 0.83 ■ 13.1 1/2 0.5 Method dis. photochem. photochem. photochem. dis. t fl° w dis. , flow therm. photol. Cl^ B photol. Clo flow » pulse photol. photochem. ■ Literature [812, 8113 [3583 [358] 1359] [554] [1287] [1287] [1287] [365] [865] [897] [1287] [269] [269, 1712] [376] [1181] [501] [1941 [268] [268, 1712] Remarks 569 569 570 571 572 573 574 89 Reaction T°K Ig k lg A Method Literature Remarks ci ♦ coci 2 => ci 2 + C0C1 ci ♦ so 2 ci 2 = ci 2 + ♦ so 2 ci CI + CH^ = HC1 + CH, CI ♦ CD 4 = DC1 ♦ CDj CI ♦ CgHg = HC1 + C^ CI + CJ> 6 = DC1 ♦ C^ CI ♦ CjHg = HC1 ♦ ♦ n-CiH^ CI ♦ CjHq = HC1 ♦ + 'so- CJELy CI ♦ CjHq s HC1 ♦ CjHo CI ♦ n-C^Q = HC1 ♦ CI ♦ "-C^q = HC1 ♦ ♦ .so- C^H^ 283-313 298-328 383-413 193-593 293-484 293-488 360-475 193-488 304-461 193-593 349-563 273-488 303-443 193-593 u 193-593 D 298-484 193-593 n 193-593 n 263-419 273-419 12.94 13.5 9.93 i/2 1/2 1/2 13.40^0.07 13.43 13.33 13.7 13.35±0.15 13.73 13.97jt0.06 14.10 13.95+0.09 13.76 14. 025^0. 08 14.00^0.08 13.87i0.09 13,85i0.09 14.26 13.94i0.09 13.91i0.09 13.96i0.09 13.9?i0.09 13.98i0.06 23.04 20.5 3.83i0.2C 3.83 3,78 3.85 3.83i0.1S 5.765 1.06i0.08 0.98 1.02i0.13 1.36 3.98i0.21 5 0.98+0. IS photochem. n therm. photol.Clp 11 therm. , sta t. photochem. photochem. [194] t268, 17123 [1460] [949] [1276] [1275] [636, 3463 [949,1275 547] [344] 574 575, R 576 577 578 photol. ci 2 [1276, 951] [547,1275 9463 photochem. photol. Q]_^ 3.66+0.21,; photo!. Cl 2 D.66i0.13 0.65 3.77+0,22 D.7?i0.14 3.25+0.22 3.30+0.14 3.30+0.05 photol. Clp photol. CI, photol. Clo therm. + photochem. therm. [344] [949] [949, 547] [949J [949, 547] [1276, 951] [949] [949, 547] [94?] [9V, 547] [31] [581] 579 576 577 580, R 581 576, 582 583 576, 582 583 577 576 583 576 583 584 585 90 Reaction T°K • igk Ig A n E 1 1 Method Literature Remarks CI ♦ iso-c ^o = HC1 + 193-593 14.08jO.09 0.80*0.22 photol. Clp [949] 576 ♦ iso-c^Ha ■ - 14.06^0.10 0.80*0,14 a [949, 547] 583 263-419 — — — — therm. , photochem. [31] 586 CI ♦ iso-C^H^- = HC1 ♦ 193-593 - 13.24^0.11 0*0.28 photol. Clp [949] 576 + (CH 5 ) 3 C m - 13, 31^0. 10 0.1*0.16 n [949, 547] 583 263-419 — — — •• therm. , photochem. [31] 586 CI ♦ iso-C^Q = HC1 + 298-484 - 14,31 0.84 photol. Clp [1276, 951] 577 ♦ C 4 H 9 Cl ♦ CCH,) 4 C = HC1 ♦ 193-593 - 14.24iQ.09 0.90*0.22 photol. Clp [949] 576 ♦ 0,-H^ a - 14. 22^0.09 0.90*0.14 n [949 547] 583 298-484 - 14.11 0.68 n [1276, 951] 577 193-593 - 14.22^0,04 0.88*0.05 - - 587 Cl + cydo-C-Hg = HC1+ 193-593 - 13. 75^0. 08 4.12*0,22 photol. Clp [949 3 576 + cyclo-C He n — 13. 72;£0. 10 4,12*0.14 a [949, 547] 583 Cl + cyclo-C^Hg = HC1+ 193-593 - 14. 42^0. 09 0.805±022 f photol. Clp [949] 576 + cyclo—C^H^ ii - 14.40*0.10 0.80*0,15 IN [949, 547] 583 Cl + cyclo-C^Q m 298-484 - 14.48 0.56 photol. Cl 2 [1276, 951] 577 HC1 ♦ cyclo-C Ha n - 14.37*0.12 0.58*0.20 n [1276, 547] 583 Cl + CP,H = HC1 + CP, 314-399 - 12.23 8.38*0.17 photol. [404] 588 Cl + CfljCl = HC1 + 286-593 _ 13.52*0.06 3.3*0.1 photochem. , [1276, 947] + CHgCl 298-484 — 13.77 3.34 therm, photol. Clp [12761 577, 589 323-423 - 13.5 3.1 photo-Cl 2 [636,346,499] 273-484 - 13.58*0.05 3.28*0.20 - [547] 590 Cl + CH ? C1 = Cl 2 ♦ 360-475 - 14.0 25.0 photo-Cl 2 [346, 499] + CH ? Cl + CHgClg = HC1 ♦ 273-563 - 13.43 3.0 photol. Clp [947] 591 + CHC1 2 n - 13.41*0.07 2.96*0.10 photochem. [947, 547] 592 Cl ♦ CHgClg = Cl 2 + + CH 2 C1 360-475 360-475 - 13.4 14.0 3 J 21.4 therm, photol. Cl- photo-Clj [346, 499] [ 346, 499] 91 Reaction T°K Igk lg A i n CI ♦ CHC1, = HC1 + + CC1, CI + CHC1, a Clg + + CHD1- CI + CDC1, = DC1 + + CC1* CI + CC1 4 a Cl2 + CC1, 01 ♦ CFjCl = Clg ♦ CP, CI ♦ CH,I b CH^Cl ♦ I CI + CHjI a HC1 + CH^ 01 ♦ CgHPe * HOI ♦ ♦ c 2»5 CI ♦ CgByJl a HC1 + ♦ CHgClCHg CI ♦ OgHeOl ■ HOI ♦ + OgH^Ol 01 ♦ OgHcCl a BC1 + ♦ cHjCaci Cl ♦ OgHjCl a Cl2 ♦ ♦ OjHj Cl i- OgH^Cl a HC1 ♦ ♦ OgHjCl 01 + O^Clg s EC1 ♦ ♦ OH^CClg 286-593 B 360-430 360-475 360-475 253-453 n 304-461 303-425 399-505 370-433 370- 433 303-399 303-453 273-488 298-484 303-453 303-453 654-740 323-423 12.84jt0.02 12.84+0.04 13,2 14.0 12.70jp.08 12.66+0.18 13.28 I I. Method Literature Remarks 13,93 14.28 3.34+0.04 therm., photochem. 3.32+0.09 photo-Cl : » 21.0 4.05+0.13 4.0+0.2 4.71 20.0 31.3 photo-Cl 2 12.28+0.09 13.05 13.51+0,16 13.68 13,55 14,3 13 12.95 photoc hem. It n photc -Cl 2 , from k_ and K from k_ and K 5.3+0,1 1.5 1.50+0.25 1.47 1.5 a, 5 3.0 1.9 photol. CH»I photol. CH,I photol. photol. Olo photochem. photol. Cl« photo-Clj therm, photol. Clo [947] [947, 547] [347] [636,346,499] [346, 499] [11793 [547] [344, 6361 [499, 346. 638, 4523 [24] [1617] [1617] [4041 [362] [547] [1276] [362] [346, 499] [803] [362] 591 592, R 593 594, 595 596, 595, R 597 598 598 588 599 577 600 601 602 92 Reaction T°K Cl + C^Clg = HC1 + + CH 2 CHC1 2 Cl + CgH^Clj = HC1 + ♦ CHClCHgCl Cl + CgH^Clg = Clg + + CgH^Cl Cl + CEgClCHCl = HC1 + + CgHgClg Cl ♦ CHjCClj = HC1 + + C gHgClj Cl + CHC1 2 C^C1 = = HC1 ♦ CClgC^Cl Cl + C^ClCHClg x HC1 + ♦ CHClCHClg Cl + C^jClj a Cl 2 ♦ + CgHjClg Cl ♦ ChgClCCl, = HC1 + + CHC1CC1, 303-453 323-423 635-758 303-453 635-758 323-428 323-423 333-413 323-423 323-423 Igk Ig A Cl ♦ CBClgCBClg = BC1 ♦ 323-438 ♦ CgHCl^ 01 ♦ CgHgCl^ x BC1 ♦ Cl + CgHgCl^ x Clg ♦ + CgHgClj Cl ♦ C2HC1 4 -•» product 323-438 323-438 497 13,00 13.80 11.62 14.3 12.40 12.95 13.15 14.3 12.80 13,10 13.8 14.3 13.85 3.4 3.1 5 5,0 21.3 3,6 3.1 3.7 20.6 3.55 3,4 3.3 20.4 Method Literature Remarks photol. Clg photol. Clg pyr. (c^ci) 2 photo-Cl 3 pyr. (OHgCDg photol. Cl- photol. CI5 photol. Clg photo-Cl . photol. Clg [362] [362] [106] [80S] 600 60^,600,603 604 605 [346, 499] [106] [362] [362] [362] 604 602. 606 607 607 photol. Cl^ photo-Cl- [346, 499] [362] [362] [346] photo-ci , [346, 499] [814] 607 607,1672 93 Reaction T°K Igk lg A Method CI + C^Clc s HCl * - ♦ c 2 ci 5 01 * e^cic = cig * ci + c 2 ci 6 e ci 2 + + c 2 ci 5 CI + CH^CCHg)^, = = HCl + CHPCCHp)^^ CI + CHgFCCH^CH, = = HCl * CHgFCHCHgCH, CI + CB^CCH^gCfl, * sfi01 * CHgPCHgCHCH, CI + CH^CCHg^CH, = = HCl ♦ CH 2 P(CH 2 ) 3 CI ♦ CHgCKCH^CH, = ■ HCl + CHCKCH^CH, ci + ch^kch^cHj = « HCl + CHgClCHCHgCH, 01 + CHgCKCH^CH, = = HCl ♦ C^CICH^CHCH, CI + CHgCKCHg)^, = = HCl + CHgCKCB^), CI + CHgBrCCH^CHj = = HCl + CHBrCCHg) Qg 336-421 360-490 433-497 273-583 433-497 360-480 273-419 273-503 273-419 273-503 273-419 273-503 273-419 273-503 308-419 308-419 308-419 308-419 308 and 351 12.65 12.8 12.8 12.68+0.13 13.8i0.5 14.3 13.38^0.18 13.0 13.54+0,20 13.1 13.69+0.16 13.3 13.62 13.1 13.35+0.15 13.31*0.17 13.65*0.17 13.62 3.55 3.3 3.3 3.4*0,2 17.9*1,0 19.5 0.77*0.10 0.8 0.62*0.15 0,6 0.37*0.10 0.3 0.77 0.8 0.77+0.20 0.3+0.4 0.22*0.10 0.77 photol. Clo photochem. photochem. photochem. therm, photol. , stat. therm, photol. , stat. , therm, est. therm. , est. photol. > stat. therm. the therm. therm. . est. therm. Literature Remarks [3623 [6363 [636, 3463 [947, 636, 5*7] [814] [636] [581] [598] [581] [598] [581] [598] [581] [598] [581] [581] [581] [581] [ 581] 607 608, R 609 585 610 585 610 585 610 585 585 585 557 94 Reaction T°K Cl + CHgBrCCHg^CH, = = HC1 + CHgBrCHgCHCH, Cl + CH^rCCHg^CH, = = HC1 + CHgBrCHgCHgCHg Cl + CPjCHgCHgCHgCH, = a HC1 + CPjCHCHgCHgCH, Cl + CFjC^CHgC^CHj = = HC1 + CPjCHgCHCHgCH, 01 + CFjCHgCHgCHgCH, = = HC1 + CPjCHgCggCHgCHg Cl ♦ Cl = Cl 2 + lrJ Cl ♦ Cl ♦ He = Cl 2 ♦ He Cl + Cl ♦ lr = Cl 2 + + Ar 308 and 351 308 and 351 273-503 273-503 273-503 1750 Igk lg A Cl + Cl ♦ ci 2 = ci 2 ♦ ♦ Cl2 195-500 ■ 294 room, 298 313 195-500 195-500 room N n 298 313 ii 335 500 502 12.2 13.0 12.8 15.48 15,62*0.08 15.64*0.06 15.60 14.3 23. ± 1 .2 14.48*0.40 16.31 16.43 16,29*0.06 5 16.46 17.81f0.03 17,85i0.03 ~16.3 15.9*0.5 15.1 23.0*1.2 n i Method Literature Remarks 2.0 0.6 0.5 -3.041 *o.r -1,8*0,7 -2.7*1 *o.r 1.6*0.6 therm. therm. photol., stat. photol., stat. photol., stat. shock dis. i flow dis. i flow a n it dis. dis. , flow dis. ii dis. t flow dis. dis. t flow photol. n photo-Cl 2 photol. [581] [581] [598] [598] [5981 [ 1215] [75] [380] [383, 380] [382] [812] [380] [75] [380, 383] [383, 380] [1016] [811] [75] [380] [75] [62] ■ [1057] [345] 557 557 610 610 610 611 612 613, 614 615 612 616 95 Reaction T°K Igk Ig A n E 1 Method Literature Remarks 552 15.85±0,5 ■a .. m photol. [345] 599 15.70jp.5 - - - n ■ 800-600 — 21.90jO.62 -2.22j ±P.24 J — — 617 Gl + Cl + M = Cl 2 + M 1550-2650 - 21 ,47+lgC 1 - 813 -e'TT) -2 shock [7753 618 1600 15.40 - - - n N M 2000 15,36 • - - a 1485, 1542] 619 2200 15.09 - - - n ■ ■ CI + Hg ♦ CP,C1 = 343-883 ^12 - ~ -1.2 Hg photo. [801] = HgCl ♦ CF ? C1 Cl + Cl2 —> Clj room 7.96 - - - dis. [812, 811] Cl + CO + Ar a ClOO ♦ 300 14.5JH0.3 - ~2 dis. [364] ♦ Ar Cl ♦ CO -•- COC1 298-328 "11.8 - *v/ photol. Clg [268] Cl ♦ BO + H« ■ HOC1 + 293 L6.54jO.06 - — - dis. [364] 4- He Cl ♦ HO ♦ Ar « IOC1 ♦ 270-620 - m -l.ljO.l dis. [364] ♦ Ar 293 L6.45jO.08 - - - n n 471 15.64jp.10 - - - therm. [47] 01 ♦ SO ♦ Hg m H001 ♦ 478-684 14.57 - 2.6 therm. [50] 620 ♦ Hj, Cl + 10 ♦ H 2 - B0C1 ♦ 293 16 .54*0 .06 - - - dis. [364] *H 471 15.85jO.12 - - - therm. [47] 01 ♦ BO ♦ 10 - B001 + 471 16.01jtp.08 - - - therm. [47] ♦ BO Cl ♦ BO ♦ £ - B001 ♦ 298 16.59jO.06 - - ' dis. [3641 ♦ o 2 96 Reaction T°K Igk Ig A n E Method Literature Remarks 01 + HO ♦ Olg » B001 + ♦ Clg CI + SO + C0 2 = H0C1 + CO, CI + HO + H 2 = H001 ♦ ♦ H 2 CI + HO + SFg = HOC! + + SP^ CI ♦ 2 + Ar = 010 2 + + Ar CI + 2 + M = C10 2 + If CI ♦ OHj — CHjCl CI ♦ CHgCl -•- C^Clg CI ♦ CHC1 2 — CHCl, CI ♦ CClj -— CCl^ CI + CJL- -*• oHc -•• CpHcCl CI + OgH^Ol -— C^Cl^ 293 293-620 430-573 471 290-620 471 471 270-620 293 300 295 360-475 360-475 360-475 303-425 a n 303-443 303-453 16.54±0.05 <15.3 16.84 14. 78510.08 16 .525 Jt i 0.065 16. 19*0. 09 16.19ip.ll 15.55*0.12 16.00 14.95 19.68il.86 -1.29 i0.70 -0.7ip.2 -2.6il therm, n 14.6 14.4 14.35 13.8 14.38 14,4 14.3 14.8 therm. -1.2i0.2 0.95 the dis. a photol. 01- , pulse photol photo-Cl 2 photo-Cl 2 photo-Cl 2 photo-Cl 2 photo-Cl photo-Cl. [364] [47] n [47] [47] [364] n [376] [889] [1181] [499] [499] [499] [452] n [499] [499] [499] 621 622 623 624 97 Reaction T°K j igk Ig A j 1 j i n ! E 1 Method Literature Remarks Cl + CgHjClg ■*. CgPjClj 329-423 - 14.3 photo-Cl 2 [499] CI + CgHgClj — C^Cl^ 323-423 - 14.3 photo-Cl 2 £499] Cl + CgHD^ -». CgHCl^ 497 13.85+1.0 - - - photochem. [8143 625 Cl + CgClc •*- products 360-480 - 14.03 0.06 photochem. [636,346,499] Cl ♦ CgH^ s CgH^Cl 310 13.6 - - - photo-Cl 2 [580] 626 Cl + CgH^ + Clg = 310 18.21 - - - photo-Cl 2 [580] 626, 627 s CgB^Cl + Cl2 ci ♦ c^ — c^m 298-321 - 13.2 photol. Clp [65] 628, 629 310 — 13,6 — — n [580] Cl ♦ CgHjCl — CgHjC^ 298-328 - 13.2 photol. Clg [65] 628, 629 ■ - 12,50 4 1.0 pfiotochem. [64, 547,431] 630 303-354 - 13.3+0.6 1,5+1.0 u [63] ■ - 12.3 ■ [65] 631 ci ♦ cis« i.a-CgHgCig-*- 303-354 - 13.3+0,6 1.5il.O photol. Cl 2( [63] — CglLjClj m - 12.3 est. photochem. [65] 631 308-406 - 13 .89+0 .11 0.19+0.12 • [950] 632 312-335 - 13,3+0,4 1.2+0.7 photochem. [62] - - 12.4 0,95 N [64, 547] 630, 633 - - 13.46 1,6 n [499] 186 C1+ trans -1 , a-CgHgClg-* 308-406 - 13.47+0.11 -0.17+0.15 photochem. [950] Cl ♦ CgHClj -+• CgHCl^ 303-354 _ 13.8+0,6 1,5+1.0 photol. Clp [63] ■ - 12.3 m [65] 631 353-413 - 12,6+0,5 0,7+0,7 photochem. [64, 430] 630 413 11.48 - - - est. [430] 98 Reaction T°K Igk Ig A Method Literature Remarks ci + c 2 ci^ — c 2 oic 433 and 452 357-477 n 358-563 366-385 382-476 382-476 12.75+0.3 12.4 12.18±0,14 11.4 10.48 11.81 11.93 0+0.2 0,5 -2,32 -0.465 -0.22 photochem. photochem. photochem. photo-Cl 2 photochem. £814] [636] [947,636,547 [638 3 [3] [344, 636] [344] 630, 634 635 636 637, R 99 Reaction T°K Br + Hg = HBr + H - 16.6 Br + Dp x DBr ♦ D Br + Hag = NaBr + Ha + + 70.2 + 5,4 Br ♦ Cl 2 = ClBr + CI - - 5.7 Br + ClBr = Br 2 ♦ CI - - 6,0 Br + HBr = Br 2 + H - 303-575 - 41.3 n 1300-1700 300-1700 Br ♦ M 2 = BrO ♦ H 2 + 793-868 ♦ 16.6 876-973 Br + CHj = HBr ♦ CH 2 + + 1.7 + 7 Br + CH 4 = HBr + CH, 423-483 499-574 n 549-612 570 600-1470 970-1300 1300-1700 1396 1441 500-1700 423-1700 549-653 H n 1300-1700 549-1700 550-1700 571 573-623 293-333 293 Igk 6.71 10.98 10,93 13.78 14.17 6.53 396-581 Ig A 12.06 13.86 12,77 12.33 12.31 14,24 12.55 12.52^ L4. 25+0.09 13.92 12.28 5 13.88+0.28 12.28 12, 26^ 13.94+0,02 12.6±0.2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 17.5 17.64 18,8+0.2 18.0+0.7 17.28 19.2 18.3±1,8 18.3+0.1 9,i ±0 &9,295+ .250 19,87 19.7+0,3 20.3+0.8 19.8+0.9 19.7+0.1 20.42+0.06 13.9 12.13 12.91 14.25+0.17 14.30 13.5 13.14 6 1/2 1/2 6.9+0.4 Method photochem. therm. « photochem. therm. ■ n n comp. shock N n therm. n n shock 41.7 41.8 44,5 43.15+ +O.4O5 35.0 37.0 7.6 17.3 rare. fl. n photochem. photochem. photochem. photochem. from k_ and K shock Literature i Remarks therm. n [937] [200, 198] [198, 233] [69, 233] [937] [1000] C1409] [233] [235] [233) [69] [69, 233] [69, 547] [233] [69, 233] [ 1206] [1249, 165] [358] [358] [196, 147] [ 1712] [233] [1559] [897] [147] 638 639 640 641 642 n 643 569 569 644 photochem. [403, 1466] 233 100 Reaction T°K lq k lg A Method Literature Remarks Br + CH^ = HBr + CH, - -15+2 Br + CgHg = HBr + + C^ -10+1 Br + C,H Q m HBr ♦ + CH,CHCH, Br ♦ n-C^Q s HBr + + n -C 4 H 9 Br + "-C^q = HBr + f hPi CHCH, Br + iso-C. •«io" = HBr + (CHj) 3 C Br + (CH 3 ) 4 C a HBr + + (CH^jCCHg 396-581 423-503 423-570 477-614 570 308-363 312-394 331-472 n 285-418 n n 313-503 400 267-371 285-418 n 419 285-418 307-421 n 313-368 285-418 330-473 330-473 470 6.81 13.99+ + o.or" 13.7 12.17 13.34 13.75+0.15 14.0 13.88+0,19 14.135± ± 0,05 6 13.895+ ±0.035"^ 13.86+0.07 13,71+0.07 13.68+0.13 13.96+0.06 6 13.1 13.22+0.14 14.21 4 14.46+0, 08^ 13.6 13.58±0.08 13.30+0.11 13,29 17,6 14.48+0.06 14.244+ ±0.061 14.24+0,13 1/2 18.58+0,14 18.3 17.8 17,3 18.18+0,5 18.3 13.3+0,5 13.26+0.55 13.26+0^4 13.40+0.09 13.2+0.27 10.15+0J4 9.95+0.35 1 Br + Br ♦ He s Br g ♦ He 335-458 335-458 335-*58 371-425 I l Igk Ig A Method Br ♦ Br ♦ lr a Br- ♦ Ar 1300-2300 294 ■ 363*20 490 1600 300-1600 273-418 n 293 room 298 298-433 300 490 950 1150 13.2 13.6 13.1 10.2 15.13+0.01 15.15 114.87+0.17 14.67 14.50 15.36+0.10 15.37 15.48+0.03 15.57+0.02 15.415+0. 01c 15.38 15.48 14.04 14.91+0.06 14.43+0.05 12.45+0.08 17.29 14.28 17.88 14.16 11.0 10.2 13.0 23.2 6.6+0.2 -0.87 -1.06 -1.4 -1.93 photol. •> stat. photol., stat. photol. , stat. [5983 Literature I Remarks [5983 [598] photochem. ( est. shock photol. a pulse photol. photol. shock pulse photol. ■ photol. H pulse photol. ■ pulse photol. ■ photol. pulse photol. + shock pulse photol. [ 800, 147] [21] [ 1214] [1298] [1297] [267] [772] [232] [1298.1297, 232] [629] ■ [1301] [1297] [267a] [1442] [819] [285] [1442] [116] [772] [270] [819] 676 677 678 679 677 105 Reaction + Br Br + Br + H 2 = 2EBr Br + Br + H 2 = Br 2 * + H Br + Br + H 2 = Br 2 + Ife Br + Br + 2 = Br 2 + ♦ 0- T°K 1310-2225 1350-2400 1400-2700 ■ 1500 in 1600 298-2300 273-2225 298-1700 298-2225 273-2700 u 1600 1600-2240 1000-2985 273and298 293 492 293 298 490 1600 290-1600 293 300-431 n 1600 la k 14.48+0.07 14.53 14.40+0.07 15.59+0.11 15.59+0.1 15.10 15.65+0.07 15.53+0.04 14.91 14.36 15.76+0.08 14.72, lg A 26.08 -98.03 14.32 18.35 ^•3.5+ ►0.5" 71.51 -0.16 lgT) hi. 19 19.35 14.28 14.22 20,2S-lg(1- 465 -e t 14.30+0.06 18.38+0,23 -1.60 -1.971 -1.21+ f0.08 38. 94^ 42.23 11.42+0.52 -7.3 -8.4 19,75 15.04 20.89 -1.68 -2 E Method Literature Remarks shock , from k_ and K [1218] It [ 212b3 -1,45 shock [236] 680 n a - n [233] - n [235] - n [233] - [987, 819] -1.4 - [629] 681 -1.84 - [233] 682 •• [1218] 683 ■1.51+0.12 — 684 - — n - shock [232] shock , from k_ and K [212b] II [212b, 212a] + 0.8 photochem. [1452] - photol. [1301, 1297] - II I 772] 677 _ photol. [1301, 1297] - pulse photol. [1442] - photol. Br-> [772] 677 - shock [232] - - 685 - photol. [1301, 1297] -1.2 pulse photol. [1442] 686 n it shock [232] 106 Reaction Br ♦ Br + Cl 2 = Br 2 ♦ CL, Br + Br ♦ Br 2 = Br 2 + + Br~ Br ♦ Br + HC1 a Br 2 ♦ ♦ HC1 Br ♦ Br t HBr = Br, ♦ HBr Br ♦ Br ♦ CO ■ Br 2 + ♦ 00 Br ♦ Br ♦ 00 2 = Br 2 ♦ ♦ C0 o T°K 293 273-418 293 it room n 490 1000-2985 1220-1610 ■ 1500 1600 ■ a ■ 273-2225 273-2225 290-1610 Igk 16,18 Ig A 16.68 16.69 <16.7 16.61.t0. 14 15.41 15.75 490 490 1500 490 1600 293 300 303-383 1600 300-1600 15.46±0.15 15.37±0.18 $15.43 15.47 ? 14.73, 32.55, 14.45 27.99 -2.3 15.67 15.32 14.6 15.80 14.32 2 15.99±0.04 15.89 14.62 14.47 ? 25.98 21.1Qt0.35 L 5. 12*0. 07 -5.6 0,1 -4 -2.01 -3.46 -1.785] 10.12 20.39 -4.13 Method photol. pulse photol. photol. pulse photol. n n photol. Br-, shock , from k_ and K shock n shock ■ -2.13±0.1 -1.8 -2.0 photol. BTp photol. Br 2 shock photol. BP 2 shock photol. pulse photol. n shock Literature t358] Remarks 569 [358] [116 3 [270] [ 267a ] [772] [212a, 121£ [305] H [233] a [236] [232] [1218] [629] [629] 687 569 677 [772] [772] [233] 688 688 689 677 690 [ 772] 677 [232] [1301, 12973 [629] [232] 691 107 Reaction T°K Igk Ig A i " ! . E Method Literature 1 Remarks Br « Br t CIL = Br 2 + 293 15.81*0.07 _ _ photol. [1301, 12973 ♦ CB^ Br ♦ Br ♦ (CHx)^C = Br 2 471 - - - - photochem. 11384, 8003 692 ♦ (CHj^C Br + Br + 1 * Br 2 ♦ M 500 15.76 - - - photol. Br 2 [8703 693 950 14,91*0,06 - - - pulse photol. , shock [270] 694 1300-1800 - 13.844 -6.44*2.3 shock [232] 695 1370-1880 - 13.639 -6.34*0.8 a n 6% 1380-1622 - 13.88 5 -5.83+2.98 " n 697 1400-1732 - 13.30 -7.8+1-.3 n n 698 1422 14.83 5 * ±0.02g — — — a it 695 1469-1915 - 13.41 -7.97*1.10 " a 699 1474 14.68 6 ± * 0.03 - - - a it 697 1565 14.39 - - - a ti 698 1641 14.48 5 - - - n n 696 1640-1910 - 12.22 2 -15.4*1.8 shock [232] 700 1661 14.46 - - - H a 669 Br ♦ Cgf* ■*■ CgJ^Br 970-1300 - 9.84 1 2.5 comp. [1409] 225 Br + CgH^Clg *•" 363-403 - - /vQ photochem. [1166] «*• CgHoOloBr 108 Reaction T°K Igk lq A Method Literature Remark; I ♦ para-H« a ortho-H^* ♦ I I ♦ Hg = HI + H - - 3 2 « 8 5 ♦ 0.1 I+ItHg-zn* 37.5 I ♦ Dg ■ DI ♦ D I ♦ Sag a Hal + Ha ♦ + 53.3 + °» 8 I + Olg a ici ♦ CI - - 7.3 I+HI = I 2 +H- 34.8 I ♦ H 2 = 10 ♦ M 2 + ♦5.3 + 5 I + IHO = I 2 ♦ BO I ♦ CH 4 = HI ♦ CH- - -31.2 + 2 698-753 633-788 667-800 978 I + CgHj = HI + C^ 600-1000 418-737 633-800 537-623 300 633-738 667-800 876-973 333 533-589 533-618 548-618 533-618 301 and 364 6.66 13.41 3.56 12.6 8.18 12.75+P.22 14.88+0.22 12;55+0.07 14,14+0.07 13.82+0.08 12,41+0.10 1/2 1/2 3:8* 32.8+0.25 37.2 33.0 33 33, 35* +0.23* ^ 1/2 ±0 33.77+. ♦0.30 therm. therm. m a m calc. therm. . photochem. 12.74+0,2 14.45 1/2 35.9+0,5 35.8 38 14.70 14.5 14.95 14.49 14,81+0.59 34.1 33,7 35.0+1,1 34.45+ ±1.54* therm. , stat. rare. fl. from k_ and K therm. H therm. pulse photol. therm. therm, est. £1447] P.338, 1446] 1446, 948 £1449] £799, 659] £1388] £1352] £1148] £1451] £1450] [1249, 165] £358, 479] £14461 £1449] £897] £1254] £562, 634] £948] £656] £154] 701 702 708 704 705 photol. 706 707 708 £696] 709 109 Reaction T°K iqk Ig A Method Literature I Remarks I + C^ 6 •= HI + CgH^ - - 26.6 +1.1 I + C,Hg = HI + + CHpCHgCH, I + CjHq = HI ♦ + CH 5 CHCH^ I ♦ CjHq = HI + C^ X ♦ iso-C^q s HI + + (CH^jC 1 * ^^ s m * C 3 H 5 I + C„H Q -1 = 4 H 8 -1 = C^Hg-2 + I I ♦ C 6 H 5 CH, = HI ♦ . + C 6 H 5 CH2 I + (CH,) 2 CH0H = HI + + (CH ? ) 2 C0H I ♦ HCHO = HI + HCO I + CH,CHO = HI + + CH,CO 503-618 ■ 536-57o 503-618 503-618 581-613 503-618 581-613 503-618 m 525-583 481-573 465-572 480-666 480-572 453-573 495-541 U. 12+0.56 14.6 14.22 14.4+P.3 14,88+0.54 14.6 14.2 14.04+0.?2 14.3 14.2 14.27+0.72 14.53+0.36 14,30+0.42 14.0 13,83+0.15 13.3+0.1 12.0+0.3 11.43±1.22 11.07+0,9 13.92+0.4 13.3 26.4+1.5 27.6 27,9 29,59* 4iS 23.80+, ±i.9or 24.4 25 24.43+. 25,5+1,0 22.55+ ±i,icr 21,85 21.4+0,5 18.0+0,3 12,4+0,6 14.4+2.9 20.47+ +0.22"^ 17.43+0.9 15.7 therm, therm. therm. n est. therm. n therm. m therm. B therm, therm. therm. therm. therm, therm. [948] n [ 734] [948] [948] OS [154] [948] [153] [948] [153] [948] n [156] [633] [503] [1566] [1564] [1565] [1203] 707 710 707 707 707 110 Reaction I + CFjH = HI + CPj I + CHjI s I 2 + CH, I + CPjI = i 2 + CP_ I + CgHcI = I 2 + CgHc I + W2 w Io + I + OgPcI = I 2 + C^ I + n-C-Hr.1 = I + + n-C I + iso-CjHnl = ? I + C+^Hgl = T°K 346-562 589-672 522-758 533-589 543-593 553 522-758 358-503 413-453 440-758 360-760 523-573 533 536-576 528-576 478-503 ■ 393-443 533-573 584-627 565-609 511-549 Igk 6.20 6,83 IgA 13.08 13.6 13.71 14,4*0.2 14.3 13.65i0.37 13.87 12.6 13.8 13 .91*0,45 36,3*3 19.2 20,5*0,5 19.8*0.5 18 .80+ 11.06 1 17.8 16,0 17,6 18,14± ±P.98 i 13.62 16.7*0.5 14.01+0.28 14,54*1.51 12.45 13.9 13.477 14.21 13.20 11.7 17,1*0,7 18,72* *3,78 11.9*3 9,22 1/2 18 20 42.9 13.78 Method from k_ and K therm. , stat. therm. n n n n from k_ and K therm. , photochem. therm. therm. ■ therm. ■ therm. therm. therm. therm. Literature [24] [655] [213] [562] [1448, 1192] 1192, 154 [24] [9851 [486] Remarks 1448, 1192] 1192, 154] [734] [35] [695] 1448, 1192] [864, 1382] [154] [864] C 11983 711 712 713 714 715 716 240, 717, R 718 719 720 721 111 Reaction T°K Igk Ig A Method Literature Remarks I + sec-C WI s Ig ♦ 511-549 . , | 11.63 1/2 16.82- therm. [1193] ♦ sec-C^Hj ■ — 14.34 16.2 ■ :U93, 142, ll75] 722 I ♦ tert-C^HoI s Ig ♦ 525-583 - 13.7 13.0ft), 7 therm. [1563 723 ♦ tert-C^Hj I + sec-O^Hgl B I + 511-549 - 12.96 17.5 therm. [1I9&, 1175 724 ♦ C^Hq ♦ HI 565-606 - 12.47 17.9 n 11753 I ♦ '«>-c 4 HqI * HI ♦ 473-517 - 13.56 17.9 therm. [1423 ♦ iso-C^Hq ♦ I I + OjHjI » I 2 * °3 H 5 481-573 - 13.3*0.1 6.8 therm. [633] I ♦ CgHjI = I 2 ♦ CgHj 648-773 - 14.36*0.06 28.4*0,2 therm. [13313 I ♦ OgHjCHgl . I 2 ♦ 480-666 - 11.75*0.5 3.5±1 est. [15663 ♦ CgHjCI^ I ♦ CCljCHO ■ HI + 626-685 - - 21 therm. [15493 ♦ CClj ♦ CO I ♦ CH3COI 8 Ig + 495-541 - 13.9 14.6 therm. [12033 ♦ CH.CO I ♦ I -»• I 2 373 10.67*0.18 - - - therm. , photochem. [9853 725 I ♦ I ♦ Hw a Ig + H« 293 15.53 - - - pulse photol. [13463 726 ■ 15.80 - - - n [3563 M ■ 15. 08 4 - - - n [3553 727 ■ 15.19 - - - n [12533 728 room 15.51iO.03 - - - photol. [12993 726 295 and 427 - 14.88 -0.4 pulse photol. [12533 323-548 - 14.68 -0.66 H [5103 n - 17.13iQ.10 -0.80 tP.o+ II ■ 400 15.28 - - - n [13463 726 1000-1600 13.02 -7.96*1 shock [2373 112. Reaction T°K Igk Ig A n E Method Literature Remarl 1000-1600 - 23.27±2,40 -2,85 4O.8O shock [237] 1400 14.25 - - - n ■ 290-1600 - 18 .3540,56 -1,27 ±0,20 — ■* 729 I + I + He = I 2 + Ne 293 15,22 2 - - - pulse photol. [3553 M 15.83 - - - it [3563 726 n 15.55 6 - - - a [1346] ■ 333 15.28 - - - n [1254] I ♦ I t Ir s I 2 ♦ 1p 293 15.52 • - - pulse photol. [355] n 15.86 - - - N [1346] 726 ■ 15.94 - - - ■ [356] ■ ■ 15-46*0 ,02 - - - ■ [1443] ■ 15,56 - - - H [1346] 726, 75 M 15. 77*0.02 - - - * [1258] 728 room I5.81±0.04 - - *• photol. [1299] 726 ■ 15.34 - - - uuise photol. [237] 731 it 15.6240.04 - - - n [1054] 726 m 4 15,8 - - • - photol. [356] 295»"d427 - - -1,340.1 pulse photol. [1258] 728 298 15.65 - - - ■ [4391 726 ■ I5.56ip.02 - - - ■ [1442] 728 | 298-418 - 14.54 -1.4 ■ ■ j 302-548 - 14,67 -ias pulse photol^ shock [259, 260] •» - 18.76J -1,33 V ■ 323 15.50 - - - pulse photol. [510] 726 400 15.14 - - - • [1346] ■ 428 15.26 - - - ■ [510] ■ 1060-1860 - 20,57±0.42 -1.9 shock [284] ■ ■ - - -1.8 m ■ ■ 1080-1570 - 13.88 ifcil* m [237] N - 20.1740.36 -1,77 40ll2 u ■ 1300 14.65 - - - ■ ■m 290-1570 — 18.6740.25 -1.30 40.09 - - 732 I+I+Krel 2 + Kr 293 16.09 - - - pulse photol. [856] 726 m 15.61 - ' - 11 [355] 113 Reaction ! T°K Ig k I + I ♦ Ie s I 2 + ft I+I+H2=I 2 +H 2 I + I + D 2 = I 2 + D 2 I + I + H 2 = I 2 ♦ B 2 J + I + 9 = I 9 + 0- I ♦ I + I 2 = I 2 ♦ I 2 293 293 room 323*nd548 326 326 1000-1600 1060-1860 16.09 4 15.73 4 15.98 15,86+0,03 Ig A 293 15,95 4 room 16,07+0.07 400 15.56 g 1000-1600 - 1300 14.64 ■ 14.85 400-1860 - 293 16.11, N 15.83 room 16.28+0 295 and 427 - 1275 14.72 293 17,93 ■ 18.il room 18.26 300 ~18,25 14.82 19.35+0.17 -1.48 ±0.07 14.136 19.15+0.81 -1.38 ±0.27 13.83 19,78±0.72 20.58+0,87 19.33+0.96 20.31+0.09 -1.82 ±0.03 -1.65 ±0.24 -1.91 ±0.29 -1,44 ±0.32 Method Literature Remarks -1.22± ±0.01 a 14.70 ±0,79^ -4.83± ±0.65^ -1.5 pulse photol. pulse photol. photol. pulse photol. pulse photol. pulse photol. photol. pulse photol. shock shock pulse photol. n photol. pulse photol. shock pulse photol. n photol. pulse photol. [3563 [3553 [1346] [1299] [510] [259] [259] [1346] [1299] [13461 [237] [237] [234] [237] M [1346] [1253] [1299] [1253] [237] [355] [237] [356] [259, 260] 726 726 n 733, 728 734 726 n 735 n 736, 737 736, 737 736 735 736 735 738 726 726 728 726 114 Reaction T°K Igk lg A n E Method i Literature Remark: i 302-548 - 10.65 3/2 -5,32 pulse photol. [259, 260] W, R I+I+HIsIg+BI 323 16.45±0,03 - - - pulse photol. [51U] 781 I ♦ I ♦ CO = i 2 + CO 323 15.74±0,02 - - - pulse photol. [510] I + I + co 2 = i 2 + co 2 room 16.50±0.08 - - - photol. [1299] 295 a^ 427 - 14.83 -1,75 pulse photol. [1253] 400 16.04 - - - ■ [1346] 1000-4600 - 14.11 -9.46 shock [237] ■ - 28,42 -4.74| a ■ 300-1600 — 26. 225ip f 77 -4,04 ±0.26 - - 739 I + I + MO = I 2 + KO 323 *• 20.68 - - - pulse photol. [510] 333 19,48 - - - n [1254] I + I + ^0 = I 2 + HgO 293 16.99 6 pulse photol. [1346] 726 I ♦ I + CH^ = I 2 ♦ CH 4 293 16.25 4 - 1 pulse photol. [1346] 726 room 16.34^0,07 - - f photol. [1299] R I ♦ I + CjHq = I 2 + 293 16,78 5 - - - pulse photol. [1346] 726 ♦ CjHjj I + I ♦ n-C^Q = 305-493 - 21.89 -2.16 pulse photol. [259, 260] = I 2 + n-C^Q N — 15.36 -1.65 R R 728 I + I + "-0^2 = I 2 + 293 16.97 2 - - - pulse photol. [1346] 726 + n-C^g 298 16.81 - - n [1054] R I + I + (CHj) 4 C = I 2 + 293 and473 16.94 pulse photol. [1346] 726 + (CHj^C room 16,76±0.03 — — - N [1054] R I ♦ I + CgH^ = Ig + 293 16,53 - - - pulse photol. [1346] 726 ♦ C2 H 4 I ♦ I + cyclo-C,H 6 = 293 16.89 ? - - - pulse photol. [13461 726 a Ig + cyclo-C-Hg 115 Reaction T°K Igk IgA n E t Method Literature Remarks I ♦ I •♦• cycIo-CgHjg = 293 17.03g - pulse photol. [1346] 726 m I 2 + cyclo-Cg^g 400 16,67 2 — — — 11 M I ♦ I ♦ CgHg . I 2 ♦ 293 17.24 2 - - - pulse phocol. [1346] 726, 728 ♦Vfc room ~ 17.26 - - - photol. [1299] 726 295 and 427 - 15.63 -1,7 pulse photol. [1253] 323-54b - 23.26 -2,55 ±P,o- \ f •t [510] N - 15,59 -1.97 a 400 16.74Q - - - it [1346] 726 I ♦ I + CgHcCHx = lo * ♦CgHjCHj 293 ■ 295»«d427 17,6% 17.59 15,27 -2.7 pulse photol. N II [1346] ■ [1253] 726 728 I ♦ I ♦ CgHjCCHj)^ - 295and427 - 17.60 ? -4.1. pulse photol. [1253] 728 » I 2 * °6 H 3 (C1 ^ ) 5 I + I ♦ para- xylene s 298 17.82 aa _ m pulse photol. [1346] 726 = Ig ■*• CHaCgH.CH, I ♦ I ♦ mes'tylenc » = I 2 ♦ C^g 298 295 and 427 17.90 8 14.54 "4,1 pulse photol. a [1346] [1253] 726 I ♦ I ♦ CBxOB I 2 ♦ 298 17,I1 4 •» - - pulse photol. [1346] 726 I ♦ I ♦ (CHj) 2 » Ig ♦ ♦ (c^) 2 o 298 17.09 8 - - - pulse photol. [1346] 726 I + I ♦ CHgClg a I 2 + ♦ CBgClg 298 16.97 7 - - - pulse photol. [1346] 726 I ♦ 1 ♦ oci 4 ■ Ig ♦ ♦ 001^ 298 17.00 8 - - - pulse photol. [1346] 726 I ♦ I ♦ CHjI s I 2 + ♦ CHjI 328-548 ■ 15.86 25,19 -8.24 -2.55 pulse photol. M [510] I ■ 116 Reaction I + I ♦ C-HLCl ■ l„ + '2^5^ ♦ C~H C C1 C 2 H 5 I ♦ I + CoH e Br = I- + C 2 H 5 : + C I ♦ I + CgHcI o Ig * ♦ CoHcI 2H 5 ] I + I + Cg? 4 S Ig + + c 2 ? 4 I * I + C C H,F, s I + 6 n 3 r 3 * i 2 ♦ C 6V3 I + cyclo-C_Hc ■*• T°K 293 293 293 295 and 42? 823 293 298 453-503 518-552 298 ± 2 Ig k 16.97 ? 17.20 4 17.69 8 17.37ip.04 16.62g 17,24 2 Ig A 15.6% 13.16 12.865 -2.4 18.8i2.0 17.28 Method pulse photol. pulse photol. pulse photol. n pulse photol. pulse photol. photochem. therm. photochem. Literature [1346] [13463 [12533 [510] £1346] [1346] [1194] ■ [744] Remarks 726 [1346] 726 726, 728 726 726 740 741 117 RADICAL REACTIONS Reaction T°K BHj ♦ B^ = BjH,, ♦ B^ BH, ♦ BgDg = BHjBD, + BH, ♦ BExOO = BgHg + CO BHgD + B^g * BgHJD ♦ ♦ BHj BD, -i- B^g = BDzBH- ♦ ♦BHj BD, + BD,CO = BgDg + + CO B 5*H "*" V9 * H 2 358-436 297-317 273-303 308-348 297-317 283-299 373-393 383 la k 3.1 IgA 11.05 6 13,44 ? 14.2 11.4 14.2 13,8 11.5 7.8 6.0 7.0 6,0 18.7 Method Literature Remarks pyr. BgHg therm. therm. therm. therm. therm. pyr. BgHg 1366,123,13*5] [1070, 123, 1345 3 [1070, 15243 [263, 1524] [1069,1070] [1070,1524] [263] [219] n 742 121 Reaction T°K la k Ig A Method Literature Remarks CH ♦ Hg -» CH, CH ♦ Hp -» products CH ♦ 2 = CO ♦ 0H« C 2 ^ ) CH ■♦• CH -*■ C 2 H 2 CH + CH^ = CgH^ ♦ H CH ♦ HH, = HCH ♦ Hp ♦ ♦ H 800-2000 11,79 ~ 10.63 10.78 ~ 14,08 12.18 10.78 CHg ♦ Hg = CH^ a CH, ♦ ♦ H or CH^ CHg ♦ D 2 * ^^ = a CHgD ♦ D <>r CHpDg CHg ♦ CD^ = CgHgD^ = ■ CHgD + CD, or C 2 H 2 D 4 CHp ♦ C,Hg a CE, ♦ CHg ♦ n -C A ^, = CHj ♦ ♦ C 4 H 9 CHg ♦ 'SO-C^q a s CBL ♦ C^Hq 300 and 341 276-349 300 room? room? pulse photol. CH,. pulse photol. CH„ pulse photol. CH„ pulse Dhotol. CH„ fl. photol. CHpHp photol. CEjCO and CHpH 2 photol. CiyL, photol. CHgHg photol. CH2H 2 photol. CH 2*2 [221] E221J [1256] [221] [221] [1348] [133] [133] [133] [13a] [1321] [1321 ] 743 743 743 122 Reaction J T°K Igk IgA CHg + (CD,),CH n 593 - - = CH- + (CD 5 )jC CHg + CHgPg = C^jP + 354-528 - - + HP CHg + CH,C1 = CHgCl ♦ room - - ♦ CHj CHg + CHjCHgCl = room - - = CHgCl + C^ CH 2 + C 3 H 8 "*" ^^0 room? - - CH 2 + C 3 H 8 — - - - -*• '»'- C 45 1 o CHg + "-C^q -*> - - - -** iso -0 5 H 12 CHg + "o-C^q ■*■ - - - -*• (CH 3 ) 4 CHg ♦ n -CcH- 2 -•» - - - _^. 2-methylpentane CHg + "-CcH-o "*" - - - _»- 3-methylpentane Cfig + C^ — room - - -^ cyc'lo-C_Hg CHg + ^2% "■" C 3 H 6 297 - - C^ ♦ CHp a = Cfc, -•. 338 - - ^ 8 CHg ♦ (CH^gCCHO^ — • — C 6*12 CHg ♦ (CB^^OCCOH,)^ — C 7*1* CHg ♦ CHgPg « — C 2 H ^ P 2 298 297 297 354-528 IgA Method Literature Remarks Hg photo. [9673 Hg photo. Hg photo. Hg photo. photol. CHgCO Hg photo. photol. CHgCO Hg photo. Hg photo. photol. CHgCO [9673 [9673 C9673 [14073 [967 3 [14073 [9673 [9673 [12633 757, 758 759 760 7a 762, 763 764 765 766 124 Reaction T°K Igk lg A Method Literature Remarks CH, + Hg a CH^ + H - 1.7*2 CH, + HD ■ CB. M ♦ D ;Hj CH, ♦ HD m CH,D + H * 1 323 - 523 375 - 523 409 - 571 M 409 - 591 n m 423 - 523 433 - 573 M 580 - 705 825 970 - 1300 413 - 569 408 - 569 OR, + D 2 a CEzD ♦ D 298 - 398 300 - 526 366 - 539 408-564 408 - 568 414 - 701 440 484 409 - 591 300 - 570 CHj ♦ ? s CH,0 ♦ 1000 - 2500 CE, ♦ Og a BCHO ♦ OH 293 473 and 523 438 - 623 CHj + 2 r BCO + EgO 393 - 473 -9.12 13.24 11.32 11.7 11.1 11.02 12.32 14.62 12.5 12.5 11.04 11.29 12.26 11.78 11,67 12.5 11.99*0.12 15.15 10.92 13 * 2 9.1 9,3*0.5 9.9*0.5 9.2 9.2*0.3 13.2*0.4 15.3*1.0 13.2*1.0 13*2 11*2 9*2 8 10.2 10.0 11.3 12.0*0.7 12.7*0.5 8.1 11.8 11.7*0.1 11.1 14.3*0.6 .12.30* *0.24 34.4 phocol. therm. , photo- chem. photol. (CH,) 2 photol. photol. (CH 3 ) 2 C0 photol. CH,CHO photol. n cliff, fl. photol. photol. CHjCOCH, photol. CH.COCH, IS radiol. photol. HgCCHj) n photol. CHjOOCHj ■ dis. pyr- of xylene photol. CHjCOCH- 18.0 1.5*0.5 0.27*0.50 shock [29,1524] [ 1235] C1235.1523] [1597.1235, 15245 [1039,1041. 1040,1597] [1041,1523] [446,1523] [446,1524] [29] [1473] [414] [733] [653] [1409] [1597] [15971 [986] [1310] [1415] [1597] [1040.1041, [1092] [1518] [272] [446,1524] [1420,1764] 768 771,772 768 773, R 768,772 768 774,772 771,774 775 768 95 768,769 768,769 photol. CH,I photol. CH,C0CH, photol. y < (GHj^OO 768 768,769 768,770 776 777 778 779 780 781 [350] 782,783 [789,787,'; [1543] [1050] 784 125 Reaction CBj ♦ Clg = CHjCl ♦ CI T°K Igk CH- ♦ Br 2 s CHjBp * Br 310 - 483 413 483 CH- ♦ I 2 = CH,I ♦ I 273 313 - 373 333 35& - 428 533 - 589 543 - 593 ! 530 - 590 CBx ♦ HC1 s CH 4 ♦ CI - 193 - 593 - 0.6±2.0 273-488 300 - 485 • 301 and 423 370 - 433 300-500 CBL ♦ BBr « CH^ ♦ Br 310 - 483 333 353 - 561 ^ ■ 355.-465 • 413 350-560 CB, ♦ HI ■ GB» ♦ I 533-589 543-593 553 530-590 CBx ♦ HgO ■ CB^ ♦ OB - - 16.4±2 1000- 2000 12.5 11.77 lg A 12.9 12.74 12.9 12.88 12.9 12,3 12.4 11.4 12.0 12.23 12.6 12.8 11.95 12.7 12.4 11.98 12.2 13.10 o 2.3 0.44 0.9 ~1 0,5±0.5 0.4 1.2 0.8±0.4 4.4 4.8 4.9 Method photo-Cl 2 photochem. est. therm. . photochem. photol. CH T I P pyt-CHjI photochem. photol.CH I P therm. therm. from k_ and K therm. from k_ and K , therm., stat. from k_ and K photol.C^ 2,3 photol.CHxCOCH, f 1 photol. CBxl 5.0 4.9 1.5*1,0 1.4 2.17 0.95 1.75 2,9 1.96 1.2 1.2 1,2 22.56 photo-Clj photochem. photol. CHzCOCHx photol. photol. CH,I ■ - therm. from k a nd K - Literature [4993 [937] [122] [937,1524] [179,119] [1379] [26] [1617] [562] [1448,1192] [22] [1275] [1276] [4251 [1617] [346,499] [937] [261 [551] * [1617] n [122] [562] [1448,1192] Remark: 785 786 787 788 789 790,791 792 768,793, 794 795 796 785,797 798 799 800 801 800 802 803 804 789 805 126 T°K 323 - 413 323 - 473 473-633 398 - 448 453 - 612 400-600 383 - 453 355, - 453 383 - 453 323 - 363 363 443 1420 - 1860 CHj ♦ SP 6 = CHjP + S* 5 413 - 443 CH, + CH^ a CH^ + CH, Reaction CH, + HgS = CH^ ♦ SH ♦ ♦ 10.9 CH, ♦ HH, = CH^ + HHg - - 2,4*4 CH, + HD , = CH,D + HD 2 CH, ♦ HgH^ x CH^ ♦ HJH, 3H, + HjjD^. = CH,D + CH, ♦ N0 2 = CH,0 ♦ NO la k CH, + CD^ s CH,D + Ci), CHj + CgHj = CH 4 + C 2 H 4 CHj + C 2 H 6 = CH^ ♦ C 2 H 5 CHj + C 2 D 6 = CH,D + CgDj 473 - 623 m 473 - 573 523 426 - 701 rooir i 353 - 461 353 - 510 303 - 562 903 527 - 780 12.52 12.38 5.76 8.15 lg A 12. 04*0.27 11.35 10.84*0,50 10.75 10.8 ll,00i0.42 ii.oo±o,05 10.86*0.17 12.75 13.3 11.83 12.00 11.95 11.15 12.74 11.3 12.29 E 3.49*0.56 2.6 2.8 9.8*0.9 10.0*0,4 9.9 10.9*0.9 5.0*0.1 6.39*0.32 /■s^O 5.7 14.1 14.65*0.3 14.9 14.94* 1 13.0 Method photol. (CH 3 ) 2 C0 photol. CH,CHO photol. CHxHNCH, photol.-' CD,C0CD, photol. CH,VHCH, ^..otol. Literature [441] [•816] [816a] [673] [1529] CH,EHCH, photol. CH,HHCH, therm, therm. py. , flow shock pyr. (tert-C 4 H 9 0) 2 photol. n n photol. 8.3 14.8*0.3 14.8 15.1 (CHj)^ photol. m photol. CHjCOCH, photol ^5(0^)2 shock photol. and pyr. CHjCOCH, [673] [673] [662] [1245] n [1770] [776] [121] [429] [409] [428] [409] [432,428] [1483] [920] [1495] [1415] [177] [1088] [1088,671] [1088,1737] Remarks 809 768 806,807, 808 768 768,794 810 768 768 768 811 768 812 768 768 R 813 768,814 815 8l6 817 105 818 127 Reaction + n-C T Hr, = CH* ♦ CH* + n- CjH^ ♦ C 3 H 6 CHx'* 1S0-C3H0 -C T H„ = CH* ♦ + c 3*6 CH3 ♦ CjBq = ch 4 ♦ + n-C BU CH3+ n-C^ = CH 4 ♦ ♦ C^Hg ♦ C^Hg CH3+ tert-C Kg » CH 4 ♦ CHj + ""C^o B ^ * CH 3 ♦ 'so-C^q « CH 4 ♦ ♦ C *«9 T°K Igk • Ig A n E Method Literature Remarks room — _ photol. [1483] 819 347 - 455, - 12.98 photol. (CH 5 ) 2 C0 [1496] 820 room . _ _ - photol. [1483] 821 347 - 455, - 13.29 photol. (CH 3 ) 2 C0 [1496] 820 363-423 - 13.32 ti [920] 822 714 - 776 - 12.64 17.5 scat. [987a] 348 - 457 - 13.17 n photol. (CH3) 2 CC [1497] 820 170 - 298 — dis. , flow .[1293] 823 381 - 412 - - - — pyr. (tert-C 4 H 9 0) 2 [1127] 824 293-333 - - - - photol. (tert-C^H 5 0) 2 \ [588] 825 353 - 461 - - - - photol. [920] 826 352 - 435 - 11.17 9.0±1.0 photol. CH3BHCH3 [866] 768 m - 11.4 9.1±0.3 m [866,1524] 365 - 496 - 10.94 8.6±0.3 ^hotol.HgCCH,), [13071 768 369 - 561 373 - 573 395 - 471 - 10.03 10.86 5.5 8.3 8.3±0.2 H photol. (CH 3 ) 2 C0 photol. (003)300 [1415] [1526.1530] [1526.1530, 1525 J 768 768,827 403 - 493 - - X) 8.4 photol. Hg(CH 3 ) a C640] 828 ■ - 11.5 9.5±0.5 N [640,1524] K - - - - a [640,483] 829 350 - 500 * 11.21*0.16 9 t 02±0.3 * •• 830 298 - 438 - 10.03 6.7-0.8 photol. CJI3NNCH3 [866] 771 349 - 467 - 10.83 7.6-0.2 photol. (CDj) 2 C0 [1526.1530, 1525J 768,794 363-533 - 11.0 7.6 pyr. [158] 768 ^66 - 506 i 10.59 7.4±0.3 photol. Hg(CH 3 ) 2 [1307] 768,794 366 - 562 " " 4.2 II [1415] 771 128 Reaction T°K Igk Ig A n E Method Literature Remarks 384 - 419 10,91 7.7 (tert-C^HgO^ 182 [768] 300 - 500 - 10.66*0.32 7.T%-0.b r i 1 _ - C831) 350 - 530 - 11.00*0,27 7.78*0,4$ > - [832J CH3 + n-CcH 12 = CH^ ♦ + C 5 H 11 362 - 451 ! 10.88 8.1-0,2 photol. (CH 3 ) 2 C0 [1526.1530, 15253 768 CHj + (CH,) 4 C = CH^ + 369 - 562 - - 8,3 photol. Hg(CH 5 ) 2 [1415] 771 404 - 524 - 11,07 10,4*0.3 ii [1307] 768,794 132,5 - 481 - 11.16 10.0 photol. (CD 3 ) 2 CC [1525,1530, 1526] n n 4Q5 - 525 - 11.25*0.61 .10,55* *1.26 - - 833 ch 3 + "-<: 6 h 14 = ch 4 ♦ 365 - 457 _ 10.97 8,1*0.2 photol. (CHj^CO [1526,15253 768,534 ♦ C 6 H 13 CH, + 2,3-dimethylbutane 300 - 463 - 10.70 6,9*0.2 photol. (CH 3 ) 2 C0 photol. Hg(CH 3 ) 2 [1526,1525] 768,794,835 = CH 4 ♦ C 6 H 13 301 - 493 - 10.7 6,8*0,2 [1307] 768 300 - 500 - 10.7 6.85 — ™ 836 CHj '+ 3-ethylpentane = s CH 4 ♦ ^7^)5 349 - 511 - 10.32 6.8*0.3 photol. (CH3) g [1309] 768,794 CH, + 2,2,3,3-tetrame- thylbutane = (JH 4 ♦ CgH,,- 435 - 605 - 11.12 9.5*0.4 photol (CDj^CO [1525] 768,794 CH, + 2,3,4-trimethyl- pentane = CH^ ♦ CgH^ 414 - 605 n - 11.28 11.67 7.9*0.4 9.09 ! photol. (CDj^CO •t [1525] [1525,1524] 837 838, R CHj ♦ C 2 H 4 = CH 4 ♦ CgHj 461 - 613 - 11.12 10.0*0.4 photol. (01)3)200 [}528] 768,794 CHj ♦ C 3 H 6 = CH 4 ♦ CjH 5 353 - 453 - 10.3 7.2 photol. (C^gCO [422,1530] 839,840 381 - 441 383-539 436 - 577 - 11.04 10.63 8.2 _ 7.7*0.4 pyr. ltert-C 4 Ho0) 2 photol. . Hg(CH 3 )2 photol. (0)3)200 [1127] [1474] [1528] 768 841 768,794 350 - 580 - 10.5*0.3 7,5*0.6 - - 842 CT 3 * C^g'l = CT 4 * 353 - 453 462 - 613 ! 10.95 11.04 ! 7.3 ' 7.6*0.4 ' >hotol. (CH 3 C0) 2 >hotol. (CH 3 ) 2 C0 [422] [1528,1529] 839,843 768,794 129 Reaction T°K Igk Ig A n E Method Literature Remarks (ju + 2-methylpropylene m 353-453 441-577 - 11.04 10,76 7.9 7.3*0.4 photol. (CH ? C0) 2 [422] photol (CD 3 ) 2 C0 [1528,1529] 839,844 768,794 CH, ♦ cis-C^Hg-2 s CIT^+ 353 - 453 - 11,11 7.6 photol. (CHjCO);, photol. ' * (CD 3 ) 2 C0 [422] 839,845 ♦ C^ 461 - 615 - 11.03 7.7*0.4 [1528,1529] 768,794 CH. ♦• trans-C.Hg-2 = 353 - 453 - 11.36 8.2 photol. (CH 3 C0) 2 [422] 839,846 3 C^ ♦ C^ CHj ♦ C 5«io"* 1 3 °^ * 461 - 619 - 11,06 7.6*0.4 photol. (CD 3 ) 2 C0 [1528,1529] 768,794 ♦ c 5*9 CH, ♦ 3-methyl-l-butcne s 462 - 619 - 11.13 7.4*0.4 photol. (CD 3 ) 2 CO [1528,1529] 768,794 = CH^ ♦ C 5 Hg CEz ♦ trimethylcthylene m 4Q3and453 - ~ 10.78 ~ 6,7 photol. (CH 3 CO) 2 [422] 839 b CH^ ♦ CjHg CH, ♦ tetramethylethylene = 403and453 _ ~ 12.05 /v 8.9 photol. (CH 3 C0) 2 [422] 839 » c % ♦ c 6 *ii 461 - 614 - 11,44 7,8*0.4 photol. CCD 3 ) 2 C0 [1528,1529] 768,794 CH, ♦ CgDg = CH,D ♦ CgD 473 - 773 - - 18,3 photol. - 13.38 pyr- (CH 5 ) 2 2 [15021 853,855 C8. ♦ QUO * CH,D ♦ ♦ SCDO 303-363 418-623 - - photol. CfijCOOCD, • [1602] il603] 856 n C3U ♦ CHzOB a CH^ 4 '373-523 - 10.6 8.2*0.5 photol. Hg(CH,) 2 [1237] 768 ♦ (SUM 376-492 - 10.54 l* 8.2*0.2 photoi. (CH 3 ) 2 C0 [1529] 768,794 378 - - - w p-8 [1174] 857 406 - 472 - 11.38 10.4 photol. CCH 3 ) 2 C0 [1391] 768,858 370-520 10.39*0.29 7.80*0.57 - - 859 CHj ♦ CB^OH ■ GH 4 4GH.0 427-477 - 9.25*0.3 6.4*0.7 photol. (CH 3 ) 2 C0 [1391] 768,858 CH. « CI,OH ■ OL ♦ ♦ tCOBjJ 406 - 472 10,76±0.O7 8.7*0.2 photol. (CH 3 ) 2 CO [1391] 768 413-523 11.26*0.07 9.82*0.15 m [660b] m CI. ♦ OBzOH ■ OI.D ♦ 408-523 11.34*0.08 .11,93* *0.i8 photol. (CH 3 ) 2 C0 [660b. 756a] 768 427-477 11.25*0.28 11.7*0,6 a [1391] m 132 Reaction T°K Igk lg A Method Literature Remarks CE* ♦ CD,Ofl a CH^ ♦ ♦ CD,0 CH, ♦ CgHcOH a CH^ + [CgHjO] CH, ♦ I c CH, ♦ CgH-OH a CH^ ♦ ♦ CgH^QH CH, ♦ CJUJ& s CH* ♦ CHji CH, ♦ CgHcOH s CH^ ♦ ♦ C-HcO ^C CH, + CgHcCfl ■ CH^ ♦ ♦ CHgCHgOH CH, ♦ CgHcOH s CH^ ♦ CgH^O CH, ♦ CH,CDgOH ■ CH* ♦ ♦ [CgHjDgO] CH, 4 CHjCDgOH a CH,D ♦ ♦ CH,CDOH CH,+ iso-C-H^Cfl a CH 4 ♦ ♦ C ~ jHgOH CHj ••■ (CH,) 2 CDCH a a CH^ ♦ (CHj) 2 CD0 and CHgCHjCDOH CHj + (CH ? ) 2 CDCH a a CH ? D + (CH 3 ) 2 C0H CHj ♦ (CHjJjCO — ■*■ (CHj) 3 COCH 5 CHj + CHjSH a T 408-623 427 - 47? 403-523 462 - 614 378 403-523 403-523 462 - 614 378 423 403-523 403-523 403-523 487 - 620 408-523 408-523 297 - 325 303 5.6*0.6 7.25 e ~10.5 9.25*0.3 11.71*0.06 11.31 K 11.60*0.15 10,90*0.50 11.31 10.90*0.50 10.83*0.13 11.61*0.04 10.84 10.69*0.08 11.28*0.03 ~13.34 ~9.5 6.4*0.7 9.65*0.14 8.7*0.4 9.69*0.30 9.40*0.98 .8.7*0.4 photol. (CH^gCO photol. photol (GD 5 ) 2 00 9.40*0.98 9.01*0.27 $:tf 7.3*0.4 9.00*0.16 9.69*0.07 radiol. photol. photol. photol. CCD 3 ) 2 CO radiol. photol photol. photol. photol. photol. (CHj^CO photol. (CHj^CO photol. (CH3). ,00 photol., est. C660M £18913 [660a] [15291 [11741 [660a3 [660a] [1529] [1174] [660m] [660a] [660a] [660a ( 756a] [1529] [660U [660b. 756a] 1079] ^(CHj^CO 768 768 768 860 768 768 768.794 861 768.862 768 768 768 768.794 768 768 768 133 Reaction ..CH, ♦ CDJSH s CH,D ♦ CDgSH CI, ♦ CDJSH s CH^ ♦ 4- CDjS CH, ♦ CD,6H s CH,SH ♦ Hj ♦ CDjS + CD CH, 4- CgHcSH = ? CH, ♦ (CH,) 2 CHBH s ? CH, ♦ (CH,),CSH ■ ? CH, ♦ (CH,)gO s CH^ ♦ ♦ CBgOCH, CH, ♦ (CgHc^O * CH^ ♦ CH, ♦ C iso-C_H_) 2 ■ » CH^ ♦ iso-C^HnOC^Hg CHj ♦ (CHg^O « CH^ ♦ ♦ CHOCHg CH, ♦ CHxOOCH, > CH^ ♦ ♦ CHjOOCH, CH, ♦ [(CH,) 2 CH0]g - CH^ ♦ CgH,^ CH, +• (tcrt-C^Og ■ « CH 4 ♦ tcrt-C^OOC^H ."8 T°K 403 - 473 403 - 473 403 - 473 303 303 303 298 - 565 373 - 523 381 - 471 408-523 473 - 573 380 - 570 418 - 452 408-523 452 - 612 373 - 473 373-523 m 423-523 370 - 520 393 - 455 320 - 366 376 - 418 400 - 444 Igk 7.54 4 7.612 7.77 lg A 10.86^0.05 11.03^0.15 10.73i0.05 11.36 11.62i0.08 11.04 10.57i0.45 12.2i0.3 11.16*0.01 10.93 10.9 10.53 8.99 10.5 10.59i0.24 12.56 10.5 13.6li0.15 12.65i0.18 1/2 8.26*0.13 4.l0i0,21 7.60i0.15 9.0 8.0 9.5i0.2 9.99i0.17 9.4 8.1li0.95 9.75i0.50 7.87i0.O7 7.3i0.4 9.6i2 9.45 9.0 9.0il.O 9.09i0.50 10.0 6.6 14.5i2.5 11.9i0.3 Method photol CCH 3 ) 2 CO photol (CH 3 ) 2 C0 photol. Cch 5 ; 2 co photol. (CH 3 ) 2 C0 photol. (CH 3 ) 2 C0 photol. (CH 3 ) 2 C0 Hg photo. photol. (CH,) 2 photol. (CH 3 ) 2 C0 Hg photo. pyr. (tert-C 4 H 9 0) 2 photol photol (CH,)~C0 >i. 9 * (CD 3 ) 2 CO photol. Hg(CH 3 ) 2 therm. pyr. pyr. (tcrt-C 4 H 9 0) 2 Literature Remarks C6803 768 [680] 768 [680] 768 [915] 768 [9151 768 [915] 768 [1052] 771.794 [1237] 794 [1529] 768,794 [660b] 768 [1027] 863 - 864 [1025] 768 [660b] 768 [1529] 768,794 [12371 768,794 [483,641] 768 a n [483,643] 865,794 - 866 [1502] 768,867 [1652] [182] 768 [1143] 768, R 134 Reaction T°K Igk | Ig A n E Method Literature Remarks 403 - 428 - 12.3 11.7*0.3 pyt. (tert-C^HoO^ :i273] 768 CH, + HCO s CH 4 ♦ CO 303 13.36 - - - photol. HCOOCHj [16503 868 304 - 376 13.34 - - ! photol. [1653] CH, 4- HCHO = CH* ♦ HCO 357 - 457 - 11.06 6.2*0.3 photol. (CH 5 H) 2 [1508] 768 397 - 420 - 11.25 6.6 pyr. (tert-C^HgOg [182] m 357 - 457 - 11.06^0.11 6.21*0.20 - — 605 CH, ♦ DCDO = CH,D ♦ DCO 350 - 454 - 11.16 5 7.9*0.3 Photol (CH,I) 2 tl508] 768 CH, ♦. CHxCHO s CH 4 + 298 - 540 - 11.50 6.8 photol. (CH^lQg [912] 768.869 i- CHjCO 300 - 438 - 11.2 6.8 n [55] 321 - 391 - - 6.2 photol. [70] 342-448 - 12.06*0.07 7.9*0.5 ■ [252] 346 - 438 373 - 623 - 11.35 5 6.8 9.8 photol. (CHz*) 2 CHzCHO [55] [4J 768 391-564 - 10.8 1/2 8.0 ■ [475] 395 - 447 - 11.9*0.1 7.6*0.2 pyr. (tert-C^HgOg [168] 768 397-429 - 10.6 1/2 7.5*0.3 m [230.231] 870 n - 12.0 7.5*0.3 it [231.1524] 473 - - ^ 16 photol. CHjCHO [19] 871 753-813 - 12.24*0.06 8.44*0.21 pyr. CH,CH0 [1021] 768,873 796 9.93 4 - - - m [977] 768 300-800 - 11.83*0.14 7.49*0.26 - - 872 CH, + CH,CHO ■ CH^ ♦ 796 6.87 4 _ «. — pyr. CHxCHO [977] 768 ♦ CHgCHO ■7 CH, ♦ CHzCHO ■ CH,COCH,* 753 - 813 - 10.22*0.07 12.4*0.3 pyr. CHxCHO [1021] 768.874 ♦ H 796 6.84 4 - - - N [977] 768 CH, ♦ CH-CDO * CH,D ♦ ♦ CH,CO 300 - 431 - 11.0 7.9 photol. (CHjDg [553 768 CH, ♦ CpHeCHO s CH* ♦ 395 - 429 _ — 7.5 pyr. [1556] ♦ CjHcCO 323-778 - 12.0 7.5 (tert- C 4 H^0) 2 photol. CgHcCHO [11113 875 185 Reaction T°K Igk lg A Method I Literature Remarks CS* + iso-CvlnflB ■ CH^+ CB_ + iso-CxHnGHO ■ « ch 4 + -ao-Cjoyx) 395- 447 406-523 396-448 395- 447 CBj ♦tert-c^jHjCBO « CH 4 < 385-436 + terr-C^HgOO + sec-C^H^OO CHv + crotonal- dehyde * f!H 4. ♦ CHgaCHCHgCO CHj ♦ CAGBO (crotonal- dehyde ) ■ ■ C 4 Hg-2 ♦ BCO ♦ GHgCOCH. 329-418 399-444 392-436 395-448 393-523 271-439 299 and 395 300-685 330- 413 353-523 373 - 548 373 - 573 386-573 393 - 483 394 - 571 4.76 11.8?0.2 10.98*0. 05 12.6*0.2 12.1*0.2 13.1*0.3 12.3 12.3*0.2 13.0*0.3 13.3 11.78 11.60 9.44 11.60 11.2 11.70 11.5 11.52 11.56 10.67 11,47±0.21 7.3*0.3 pvr. (ten- C 4 HgO) 2 7.29*0.10 8.7*0.3 8.0*0.3 photol 10.4*0.3 8.4. 8.4*0.3 10.2*0.3 10.9 7.45 9.74 B 6.1 9,8*0.4 9.1 9.9 9.6*0.4 9.7 9.87 8.06 9.44*0.35 (CH 3 ) 2 C0 pyr. (cert- C 4 H^0) 2 pyr. (tert- 0^0)2 pyr. Cterre^BaO) 2 photol. pyr. trert- C^Og pyr, (tert- C •4&>i pyr. (tert^J 4 H 9 0) 2 photol. (CH 3 ) 2 CO [1681 C660b3 [1681 [168] [168] (aim [168] [168] [168] [14] photol. (CH 3 ) 2 COfl043] photol. (CH,) 2 C0 and with photochem. photol. ICH 5 ) 2 C0 and with (ch,h; 2 photol. (CH 3 ) 2 C0 photol. (CH 3 ) 2 C0 photol. 768 768 768 £57] [484] [332] [57] [266] [1360,1524] 0.527] [340] [1017] [1396] 768 768,876 768 768 768 N 877,768 768 768 768 a 878 136 Reaction CH- ♦ CDxCOCD. * CHzD ♦ ♦ CDgCOCD, CH- * CBjCOCgH- > CH^ 4 CH, ♦ (CgHOgCO a CH^ CH, ♦ cyclo-C-HeOHO ■ ■ CH^ ♦ cyclo-C-H-CO ^»-t ♦ CBjCOOD a CH 4 ♦ ♦ O^COOD T°K 394 - 573 395 - 473 395 - 526 395 - 573 398and448 398 - 473 400 - 448 400 - 565 403 - 428 403 - 503 403-523 403-563 405 - 565 406 - 472 407 428-642 433 - 573 471 473-623 544 - 712 350 - 710 739 - 798 299-448 352-507 299 - 407 403 - 428 300 - 430 375 - 477 429-558 Igk 6.30 7.03 Ig A 11.49 11.47 11.35 11.50 10.25 5 11.8 11.35*0. 08 11.5 11.52 5 11.8 11.42*0.04 11. 46*0.07 11.53 11.43 11.35*0.07 11.7 11.56 11.59 11.59 11.71 10.74 11.04 11.7 11.40±0.23 12.33*0.03 11.22 1/2 9.7 2 ±0.1 9.6 9.53*0.16 9.7 9.5 9.7*0.2 9.53*0.16 9.5*1.5 9.5 9.5*0.3 9.43*0.07 9.64*0.08 9.7 9.5*0.1 9.3*0.1 9.8 rsj 8.6 9.8*0.1 9.75 9.87 11.54 Method photol. (CH 5 ) 2 CO photol. (CH 3 ) 2 CO pyr. (tert-C^HoOp photol.^ f * (CH 3 ) 2 CO pyr. (tert-C 4 HQ0) 2 phorol. (CH 3 ) 2 CO pulse photol. (CH,) 2 C0 photol? * (CH,)~CO *3'2 V photol (CH,) 2 CO pyr. (0Hj) 2 C0 7.4 7.4*0.1 7.0*0.1 8.0*0.2 7.51*0.39 8.70+0.07 10.2 photol. (CHjH)., photol. CHjCOCgHc photol (CHjH). pyr. (terrC. W>2 Literature [1527] [11803 [15013 [15303 [641] [641.1524] [680] [832] [1292] [1273] [509] [660a] [1597] [1039.1041] [1391] [1048] [432] [1473] [755] [429] 10433 [1737] T1085] [58] ■ [53] [1273] photol. (CHj-). photol. CHzCOGD [681] [59] Remarks 768,794 768 n it 879 768 794 880 768 768 880 768 881, R 882 768 768,794 883 768 768 137 • - - " ~ 1 Reaction T°K Igk lg A n E Method Literature Remarks CE, ♦ HCOOCB, » C^ ♦ ♦ GB-OCO 393-483 - 10.86 10.69 9.0 8.6 photol. (CH 3 ) 2 CO N [14953 n 884,768 II M - - 11.3 9.8 - n 884 CB. ♦ BCOOCgHj » CB^ ♦ ♦ CgljOCO 370 - 510 - 10.5 8.2 photol. (CH 3 ) 2 CO [1495] 768 CB, ♦ HCOO-"-C,Hn s » ch^ ♦ rf-CjByOco 347- 455 - 10.1 9.7 7.3 6.5 photol. (CH 3 ) 2 CO • [1496] ii 884,768, R » n ■ - 9.8 6.7 ■ n It w CB. ♦ HCOQ-iso-CvH- ■ » CB 4 ♦ ko-CjH^OCO 347 -455 - 10,9 8.9 photol. (CH 5 ) 2 CO [1496] 766 CH, + HCOG-n C^IU s 348- 457 348-457 - 10.6 10.8 8.2 8.1 photol. (CH,) 2 C0 photol. CHxCOCHx [1497] [1497] 884,768 768 CB, ♦ C8.C00C9U * CB^ « ♦ CHgCOOOU 336 -490 - 11.24 10.0 photol. CHjCOOCH, [1601] 768 CB, ♦ CBsCOOCDx ■ CBL * ♦ CBgCOOCD* 418-623 - 11.08 10.0*0,5 photol. CExCOOCDx [1603] 768 CB. ♦ CBzOCOOCBx » ■ CB^ ♦ CBzOCOOCBx 314 - 366 393-517 - 10.19 10.24*0.24 7.36 8,8*0,5 photol. CHxOCOOCBx photol. iCHx) 2 C0 [1649] [15011 768 CB, ♦ CBxCOCOCBj ■ ■ CB^ ♦ OEgOOOOCBx 301-473 350- 477 - 11.32 7.1*0.2 8.5 photol. (CB 3 CO) 2 m [173] [56] 771.794 768 CB. ♦ CBxCOCOCBx ■ ■ CBxCOCBx ♦ CBxCO 301 - 473 - 10.68 5.6 photol. (0^00)2 [173,1523] 771 CB, + ■ncthylcydohexadi- enone ■ CB* ♦ ♦ CBjCgl^O 445-547 ™ ~13.2 8*2 j pyr. be«-C 4 B 9 6) 2 [1159] 768 CB. ♦ CgljOB • CB^ ♦ ♦CgBjO 445- 547 ~11.4 8*2 pyr. (tert-C 4 Hg0) 2 [1159] 768 138 Reaction T°K Iglc Ig A n E Method Literature Remarks CI, ♦ CgHcOCH, ■ CEL + 453 - 539 1 „ 11.7*0.3 10.5*0.8 pyr. CI154] 768 + C^HcOCHg (tert-C^HqOg CHx ♦ Cf * s CHgCF 2 ♦ 296 - 513 - - 1.1 photol. CCFx) 2 CC (9,627] 885 ♦ HI 423 - - - - ■ [6273 886 1 CH, ♦ CH,F s CH^ ♦ CHgl 398 - 484 - 11.17 8,7*0.3 photol. (CH x ) 2 CO [1292] 768.794, 887 CH^ CHgf 2 = CH 4 ♦ 402 - 465 9.85 6.2*0.3 photol. (CH,) 2 C0 [1292] 768,794 CH, * CH,C1 = CH 4 ♦ 400- -480 11.54 9.4*0.3 photol. (CH,) 2 C0 [1292] 768,794 ♦ CHgCl • » CH, ♦ CHgClg = CH^ ♦ 402-484 - 10.82 7.2*0.3 photol. (CHx) 2 CO [1292] 768.794 CHC^ ' CH, ♦ CHC1, s CH^ ♦ 303 6.94 - m photol. (CHx) 2 00 [424] 768,794 ♦ cci 3 405 - 476 - 10.27 5.8*0.3 N [1292] • m CH X ♦ CC1 4 = CHjCl ♦ ♦ CC1, 363 - 413 .» 13.2 13.4*0,8 pyr. [1512] 768 ttemc^O^ 363 - 418 — 13.37 12.9*0.7 (tcrt-C^H 9 0) 2 [1489] 768 CH, ♦ CH,Br = CH^ ♦ 394 - 481 - 12.10 10.1*0,3 photol, (CHx) 2 C0 [1292] 768,794 ♦ CHgBr CH, ♦ CHgBTg ■ CH^ ♦ 399 - 450 - 12.73 | ! 8,7*0,3 photol. (CH 5 ) 2 C0 [1292] 768,794 ♦ CHBr 2 CH, ♦ CBr^ s CH,Br ♦ 363 - 418 _ 14.17 7.9*1.1 pyr. £1489] 768 ♦ CBr, CH, ♦ CH,I = CH,I ♦ CH. 543-583 - 10.46 1.2 therm. [1448,1192] 888 ■ - 10,68 1.2 ■ [14481 889 CH, + CF,Br s CH,Br ♦ 363 - 418 _ 13.27 12.5*1.0 pyr. [1489] 768 ♦ CF» CH, + CF 2 Br 2 = CH,Br ♦ 363 - 418 - 10.97 6.4*1.0 pyr. [1489] ! 768 ♦ CF^r CH, ♦ CP,I = CH,I ♦ CF, 363 - 418 - 13.77 7.5+1.0 py r - [1489] 768 139 Reaction T°K Iglt Ig A n E Method Literature Remarks CH, ♦ CCl,Br = CH,Br ♦ 363 - 418 . 13.17 1 7.1*0.9 j pyr- [1489] 768 ♦ cci 3 CH, ♦ CClgBTg s CH,Br •» 363 - 418 _ 13.77 1 7.6*1.1 pyr- [1489] 768 ♦ CClgBr CH, ♦ C 2 C1 6 s CH 3 C1 ♦ ♦ c 2 ci 5 363 - 408 363 - 418 - 11.4 11.77 10.2*0,5 10.1*0.9 pyr. (tert-C^HQ0) 2 n [1512] [1489] 768 CH, ♦ 81HC1, s CH^ ♦ 303 - 393 _ 13.42*0. 06 8.49*0.09 photol (CH 3 H) 2 [914] 768 ♦ SiClj CH, ♦ CHzSlHClg = CH^+ ♦ CH^SiClg 315 - 396 - 11. 77*0.12 7.24*0.80 photol. CCHjH^ [914] 768 CH, ♦ CHzSiCl, = CH^ ♦ ♦ CHgSiCl, 378 - 478 - 12.88*0.17 .11.50* *0.30 photol. (CHjN^ [914] 768 CH, ♦ CPxCHO s CH 4 ♦ ♦ Cf-CO 401 - 445 - 12.10*0.16 8.7*0.3 pyr. (tert-^HgO^ [1143] 768 CH, ♦ CpVeCHO s CH* ♦ ♦ CgfjCO 398 - 438 - 12.93*0.21 9.8*0.3 pyr- ftcrt-C^HgOg [1143] 768 CH, ♦ C,r_CHO s ch 4 ♦ 398 - 438 - 13.19*0.18 10.3*0.4 pyr. (tert-C^H^Og [1143] 768 CH. ♦ CHgfCOCH, a CH^ ♦ ♦ CHFCOCH, or CHgfCOCEg 329 - 585 ■" 10.13 4.6 photol. [1281] 768 CHj ♦ CHjCOCFj ■ CH 4 ♦ t- CHgCOCfj 299-409 - 11.07 8.9 photol. CH,C0CP, [1405] 768 CHj ♦ (CP 3 ) 2 CO a m CHjCOCJj 4- CP^ 436 - 638 | 8.78 6 photol. (CH 3 H) 2 [1277] 768 CHj ♦ CCljCOCClj a a CHjCl + CClgCOCClj 363 - 418 368 - 408 - 12.57 12.3 9.7*0.8 9.8*0.4 pyr. (tcrr-C 4 HgO) 2 n [1489] [1512] 768 n CHj ♦ CgHjCClj « a CHjCl ♦ CgHjCClg 363 - 418 - 10.27 7.6*0.8 pyr. [1489] 768 140 Reaction i T°K Igk lg A n E Method Literature Remarks CH» + para- F-C 6 H 5 CHj = 606-733 — 9.53*0,27 5.7*0.4 photol. fCH 3 ) 2 C0 [1642] 768,851 = CHL+ P^a-P-CgH^CHj CH, + ortho-F-C 6 H 5 CH 3 = = CH* + ortho-P-CgH^CHg 604 - 734 - 9.67*0.22 6.0*0,4 photol. (CH 3 ) 2 C0 [1642] 768,851 CH, + meta- F-C 6 H 5 CH 3 - 613 - 721 _ 10.32*0.10 7.1*0.2 photol. (CH ? ) 2 C0 [1642] 768,851 = CH^ t meta-f-CgH^CHg CH, ♦ CC1,CH s CH,C1 ♦ ♦ CClgCI 363 - 418 - 12.87 10.4*1.0 pyr- (tcrt-C 4 HgO) 2 [1489] 768 CH, ♦ CHxHHg = CH^ ♦ 388 - 448 - 10.99*0.37 8,7*0,7 therm. [671] 768 ♦ CHgHHg 456 - 617 388 - 617 - 11.15 11.73*0,47 8.4*0.4 9,97*1.00 photol. (CD 3 ) 2 C0 [1529] 768,794 890 CH, ♦ CH-IHg s CH^ 388- 448 _ 9.55*0.22 5.7*0.4 therm. [671] 768 + CH,IH CH, ♦ CH JiHp * CH* ♦ 388-448 - 10.59*0.12 7.2*0,2 therm. [671] 768,891 ♦ [CHH A ] 398 - 430 - 10.745 7,6 pyr. t(CH 3 ) 3 CO] 2 [227] 768 388-448 - 10.64*0.10 7.30*0.18 - - 892 CH, + CH JTOg s CH^ ♦ 388 - 448 _ 11,15*0.12 9.0*0.2 therm. [671] 768 ♦ CB^n>2 CH, ♦ CHxHDg s CH 3 D ♦ 388- 448 - 9.61*0.16 7.0*0,3 therm. [671] 768 ♦ CHJTO CH, + CDzMH, ■ CH,D ♦ 398 - 448 - 10,86*0.16 10.1*0.3 therm. [671] 768 ♦ CD gHHg CH, + CDxHH^ = CH^ ♦ 398 - 448 — 9.77*0.28 6.0*0.5 therm. [671] 768 ♦ CDjlH CH, ♦ (CR,)^SE 3 CH^ ♦ ♦ (CHj)^ 393 - 453 - 10.81*0.21 6.4*0.3 photol. (CH 3 H) 2 [667] 768 CH, ♦ (CHOgWH s CH^ ♦ 393-453 - 11.20*0.13 7,0*0,3 photol. (CH 3 H) 2 [667] 768, R ♦ [CgHHg] 398- 430 - 11.545 7.2 pyr. IterrCCHj^OOlg [227] 768 457 - 614 " 11.15 7.2*0.4 (CD 3 ) 2 CO [1529] 768,794 Reaction T°K Igk IgA n E Method Literature Remarks CH~ + (CH,)^!) s CH 4 ♦ ♦ CHgTOCHj 393-453 - 11.46*0.28 8,7*0.6 photol. (CHxI) 2 £667] 768 CI, ♦ (CHOglTD = CHxD 4 ♦ (085)2! 393-453 - 10.65*0.22 7.8*0,4 photol. (CHxH) 2 [6673 768 CH, ♦ (Ci-)-! = CH^ ♦ 405-542 466 - 575 - 11.37 11.71 8.0 8.8 photol. (CpHc)jr photol. 'S (CDx) 2 C0 [959] 1529] 768 768,794 405 - 575 - 11.49*0.11 8.25*0.25 - - 893 CHz ♦ C-HJSHp x CH 4 ♦ * CHzCHIIU 383 - 453 - 11.2 8.1 photol. (CHxH)2 [6653 768,894 ♦ CpHJH 383 -453 - 9.93*0.46 6.48*0.86 photol. (CHxH) 2 [665] ■ft 768 CH, ♦ CgEJEg = CH4 ♦ ♦ KgBHg} 383 - 453 398 - 430 — 10.89*0.18 11.045 7.31*0.34 7.1 photol. (CHxH) 2 pyr. [(CHx),C0] 2 [6653 [2273 768, R 768 CH, ♦ CgHcHDg = CH,D + ♦ C-jH-HT) 383 - 453 - 10.04*0.21 7.64*0.4 photol. . (CHxH) 2 [6653 768 383 -453 - 11,17*0.24 8.12*0.46 photol. 2 pvr. (tert-C^Og [6613 [6613 [6613 [6613 [13953 [664,6633 768 896 897 768 768 768 6.34*0.23 10.1*2.8 6.6 1.72*0.28 [664,6633 [229,2273 5.75*0.1 photoL (CHjDg photol. (GH^Dg pyr. photol. (CHjDg photol. [664,6633 768 768,' 898 768 [664,6633 768 [2273 [6623 [6623 768 768 768 143 Reaction CH, ♦ (CH 5 ) 2 HHH 2 = CH, + (0^)210012 = = CH^ ♦ [C^^] CH, ♦ CExHBBHCEz = a CH 4 ♦ CH,HHHCH, CH, ♦ CH,NHHHCH, = = CH 4 ♦ [CgH^J CH, ♦ (CH^gHHDg = s CH,D ♦ (CH,)2HHD CHj ♦ (CH 3 ) 2 SOT 2 = = CH. ♦ CHaCHgHNDg CH, + CH,inXJDCH, = = CH,D ♦ CH,HNDCH, CH, + CH,HMDCH, = = CH^ ♦ CHgHOTDCH, CHj ♦ (CHj),C-H=CH-CH,= = ch 4 ♦ [Cgira^] CH, + CH,HHCH, = CH^ ♦ CHJTHCH, T°K 383 - 453 383 - 443 383 - 453 353 - 433 352 - 435 385 - 448 385 - 448 353 - 453 353 - 433 398 - 430 298-434 298 - 437 298 - 453 299 - 407 305 - 398 323 - 453 H 333 337 - 431 338 - 451 ■ 338 - 468 355 - 453 Ig k Ig A 11.6 11.44i0.24 11.34^0.12 9.92i0.10 10.20i0.29 11.33i0.2i 10.95il.15 10.00i0.24 Method 11.6 10.945 6.00i0.04 11.55*0.10 10.49 11.40 11.47 11.47 HJH 11.20 10.87i0.11 10.8 11.15 10. 97^0. 04 10.93i0.11 8.5 5.97i0.46 5.8-0.2 2.12i0.18 2.49i0.52 6.82i0.4 7.2i2.2 2.88*0.44 6.6 7.8 7.3 8.7*0.2 7.5i0.3 7.3 8.4i0.3 8.7 8.2 7.8*0.2 7.6i0.2 8.2 7.83i0.08 7;84io.l9 phocol (CHjH). photol. (CH 3 N) 2 photol. (CHjH^ photol. (CH 5 H) 2 photol. (CH 3 N) 2 photol. (CH 3 H) 2 photol. (CHjN) 2 photol (CH 3 H) 2 pyr. ICCH 5 ) 5 C01 2 photo-ox. CHgrllpCHx photol? p (CH 3 H) 2 Literature [672] [662 3 [672] [662] [662] [662] [662] [662] [662] [227] [791] [644] [15103 [53,55] [1508] [1509] [1509,661] [3381 [914] [865] [865,1509] £1498] [671] Remarks 768 768 768 768 768 768 768 768 768 771 768 771 768 n 768,899 899 768 768,794 768,900 768 144 Reaction T°K CH, + CH,CH=N-N=CHCH 3 = CH^ ♦ [C^^l CH, ♦ HHgCHO = CH^ ♦ ♦ HHgCO CH, -i- HHCH,CH0 = CH 4 + + HHCH,C0 CH, + (CHO^CHO = CH^+ ♦ (CHOgNCO CH, ♦ CHxCfiHp = CH^ ♦ ♦ CH,CHH CH, + CHiCKHg = CH^ + ♦ CHgGWHp CHj + CHjCWLg = CH,D + 343-463 + CH,CWD 363 363 373 373 383 363 393 436 300 - 448 - 453 - 453 - 523 - 448 - 470 - 448 - 468 - 470 398 - -430 443 - 520 434 - 560 393 - 571 343-463 343 - 463 Igk CH, + azoxymethane = b CH^ ♦ CHgHOHCHj CH, + CH,S0 2 = CH^ ♦ CH^Og CHj ♦ Cd(CH ? ) 2 = CH 4 ♦ ♦ CHgCdCH, CHj ♦ Hg(CH 5 ) 2 = CH 4 ♦ ♦ CHgHgCH, 300 - 394 298 423 - 548 312 - 401 373 - 523 lg A 11.26*0.17 10.94-0.26 11.47 10.35*0.14 10.85±0.10 10.97*0.04 11.03i0.06 10.82 10.96 5 i0.12 10.345 10.5 10.9 11.4 10.70i0.15 10.55i0.12 ~ 11 ^ 12.85 11.50 11.49 8.26i0,36 7.8*0.4 8.7 6.86*0.18 7.83i0.20 7.88i0.08 8.2i0.1 7.6 .7.825* i0.22 6.1 6.6 7.6 8.3 4.53±0.2J ~6,6 5,86*0.22 6i2 Method photol. CCHjDg pyr. t(CH 3 ) 3 C0] 2 photol. (CH 3 ) 2 C0 photol (CH 3 ) 2 C0 photol (CH 3 ) 2 CO photol Literature [661] 1673,672] [1509] [1507] [664,663] [681] [667] [1277] [227] (CHjH). photol. (CHjN). photol (CH 3 H) 2 14*2 9.65 7.4 10.8*0.3 photol. (CHjH). photol. (CHjfl). photol. Cd(CH 3 ) 2 pyr. ptiotol. (CH 3 ) 2 CO photol. Hg(CH 3 ) 2 [286] [286] [286] [ 1498] [1498,1499] [ 1498] [652] [644] [29] [ 1570] [1360] [1307,1308] Remarks 768 768.901 768 902 768 768 768 903 794 904 768,794 145 Reaction T°K i : Igk lg A n E Method Literature Remarks 44^ 6.24 - - - photol.(CB,) 2 [797] 768 448 - 493 - 10.22 1/2 9 It [642] ■ - 10.77 8.7 ft [642.483] n - 9.61 1/2 9 If [641.483] ■ - 11.30 9.0*0.5 II [642.1524] 768 n - 11.7 10.8 H [1524,642] 825 ^10.1 - - - pyr. Eg(CB 5 ) 2 [653] 768 370 - 520 — 11.91*0.72 iihf " "" 905 Clj ♦ Hg(CH 5 ) 2 = C^ h 373-523 - 6.84g 1.0 photol. (CBj) 2 [642] + EgCH, or ^2^6 * 448and493 - 8.66 2.9 » [483,642] 906 ♦ Eg ♦ CE, n - 8.37*0.72 2.3*1.5 M [642] 907 CE, + Al(CH,)j = CE # ♦ ♦ CEgAlCCE^ 571-607 - - £ 15 therm. 1648] CEj ♦ PbCGHj)^ « ■ GB^ ♦ ... 513-644 - 13.54 14.00 pyr. [786] CE, -f 00 ■ CHjCO 273-335 - 8.58 3,9 photol. (CBjDg [912] 768, R 29S- 400 - 8.15 3.84 photol. [297] 908 CE, ♦ CO ♦ M * CE3CO ♦ 298-338 - 8.4 -4.1 jhotol. [912] 768,909 ♦ H CE, ♦ 10 ■ CE^IO 293 298 U.8±0.5 11.80 - - - photo 1. CEjI pulse photol. (CBjWg [351] [1412] 910 C2, 4. 10 ♦ h« ■ CE3EO ♦ 1173 18.005 " - - pyr. Eg(Cl 5 ) 2 [251,782] CE, ♦ MO ♦ CEjI ■ 293 18.5*0.5 - - - photol. P CB 3 I [351] 911 ■ CEJTO ♦ CE3I d. ♦ 10 ♦ CE3COCS3 • 473 16.97 - - - photol. (CB 3 ) 2 CO [342,782] 768 ■ CEJTO ♦ CE3COCE3 CHj ♦ 10 ♦ [(CM,) 3 CO] 2 « ■ CE3EO ♦ I (CHj) 3 C0] 2 room 18.49 pyr. KCHj) 3 eo] 2 [493,7821 146 React ion T°K ■ CHJIO ♦ (VP-C 4 IgO) 2 CHz ♦ *0 -*■ CHJIO CHj ♦ HOg ■*• CH-IOg CH,.-f Og * CExOo CBL ♦ 0- ♦ COg CHjOO ♦ CO. CH, ♦ 2 ♦ CH,3 » CHxOO ♦ GUI CH, + Og ♦ CHvCOCH. * C8.00 ♦ OUCOCH, CH, ♦ Og ♦ CHJBICHs Clji 00 ♦ CH. jWCHj CH, ♦ Og ♦ ■ ■ (SUOg ♦ ♦ ■ 473 289 - 293 298 m 301 323 433 473 293 473 293 373 - 573 473 m 473-573 298 396 434 298 373-573 Igk IgA 753 11.11 813 11.45 1073 10.05 M 11.15 1223 10.93iQ.13 323 and 363 • 363 12.23 443 12.04 18.51 11.84 11.78 * 11.7 11.19 10.52 10.45 UL4- * 11.3 15 - 16 ~15.8 16.03 16.70 16.76 -16.3 16.64*0.11 16.57 16.80 16.88 16.57 5 16.69 ~0 Method /\/0 photol. OH3I pulse photol. (chjt) 2 photoir CH,I photol. Hg(CH 3 )g pyr. (terf<5. J* 0) 2 pyr. t(CH 5 ) 3 CO]g pyr- Hg(CHj)g Py r - (CH,)gO If pyr- Hg(CH 3 ) 2 pyr. (CHj)gO therm. pyr- (terfC 4 H 9 0)g, flow photol. 13.34 - - - n [641,1401] n 407 408and438 13.37 13.57 pulse photol. (CH,) 2 C0 photol. (CH 3 ) 2 C0 [1048] [935] 938 ■ 13.34 - - - 1 [935,1401] n ■ 448 493 13.84 13.82 - - _ photol. ^(0^)2 n [639] [641] 939 940 CH, ♦ CD, -*• CH,CD, 303 and 363 - - - — photol. 1 CHjCOOCD, [1602] 941 CHj + CgH^ ■*■ ""Cj^ 403-503 1 11.10^0.07 4. photol. 6. 84*0. 14 CCHj^CO [509] 768 417 - 559 - 11.25 7. Oil. 5 » [1044] w 400 - 560 - 11.23*0.20 7.01*0.41 - 942 148 Reaction T°K Igk Ig A n E Method Literature Remarks — iso-C, Vn 300 - 723 - - - - - £15243 943 CH 5 ♦ CgH^ — C^ 279 - 368 - - - - pyr. acetyl peroxide [5271 944 353 - 453 - 11.93 4 7.9 photol. (CH 3 CO) 2 [422] 839 397 - 432 - 12.09 8. 66 pyr. (tert C^HgOg [226] 768 670 - 705 - 11,52 7.82 n [792] a 350 - 705 - 11.22*0.23 + 6.80 5 * ±0,47 & - - 945 n - 11.31*0.10 o + 7.10c± *0.21 5 — — 946 CH 5 ♦ C 2 H 5 "~ C 3 H 8 299 - 448 352 - 403 373 13.62*0.05 _ - - photol. a photol. (CH 3 ) 2 C0 [58] a [749] 947 948,949 919,950, 951 CH 3 ♦ c }*6 ■*" C **9 279 - 368 - - - - pyr. acetyl peroxide [527] 952 353-453 - 11.52 7.4 photol. (CHjCOg [422] 839 381 - 441 417 - 559 11.88 10.78 8.8 6.0*1.0 I pyr. Uert-C 4 HgO) 2 >hotol(CH 3 ) 2 C0 1127] [1044] 768 768,953 350 - 560 I ll.40i0.53 7.58*1.03 - - 954 CH, + iso-C HL -*• — isoKJ^Q 713 - 814 - 13.3 -0.6 pyr- , from k_ and K [954] CHj + n-c^ -n^J^ 348 - 457 - 13.99 photol. (CH 3 ) 2 C0 [1497] 955 CHj + C^Hg-1 -•■ ^5^11 353 - 453 - 11.3 7.2 photol. (CHjCO^ [422] 839 n - 11.07 7.02 n B 956 CHj + cis-C^H 8 -2 -+■ 353 - 453 - 10.95 7.5 photol. n [422] 839 ~- c 5^ a - 10.72 7.32 a 956 CH, + trans-C^Hg-2 — 353 - 453 _ 11.46 8.1 photol. (CHjCO^ [422] 839 "*" C 5 a 11 n - 11.23 7.92 n n 956 CHj + scc-C^Bq ■*- 381 - 412 - - - - pyr. (tert" CHjCHg 1 CHC1 CHj ♦ CIjCOCPj - — CH 5 CI 3 COCP 3 CH, ♦ CHxHHCH, -*• (CH x )jns IjJgHNCHj 303and363 523 378 - 557 529 - 799 445 - 547 487 296 - 521 302-442 423 - 545 395 - 432 397 - 431 296 - 521 297 - 449 297 - 451 298 - 437 346 - 390 396and434 300 - 450 | Igk [ lg A 13.05 12.58 8.3 11.17 12.89 12.75 11.67*0.50 10.7 10.80*0.32 11.25c L0.70 5 ±0.42 11.5 0.2 9.5*0.3 9.05 7*1 6.4 6.3 5,8*0.6 7.1 6.04*0.71 Method photo 1. HCOOCH, photol. (CH 3 CO) 2 photol. CH2COOCH, photol. methyl acetate therm. photol. (CH 3 ) 2 C0 photol. (CHj) 2 CO pyr. (tcr^HgOg pyr. (tcrt- 0^0)2 photol. (CH 3 ) 2 CO+ (CF 3 ) 2 CO photol. (c 2 f 5 ) 2 co pyr. pyr. (tert-C. '♦«9 0) 2 photol. (cn 3 ) 2 c:o+ (CF 3 ) 2 CO photol. (CH 3 H) 2 photol. (CH,H), photo-ox. (CHjN) 2 Literature 116503 [56 3 [1601] [1602] [120] [1042] [953] [1159] [1156] [9,627] [1264] [1259] [738] [792] [627] [865] n [644] [912) [791] Remarks 966 967 968 969 240 970 768 971 972 973 768 768 974 975 151 Reaction T°K Iglc IgA n E Method Literature Remarks CD, ♦ Bg » CHD, .♦ H 405-571 - 11*73 L0.2+0.2 photol. (CDj) 2 C0 [1041,1039, 1040] 837 424-570 - 12.12 11.1 n [1597] 837,976,769 471 ~7.10 - - 1 a [755] 837 400-570 Ll.87jp.22 ♦0.4" - - 977 CD, ♦ BD m CHD, + D. 410-572 - 11.54 10.7 photol. (.CD 3 ) 2 C0 [1597] 837,769 CD, ♦ HD u CD^ ♦ E 410-572 - 11.31 10.7 photol. (CD 3 ) 2 00 [1597] 837,769 CD, ♦ Dg ■ CD^ ♦ D 412-567 - 11.55 10.9+0.3 photol. ;cd 3 ) 2 co tio !yr- 837,769,772 413-698 - 11.42 11.79 n. [650] 978 CDj ♦ B- • CHD, + HHg. 458-612 - 11.17 11.19 photol. CCDj) 2 CO [1529,1524] 979 CDj ♦ GB^ ■ CHD- ♦ GEL 578 ^6,40 - - - i , photo!. ! (cd 3 ) 2 oo £1530] 979 598 6.60 - - - ■ [1600] m 628-708 - 11.46 13,9 fl. [650] 978,979 623-798 - - 14.0 photol. and pyr. (CD ? ) 2 C0 110873 M — 11.46 14.23 pyr(CD 3 ) 2 oo ■ 979,794,980 CD^ ♦ 0D 4 ■ CD^ ♦ CD, 478-623 - 12.95 18,4 photol. (CD 3 ) 2 C0 [409] 837, R ■ - 12.61 L7.8+0.5 fi ■ 981 CD, + OgHg ■ CHD, ♦ 378*578 - 11.45 LO.4+0.2 photol. [1526, 1530] 837 ♦ Og^ 389-567 - 11.31 10.4 (CD 3 ) 2 C0 [1525, 1524] 982 ■ - 11.68 11.59 n ■ 837, 979 435-614 - 11.71 11.48 ti [1600] 979 519-801 528-798 m L1.86i0.20 11.86 11.7+0.46 11.4 photol. and.pyr. (CD,) 9 C0 photol., P * (CD 3 ) 2 C0 [1088] [650] ■ 390-800 — 12.0Qi0.14 12.09tO.3S n — 983 CD, ♦ CH-CD, ■ CHD, ♦ 589-787 - 10.84 1/2 11.6 photol. (0D 3 ) 2 C0 [1084] 984 ♦ CBgOD, ■ - 10.34 1/2 11.4 n [1084, 824] 985 . • 11.37 11.33 tt [1084] 979, 986 152 Reaction CDj + CHjCDj + CH,CDp = CD 4 + CD ? CD 4 + CD, ♦ CDgCHgCBz = = CHD, ♦ CDgCHCH, CD, + (CH,) 2 CH2 = = CHD, + (CH,) 2 CH CD, + (CH,) 2 CD 2 = CD^+ + (CH,)~CD (CHj)^ CD 3 ♦ (CHj)^ = s CHD, ♦ CHgCDgCH, CDj ♦ n-O^Q ■ CHDj ♦ ♦ CHgCHgCHgCH, CDj ♦ n-C^Q = CHD ? + ♦ CHjCHCH^Hj CDj ♦ CH 5 CD 2 CD 2 CH, « a ODjH ♦ C^CDgCDgCH, T°K 539-737 523-783 550-760 299 573-725 555-725 555-725 629-723 523-722 523-722 523-723 629-723 623-723 629-723 Igk Ig A 10.48 11.56 11.08 10.63 11.66 10.28c 11.52 10.27 11.50 10.5 11.73 10.51 11.75 10.34 11.58 11.57 10.34 11.58 11.75 10.51 11.75 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 13.5 13.23 14.7 13.0 12.73 9.7 10.09 11.1 11.49 11.1 11.49 11.1 11.49 9.1 9.49 9.69 9.3 9.69 11.29 11.1 11.49 Method photoi. (CD 3 ) 2 CO photoi. (CD ? ) 2 C0 photoi. photoi. (CD 3 ) 2 CO photoi. (CD 3 ) 2 C0 photoi. (CD 3 ) 2 CO pyt. (CD 3 ) 2 C0 pyr. (CD 3 ) 2 00 n fl. pyt. (CD 3 ) 2 00 Literature [10843 pyt. (CD 3 ) 2 CO [650] [1084] [52] [824] [823,824] [823,824] [823,824] [10893 [1089,824] M [650] [1089] [650] [1089,824] Remarks 984 986, R 978,979 984,987 986, R 988 984,989 989,979 984 979 984 [823,824] 979 984,990 979 991 979 978 984 979 978 984 979 163 Reaction T°K Igk Ig A r E Method Literature Remarks m CD. * CHxCDCDgOE, 628-728 629-728 m 11.78 10.54 1/2 11.29 11.1 ft. photol. (CD 3 ) 2 CO [650] 1089, 824 978 984 ■ - 11.78 11.49 n ■ 979 CD, ♦ (CH,),CH ■ CBD« ♦ ♦ (CH 3 )jO 578-725 ■ - 9.84 # 11.08 1/2 7.6 8.0 photol. (CD^) 2 00 [824] m 984 979 CD, ♦ (CH,)yGD a CD^ ♦ 578-725 - 9,94 # 1/2 9.2 photol. (CD 3 ) 2 C0 n [824] 984 ♦ (CHj) 3 C ■ - 11.18 9.6 ■ 979 CD, ♦ (GB,),CD m CHD, ♦ ♦ GHgCDCCH,^ 573-725 ■ - 10.64 11.88 1/2 11.1 11.49 photol. (CDxijjCO [824] 984 979 CD, ♦ (CH,)«C * CHD, ♦ * CHg(CH,),C 432.5-481 - 11.67 11.19 photol. (CD*) 2 C0 [1525, 1524] 979 CD, ♦ 2,3-dimethylbutane ■ CHDj ♦ Cgl^j 439-566 ■ - 11.32 11.67 7.810.4 8.99 photol. (CD 3 ) 2 C0 it 0.525, 1524] ■ 354 838, R CD, + C 2 (CHT)g a GDxH + 435-605 • 11.67 10.69 photol. (CD 3 2 CO 1525, 1524] 979 ♦(CHj^CCCCHj^G^ CD, ♦ C~H^ a CHD, + CgH, 461-613 - 11.73 11.19 photol. (CD 3 ) 2 C0 [1528] 979 CDj ♦ OjHg = CBDj ♦ CjHjj 436-577 - 11.25 8.89 photol. (CD 3 ) 2 C0 [1528] 979 CD* + O^Hq-1 a CHD, + ♦ c 4*7 462-618 - 11.65 8.79 photol. (CD 3 ) 2 00 [1528] 979 CD, ♦ cis-KJ^Hg-2 a a CHD, + C^Hy 461-615 11.65 8.89 photol. (CD 3 ) 2 00 [1528, 1524] 979 CD, ♦ 2-methylpropene ■ a CHD, ♦ C4H7 441-577 - 11.38 8.49 photol. (CD 3 ) 2 C0 [1528] 979 CD, ♦ °5 H io~'' = ^^3 * ♦ OcHg 461-619 - 11.67 8,79 photol. (CD 3 ) 2 CO [1528] 979 154 Reaction CD, ♦ 3-methyl-l-butene T°K CHD, ♦ C, 5*9 ODjt ♦ 2,3-dimethyH butene-2 m GHD. ♦ OgH^ CD, * OgHg * om>£ * OgH (jp + 2-butyne * OHO* ♦ 5 ' CD- ♦ ' l-butyne ■ OHO* ♦ ♦ O^Hj » CBD« ♦ cydo-OjHj CD- ♦ cydo-C^Hg ■ ■ oho, ♦ c y clo -c 4 By CD, ♦ cyda-OJL ■ ■ OHO, ♦ cyclopentene GO5 ♦ cyclo-OjH^Q * ■ CHD» ♦ cycio-C-Ho 462-619 461-614 478-778 486-619 456-620 412-565 521-677 5a-677 528-678 427-580 456-698 405-491 485-800 455-569 528-678 528-675 485-800 Igk Ig A 11.76 12*06 11.97 12.27 11.37 10.66 11.77 10.66 11.90 Method Literature 8.59 8.99 11.89 1/2 11.90 f 11.70 11.77 12.0 12.00 ll.96ip.88 1/2 9.79 10.29 11.49 12.9 18,29 13.0 10,49 photol. (CD 3 ) 2 CO photol. photol. (CD 5 ) 2 C0 photol. (CD 5 ) 2 CO 10.18*0 10,52 1! 9.89 9,49 9.3 9.49 9.49*1,00 photol. a photol. (CDj)^ fl. photol. (005)200 photol. (OO5D2 photol. (CDjDg photol. (005)200 fl. photol. (005)200 [1528] [1528) 4871 1529, 1524] photol. §[1529, 1524] (005)200 [1529, 1524] [1090] [1090] [650] 1529, 1524] [649] ■ [647) [647) 1529, 1524] [650] [1090] Remarks 979 979 847 979 979 979 979 QUA. 979 992 979 993 105 Reaction CD, + CgHg = CHD, + + C 6 H 5 CD, + CgHcCH, = CHD, + + C C H 6 H 5 CH 2 CD, + CD,0 = CD^ + DCDO CD, ♦ CH,OH s CD,H + CHgOH CD, + CH,OH = CHD, + + CH,0 CD, + CH,OH = CD,H + + [COH,] CD, + CD,OH = CD^ + + CD 2 0H CD, + CD,OH = CHD, + * CD,0 CD, ♦ CH,OD s CD,H + CHgOD CD, + CH,OD = CD^ + ♦ CHjO CD, + C^cOH = CHD, ♦ + [C 2 OH 5 ] CD, + C 2 H 5 0D = C/£D, + + CgH^OD CD, + C 2 H 5 OD = CD^ ♦ + C 2 H 5 T°K 456-600 393-607 418-623 403-523 398-518 403-523 398-523 398-523 413-523 413-523 462-614 403-523 403-523 1 1 1 Igk 1 Ig A n E Method Literature Remarks - 10.77 10.39 photol. (CD 3 ) 2 CO [1529,1524] 979 - 11.37 9.49 photol. (CD 5 ) 2 C0 [1524,15291 979, 994 - - photol. CH,C00CD, [1603] 995 - 10.50 8.14 photol. (CD 5 ) 2 C0 [1398] 996, 837 - 10.58 8.98 photol. (CD 3 ) 2 C0 [ 1398] 837, 997 - 10.80+0.05 8.40+0.08 photol. (CD 5 ) 2 C0 [1398] - 10.30+0.06 - 9.29+0.10 photol. ((CD 5 ) 2 CO [1398] 837 - 10.58+0.03 8.98+0.06 photol. (CD 3 ) 2 C0 [1398] 837 - 11.29+0.07 10.05+ +0. 14" photol. (CD 3 ) 2 CO [660b, 756a] - ~10.5 -~li.3 photol. ■ (CD 3 ) 2 C0 [660b] - 11.87 9.89 photol. (CD 3 ) 2 C0 [1529, 1524] 979 - 11.64+0.07 9.71+ +0.1F photol. [660a, 756a] 998 ™ 10. 79*0. 03 10.15+ +0.20" photol. [660a] 998 156 Reaction CD, + iso-C,HnC = CHD, + C,HgOH CD, ♦ (CH,) 2 CH0D = = CDjH + [(CH 5 ) 2 C0D + ♦ CHpOHzCHOOD] CD, + (CH,) 2 CHOfD = = CD 4 + (CH 5 ) 2 CHO CD, + CD,SH = CD,H + + CD,S CDj + ( iso-CjH^O = = CHD, + is °- CjH^O^Hg CD, + CH,COCH, = = CD,COCH, + CH, CD, + CH,COCH, = CHD, ♦ + CHgCOCH, CD, + CD 2 HC0CD, = CHD, ♦ + CDgCOCD, T°K 487-620 413-523 Igk #13-523 403-473 452-612 823 418-526 403-473 403-523 CD ? + CDjCOCDj = CD^ ♦ 373-573 403-473 + CDgCOCD, 403-523 423-523 403-563 n 403-693 407-599 <7,14 lg A 11.37 11.17±0.09 9.13+0.14 10.42 11.47 11.70jO.23 9.99 10.74 11.69 + i 0.01 11.78±0.03 11.62+0.05 11.50 11.51 11.88 11.49 8.49 7.91+0.19 6.02±0.29 3.1 8.49 Method photol. (CD 5 ) 2 CO photol. (CD 3 ) 2 CO photol. (CD 3 ) 2 CO photol. (CD 3 ) 2 C0 photol. (CD 3 ) 2 CO pyr. CD,CD0 Literature 1529, 1524] [660b, 756a] >fr0.5o| 9.85+0 9.48 9.95 + ± 0.15 10.3 11.29 + ± o.osr 11.44+ iO.or 11.54+ iO.icr 11.51 10.6+0.3 10.6+0.3 11.6+0.3 10.57 photol. ♦(cr 3 ) 2 oo (CH x ) 2 CO + photol. (CD?)2C0 photol. CD 3 C0CHD 2 photol. photol. (CDj) 2 C0 [660b] [680] photol. n photol. (CD 3 ) 2 CO n photol. [1529, 1524] [ 1315] [1085, 1087. 1086, 10881 [680] [ 1398 ] [1526] [680] [1398] [660a] [1086] [1041] [1041, 1039] [1597] [1039] Remark; 979 837 979 999 979 837 1000 837 998 1001 837 1002, 794, 837 837, 794 837 157 Reaction CO3 + CHjBHg « CHD3 ♦ GHg&Hg OO3 ♦ (QB~)£S8. s CBD3 ♦ 457-614 ♦ EC 2 IH 6 ] CO. ♦ (CH,),H a CBDx ♦ 466-575 ♦ ^(GE,)^ CO3 ♦ CEjf s CO3H ♦ 466-604 * CHgl ■ T°K 411-565 471 473-625 739-798 400-500 456-617 CO. ♦ 0a 2*2 s ^™3 * ♦ GBW- CO3 ♦ Clf 3 a OED3 ♦ OF. CD3 ♦ OgMfe ■ OBD3 * V* OO3 ♦ °3 Hy 7 ■ OHD3 * ♦ C 3 F 7 CO. ♦ OB3CI • OHO3 ♦ ♦ CHgOB 395-574 415-566 ■ 417-582 408-591 ■ 402-596 378-568 406-568 6.57 Ig A n E Method Literature Remark 11.41 10.54g 1/2 10.3 11.1 photol. (CDj^CO [15273 [824] 837, 794 1003 - - - photol. (003)300 [181] 837 11.86 11,4 n [428, 409] 1004 11, 78*0. 19 11.3 11.49+ +0.42" photol. (CH 3 ) 2 CO+ (CD 3 ) 2 CO [ 1085] 1005 1006 11.6.7 9.59 photol. (CDj^CO [1529, 1524] 979. 11.67 8.39 photol. (003)200 1529, 1524] 979 12,17 9.99 photol. (003)300 1529, 1524] 979 10.04+0,03 11.28 1/2 11.1 11.49 photol. (003)300 n [1262] ■ 984 979 9.80 11.04 1/2 9.9 10.3 photol. (003)300 n [1262] ■ 984 979 8.67 9.91 1/2 9,8 9.7 photol. (0D,)2C0 [ 1272] N 984 979 8.83 1/2 9.9 N [1278] 984 10.07 10.3 ft ■ 979 9.62 10.36 1/2 9.16 9.55 photol. (003)300 [1278] ■ 984 979 9.48 10.67 1/2 8.83 9.22 photol. (003)300 n [1278] ■ 984 979 - l°b°.t photol. (003)300 [1599] 10,54 1/2 10.0 M ■ 984 11,78 10.4 ■ ■ 979 168 Reaction CD, ♦ CgHcCH ■ Cffl), ♦ CgH^CH CD ? ♦ CDj — • CgDg CD, ♦ CDgCHgCH, «*■> -*• CD,CD 2 CH 2 CHx CD, + CD,0 — CD,OCD, CD, ♦ CD,CO •— -•• CD,COCD, CD, ♦ CD,1K> -•- -•- (GD^gBO T°K 406-570 M ■ 438 438 and 468 301 and423 303 and 363 418-623 299 la k 13,58 13.51 298 >10,59 10,12 lg A 10.43 11.67 1/2 8,5±0.5 8,3 8,7 Method photol. (CD 3 ) 2 CO n n Literature 11599] ■ ■ photol. and pyr. CDiCOCgEe photol. CELCOOCD, photol. csyrocD 2 ca^ photol. (cd 3 b) 2 [10913 [1602] [1603] [52] [1059] [1058] Remarks 984 979 photol. [935, 1401] 938 (CD 5 ) 2 CO [935] 1007 1008 1009 159 React on '2% * *2 ~ C 2 H 6 * H T°K CgH^ ♦ D 2 = CgH-D* D C^ + Cl 2 = CgHjCl + + CI GgHj ♦ Br 2 = CgHjBr ♦ ♦ Br CgHj ♦ I 2 = C^I ♦ I OgHj + HC1 = CgHg ♦ CI CgHc ♦ HBr = Cp^ * Br C 2 Hc + HI = CgHg ♦ I ♦ CgH 3 + ¥4 327-560 473-593 513-593 548 823 473-823 298-398 327-560 253-423 308-363 298 523-573 536-576 Igk 308-363 233-417 523-573 n 537-577 773-873 798-924 823 294-303 room II 8.60 7.55c lg A 12.57 11.47 11.9 13.1 12.50 12.3 12.11 11.92 11.5±1.0 12,8^0.4 11,5±1 10.5^ 4E<11.1 13.7 >15 10.8 13.5±1.0 13.3*0.5 1.0 Method photol Hg photo. (C^^CO Literature 0.2 8.1 1.5-2.0 1.1 13.0*3.0 19.4*1.4 n pyr. PbCC^^ therm. |3 radiol. photol. (CgH^gOO photochem. photochem. photol. CgHcI therm. n photo-Cl 2 photochem. photol. HI therm. therm. [1609] [9943 [ 1312] [988] [712] [986] [1609] [637, 346, 499] Remark" 1010, 1011 1012 pyr. C 2% therm. photol. C 2 HcCH0 photol. Hg photo. [27] [354] [1448, 1192] [734] [346, 499] [27] [1719 J [1448, 1192 [154] [734] [212] [711] [712] [175 3 [1483] [1312] 1013 1014 1015 1016, 1017 1018 1019 1020 1016, 1017 1019 1021 10^2 1027 1023 1013 10^4 1025 10^8 160 Reaction CgHc + OgHc = CgHg + ♦ CpHft and » CgHg + OjHg T°K room? 298-40U 299-451 300-391 301-348 315 and 473 323-423 323-488 323-588 329and 393 348-443 348-473 352-507 373-523 388-423 423 532-593 593-643 623 349-575 423 room *98 369-402 Igk CgHc ♦ n-C,IU a = C 3 H3 ♦ C^ 13.08 12.80 13.33 13.35 lg A '13.00 13.13 14.0 13.18 13,15 13.22 13.11 £1.2 2.55*0.65 4.8 0.8±0.2 Method photochem. photol. (c^) 2 co photol. photol. Hg photo. photol. (C^gCO photol. CgHcOHO photol. CpHqCOCpHc photol. HgCC^g photol. CHjCOCgHc photol. (C2H 5 ) 2 C0 photol. photol. HS(^ 2 H 5>2 Hg photo. pyr. Hg(02H 5 ) 2 dis. , H 2 photol. photol. Hg photo. photol. acetone- azopropane mixt. photol. Literature [188] [9763 [54] [330] [645] [994] [1403] [838] [921] [485] [1495] [820] [58] [228] {692] [820] [1312] [653] [653] [1671] [820] [1483] [798] [692] [1483] Remarks 1026 820 1029 1030, 820 820 1031 1032 1033 820 1034 820 1034, 1035, 1036 1037 1038 820, 1039 1042 1040 1041 1043 1044 1045 1046 161 Reaction T°K lg CgHc ♦ iso— CtH« a u CgHc, + CjHg room room? 298 307-417 321-385 C 2 B 5 * isOm0 ^h a ■ 0j% * C 2 H 4 room room? 321-385 C 2 H 5 * ' so -C^Hq a 273 293 °2 H 5 * iso ^ J 4 H 9 s 3 C 2 H 4 * C 4*10 293 CgHc ♦ se c -C^Hg a - 02% * C 4% 298 CgHc ♦ tert-C^Hg a « CgHg ♦ C 4 Hg 293 room? 298 346-354 CgHc + tert-C^Hg a " ^^lO * C 2 M 4 293 room? 346-354 273 CgHc ♦ sec-CeH^ a - c&e * C 5 ^0 298 CgHc + tcrt-C e &|<| a " C 2pG * C 5*10 298 CgHc ♦ "c-CgH^ » a CgHg ♦ OgH^g 298 Ig A n r Method photol. photochem. Hg photo, photochem. photol. photol. photochem. photol. Hg photo, photol. photol. Hg photo. Literature Hg photo. Hg photo. Hg photo. Hg photo. [14823 [188] [7961 [1494] [599] [1483] [188] L599] [798] [1484] [1484] [ 796] [798] [796] [796] [796] Remarks J.U47 1048 1052 1049 1053 1050 1051 1054 1055 1056 1056 1060 photol. [1484] 1057 photochem. [188] 1051 Hg photo. [796] 1061 photol. [599] 1062 photol. [1484] 1058 photochem. [188] 1059 photol. [599] 1063 1065 1064 1066 1067 162 Reaction C^Hc ♦ 1,2,2-trimethyl- ipropyl u CgHg + CgB^p CgHc + 1,1-dimethyl- butyl = CgHg + Cg^g CgHe + 1,1,2-trimethyl- propyl s CgHg + CgH^ C^Hc ♦ l-methyl-l-ethyl J propyl s CgHg ♦ CgOjg = c ^e ♦ c 7*15 CjHc + 1-heptene = = CgHg + Cr^jj CpHc + 1-octene s = °2?6 * C 8 H 15 + trans-4-octene 0^ 5 = CgHg + c 8 a 15 CpHc + l-heptyne - = °^S + C 7 H 11 CpHc + cyclopentyl s = CgHg + C 5 H 8 CpHc + cyclohexadi- tenyl-1,4 = CgHg ♦ CgHg CpHc ♦ cyclohexenc a ■ CgHg ♦ cyclo-CgHQ CpHc ♦ cyclohexadiene- -1.4 = CgHg ♦ CgH,, CpHc + C^HcOCpHq — = CgHg ♦ CH,CH0C 2 Hc T°K 298 298 298 298 398-473 360-480 360-460 360-442 300-455 298 327-407 300-523 327-407 306-491 Igk Ig A 11.99*0.2 11.49*0.3 11.49*0.3 11.79*0.6 11.19*0.2 Method Hg photo. Hg photo. Hg photo. Hg photo. i [796] 11.79*0.3 11.59*0.1 10. 6*0.4 8.3±0.5 8.3*0.2 8.7*1.0 7.6*0.2 photol. (OgH^CO photol. < C 2V2 C0 photol. (C 2 H 5 ) 2 C0 photol. ,co Literature 17963 £7961 [796] 8.2*0.5 5.8*0.1 11.8 - - - photol. w £3543 1082 CgHc ♦ HO — CgHcMO 506-540 >10.5 - - - pyr. [1258] 820 903 9,2 - - - est. [177] CgHc ♦ H0 2 -*- CgHcHOg 593-713 - - - - therm. [1611] 1083 CgHc + 2 = C 2 H 5°2 295 12.62 - - - pulse photol. [465] 1084 room? 11.82 - - - dis. , Hp [1671] 320 298 >H - - - photol. w [354] °2% + °2 -" C 2 H 5°2 395 12.62 - - pulse photol. [465] 308-423 - 14.5 ? ! ° 2,8 ? photochem. [860] 1085 310 11.80 - - - it [637] 1086 348-573 - - - - dis. [1671] 375 10.05 •• — — photol. C pHcCOC pH c [553] 1087 CgHc + ^2^ ■*• n-C^Hn 332-396 - 10.02 5.5 Hg photo. [1247] 820, 1088 364-482 - 12.05 8.6 photol. CpHcCHO [9a] 820 398-448 — 10.3 5.5 photol. [980] 820 330-480 — ll.63iQ.51 8.01^0.90 _ - 1089, 1090 C 2 H 5 * C 2 H 5 = ^^lO 323-423 ! 14.55 2±1 photol. CpHeCvCpHe [1403] 1091, 1092 C 2 H 5 * C 2 H 5 ^ °2 = room 20.4 - - - dis. , BL [1671] = c ^o * ^ 348-575 20.04 dis. , Mow a C 2 H 5 * C 2 H 5 "*" °4-*IO 323-423 13.4 - - - photol. (Cgfl^CO [1403] 1093 423 13.2 photol. Hg(C 2 H 5 ) 2 . int. ill. [820] 512 165 Reaction c 2"5 ♦ "-Cj^ - c 5 ^ 2 T°K ~" C 5*12 CpHc + l-hexenc >*. """ C 8 H 17 327-471 338-402 303-443 323-473 338-435 Igk CgHc ♦ methyl pentcne-1 «^ 363-476 ~ C 8*17 CpEc + lheptene _». CpHc ♦ 2,3,3-trimethyl- 1-butene -*■ CjH^q C 2 He ♦ 1-octene *•■ — °1Cr*21 CgHc ♦ 2,4,4-trimethyl- 1-pentene •*• C^qH^ C^Hc ♦ trans-4-octenc SgBj "^So 3 ^ °2 H 5 * C 2 H 2 - °*»7 C 2 H 5 * C 6 H 5 CHCH 2 ""•" O^e ♦ 1-heptyne ■*•» 359-439 322-364 298-453 363-476 309-364 359-439 373-473 344-435 300-455 lg A 10.89*0.3 11. 39*0.20 11.09*0.1 10.19*0.5 10.89*0.2 11.39*0.1 10.59*0.6 ~10.1 11.0 10.89*030 11.89*0.2 Method photol. photol. (C 2 H 5 ) 2 CO+ (n-C 3 H 7 N) 2 photol. C^COCj^ Literature photol. iso— C ^H^CHO 6.8*0.5 photol. (c^ 5 ) 2 co 7.3*0.3 7.0*0.2 5.6*0.8 6.7*0.3 7.6*0.2 5.7*0.9 ~7.0 7.0 4.1*0.6 8.8*0.4 photol. photol. (CgH^gCO photol. (CgHj^CO photol. photol. ,co CO photol. (C2H 5 ) 2 C0 photol. C^cCHO photol. photol. (CgHj)^ [916] [692] [1604] [917] [839] [837] [839] [839] [839] [837] [839] [839] [600,601] [836] [839] Remark; 1094 1095 1096 1097 820 820 820 820 820 820,1098, R 820 820,1090 820 820 166 Reaction T°K Igk IgA n E Method Literature Remar CgHc + vinyl-n-butyl-i 308-473 - 10.69*0.30 6.1*0.5 photol. [8363 820 ether .*, [C 8 0tt, 7 ] C-Hc + pentanonyl — 423-523 _ _ mm tm photol. £2283 1100 -*• OgHjCX^Hg (c 2 i^) 2 co CoHc + v 'nyl acetate ■•» 307-417 - 11,19*0.30 o 6.9*0.5 photol. [836] 820 * °6¥l1 °2 H 5 * C 3*7 — 365 and 510 - - - - photol. [1280] 1099 — c^c^ c^ ♦ ic^s) 2 — 300-391 - - 6,0*0,3 phocol. [330] 1080 "*" ^2% 2^2^2% °yy> 2 OgHc + OHgCBBH ■*• 313-488 - 11.09*0.3 3.4*0.4 photol. [836] 820 -*p C^HgCH CgHe ♦ CHgCCHaCN ■*- 313-410 - 11.69*0.40 4.6*0,7 photol. [837] 820 ■*" C 5*10 CB CpHc ♦ c > s — crotononi- 328-431 - 10.49*0.3 5.0*0.5 photol. [837] 820 tnle ^C^ CpHq ♦ trans— crotono-— 328-435 - 10.79*0.3 5.2*0.6 photol. [837] 820 nitrile -*. OJS^qCB CgHc ■#■ SOg •*- CgHgSOg 301 313-848 8.74 11.0 o 3.1 phocol. (OgH^CO ■ [645] ■ 820 ■ CgHe ♦ OgHcSOg -*- 813-348 — 13.9*0.4 ~0 photol. [645 3 820 -» C 2 H 5 S0 2°2 H 5 (CgH^gCO ! CgHj s Cgl^ ♦ H - 39,6 673-778 - 14.78 40.9*0.5 Hg photo. [1029 ] 820 ■ - - 39.5 rtg photo. A stat. [280] 1101 •i - 13.8 39.5 ■ [280,1524] ■ - 14.0 i 40 ■ [280, 922] 823-898 - 13.93 38 * 2 ; therm. [1011, 1012] 820 673-893 14.37*0.20 39.72* ±0.71* 1102 167 Reaction T°K Igk lg A Method Literature Remarks 1 + H ♦ CgHg CHxCDp ♦ (CH,CD 2 ) 2 C0 - CHxCHDp ♦ ♦ CHpCDpCOCDpCH, 673-773 823-893 63S-773 737 903 970-1300 374-638 CH-CDg ♦ (CHjCDg^CO + CH,CDC0CD 2 CH, 297-638 C 2°5 *^z~ CgHDc ♦ H C^ + CgDj = C^g ♦ ♦°2 D 4 C^ + n-C^ „ = CgHDj ♦ C^Hg = CgHDj ♦ C^Hg CgDj ♦ (CH^C = » CgHD^ + (CH 5 ),CCH 2 CgDj ♦ n-C^ = = C^ ♦ c 6*13 CpDc ♦ cycio-Cg^o = = CgHDj ♦ cyclo-CgH^ CgDc + CpDcCOCgDc = s CgDg ♦ CgD^COCgDj 375-515 323-456 379-467 360-457 359-453 375-515 375-515 300-587 323-597 2 1.93 18.18 18.60 11.2 17.32 11.96 -1 31.8+2.0 32.4+2.0 31 38 11.7 12.15 11.39+0.2 11.85 11.33i0.29 10.92+0.27 11.55+0.29 11.44+0.20 11.72+0.20 11.59iP.20 11.25^0.20 8.7 9.2+0.4 11.3±0.5 10.4+0.75 8.9+0.6 12.60+0.7 10.1+0.5 10.4+0.5 9.6+0.4 9.0±0.5 Hg photo, therm. photol. CgHcCHO therm, comp. photol. (CH,CD 2 ) 2 C0 photol. (CH 3 CD 2 ) 2 C0 [1029] [1011,1012] [921] n [177] [1409] [1608] [1608] [840] photol. photol. (OgD 5 ). ,co photol. (C2D 5 ) 2 < CO photol. (C^). ,co photol. (CgD^i CO photol. CO (We' photol. (C^gCO photol. (C^^CO [190] [189] [189,1227] [189] 1189] [190] [190] [840,838] [189, 190] 820 820 n 105 1103 1106 1106 1107 820 1104 1105 1105 1105 820 820 820 820 168 Reaction T°K Igk n, iso-C-H^ + C1 2 = 458 - s n , iso-C,BUCl ♦ CI n-C-Hn ♦ I 2 ■ n-C-H^I ♦ 298 - + I 533-573 — n-C JBU + l£ = 584-627 - = iso-C,HnI ♦ I 1SO-C Hr, ♦ Ig 3 298 - s iso-C,HJ[ ♦ I n-C,BU + HI = C,Hg + I 533-573 ■ _ C 5 H 7 + C 2 H 5 ■ C 3 H 8 ♦ 365 and 510 - ♦ C^ n-C,Ho + CgH- = room - ■ 03% ♦ °A iso-c BL ♦ CgHc = room - * **3% * ^2^* n -C»H« ♦ n-CxHn = 291-423 - 3 C 3 H 8 ♦ C 3 H 6 room - 297-403 - 298 - 298-464 303-381 347-455 373-423 386 13.20 lg A n E Method Literature Remarks - - - phocochem. [1760] . . mm phocol. w £354] 1108 - - - cherm. 1448, 11923 1109 8.25 1/2 12.6 pyr. n-OJSUl [864] - - - phocol. iso— C^Hnl [354] 1110 _ _ _ cherm. [1448, 1192] 1109 11.64 - - - [154] 1111 - - - phocol. [1280] 1112 - - - phocol. [1483] 1113 - - - phocol. [1483] 1121 - - - phocol. [692] 1114 - - - phocol. [1483] 1115 - - - phocol. [911] 1116 — — — phocol. n-CjBUCHO [174] 1026 — — I — phocol. "-Cjl^CHO [916] 820 — — — phocol. Hg( ""CjHr^g [329] 1051 13.15 phocol. CHjCOCH, [1496] 820 - - - phocol. ( "-Cjil^CO [15961 1117 N [ 1060 ] 1118 169 Reaction n -C,Hr, ♦ iso-C '3*7 3*7 = 5 CjHq + CjH 6 iso-C-H» + iso-C,H« ! ^ * °3 H 6 ■ iso-CjH^ ♦ CjHg • SO -0 3 H 7 ♦ CjHg 3 -. n-CjHy ♦ CjHg iso-C^Hy ♦ SCC -C 4 H 9 C 3 H 8 * C 4% T°K iso-CzIU ♦ sec-C^HQ a room? O^o ♦ CjHg iso-C,H- + tert-C^Hg « room? °3 H 8 * °A 345-355 iso-C,H_ ♦ tert- 2 CH-QDgCHg -^ CHxCDCHg ♦ + D CD^CBCH, ••» CDgCHDOH, T°K ? - 373 573-678 473-676 686-777 686-777 298-355 658-753 ? -828 ? -828 la k Ig A 11.75 5 11.11 16.03 15.05 11.7±1.1 9.3±0.3 35±1 32.5+2 Method photol. (CjHgD^CO photol. {C^ 6 CD) 2 C0 photol. (C^CD^CO photol. (CjHgD)^ photol. (CjHgD^CO photol. CHxC0CD 2 C2Hc photol. CD,C0CD 5 therm. therm. Literature [7513 {7513 [7513 [751] [751] [52] [823] [1093] [1093] Remarks 1144 820 820 820 820 1145,1146 1147 1148 1149 174 Reaction n-C 4 H 9 + CgHg = = c 4 H 10 + C^ n-C^Hg + n -C 4 H 9 = C^Q + C^Hg n_C^H 9 + CjHg = n-C^Hg + n-C^H^CHO = = C^q + n-C 4 H 9 CO n-C^Hj + HCOO-n-C^gg = = C^q ♦ COO-n-0 4 H 9 iso-C^Hg + iso-C^Hg = Wo * 4.% ISO-C^Hq + ISO-C^HqOHD iso-C^H^ ♦ ♦ ( 'so-C 4 Hq) 2 C0 = x °4*10 * — CH 3 ♦ ^ n-C 4 H 9 — C^ ♦ CgHj iso-CHn -•• ! 4 H 9 "*" °4% + H iso-C^Ha -»• C,Kg ♦ CH, 354-449 385-456 381-412 373-493 354-388 823-893 523-650 571-689 913-933 298-520 477-664 573-673 598-673 602-690 296-598 552-690 598-673 la k 12.5 IgA 11.9 11.1 11.2 12.3 10.7 14.0 11.0 12.1 14.71 6 13.57 11.2 11.0 15.4 13.0 13.1 12.38 12.82+0.08 8.5 10.0 7.3 7.1 9.2 5.3 40 i 4 23 27.1 41.0 28.7 22.0 23 40 30.7 35 31.0 26.2+0.3 18.5 Method photol. tert-C^HgCHO photol. C 4 H 9 CH0 photol. C^HgCHO pyr. tert-C 4 H 9 0) 2 photol. tert-C^HgCHO photol. tert-C^HgCHO pyr - C A Hg photo. photol. C 4 fl 9 CHO pyr. C A photol. photol. ^H 9 CH( Hg photo. C 4 H 9 CH0 Hg photo, photol. C 4 H 9 CH0 photol. photol. H 9 CHC Hg photo. C 4 H 9 CHO Literature [1693 [918] [169] [1127] [600] [1110] [1013] [278. 1524, 922] [921, 918. 922, 152*] [1013] [1141,1 [921, 918, 922 ) [278, 1524] [278, 1524] [1111] [922] [1411 ] [1111, 922] [278, 1524] Remarks 820 820 820 820 820 820 820 820 1179 820, 1172 177 Reaction T°K Igk IgA I n 3 E Method Literature Remarks 782-857 - - - - pyr. (CH 5 ) 3 CD £8253 1173 sec-C^Hg — CjHg ♦ CHj 503-628 - 11.66 24.0 photol. C 4 H 9 CH0 [694] 820 ~ 11.0 23 - [1524] 1174 533-613 15.12 32.6 pyr. [1014] 820 tert-C 4 H 9 — C 4 Hg + H 666-797 - 16.3 43.6 photol. C^CHO [169,922] 820 15.4 o 40 [1524] 1175 tert-C^ -»- CjHg ♦ CHj 742-797 - 16.0 46.3 pliotol. C^HgCHO [169,922] 820 — — 8.5 18.5 — [1524] 1175 (CHj^CDCHg — 782-857 - - - - pyr. (CH 3 ) 3 CD [825] 1176 -•- CHjCDCHg + CEL ? -823 therm. [1093] 1177 (CH^jCCHg ♦ HBr = 370-425 _ . - 9.6+2 photochem. [800,500] 1178 = (CH^C ♦ Br sec-CgH^j — n-CjHr, + 823-999 13,50 5 26.0 P^. C2 H 6 [1013] 1179 + C 3 H 6 • 178 Reacti on cyclo-C-Hc + + cyclo-CiHcCHO = = cyclo-C,Hg + cycle -CjHjCO cyclo-C,H 5 + C,H 5 -» -♦ cyclo-C^HcCxHc cyc]o-C,Hc -*■ CHgCHCHp T°K 459 cyclo-C^Hr, -*" cyclo-CcHo + cyclo-CcHga s cyclo-C ^ + cyclo- cycle— C c Hp> -^ 5 H 9 "*" C 2 H 4 + C 3 H 5 cycler CfiS<|/i + cyclo— C 6*11 " c y cl °- c 6^i2 + + cyclo- CgHjo 2 methylcyclopentyl -*• 405 373-473 459 558-672 298-523 302 523-628 578-675 •— c 12*22 1 ,3-cyclohcxadicne + NO = HNO + CgHr, 2 cyclo- Og^ = 6 H 6 ♦ + cycl^CgHg, G,^ cyclo- CgH« -*• CgHg ♦ H 302 302 631 336-374 409-459 Igk 8.4 2.4 ~10.9 lg A n 13 13.5 Method ~20 22 photol. cyclo -C,H 5 CHO Literature Remarks £682] photol. cyclo -CiHcCHO photol. CH^NpCHi photol? eyefc- C,Hr,CHD 18.1+0.8 photol. cydobutanc and acetone-d 6 Hg photo. ti 37 37.7 3i [682] [681] [682] [649] Hg photo, pyr. cyclo- _C 5 H 10 Hg photo. Hg photo. [1368] [1439] [132] [1439] [647] [131] therm. photol. photol. [1397] [844] [844] 1180 1096 1181 1182 1183 1054 1184 1185 179 Reaction T°K Igk Ig A n t E Method Literature Remarks 300 - - - - photol. HCpBr 11467] 1186 ♦ C 2H 5 300 - - - - photol. HCpBr [1467] 1186 CgH ♦ ""C^q = CgHg + 300 - - - - photol. HCjjBr [1467] 1186 + C 4 H 9 CgH ♦ "o-C^q = 300 - - - - photol. HCgBr [1467] 1186 = C 2 H 2 + ^4^9 CgH ♦ C(CH,) 4 = CgHg + + CCCH,),^ 300 - - - - photol. HCpBr [1467] 1186 C^ + C 2 (CH 5 ) 6 = CpB^ -t + C 2 (CH 5 ) 5 CH2 300 - - - - photol. HCpBr [1467] 1186 CpH ♦ cyclo-C ,Hg = 300 - - - - photol. HCgBr [146? y 1186 = C 2 H 2 + < -V tl "- C 3Hc CpH + tydo-C^Hg = = CpH 2 ♦ cycNr-C^H^ 300 - - - - photol HC^r [14673 1186 CpH + spiro-C_Hg = = CgHp + spiro-C-H^ 300 - - - - photol. HCpBr [1467] 1186 = CpH- ♦ cyclo-CcHg 300 - - - - photol. HCpBr [1467] 1186 CpH ♦ ty-^'-CgELo = 300 - - - - photol. HCpBr [1467 ] 1186 = CpH 2 + cyclo-C 6 H 11 CpH + cyclo-CgD 12 = = CpHD ♦ cytlo-CgD^ 300 - - - - photol. HCpBr [1467] 1186 CgH ♦ CgHcCl = CpH 2 + + CpH^Cl 300 - - - photol. HC^r a 467] 1186 CpHj + H 2 = C 2 H^ + H 1200-1700 - 12.7 6.8 est. from k_and K [152] 180 Reaction T°K Igk Ig A n E Method Literature Remarks 1276-1784 12.9 7.4 est. , from k_ and K photol. HI [1513 1187 CgH, + HI = CgH^ + I room - - | [13143 1188 CgHj + CgH^ = C/j.Hg + 1276-1784 - 11.7 7.3 est. , from k_ and K [151] 1189 + H CgHj + ^2^2 "*" ^4^5 1180-1774 11.3 - - - est. [151] CpH, + M = CgHp + H + 1169-1784 - 14.9 31.5 therm. , est. [151] + If 1200-1700 - 14.8 30.9 n [152] C 5 H 5 + J 2 = C 3 H 5 I * x 481-573 - 12.2+0.5 + 1 therm. [633] C ? H 5 + HI = C ? H 6 + I 481-573 - 11.7+0.3 1.5±1 therm. [633] HCsCHCHsCHg + Hg = 1180-1774 - 12.4 5.9 est. , from k_ and K [151] 1190 = C^Hg + H HgCaCCHaCHg + Hg = = C^Hg + H 1180-1774 - 12.4 5.9 est. , from k_ and K [151] 1191 CHgCHCHgCHg ■*- ■"*" CH z CHCHCHp 560-700 - - 20.0+0.7 photol. cyclobutane and acetone-d^ [649] HCsCHCHaCK- — 1209-1412 - 14.7 45.7 from k_ and K [151] 1192 -+• C 4 H^ + H HgCsCOHsCHg -*- C^H* ♦ 1209-1412 - 14.8 58.7 from k_ and K [151] 1193 + H C^Hj -^ 0^3 + ^2^2 1180-1774 - 13.7 40.0 est. , from k_ and K [151] 1194 CHf butadiene + butadi- ene -*- CgH^ 413-434 2.6 pyr. (tert-C 4 H 9 0) 2 [ 1554a ] 181 Reaction C 6 H 5 + H 2 = C 6 Hg + H C 6 H 5 + CR H = C 6 H 6 + CH, C 6 H 5 + CHFj = CgHg + CgHjCHg + I 2 = = C^CHgl + I CgHcCHg + HBr = = CgHcCH, + Br CgHcCHg + HI = = Ce^ 00 ? + I C 6 H 4 CH 3 + D 2 = = CgH^DCHj + D (C 6 H 5 ) 3 C + (C 6 H 5 ) 5 C -*- C^-H(-OCHp ^^ CgHcCHO + + H OFgClCgHg * CF 2 C1 + ♦Vs •CP 2 C1C 6 D 6 ^ cp 2 ci + + C 6 D 6 T°K 453-623 453-623 453-623 480-666 363-406 480-666 484 209-264 453-539 375-537 360-427 Igk lg A 10.97 11.19 10.17 10.75*0.5 10.25+0.5 6.5+1 7.5+0.5 5.2±0.5 + 1 5.0±1.2 1.5+1 .10.58. 12.5 Method photol. Hg(C 6 H 5 ) 2 photol. H6(C 6 H 5 ) 2 photol. Hg(C 6 H 5 ) 2 photochem. pyr. of xylene 6.9 21 11.4+0.8 11.2 Py- , flow photol photol. Literature [552] [552] [552] [1566] [28] [1566] [272] Remarks 1195 1195 1195 [1768s, 1730] [1157] [1037] [1038] 11% 1197 1198 182 Reaction T°K Igk lg A Method I Literature Remarks CP 2 + HO -*■ CTpNO CF 2 + 2 = CO + + + F + F CF 2 + 2 -*- CF 2 2 CF 2 + F 2 = CF, + F CF 2 triplet + 2 = CF 2 2 CF 2 + CF 2 = CgF^ CF 2 + C 2 F 4 -*■ C 5 F 6 CF 2 +Ar=CF+F+Ar CF, + H 2 = CF,H ♦ H 1600-2500 1500-2500 2% 1700-3000 2% 298-580 294-495 296 2600-3700 333-870 336-374 400 492-619 970-1300 330-620 CF, + HD = CF,H + D 333-870 375-447 400 CF ? + HD = CF,D + H 333-870 375-447 400 CF, + D 2 = CF,D + D 333-870 359-469 332-458 6.65 6.04 5.75 L3.95jt0.34 10.46, 29.2+3.3 13.28 shock shock 11.3 1/2 9.87 9,6 26.61+0.07 -2.85 +0.62 1/2 2.12 1.2 6.7 106.0+5.7 Hg photo. H 2 Hg photo. pulse photol. Hg photo. shock 11.84 12.45 11.68 11.60 4 11.89 11 .82+0.10 12,05 11.78 12.16 11.32 12.32 11.45 9.5+0.7 10.66+0.14 9.1 8.8 25.14 9.39+0.18 10.77+ ±0.15T 10.5+1.5 11.63 i ± 0.13 10.2±1.5 11.66 i ± 0.11 10.2+0.7 photol. CFjCOCFj photol. CF,NHCPj comp. photol. (CF 5 ) 2 C0 n n photol (CF 3 ) 2 C0 photol (CF 5 ) 2 C0 [1129] [11323 [745] [1133] [745] [434] [399] [1357] [1128] [66] [ 924a] [373 [66] [1272] [1409] [66] n [ 924a] [66] ii [924a] [66] 1199 1200 [924a] 1203 1201 1202 1203, 1204, 1205 1203 1203 1203, 1206 1207 1203 n 1203 1203 ii 1203 1203, 1205 183 Reaction T°K CIj + p 2 = c? 4 ♦ P CF, + Clg = CFjCl ♦ ♦ CI CP, + B*2 = °*3 Br * ** CP, ♦ Ig = CP,I ♦ I CP, ♦ HC1 s CF,H + CI CP, + HBr s C?,H ♦ Br 328-607 665-755 CP, ♦ HBr = CF,Br + E 970-1300 CPj ♦ HI = CPjH ♦ I 346-562 CP, ♦ HgB = CF,H ♦ HB 336-874 368-434 CPj ♦ HgO » CF,0 ♦ H 2 608-648 CP, ♦ CH, s CPgCHg ♦ 296-513 ♦ HP CP, ♦ CH 4 m CP,H ♦ CH, 303-623 357-534 400 492-619 360-620 1800-2200 399-505 328-607 451-600 358-503 ■ 293-478 la k 357-633 395-524 412-633 5.88 Ig A 11.44g 11.92*0,25 10.34 12.89 12.36 12. 41^ 11.23 11.77 8 11.94 10.71 Ll.73jO.03 ll.65jj0.16 11.21Q.1 13.14 ~ 11.16 11.98 12.05 5 ± lQ.14 5 11.70 12.15±0.15 1/2 9.7 i 0.525 2,895 3,6*0.5 0.7i0.5 0.0±0.5 5.1±Q.5 Method photol. (cp 5 ) 2 co photol. CFjHHCFj photol. CPjCOCP, photoh CPjCOCP, II photol. CPxCOCP, photol. CP,C0CP, photol. 2.9*0.5 P hoto1 JCPjCOCP, therm 84.21 0,5±0,5 3.88*0,26 l,2i0.1 24.0 1.9 9.5±2 11.0*0.1 11.2*0.2 10.3*0,5 11.5iP.3 comp. photol. (cp 3 ) 2 co photol. (cp 5 ^ 2 co photol. (cp 3 ) 2 oo photol. (CH 3 ) 2 CO+ (CF 3 ) 2 CO photol. (CP,H) 2 photol. C?,C0CF, photol. (CF 3 > 2 00 Literature Remarks [66] [12723 [1133] [22] [15331 [22] [1533, 22.] [1533] [22] [1533, 22 3 1203 1203, 1206 1208 1203 1209 1203 1203 1210 1203 1203 [25] 1211, 1212 [1409] [24] [37] [874] [135] [627, 1263] [1274] [320] [626] [67] 1213 1203 1634 [626] 1203 1214 1203 1203, 1215 1216 1203, 1217, 1206 184 Reaction T°K Igk lg A Method Literature Remarks CPj + CgHjD, = CP,D + + C2 H 3 D 2 CP 3 * C 3 H 8 = CP 3 H ♦ OP, ♦ (CB,) 2 CD 2 = = CFJ) ♦ (CH,) 2 CD CPj ♦ "-C^q = OP3H ♦ + CIUCHCHgCH, CF 3 + i*MJ 4 E, = b CP,H ♦ (CH,),0 426-568 444-580 300-630 CP, + CHgDg = CP,K + 1000-1900 + Cffl> 2 CF, + CHD, = CP,H ♦ 328-627 ♦ CD, CP, + CHD, = CP,D + 328-627 + CHDg CP, + CD^ = CP,D + 379-560 + CD 3 412-633 CF ? + CgHg = CP ? H + 353-489 + C 2^ 300-392 483-578 302-366 303-623 357-435 395-516 300-620 300-520 301-357 444-508 11.90 5 * ± 0.22 5 10.97 11.53*0.18 11.04 11.33 11.18 12.08^0.17 11.67 13.08 11.38 11.67 13.08 11.2 10.86 11.31*0,16 11.46 11. 18*0.52 11.45*0.50 11.18 10,41 1/2 11.3+0.5 10.4 10.16 + ± 0.37 1/2 10.5+0.3 12. 7 5 * * 0.3 12.1*2.1 13.3+0.2 7.5+0.5 9.8 6.5*0.5 6.2 9.3 5.1*0.3 5.5*1 5.74*0.28 5.3 5.34*0.90 5.60*0.86 4.7+0.3 P hoto1 - (CP 5 ) 2 CO photol. (CF 3 ) 2 C0 photol. CFjCHO shock photol. CF 5 COCF 3 photol. CPjCOCFj photol. CF,C0CF, photol. (CF 3 ) 2 C0 calc. photol. CFjCOCFj photol. CFjHHCPj calc. photol. (CF 5 ) 2 C0 photol. (CP,H) 2 photol. CF 3 I photol. CF,JknCF, [93 [4763 [857 3 [13933 [13933 [320 3 [6263 [67, 9513 [320 3 [683 [1272, 9513 [3203 [683 [1274 3 [1144 3 [1272, 9513 1203 1 t> 5 + CF,CO CF, + C^Fc-CHO = CF,H + + C 2 F 5 CO CF, + C,F 7 CHO = CF,H ♦ + C,F 7 CO CF, + CH,COCF, = CF,H + ? 5 5 2 ♦ CH 2 COCF, CF 3 ♦ C 6 H 5 COCF 3 = ? CF, + CH,C1 = CF,H + + C I^Cl CF 3 ♦ CHjCl = CFjCl ♦ + CH, 303-435 469-632 448-636 423-673 566-678 510-683 507-724 400-557 423-673 357-557 400-557 299-624 465-607 417-523 438 465 673 6,56 6,74 2 ^ 5,36 11.00+0.17 12.11 5 + + 0.09 5 11.84+0.12 12.50+0.13 12.92+0.12 11.95+0.09 11.76+0.18 11.27+0.11 11.95+0.10 10.97 11.12+0.09 11.09+0.11 10.33 10.12 12.10+0.08 1/2 4.1+0.3 11.2+0.2 11.2+0,3 14.5+0.3 15.8+0.2 12.4+0.3 11.9+0.3 11.5+0.3 8,8+0.2 8.2+0.5 6.7+0.2 6.6+0.2 6.6 7.2+0.5 10.6+0.2 i 17 photol CF,I 2 photol. CF,COCF, photol. CF,C0CF, photol. CF,C0CF, photol. CF,C0CF, photol. CF,C0CF, photol. (CF 5)2 CO photol CF,CH0 photol. (CF 5 ) 2 C0 photol (CF 5 ) 2 CO photol. CF,C0CH, photol. C 6 H 5 COCF 5 photol. CF,C0CF, photol. and pyt' CF,NNCF, photol CF,C0CF, [1146] [626] [626] [626] it L626] ii [626] [1147] [476] 11147] [1147] [1405] [1416a] [9] [11] ii [9] 1233 1203 1203 1203, 1234 1203 1203 1203, 1234 1203 1233 1203 1233 1233 1203 1203 1203 188 Reaction CF, + Cl^Clg = = CF,H + CHC1- CF, + CH 2 C1 2 = CF,C1 + + CH 2 C1 CF, + CHC1, = CF,H + ♦ CC1, CF, + CHC1, = CF,C1 + + CHCU CF, + CDC1, = CF,D + + CC1, CF, + CC1 4 = CF,C1 + + CC1, CFj T C 6 H 5 C1 = CF,H + + C 6 H 4 C1 CFj + C 6 H 5 C1 = CF,C1 + + C 6 H 5 CFj + Cg^CI^Cl = CF,H+ + CgHcCHCl CFj + CgHjC^Cl = = CF,C1 + C C H.-C 6 H 5 CH 2 CF 3 + C 6 H 5 CC1 3 = = CF 3 H + CgH^CCl, CFj + C 6 H 5 CC1 5 = = CFjCl + C 6 H 5 CC1 2 T°K 358-477 579-722 308-611 367-569 390-524 308-611 367-569 338-537 369-513 364-561 293-391 293-391 340-424 340-424 377-444 377-444 la k Ig A 11.18+0.07 11.48+0.12 10.15 11.04+0.06 10.98 11.29 5± + 0.18 12.06^+0.11 11.78 12. 56,, +0.04 11.74+0.22 7.6+0.1 11.8+0.7 Method photol. CF,C0CF, photol. CFjCOCFj 5.3+0.14 photol+ Pyr- 6.6+0.1 10.55 12.46 12.55 12.49 6.3+0.6 11.0+0.4 12.0+0.2 9.0+0.4 10.4+0.1 9.25+ +0.3t 5.5+0.3 * 13 8.0+0.3 ^ 13 8.8+0.6 9.7+0.6 CHjMHCF, photol. CF,C0CF, photol. and py- CF,NNCF, photol CF,C0CF, phorol CF,C0CF, photol. CFjCOCF, photol. CF,HHCF, photol CFjCOCP, photol. CFjCOCFj photol. CF,C0CF, photol. CFjCOCFj photol. CF,C0CF, photol. CFjCOCT, Literature [10] [10] [11] [10] [320] [11] [10] [320] [10] [11] [628] [628] [628] [628] [628] [628] Remarks 1203 1203, 1235 1203, 1236 1203 1203, 1215 1203, 1236 1203, R 1203, 1215 1203, R 1203, 1236 1203 1203 1203 1203 189 Reaction CF, + CE,Br = CF,H + + CIUBr HpB CF.. + CH,Br = CF,Br + 3 3 3 + CH, CF, + C 6 H 5 Br = CF,H + + C 6 H 4 Br CF, + C 6 HcBr = CFjBr + + C 6 H 5 CF, + C c F-r:i = CF,Br + 3 ^ j 3 + C 6 F 5 CF, + CH,I = CF,H ♦ + C T°K Igk ILjI CFj ♦ CHjI = CFjI + + CH, CF ? + C 6 H 5 I = CF,H ♦ CF ? + C 6 H 5 I = CPjI + >C 6 H 5 CF ? ♦ Si(CH 3 ) 4 = CF 3 H + + CH 2 Si(CH,), CF 3 ♦ ClSi(CH,), = = CFjH + ClCHgSKCH,^ 423-533 423-533 296-368 296-368 312-380 328-483 328-483 348-423 348-423 453 CF 3 ♦ Cl 2 Si(CH 3 ) 2 = = CF ? H + Cl^H^iCH, CFj + CljSiCHj = CF,H + + Cl 5 SiCH 2 453 453 8.54 1.16 7.64 6.86 lg A 12.16+0.14 11.62 5 + + 0.07 " 10.82+0.06 10.39^+0.11 11.52/ 7.91 7.38 10.60+0.17 9.59+0.09 10.75, -10.33 Method 10.9+0.3 9.9+0.1 8.4+0.1 8.1+0,2" 5.9+0,5 1.7+1.1 0.3+0.6 7.5+0.3 3.3+0.15 4,5+0.1 3.1+0.6 photol. CF,C0CF, photol. CF,C0CF, photol. CF,C0CF, photol. CF,C0CF, photol. CF,C0CF, photol. CF^COCFj photol. CFjCOCFj photol. CF,C0CF, photol. CF,C0CF, photol (CF 3 M) 2 photol. (CF 3 N) 2 photol. (CF 3 N) 2 photol (CF 5 M) 2 Literature Remarks [9] [93 [628, 3343 [ 628 , 334 3 [628, 334 3 [93 [9] [628] [628] [337] [337] [337] [337] 1203, 1237 1203, 1238 1203, 1237 1203, 1238 1203 1203 1203 1203 1203 1203 1203 1239 1239 1239 1239 190 Reaction CF, + NO — CF,NO CF, + CH, ■*- CH,CF, 3 3 3 3 CFj + ^2^ -»>- C^H^Fj CF 5 ♦ C 3 H 6 — C 4 H 6 F 3 CF, + (CH 5 ) 2 C=CH 2 -*- -*■ C 5 H 8 F 3 CF, + cis-CH,CHCHCH, ■* C 5 H 8 P 3 CF, + trans-CH,CHCHCH, - C 5 H 8 F 3 CF 5 + (CH 5 ) 2 CC(CH 5 ) 2 •■*. "*" C 7 H 12 P 3 CF, + butadiene -•» CF, + H 2 C=CCH,-CH=CH 2 (. isoprenc ) "•• Cj-HgCF, CF, + 2,3-dimethyl-l,3- butadiene -*■ CJLjqF, CF, + 2,4-hcxadiene -*• C. T°K 297 296-513 338-456 338 338-453 338 338-453 338-453 338-453 7 H 10 F 3 3 + C 2 H 2 "~" C 3 H 2 P 3 CF ? + CHjCCH — C^H^Fj 338 338-453 338 338-448 338-453 338-453 338-453 338-453 338-453 la k i- 11.04 lg A 11.78 11.60 11.58 11.02 11.02 10.72 11.87 li.85 11.80 11.12 12.32 12.29 E I Method 2,35 1.94 1.18 1.25 1.24 photol, CF,COCF, photol. (CF 5 ) 2 C0 photol. (CF K ) 2 photol. (CF,N) 2 photol (CF,N) 2 photol. (CF,N). photol.(CF,H). photol 0.75 0.92 0.65 0.28 4.2 3.6 (CPjM)j photol. (CF 5 N) 2 photc (CFjH); phot< (CF ? N) 2 photol (CFjN). Literature | Remarks photi (CFjN). photi (CF ? N) 2 [1532] [627] [12243 [467] [1224] [467] [1224] [1210] [1210] [467] 1243 [1210] 1240 [467] 1244 [1224] 1240 [12243 [1224] [1210] [1210] [1210] 12G3 086 i240 1241 1240 1242 1240 1240 1240 1240 1240 1240 1240 1240 191 Reaction CP, + CH,CCCH, -— — C 5 H 6 P 3 CP, + cyclopentene ■» -*• c 6%^ CP, + cyclohexene 5 — C 7*10*3 3 + C 6 H 6 "*" CT 3°6% 296-375 300-383 338 338-423 CPj + C 6 H 5 CH 3 -— 298-354 ■*■ CPjCgH^CH^ 298-383 300-383 CF, ♦ ortho— xylene ■%» 310-341 "*" CFjCHjCgH^CHj CP, ♦ C^HcCHnCHg ( styrene ) -*. CgHcC^jCF, CF, + a-methylstyrene -*- C^CCHjCHgCPj CF, + CgHcCCH 9*6*3 CP, + pyridine -h. C 5 H 5 HC? 3 CP, + anisole "^ -" CP 3 C 6 H 5 0CH 3 T°K 338-453 338-453 338 356-453 296-359 338-423 338-448 358-453 368-453 338 Igk 8,91 Ig A n 11.87 11.50 11.50 12.15+0.10 11.55+0.24 - 11,34 11.93+0.18 11.32+0.18 - 11.91+0.34 11.81 11.75 12.05 ~11.07 - - 3.4 2.2 2.6 5.44+0.24 4.4+0.4 4.6+0.5 4.4 4.90+0.23 3,6+0.3 3.5+0.5 4.35+0.34 1.25 0.84 2.5 4.4 Method I Literature phorol. (CF 5 H) 2 photol (CF 3 N) 2 photol. (CF 5 N) 2 photol. CF,C0CF, photol. (CF 3 ) 2 CO pTiotol.(CF,N) 2 photol. CFjCOCF, photol. CF,C0CF, photol. CFjCOCPj photo (CFjN). photol photi CCF 3 H) 2 (CF 5 N) 2 photol (OPjJO; photol. CPjCOCP, [ 1210 ] [1210 ] [467] [1210] [335, 334] [794] [793] [467] [1210] [335, 334] [794] [793] [335, 334] [1224] [1224] [1210] [1210] [334] Remarks 1240 1240 1245 1240 1203, 1246 1225 1247 1240 1203,1246 1225 1203 1240 1240 1240 1240 1203 192 Reaction CF, + CF, + At m C 2 F 6 + Ar CF 3 + CFj -* C 2 F 6 CTj + C 2 F 4 — C 5 F ? CF 3 + C 2 F 5 — C 3 F 8 CF ? + n-C 3 F ? — C 4 F 1Q CF 3 + W - C 3 H 3 P 4 CF, ♦ 2-fluoropropene ^» -*• CFiCHaCFCHg CF 3 + CgHcF •*• - CF 3 C 6 H 5 F CF 3 + ortho-CgH^Fg * CF 3 C 6 H 4 F 2 CF, ♦ meta_C 6 H^F 2 -•- CFjCgH^Fg CFj ♦ para-CgH^Fg "*" CP 3 C 6 H 4 P 2 CF, ♦ 1,2,4-C fi H,F, — 6"3*3 ""•" CF 3 C 6 H 3 P 3 CF 3 ♦ 1,3,5-C 6 H 3 F 3 .*. "* CT 3 C 6 H 3 P 3 T°K Igk 1800-2200 - 302-442 - 400 13.36 338-453 - 357-557 - 373-573 - 373-480 - 338 - 338-453 338 302-396 300-400 300-400 300-400 300-400 300-400 lg A 17.85 1/2 11.12 Method Literature Remarks 2.14 shock photol. CF 3 COCFj+ CHjCOCHj photol. CFjCOCFj 2.8 photol 11.61 10.77^0,05 ll.O45ip.i2 10.9954 ±0.23 5 10. 70*0.13 10.90*0.10 10.34jp.l4 3.68 4.0*0.1 4.7*0.3 4.9*0.4 4.110.2 5.0*0.2 4.5*0.2 (CF 3 H) 2 photol. photol. (CF 3 ) 2 CO photol. (CF,H) 2 photol (CFjH), photol. CFJSOCF, photol. CP,CGCP, photol. CFjCOCPj photol. CFjCOCP, photol. CF,C0CF 5 photol. CF 3 C0CF 3 [11333 [12643 [61] [1210] [1147] [648] 0.270] [467] [1224] [467] [334] [334] [334] [334] [334] [334] 1248 1240 1249 957 1250 1251 1240 1252 1203 1203, 1253 1203, 1253 1203, 1253 1203, 1253 1203, 1253 193 Reaction T°K I la k lg A Method Literature Remarks CFj ♦ 1,2,3,4-C 6 H 2 P 4 "*■ CP 3 C 6 H 2 P 4 CF,+ 1,2,4,5-0^?. -*• 6"2*4 * CP 5 C 6 H 2 P 4 CPj + C 6 HP 5 — — CP 3 C 6 HP 5 CP 3 + °6 P 6 ~ CP 3 C 6 P 6 CPj + C 6 H 5 CF 3 — cp 5 c 6 p 5 cp 3 c? 3 + C 6 P 5 CH 3 -~ CP 3 C 6 P 5 CH 3 cp 3 ♦ c 6 p 5 cp 3 ~ — cp 3 c 6 p 5 cp 3 CP, + Para-CF,C C P.,CP, -* • 3"6*4 V "3 - cp 3 cp 3 c 6 p 4 cp 3 CPj + CFjNRCPj — -*■ (CP 3 ) 2 HBCP 3 CP 3 ♦ (cp 3 ) 2 racp 3 — — [(cp 3 ) 2 js] 2 cp 3 ♦ cp 3 cocp 3 — . -*• (cp 3 ) 2 cocp 3 CF 3 + CClj — CP 3 CC1 3 cp 3 ♦ C^Cl -*■ - C 3 H 3 F 3 C1 300-400 300-400 300-400 300-400 358-453 300-400 300-400 300-400 300-400 203-373 278-310 372-500 405-569 338 11.27+0.20 10.17+0.15 10.66+0.11 11.00+0.11 11.28 11.78+0.20 9.93+0.13 5.8+0.3 4.1+0.2 5.1+0.2 5.8+0.2 photol. CF 3 COCF 3 photol CFjCOCFj photol. CF,C0CF 3 photol. CFjCOCFj 6%5 P hotol.(CF 3 N) ; 5.8 ± 0.2 3.7+0.2 10.27^+0.13 9.32+0.29 4.2+0.2 10.16 4.6+0.2 3.5+0.2 9.67+0.26 pnotol. CF 3 COCF 3 photol. CF,C0CF, p 5 photol. CF 3 C0CF 3 photol CF,C0CP, 3 3 photol.(CF M ) 2 photol photol. (cp 3 ) 2 co phciinl. (CF 3 ) 2 C0 phoiol (CP 3 N) 2 [334] [334] [334] [334] [1210] [334] [334] [334] [334] [1272] [426] [646] [10] [467] 1203, 1253 1203, 1253 1203, 1253 1203, 1253 1240, R 1203, 1253 1203, 1253 1203,1253 1203,1253 1203 1254 1255 194 Reaction CP, + cis-ClHCCHCl -*■ T°K 3V 5 C1 2 CP, + trans-ClHCCHCl— -*» C,H_P,C1 5 H 2 ? 3 C1 2 cp, + p 2 ccci 2 - c 5 p 5 ci 2 cp 3 + c 2 ci 4 — - c 3 P ? ci 4 CP, + CgHcCl -*- CPj + CgHjCH^l -•- ^PjCgHcCHgOl CPj + C 6 H 5 CC1 3 •*■ CP 5 C 6 H 5 CC1 3 CT 3 * C 6 P 5 C1 — — OPjCgFjCl CP ? ♦ C 6 H 5 Br — "*" CT 3 C 6 H 5 Br CP, + CgPcBr «•• -" CP 3 C 6 P 5 Br CPj + Ar = CP 2 ♦ P ♦ t- Ar 338-453 338-453 338-453 338-453 338-453 353 and 393 293-391 340-424 377-444 295-384 296-368 312-380 1800-2200 la k la A 11.80 11.46 11.20 11.02 10.72 11.32 11.28t0.23 10.70+0.13 LI. 44+0. 08 10.81^0.13 11.52t0.54 o 10.76*0,38 49.2 -9.04 2.86 1.9 4.2 3.4 3.0 5.5 4.4+0.1 3.5+0.2 5.0+0.2 5.2±0.3 4.8+0.8 5.3+0.6 92.25 Method Literature Remarks photol. (cp 3 ») 2 photol (CF 3 M) 2 pTiotol. (CP 3 N) 2 photol (CF 3 H) 2 photol (CP 3 H) 2 photol. (CP 3 N) 2 photol CP z C0CP, photol CPjCOCPj photol cp 3 cocp 3 photol cp 3 cocp 3 photol cp 3 coop 3 photol cp 3 cocp 3 shock [ 1224] [12103 [1210] [1210] [12101 [1210] [628] [628] [628] [628] [628,334] [628,334] [11331 1240 1240 1240 1240 1240 1240 1203 1203 1203 1203 1203 1203 195 Reaction T°K Igk Ig A n E Method Literature Remarks C^ 5 ♦ Hg = C^H ♦ 300-450 - 12.92 12.4 photol. CgJPcCHO [9753 1256 + H 410-510 419-586 300-590 - 12.72 13.20jO.04 13.31iO.27 O 11.90 12.4j0.2 12.95jO.51 photol. (c 2 p 5 ) 2 co photol. [1259] [ 1266] 1257,1206 1257 1258 C 2*5 * D 2 s C 2 ? 5 D * + D 300-580 408-612 - 12.30 12.45jO.05 12.4j0.3 12.6j0.2 photol. CgPcCHD N [1271] [1266] 1257 ■ 426-531 — 13.1 14.1 photol. CC2* 5 H) 2 [1265] 1256, 1259 Cg^c ♦ Br 2 = CgFcBr ♦ 622-744 - - 1±1 therm. [25] ♦ Br Cgfc ♦ HBr s CpPcH + 622-744 - - 3.9*1.2 therm. [25] 1260 ♦ Br CgFc ♦ CH^ s CgPcH + 423-545 426-531 - 11.62 11,64 10.62 10.6 photol. (V 5 ) 2 co photol. [1259] [1265] 1257,1206 1256 C 2*5 * C 2 H 6 = C 2*5 H * ♦ CgHj 357-499 - 11.20 8.7 photol. (C2» 5 H) 2 [1265] 1256 CJ, ♦ cyclohcxane » a OgPcH ♦ cyclo-CgB^ 301-405 — 11.20 6.0 photol. (C2P 5 H) 2 [1265] 1256 CgPc ♦ CH-COCH- - 355-492 - 11.73 8.4 photol. (c^t 5 D 2 [ 1265] 1256 = OgFcH ♦ CHgCOCH, C 2 P 5 * ^3^° ■ = CgPjH ♦ CPjCO 411-493 - 11.42 \ 9.7 photol. (C 2*5 H) 2 [1265] 1256 CgFc + CgPcCHO = 300-580 411-493 419-586 - L0.47jO,04 10.50 10.72jO,12 4.5j0.2 4.5 4.9j0.2 photol CgPcCHO photol. photol. [1271, 12663 [1265] [1266] 1257 1256 1257 C 2*5 * C^ 000 ^ " 411-493 - 11.36 5.6 photol. (C2P 5 H) 2 [1265] 1256 196 Reaction T°K Igk Ig A n E Method Literature Remarks C,P„ ♦ H 2 = CjF„H + H 430-592 398-516 - 12.85+0.07 12.64 12.1+0.2 12,3+0,4 photol. CzPnCHO photol. ( n -c 3 P 7 ) 2 co [12661 £1123) 1261 1261,1206 C,P„ + D 2 = C,PJ) ♦ D 358-455 - 12.69 12,9+0.8 photol. ( n^3 5 F 7 ) 2 CO [623] 1261,1206 430-537 - 12.78 13.8+0.5 H [1123] " 438-570 - 12.98iP.03 14.0+0.1 photol. C,P 7 CHO [1266] 1261 n - 11.34 12.6+0,4 n [1266, 1271] 1261 360-570 12.22ip.44 12.29 ± +O.9O5 - — 1262 CjPr, + CH^ = CjPpH + 343-439 — 10.99 9.5+0.5 photol. ( n-CjP„) 2 C0 [623] 1261,1206 C 3 F 7 + C 2 H 6 " C 3 P 7 H * 360-469 - 12.23 9.2i0.5 photol. ( t>c 5 P 7 ) 2 co [623, 1267] 1261 n-CjP„ ♦ cyclo-Cg^g = s CjP 7 H + cyclo-C 6Hl1 296-566 — 11.08 5.2+0.1 photol. ( n-C,P 7 ) 2 C0 [1268] 1261 C,P 7 ♦ CHjCOOHt = = CjPr^J + CHgCOCHj 300-579 - 11.79+0.18 7,2+0,4 photol. (CHj) 2 C0 + * (C 3 P 7 ) 2 C0 [1267] 1261 C^F^ ♦ ^3^7 "*" 300-579 - - - - photol. (CH 3 ) 2 CO+ (C 3 F 7 ) 2 CO [1267] 1263 CjPo ♦ C,P„CHO = = C,HP« ♦ C,P„CO 301-588 438-570 - 10.27+0,03 10.97+0.09 ° 4.0+0.3 5.5+0.2 photol. C,F 7 CH0 a [1271] [1266] 1261 11 300-590 - 10.37+0.14 4.17+0.28 - — 1258 N c ? p 7 ♦ CjP^cx;^ = 353-635 11.74+0.18 8.4+0.3 photol. ] [1279] 820 197 Reaction T°K Ig k Ig A CHgF ♦ CHgP = HP + 298 - ♦ CHPCHg 577 • ™ CHgF ♦ CHgFCOCE, = 329-585 - 9.95 CH,P + CHFCOCH, H CHgPCOCHg CBgF ♦ (CH2P) 2 C0 = 295-585 - 10.39 = CH,P ♦ CHFCOCHgP CHPg ♦ CH? 2 = CHgPg + 393 - - ♦ cp 2 CHP 2 ♦ (CHP 2 ) 2 CO = 295-578 - 10.01 » CHgPg ♦ CP 2 COCHP 2 CHgCl + Clg = CHgClg ♦ - - 12.6 ♦ CI CHpCl + HC1 = CH,C1 + - - 12.3 ♦ CI ? C^Cl ♦ CI^Cl ■*- - - 12.6 — C^Clg CHC^ ♦ Cl 2 = CHClj ♦ - - 12.0 ♦ CI CHClj ♦ HC1 x CHgClg ♦ - - 12.2 ♦ 01 CBC1 2 ♦ CHC1 2 -*■ - - 12.4 ■*- C^Cl^ CClj +012= CC1 4 + CI 303-425 - 11.74 343-428 - - 345 8.55 360-430 - - CC1, ♦ Br 2 s CCl,Br ♦ 420-455 - - ♦ Br 6,7 8.0+0.1 6.9 3.0 7.8 4.0 11.0 5.0 Method photol.CCFHOgCC photol. CHgPCOCH, photol. (CHgP^CO Hg photo. photol (CHP 2 ) 2 C0 photo-Cl 2 photo-Cl 2 photo-Cl 2 photo-Cl 2 photo-Cl 2 photo-Cl 2 photo-Cl 2 ■ photochem. photo-Cl 2 therm. Literature ri282] n [1281] [1282] [136] [1260] [499] [499] [499] [499] [499] [499] [452] [348] [451] [347] [1453] Remarks 1264, 1674 ■ 1265 1266 1054 1267 1268 1269 1270 198 Reaction CC1, + HC1 = CHClj + CI CClj + HC1 = CCl^ ♦ H CC1 ? + HBr = CHC1, ♦ Br 463 T°K 303-425 303-425 CC1, + CHjCHCHg = = CHC1, ♦ C^CHCHg CClj ♦ "-C^q = = CHC1, ♦ CB^CHgCHgCH, CClj ♦ n-C^Q = s CHG1, ♦ CHjCHOHgCH, CClj + C^Cl = CHOI, + + CgHjCl CClj + CHjCPCHg = = CHClj + CHgCFCHg CC1, + CHgPCHgCHgCH, s = CHC1, ♦ CHPCjH^ CC1, + CHgFCH^HgCH, = CHOI, + CHgPCHCHgCH, CC1, ■♦• CHgPCHpCJHpCH, = = CHC1, + CHgPCHgCHCH, CC1, ♦ CHgFCH^HgCH, = = CHClj ♦ CHgPCHgCHgCHg CC1, + CFjCHgCHgCHgCHjs = CHC1, + + CP iCHCHpCHpCH^r CC1, + C?,C j + CPjCHgCHgCHgCHjs = CHClj* CPjCHgCHCH^H, 395-483 419-530 419-530 299-383 362-454 437-532 453-532 Igk ll.44±0.63 lg A 11.65 12.1 445-532 420-504 418-504 ^12 10,58 10.2 VL2 10,5 11.9 10.2 10,98 9.8 10.4 11.3 13.3 ^6.3 11.2 7,5 <6,6 9.4 (13.2) 7.5 11.4 9.6 Method photo-Cl 2 } from k_ and K photo-CI 2 photochem. photol. CCl,Br photol CCljBr photochem. photol CClBr photol. CCljBr photol. CCljBr 9.1 photol. CCljBr photol. CCl,Br photol. CCljBr Literature £452 3 £499 3 C14813 [14803 [14813 [1481] Remarks 1271 1271, 1272, 1273 1271, 1272, 1273 Cl^ [1336 3 1274 [13373 [14803 [1478,14823 [14823 [1482,1478 3 [1482,1478 3 [1482,14783 1275,1276 1276,1277 1276 1276 1276 [1482,1478 3 1276 199 Reaction CCl, + CFjCHgCHgCHgCH, = = CHCl^ + CFxCHgCHgCHCH, CC1, + CTjCHgCHgCHgCH, = CC1, ♦ CCljCOCClj = cci 4 ♦ CClgCOCClj CC1, + CgH^ ■*- CxH^Cl, CClj ♦ CgB^ •*- C^CClj CC1, ♦ CHiCHCHg -*- -*- CH^CHCHgCCl, CC1, + CHjCBCHg -•- -•- CHjCHCHgCCl, CC1," + cyclohexane ••» CClz + Vln y' acetate -~ CHgCOOCHCHgCClj cci 3 ♦ ccij — c 2 ci 6 T°K COlj + CgHjJ — • -»• CClxOHgCHF 418-50* 380-525 331-451 367-450 273-331 299-383 421-483 303-323 303-323 303-323 303 303 and 31 8 303-425 345 350-446 448 337-460 Igk 6.05 12.62 13.5 Iq A 10.2 10.78 11.39 8.62 8.6+0.3 10.2 7.86 7.86 10.4 10.7 12.66 13.9 11.8 8.5+0,2 7.5 11.7 7±1 3.24 3,2+0.3 3.4+1.5 3.4 3.4 6.1 Method photol 3Cl 5 Br photol. (cci 3 ) 2 co photochem. photol. XJljBr photol cci„ photol. CCljBr photol. CCl,Br photol. CCljBr 3.3+.0.2 photol. CCljBr photol.,, int. ill. photo-Clj photochem. photol. CCljBr photol. CCl z Br photol. CCl^Br Literature 1482, 1478] [1482, 1478] [735] [1475] [1477] [1337] [1336] [1480] [1107] [1107] [ 1107] [1107] [1107] [452, 451] [451] [1479] [1476] [499] [ 1477] Remarks 1276 1276 1278 1271 1279 1280 1281 1281 1282 1283 1271 200 Reaction CC1, + CgH^F -*• — CCljCHFC^ CC1, + Q~&2?2. "*" — CCljCHgCFg CC1, + C 2 H 2 F 2 — • CHgCFgCClj CC1, + CgHF, ■— — CC1,CHFCF 2 CC1, + CgHF, — •*- CHFCF 2 CC1, CClj + C 2 F^ — — CC1 3 C 2 F 4 CClj + C^Cl — — CCljC^Cl CC.U + CHjCFCB^ •*■ CH jCFCHgCClj CClj ♦ CH,CFCH2 -*• CCljCHjCFCHg CC1, + CF,CFCF 2 •*- «•• CF 3 CFCF 2 CC1, C01 3 ♦ Q 6ho oc h ~ — C 6 H 10 (CC1 3 ) 2 CClj + C^H 5 2 .CC1 3 ■*• C 4 H 5 2 (CC1 3 ) 2 CF 2 C1 ♦ cvcIc^C-ILq = = CHFgCl ♦ cydo-CcHg T°K 377-460 344-455 405-465 367-465 367-465 345-452 273-331 299-383 362-454 362-454 415-485 303 Igk 11.45 303 12.28 300-373 Ig A 8.4+0.2 8.7+0.3 8.5+0.3 9.3+0.4 9.4+0.4 10.1+0,5 9.8 ~10.4 9.5 5.3+0.2 4.6+0.3 8.3+0.5 6.1+0.8 7.1±0.7 6.1+0,4 Method phutol CCljBr photol SCljBr photol. CCljBr photol. CCljBr photol photi CljBr CCljBr photol cci, 3.2+0.8 6.4+2.0 6.2+0.9 photol CCljBr photol CCljBr phot< CCljBr photol. CCljBr photol 5.3+0.4 CCljBr photol. (CF 2 01) 2 C0 Literature [1477] [1477] [1477] [1477] [1477] [1477] [1337] [1336] [1480] [1480] 11480] [1107] [1107] [1038] Remark: 1271 1271 1271 1271 1271 1271 1284 1285 1286 201 Reaction CP 2 C1 + OFgCl = CSgClg* + CP CP 2 C1 ♦ (CT 2 C1) 2 C0 B = ClgClg + CP 2 C0CT 2 C1 CP 2 C1 ♦ C^CICOCFCI^ = = CP 2 Cl2 + C^COCPC:^ CP 2 C1 ♦ CgHg -*- ■*• ^ClCgHg CT 2 C1 ♦ CPgH — •*- C? 2 H0f 2 01 CF 2 C1 ♦ CPClg -^ - V 5 ci 3 C7 2 C1 ♦ CFgClCPg -*■ — cf 2 cicp 2 cp 2 ci CF 2 C1 ♦ C 6 P 6 — ■♦ OT 2 C1C 6 ? 6 CPC12 ♦ CPgClCOCPClg = = GPC1, + CPgCOCPClg and CFC1, ♦ CPC1C0CP 2 C1 C^Cl + Clg = = Cg^C^ ♦ 01 C^Cl ♦ HC1 = CgHjCl ♦ ♦ CI CgH^Cl ♦ C^Cl = a CgHcCl + CgHjCl T°K 315-458 418 305-520 313-457 300-375 •£393 293-457 KOUH. 315-458 298-450 293-457 Igk Ig A 299-383 12.4 12.0 7.9+1.1 5.3+0.4 2,4±0.4 4.6 1.0 9.1 Method phocol. (CF 2 C1) 2 C0 Hg photo. photol. (CF 2 C1) 2 C0 photol. CF 2 ClC0CFCl2 ptiotol. (cp 2 ci) 2 co Hg photo. photol. CP,C6CCl, photol. c^ciocxy^ci photol. (CT 2 C1) 2 C0 photol. (cp 2 ci) 2 co photol. CPCl2C0CP 2 Cl photo-Cl 2 photo-Clj photol. CC1* Literature [209 3 [136] [1037 3 [210] [1037, 1038] [136] [210] [208] [209] [1037] [210, 1478] Remarks 1287 1288 [499*] [346, 499] [1336] 1286 1286 1289 1290 1291 1291 1286 1286 1292 1293 202 Reaction T°K Igk lg A Method Literature Remarks 1293 C^Cl + C ? H 4 C1 = CgH^Cl + C^Cl •*■ — •• products CgH^Cl — C^ + CI C2H,C1 2 + Cl 2 = = C 2 H 3 C1 3 + CI C 2 H 3 C1 2 + HC1 = = C 2 H 4 C1 2 + CI C 2 H 3 C1 2 + C 5 H 6 = = C 2 H^C1 2 + C 5 H 5 or 0^,01 + HC1 + C,Hc C^jC^ + C 2 H ? C1 2 -*- ■*• produces C^jClg -* CgHjCl + CI 1,2-C 2 H 2 C1 5 + Cl 2 = C^Cl^ ♦ CI l.l-C^Clj + ci 2 * CjHgCl^ + CI Cgl^Clj ♦ HC1 = = CgHjClj ♦ CI 299-383 298-328 313 and 333 650-740 710-753 298-328 635-758 650-725 303-338 353-368 298-328 13.1 16.9 11.75+0.2 11.8 11.9 9.63 9.67 12.9+0.2 ~12.7 12.8 10 16.8 11.7+0.3 11.7 11,84+0.4 11.5 photol. CCl^ [1336] P hoto-Cl 2 [346,499] 23.6 0.92+ +0.05 1.0 10,2 8.0 8.0 0.3+0.1 21.5 22 23.8 2.7+0,6 3.1 2.5 4.1±0.7 11.2 photo-Cl 2 photochem. photo-Cl 2 photochem. photo-Clj PV- (CHgCDg photochem. photo-Clj pyr- (CH2C1) 2 n photochem. photochem. n photochem. photo-Cl, [346,499] [65,431,64] [65,346,499] [1369] [346,499] [803] [106] [65,431,64] [65,431] £346,499] [106] [803 ] [346,499] [62,64] [1162] [65,346,499: [65] [346,499] 1292 1292 1294 1295 601 1296 1292 1292 203 < Reaction T°K Ig k Ig A n E Method Literature Remarks l.a-CgHgCl, ♦ 303-338 - 13.5±0.3 0.5±0.5 photochem. [62, 64] + l^-CgHgCl, = C^Clg* " - 13.2 - [65] 1295 ♦ CgHgCl^ or C^Clg — — 12.5 photo-Cl 2 [346, 499] l.l-CgHgClj + l.l-C^Cl, 298-328 - 13.02±0.6 1.2+0.7 photochem. [62, 65] 1295 "•» products C^Cl, — C 2 H 2 C1 2 + CI - - 16.7 20.3 photo-Cl 2 [346, 499] C^Cl^ + Cl 2 = CgHC]^ + 353-388 - - 5.3 photochem. [1163] 1297. 1298 + CI 363-419 - 11.68 5.12 n [343] 1299, 1300 - - 11.8 5.2 n [346, 65] 1292 353-413 - 11.74 5.15 photol CI- [430,814,64] n - 11.45 5.1+0.2 a [430] 1301 373-497 - 11.73 5.18 n [814] 1300, R CgHCl^ C^Cl^ = 298-328 - 12.9+0.2 0.3+0.1 photochem. [431] C 2 HClc ♦ C 2 HClj or 353-413 - 12.48+0.28 0.5+0.2 photol . Cl_ [430] C 4 H 2 Clg 353-413 - 12.56 0.5 photol Cl 2 [499, 64] 186 371 12.3 - - - photo-Cl 2 [452] C^Cl^ + o 2 — 363-403 - 11 photochem. [ 812a ] 908 C 2 HC1 4 2 C^Cl^ ♦ C 2 HCi 4 2 -•- 363-403 - 13 photochem. [ 812a ] 908 -*- C^Cl^O^gHCl^ C 2 HC1 4 — CgHCl, ♦ CI 433-497 - 13.7±0.5 20.4+1.0 photochem. [814] c 2 cic + ci 2 = c 2 ci 6 ♦ 353and373 - - 7.4 photochem. [1373, 456] 1302 ♦ CI 358-473 - 11.06 3.0+0.5 ft [7, 3] 1303, 1304 360-420 - 10.12±0.7 3.71 [ 5, 2, 348] 360-520 - 11,31 5.42 photochem. t stat. [495] R C 2 C1 5 ♦ HC1 = C 2 HC1 5 ♦ 385-490 - 11.1 10.8 photo-Cl 2 [636, 346, 499 J ♦ CI % 204 Reaction T°K Igk lg A Method Literature Remarks c 2 cic + c 2 ci 5 = c 2 ci 6 + ♦ C 2 C1^ or c^C^o c 2 ci 5 + o 2 — c 2 ci 5 o 2 c 2 ci 5 + c 2 ci 5 o 2 — — c 2 ci 5 o 2 c 2 ci 5 360-420 360-520 373 353-373 353and373 11.37+0.3 C 2 C1 5 "*" C 2 Q \ + C1 360-420 n 360-475 385-490 413-473 CgHgBr + Br 2 = C^gBrg* 333-393 ♦ Br n C 2 H 2 Cl 2 Br + Br 2 = 363-403 a C 2 H 2 Cl 2 Br 2 + Br C 2 H 2 Cl 2 Br — C ? _H 2 C1 2 + ♦ Br C 2 P^Br + HBr = 970-1300 = C 2 F 4 Br 2 + H CgF^Br — C 2 P^ + Br 970-1300 C 5 H^C1 ? ♦ CCljBr = 331-451 = CCl,C 2 H 4 Br ♦ CC1, CCl^,— cyclohcxcnc + 303 + CCl,Br = CCl,Br- cyclo- 303-323 hcxcnc + CC1, 2CC1 2 — cyclohcxcnc = 303 = (CC1,- cyclohcxcnc )p 363-403 4.80, 10.3 12.2 11.66 11 42.9 16.3±0.8 16,5 15.8 15.8 13.07 13.0 ~-8 8.06 1.37 0.08 22.2 16.8 16.2 11 51,3 50 3.4 4.5 photochem. photochem. scat, photochem. photochem. ( est. photol.Ql photochem. it n n m photochem. It photochem. photochem. comp. comp. photochem. phox.l CCljBr photoi CCl,Br [2] [495, 346] [53 [895] [8151 [5] [2] [636, 7, 499] [636] [6] [1164] [1164, 1165] [1166] [ 1166} [1409] [1409] [1475] [1107] n [1107] 1305 1306 1307 1308 205 Reacti on ♦ 162 ♦ 6 HH ♦ HH, = 2B&2 ~ -14+6 HH ♦ BpH^ = BH? * HH + Og = HO ♦ OH IH ♦ OH = BO * Hg HH ♦ OH = HgO ♦ H HH ♦ HgO s HBO + Ep HH ♦ 10 2 s HBO ♦ HO HH ♦ HBO = HHg ♦ BO HH ♦ HH, ■ HgH^ HH- ♦ 2 a H0 2 ♦ HH HEU ♦ HH. = HH, + HH ♦ ♦ 14 + 6 T°K 2000 2000 750-1000 HHg + HHg m H-H- * ^2 HHg ♦ HH- s H-H, ♦ ♦ Hg - (15 ± 10) BHg ♦ BgH^ a HH, ♦ 300 1550-2300 298 300 2000 300 and 2000 Igk 14.84* ~14 12.58 lg A 2200-2915 750-1000 12.98jp.14 5,84 11.66 13.40 14.0 13.2 12.2 11.7 11.0 11.3 11.3 12.8 13.7 13.6 12.0 0.56 0.56 1/2 1/2 1/2 1/2 10.0 1.5 1.5 2.0 3.0 5.0 2.0 Method radiol. NHj shock shock , from k and K therm. , flow radiol. NH, calc. calc. est. Literature i Remarks 42.5*1.2 10.0 '2.8 12.0 27 7.0 pulse photol. shock shock therm. , flow [1095 3 [4573 [4573 [4973 [1095 3 [12883 [12883 n [1288 3 [1288 3 [12883 [10453 [17643 dis. [3183 pu!se photol. [13493 shock [4573 therm. , comp. [11193 - [457, 13493 therm. , comp. [11193 [2163 [4973 1309 1310 1310 1311 206 Reaction T°K lg A Method Literature Remarks NHp + HBO = NH, ♦ HO HHg + NH 2 -•• BpH^ HHCH, + CHF, = = NHgCH, + CF, HgHj + NgHj = 2HH 3 + + H HpH, + Hp = HH + HHp + + H 2 H~H, + H- = Hp + H- + + H + H~ HP + NP = H 2 + 2F NF 2 + P 2 = NF, + P + + 21.1 +2 NF 2 + Ne = HP + F + ♦ Ne NF 2 + Ar = HF + F + + Ar HC1 2 + NC1 2 + M = = H 2 C1 4 + M n 298 303-435 423 750-1000 750-1000 750-1000 2500 308-359 1100-1600 2200-3000 1400-2000 259-373 293 11.78 5 12.36±0.04 12,40 5.80 ^ 12.48 12 13.40 11.63 5 ± + 0.08 '9.9 12.9 13 10.25. 12.68 15.34 13.21 12.91 14.78 1/2 ^18.4 18 20 11.64+0.06 1/2 1/2 9.7+0.7 14.4 57.0 47.83 8 47.83 8 52.0 i 0.3 dis. n n from k_ and K dis. , flow calc. from reaction mechanism calc. from reaction mechanism calc. from reaction mechanism shock therm, shock shock shock dis. , flow n [1288] [7143 [1349] [318] [1145] [1364] [497] [497] [497] [458] [1002] [461] [460] [1130] [1130, 1131] [1130, 460] [365] 1312 85 1313 1314 207 Reaction T°K lg k i ig A n E Method Literature Remarks OH ♦ H 2 = HgO ♦ H + 293 ± 3 9.98 _ «. - mass spect. [1726] ♦ 14.7 300 9.59+0.02 - - - dis. , flow [474] n 9.54 - - - - [1628] 301 9.60+0,02 - - - pulse photol. [685] 310 9.62+0.10 - - - dis. , flow [895, 892] 378-489 - 12.62 1/2 10.0 it [1693] 1315 627 a. 3+0.2 - - - inhib. [1705] 813 * 10.4 - - - n n 900-1052 - 14.04+0.18 8.6+1.2 fl. , EPR [1707] n - 14.01 8 6 comp. it 915 12.04 - - - fl. [469] 960-1080 - 14.17 6.43 comp. [1408] 34 1000-1700 - 13.17 6 5.0 n [248] 1072 12.03+0.08 - - - fl. [471] 1400-2500 - 13,6 5.7 comp. [ 1326] 1660-1850 - 14.40 10,0 fl. [537] 300-915 13.13 5.0^0.6 - [471] 1316 300-1850 - 13.37+0.24 5. -2+0.3 - [474] 1317 300-2000 - 13.8+0.7 5.9+1.0 - [8951 1318 310-915 - 13.28 5.2^0.6 - [469] 1319 300-2500 - 13-.35+0.08 5.24+0.17 - - 1320 OH ♦ Dp = HDO ♦ X> 300 473-623 9,10+0.06 114.01+0.27 7.64+0.77 pulse photol. photol HpO [687] [1535] 1321 1322 300-623 - 13.27+0.30 5.77+0.56 - — 1323 OH ♦ OH s HgO ♦ room 300 12.10+0.02 12.065+p.ll - - - dis. dis., flow , H + H0 2 = [1623] [1583] n n 12.18g ± ± 0-034 11.93 - - £ 2 = OH + HO n n [474] [892] 300-2000 - 12.88+0,3 1.0 i 0.5 est. [8951 1324,1325 310 12.16+0.10 ™* tm dis. , flow , H + NOg = = OH + NO [450] OH ♦ OH a Hg ♦ Og ♦ 300-2400 960-1080 - 12.90±0.19 12.85 1.40+0.36 48.6 from k_ and K [1408] 51 186 ♦ 18.7 OH ♦ HOp x HgO ♦ Og room * 12.78 - - - est. [892] 208 Reaction OH + H 2 2 = H 2 + + H0 2 + 30.7 + 2.7 OH + C 2 = CO + CH« ( 2 J) OH ♦ C 2 = CO ♦ CH'C 2 !) OH + P 2 = HP + + + F - 4.8+1,2 OH ♦ CO = C0 2 ♦ H ♦ + 24.4 T°K 11 300-458 it 773 798 300-800 875-1665 875-1665 770-830 1370-1730 770-1730 room 300 H 300 301 380-520 473-623 773 1000-1700 1300 1380-1720 1400-3000 1600 ~1950 2200 273-1923 300-1850 300-1950 400-2000 473-1072 300-1720 Igk 11.71 5 Ml. 38 12.54 12.37 11.56 10.62 !g A LI. 39+0, 05 12.90 12,90 10,95+0,02 11,06+0.02 10.67+0.18 10.95 10.945+. * 0.04 5 11.39 13.84^ 15.3 16.80+0.35 -11.62 11.28 -11. 95 12.10 11.78 11.87+0.15 11.5 12 11.5? 11.82 11.50+0.24 11.96 12.85 11.5+0.24 11-. 59+0.07 1/2 1/2 1.2 1.58 1.6 18 18 28.7+1.6 Method pulse photol. mass spect. pulse photol. therm. pyr- h 2 o 2 , flow 7.0 1.24+0.47 0,7 4 0.7 1.03 0.6+0.3 1,7 7,7 0.5+0,6 0.81+0.13 ignit. lim. flame propagation dis. dis. , f'ow n dis. , flow pulse photol. photol H 2 therm, comp. fl. therm. , fl ow shock fl. Literature [683, 684] [564, 563] [688] 11 [89, 91] [783] [1256] [1256] [1189 ] [1441, 1189] [1623] [474] [759] [759, 1623] [685] [1693] [1535 3 T89] [248] [532, 542] [871] [247] [1256] [1589] [737] [1371] [474] [759] [1590] f471] Remarks lo26 1327 1328 1329 1330 1331 i332 1333 1334 1322 1335 1336 1337 1338 1339 1340 209 Reaction T°K Ig k I 1 Ig A i n UJ Method Literature Remarks OH ♦ COg s H0 2 ♦ CO - - 10.21 0.93 60.52 calc. [1*90] OH + C0 2 s 2 ♦ HCO - - 10,86 1/2 81,90 calc. [1290] OH + NO = H0 2 ♦ H - - 11.32 1/2 76.8 - [ 1288 ] OH + BO = H0 2 + H - - 14 1,2 - [1288] OH + HOI = HgO + CI - - 12.41 4 0.55 1.3 est. [1287] - - 11.0 1/2 6.0 n n OH ♦ HBr = HgO + Br 588-788 - - ^•0 therm. , flow , est. [413] OH ♦ 0, s HOg + 2 room ^11.48 - - - - [892] OH + HHg b H-0 + HH - - 10.48 0.68 1.8 - [1288] OH ♦ HHj = H 2 + HHj ? 1760-2037 - 15.3 38+5 fl. [536] OH ♦ UHj s H 2 + HH2 + - - 10.6 0.68 1.1 _ [ 1288] ♦ 14+2 OH ♦ HBO = HgO + HO 1600-2000 13.93+0.15 . - — _ fl. [258] 2000 13,53+0.15 - - - n [708] — — 12.48 1/2 1.20-2,38 - [1288] OH ♦ HBO = H0 2 + H2 1600-2000 13.93+0.15 - - - fl. [258] or BO + HgO ■ OH ♦ HBO = HgO ♦ BO - - 12,32 1/2 - [1288] - - 11.3 1/2 2 est. n - - 11.48 1/2 0.1 n n — 13,95 - - - - a 1346 OH ♦ HB0 2 = HgO ♦ B0 2 - - 14 4 est. £1288] OH ♦ HBOj = HgO ♦ BO, 300 11.00+0.05 - - - pulse photol. HBOj [810] 210 Reaction OH + CH, = CH 4 + OH + CH^ = HgO + CH, OH ♦ CgHg = H 2 + + C 2 H 5 OH + OjHq = HgO ♦ + C 3 H 7 OH + "-C^Hjo = HgO + + [(CH 3 ) 3 CO] 2 (CH 5 ) 5 CO = CH ? + ¥ (CH 5 ) 2 CO (CH,) 5 CO + M = CH, + + (CH 5 ) 2 CO + M (CH,),CO —• CHjCOCH, + + CH, CHgOC^j -•- C 6 H 5 GHO + H iso-CjH 7 2 + C,H 8 = t iso-C.H„OOH + C,Hr, iso-C^H^Og + HBr s : CH,COCH 3 ♦ OH + HBr HCO + CH, -— 1 HCO + HCO = ^ + 2C0 T°K 403 433 390-545 398-436 398-436 823-873 298-352 298-352 306-393 402-427 it 403-443 453-539 413-493 413-493 473 473 and 573 573 304 - 376 ig k Ig A ~13.18 12.4 14.b0 2 14.81 8 13.34 14.7 15.7 16.18±0.5 11.2+1.3 9.7 9.7+1.2 12.5 15.80c 22.8+1.6 13.4+1.7 13 + 2 9 + 2 11 + 2 11.2+2.0 17+3 17 13,2±2.4 21,10* Method pyr. (tert-C 4 H 9 0) 2 pyr. [(CH 3 ) 3 CO] 2 therm. pyr. [(CH 3 ) 3 C0] 2 pyr- [(CH 3 ) 3 CO] 2 from k and K photol. (tert^H 9 0) 2 photol. photol. (terr-C 4 H 9 0) 2 therm. n therm. Literature [77] [172] [669] [1651] [1651] T13I5, 767] [1082, 1607] [1079, 669] [1558] [229] [229,1524] [171] Remarks 1425 768 1426 1427 1427, 1428 1429 , Py f - [1156,1154] (tert-C 4 H 9 0) 2 2.6 photochem. photochem. photol CH,CH0 n it photr [1760] [1760] [704] [lb53] 908, 1430 1431 1432 1433 1434 1435 1436 221 Reaction HCO + CH,CHO = ? HCO ♦ HCO — (HC0) 2 HCO + lf=H+CO+M HCO -•> H ♦ CO CHjCO ♦ 2 = CH,0 + C0 2 CHjCO ♦ 2 -* CH,CO, CH,CO ♦ I 2 = CH,COI ♦ I CHjCO «• HI = CH,CHO + I CH,CO + •»• CO ♦ (CH,) 2 C0 CHjCO + (CHjH^ = CH, ♦ ♦ CO ♦ (CH,H) 2 T°K 473 473 and 573 573 303-376 >373 1000-1700 303-403 373-573 n >373 430-568 448-498 473 ^d 573 775 - 809 373and423 315 360 373 373 and 423 423 495-541 495-541 CO = CH, ■ 508-568 338 Ig k lg A 8.98c 9.89. 11.22 11.92 11.36 11.28 11.20 6.97 14.20 13.84 13.69 4.0 5.3 11.87 10.61 12-60 12.23 14.5 11.3 12 15 26+2 ~14 15.3 12 £13 ~ 14 7.8 26.3 1.14 Method photol phot CH,CBD n HCOOCH, -1.14 1.5 12.0 dis. Ho fl. t comp. photol. CHrCHO photol. CzHnCHD photochem. photol. HCHO photol. (CH 5 ) 2 C0 photol. CH-CHO pyr- (ch,) 2 co photochem. therm. n photol. n therm. photol. acetone photol. azomcthanc Literature [7043 n n [1650,1653] [14453 [2483 [6513 [1743 [2% 3 [14453 [3003 [10513 [7043 [1519 3 Remarks 1437 1438 1439 1440 1441 [789 3 1442 [17473 [17693 [789 3 [1204, 1203 3 1443 820 1444 therm. [1204, 1203] [1202 3 [912] 768, 1445 222 Reaction CH,C0 = CH ? + CO CH,CO «*- CH, + CO CO = CoH c + CO CgHcCO = CgHc C-HcCO + 11 = CpHc ♦ + CO ♦ II CHgCOCH, + C 2 H^ — — C jHgCOCHj CpH*.COCpHc *^" CpHi, ♦ + CgHcCO CjHgCOH-C,^ •+- C,H 6 ♦ ♦ n-C^CO °r C X H £ + '5 n 6 ♦ CO + H-C,H„ (CH,) 2 CC0C,H 6 D — -#■ (CH 5 ) 2 CCO + C^D CjHgDCOCDCHgCH, -*- -► CjH 6 DC0 + CH,CDCH 2 CH,CDCOCH 3 CD 2 -•- -•• C^D ♦ CO ♦ CD 2 CH, CH,CO, + CH,CHO = = CH,CO,H ♦ CH,CO CHjg0 2 — - CH, + S0 2 C 2 H 5 S0 2 — C 2 H 5 + S0 2 313-348 T°K 338 508-568 273-413 295-400 300-430 3 53 and 373 373-393 393-498 273-413 303-353 303-353 403-503 434-630 423-648 423-648 374-638 360-403 294-312 Igk 1.97 IgA 10.3 10.1 10.22 9.58 10. 22 10.18+0.15 13.32 15.64 11.41+0.15 15.0 13.4 13.5 12 i 2 13.5+2.0 ~13.5 16 + 2 13.5 H3. 49+0.231 14.7 10.5 6.6+.0.3 17 Method photol. azomethane photol acetone photol. photol. acetone photol. (tert-C 4 H 5 0) 2 photol acetone ■ 10 28 ± 7 photol (C2H 5 H) 2 photol (0^)2 photol. (CH 3 ) 2 C0, scat., from k and K Literature [9123 [12023 [30] [297] [296] [1558] [1557] [1051] [1081] [913] 12.75 13.0 14.4 17 6.8 22.4 19.9 photol. C n-CjH^CO photol. photol. (CjHgD^CO photol. (CH,CD 2 ) 2 C0 therm. [913] [509, 1561] [1524] [1060] Remarks 768 1446 908 1447 1448 1449, 1450 1451 1452 1453, 1452 photol (CH 3 N) 2 photol. fC 2 H 5 ) 2 CO [7513 [751] [1608] [1769] [644] [645] 1454 1455 1456 820 223 Reaction CI, + CO = coci 2 + CI ci 5 -*• ci 2 ♦ CI CIO + H 2 = HC1 + OH CIO + o ? = cio 2 + o 2 CIO + CIO = ci 2 + o 2 CIO + CIO = cio 2 ♦ CI CIO ♦ ci 2 o = cio 2 + ♦ CI. cio ♦ ci 2 o = ci + o 2 + + ci~ C10 2 ♦ P 2 s PC10 2 ♦ F cio 2 + o, = cio, + o 2 ClOj + Oj = C10 2 ♦ 20 2 ClOj ♦ ClOj = ci 2 ♦ ♦ 30; T°K 621-725 294 294 293 293-433 room 298 294-495 room? 283 room? 227-247 288-333 323 288-333 288-333 la k ^ 5.88 ^8.48 c 9.5 10.79 10.37+0.07 10.23+0.03 7.3 7.72 Ig A 12.80 10.84+0.49 11.83+0.13 10.13+0.13 1/2 10.57 12 12 '11.8 26.3 Method therm. dis. , flow 0+0.65 2.5±0.3 1.9+0.4 8.5±0A * 3 11.8 11.5 dis. ,C1-, tlow dis. t f low pulse photol. ci 2 o pulse photol. pulse photol. ci 2 o dis. dis. , Cl 2 flow pulse photol. ci 2 o pulse photol. it therm. therm. , est. therm. therm. , est. therm. , est. Literature [201] [8123 [376] [376] [1020] [1255] [501] [374] [376] it [501] t501] ii [60] [713] [713] 1713] Remarks 1457 1458 224 Reaction C 2 HC1 4 2 + C 2 HC1^0 2 = = 20^01^0 ♦ 2 C^Cl^ + C 2 HC1^0 2 ■= = C^Cl^OOC^Cl^ + o 2 C 2 HC1 4 2 + C 2 HC1 4 -** -*- C^Cl^OOCgHCl^ 0^01^2 -•- C 2 HC1 4 + c 2 ci 5 o 2 + c 2 ci 5 o 2 = = 2C 2 ClcO + 2 C 2 C1 5°2 + C 2 C1 5°2 = C 2 C1 5°2 C 2 C1 5 + °2 c 2 ci 5 o 2 -»- c 2 ci 5 + o 2 C0C1 + o 2 = co 2 + CIO C0C1 + ci 2 = coci 2 + + CI C0C1 + N0C1 = C0C1 2 + + NO C0C1 -— CO + CI CF 3 CO + Cl 2 = CF,C0C1 + + CI CF 5 CO + Br = CF,COBr + + Br CF,CO — CF, + CO T°K 363-403 363-403 383 363-403 353 and 373 353 and 373 353 and 373 298-403 283-313 298-326 298-328 & 3-328 2j2-370 300-503 333-523 292-524 300-523 Igk ~13 Ig A ! 1_ 13 11 14.5 12.9 10.7 14.5 9,23 12.4 13.68 ~11.6 ^11.715 ^12.62 jp.06 ^12.37+0.12 Method Literature 2Q±2 ^ 10.41, 1/2 18.00 2.61 2.96 1.14 ~6.3 ^3,52+0,10 £1.17+0, ZL * 10 photol. CI. photol 01, photol. 01. photol ci. photol. CI photol. ci est. * photol Q2., photol. CI, photol CI, photol CI. photol Cl 2 , est. photol FjC0( photol. CI CF,C0CF, photol Br ? photol. (CRXCO photol [813] [813] [813] [813] [815] [815] [815 3 [1333] [194] [2683 [2693 [2683 [1532,233 [233 [233 [15323 [233 Remarks 1460 1461 1462 225 Reaction T°K lg k lg A n E ■ Method ! Literature • Remarks CC1 3 — vinyl acetate + + CCl,Br = 303 303-323 6.44 10.96 7.5 photol. CCl*Br n [11073 n = CCljBrC^O^ + CClj 2CC1*- vinyl acetate "♦ 303 10.46 - - - photol. CCl^Br [1107] -» (001^02^)2 CPgHO — CP, + NO 1600-2500 - 6.50±0.39 20.6±3.6 shock [1129] PjSO + p 2 = p^so + P 278-297 - - 10+2 photol P- [328] HgCl ♦ HgCl + CPjCl = 383-443 ^ 13 - ^ -1.2 Hg photo. [451] = (HgCl) 2 * CPjCl CB + Hg = HCH + H 500 - - - - dis. , N 2 , flow [1390] 1368 533-623 ™ ** 7 rare. fl. [733] 687 ^11.3 — — - dis. , Np , flow [191] ON ♦ CH = C 2 + H 2 ~ 2500-7000 - 15.20 4 43.0 shock [1222] -20+16 ON + HO = H 2 + CO + 137 687 11.35+0.35 - - - dis. , H 2 , flow [191] CH ♦ 2 = HCO + room ^ 12.59 - - - pulse photol. [110] n 12.74 - - - 11 [1223] it - - - - 11 [11503 687 12.59+0.21 - 0+0.5 dis. flow [191] CH ♦ 2 = HO + CO + room ^ 11.84 - - - pulse photol. [110] + 194 CH + C1CH = C^ ♦ CI 2% 9,17 6 - - - pulse photol. [1223] 13b9 226 Reaction CH + HoO = HCH + OH? HgO CH + NH, = HCH + NH 2 CH ♦ 0% = HCH + CH„ CH + CgHg = HCH + CgH- CH + CjHq = HCH + + n-C 5 H 7 CH + C~H~ = HCH + 2H 2 = HCH + CgH CH + CgHg = CHCgH + H CN + CH -»• C 2 H 2 CH + CgHg •+* C,H, CH + HO + H 2 = HOCH + + H CH + HO -*- HOCH CH + C~H,. -^ T°K 2320-2820 300-2820 Ig k ^2^4 "*" CHCoH^ 500 687 305-412 687 305-412 305-412 room? 301-447 11.48 12.64+.0.28 ^11.84 8.78 ~ 8.78 11.78 17.08 12.3 ^ 15.15 Ig A 13.04 12.97+0.01 10.86 6.0 5.13±0.02 2.1 Method shock pulse photol. dis. t Hot flow n photol ICH dis. , H flow 2* photol. ICH photol ICH dis. , flow dis. , flow pulse photol. pulse photol. pulse photol. pulse photol. pulse photol. Literature £13703 [12233 [13903 [191] [657] [191] [657] [657] [1347] [1347] [111] [1223] [112] [112] [1223] Remarks 1370 1371 1372 1373 1374 1375 1375 1376 227 Reaction HO + para-w s = ortho-Hp + HO HO + Hg = HHO + HO + ortho-Do = = paia-D- + HO HO + HO = H 2 + 2 HO + HO = H 2 + HO + HpO = HO- + H- HO ♦ H 15 2 = H0 2 + T°K 193-600 n ♦ H 15 C HO + HO, = H0 2 ♦ H0 2 HO ♦ HHO = H 2 ♦ OH HO ♦ H0 2 C1 = HOC1 + + HO, HO + C0 2 = H0 2 + CO HO + 0, = H0 2 + 2 193-600 1370-1535 1673-2073 3000-4300 1370-4300 1525-1912 924-1028 1500-2200 238 298 300 452-547 473-703 298-547 la k 274-344 n 500-800 198 and230 n * 6 14.08 12.53 12.43 ^ 7.0 Ig A n E Method Literature Remarks . 0.15 therm. [522] - -0.64 ti ii 1463 14.49 57.9 - [1288] - 0.15 therm. [522] - -0.64 ti ii 1463 12.41 4 63.8+0.6 therm. [899, 894] 1464 13.4? 63.1 ii [ 1659 ] 23.68 -5/2 85.5 shock [582] 14.23+0.53 74.72+4.44 - - 1465 14.13+0.17 75.63+1.43 - - 1466 14.34 78.2 therm. [1629] 14.40 50.0 therm. [898] 1467 14.30 50.0 shock [557] - - - therm. [990] - - - pulse photol. H0 2 photol. HOp [810] [570] - - - photol. [572] 13.78 0. 1.4+2.5 shock [1377] 723 12.62 1.7+1.0 therm. [40] 1468 14,17 5 i i 0.14 2.31+0.23 _ — 1469 - - - photol. [433] .12.79 34.1 - [1288] 11.92 6.9+0.3 therm. [587] 10.73 1/2 6.6+0.3 n [587, 1712] 12.30 81.6 from k_ and K [244] 1470 11.90 2,5+0.3 therm. [853, 850] 10.80 1/2 2.3+0.3 n [853, 1712] 228 Reaction T°K lg k 1 lg A Method Literature Remarks NO + 0, = H0' 2 + 2 NO + F 2 = NOP + F NO + Cl 2 = N0C1 + CI NO + C10 2 = N0 2 + + CIO + 14,2 NO + NH, = ? 7 NO + XeF 2 = NOF + + XeF NO + XeF. = NOF + + XeF 5 NO + 1,3-cyclohexa- diene = HNO + C,-K„ o 7 NO + (CH,) 2 CH0 = = HNO + (CH,) 2 C0 NO + CC1,CH0 = HNO + + CC1,C0 NO + CF,00CF, = ? NO + NO + H 2 = 2HN0 216-322 n 245-345 298 300 198-322 216-322 195-300 430,5 450.5 470.5 523-673 430-673 294 990-1150 300-350 300-350 580-632 299-453 629-694 298-401 700-825 10.09+0.11 10.45 11.78 11.62+0,10 12.07 5 11.83+0.15 ~11,7 11.94+0,24 11.87+0.09 11.78 2.46+0.15 2,33+0.15 2.55+0.22 2.45+0.17 4.18+0.30 4.2 4.18+0.3 1.5+1.0 2.40+0.17 2.89+0.17 2.96+0.18 i 11.7 12.60 11.00 12.44+0.44 9.76r 3.57, 11.7+0.2 1/2 20.3 19.6 19.915+ + 0.93" therm. , flow n therm, therm. , flow photol. NOp therm. , fl ow it diff. fl. therm, n n n n 1471 1472 1473 10.0 7.0 30.6+0,6 therm. therm. therm. therm. therm. 13.5 12.20 12.80 37.1 18.1 ^6.1 pyr. iso-C 5 H 7 0) 2 therm. therm. therm. [398, 710] [398, 370] [1056] [1241, 1242] [571, 572] [398] [1492, 710] [398, 370] [ 1303] [471 [44] [44, 1712] [408] [1630] [858] [858] [1397] [1031] 1477 [1548] [748] [774] 1478, 1479, 1480 1474 1475 229 Reaction T°K Igk lg A Method Literature Remarks NO + NO + 2 = 2N0 2 HO ♦ NO + Cl 2 = 2N0C1 HO ♦ HO ♦ Br 2 = 2NOBr HO + H0 2 + e 2HH0 o HgO = HO + HO + CHJK) -mm -•*• HjC - HO - HO ? HO HO. ♦ HO ♦ CPjBO ■ 143-273 273-338 273-363 273-662 293 293-372 n 293-843 room 296 298 n 299 478 658 800 143-400 143-660 243-363 248-476 273-373 273 and434 273-470 282-386 290 373-523 423-524 273-523 264-290 297 291 ± 2 297 ^10.0 10.0*0.02 10.26 10.19*0.03 9.78 9.87*0.01 9.95*0.05 9.49*0.01 9.31 9.63 7.47 * 5.11 5.75 8.81 ~ 9.12 -9.5 9.29 ^17.4 8.8 9.07*0.17 10.4 10.82 11.21 10.41 10.76 11.40 10.50 10.92iO.37 10.6 1/2 -1.51 ~-1.4 ~-0.97 -0.95 -1.75 -1.5 t1.33* *0.21 4.2 4.46 4.86 4.60 4.5 6.0 6.86 5.25*0.63 1.6 therm. therm. therm. therm. therm, therm. therm. n n n n n n n therm. therm. photol. CH-I photol [10631 [15171 [205] [199] [678] [679] [1506] [727] [630] [1414] [244] [254] [1138] [411] n [1524] 1482 1445,1484, 1485 1486 [ 1524) C1579] [9273 11516) [961) [1513] [1515) [47) £1579, 1561) £961,1514) [1567) £352) [739) 1481 1488 1489 1490 1491 1492, 1491 1491 1493, 1494 1495 1496 1497 230 Reaction NO + NO + CH,CONO = = CH,CO + N 2 + NO, NO + 2 + N0 2 = NO, + + NO- NO + N0 2 + H 2 = = 2HN0- NO + 2 ■*- NO, NO + C^Hc -•- C-H c NO CgHc -*• C^I NO + CH,CO -»• Cfi,CONO NO + CH,NO -*- -♦ CH 5 (NO) 2 ? NO + (CH,)^ — • —- (CHj) 2 NN0 NO+Ar=N+0+Ar NO+NO=N+0+NO T°K 294-323 298 473-703 298 658-800 903 294-333 308-328 291+2 523 3000-4300 3000-8000 3000-8000 la k Iq A 7,82 13.91 9.2 '11.3 1.45 '11 7.32 15.84 20.60 21.90 -1 ± 1 -3/2 -3/2 150 150 150 Method photol. CH,COCH, therm. therm. therm. therm. photol. CHjCOCHj therm. photol. CHjI pyr. shock n shock Literature [360] [1304] [40] [1576] [412] [177] [360] [361] [352] [654] [582] [1638, 1634] [1638] Remarks 1498 1499 1500 1501 1502, R 231 Reaction T°K Igk LA I i n 1 E Method 1 Literature Remarks M0 2 + I^ = NO + H 2 + 657-707 9.38 18.5 therm. [412 ] + 44 N0 2 + CO = HO + C0 2 498-563 - 13.11 3i.0 therm. [244] 498-800 - 11.68 27,8 ti ti 150o, 1504 540-727 - 13.08 31.6 n [8521 1505 657-800 - 13.11 4 32.2 II [288, 412] 1506, 1507 666-746 - 11.8 27.7+0.4 it [1488] 500-800 - 12.28+0,27 29.26+0.71 ii - 1508 N0 2 + P 2 = H0 2 P + P 301-343 - 12.20+0.12 10.47+0.16 therm. [1231] H0 2 + HC1 = HH0 2 + CI 373-693 - 11.6 23.4 therm. [1343] 633 3.57 6 - - - ii [625] H0 2 + HBr = HB0 2 + Br 373-693 - 11.0 13.0 therm. [1343 3 H0 2 ♦ M0 2 = HO, + HO 300 5.3 - 23 shock [1377] 1509 473-703 - 11.89+0.25 23,9+0.6 therm. [40] 707 4.78 - - - shock [1377, 440] n '^4.42 - - - therm. [45] - - - ~30 - ' [46] 1510 H0 2 ♦ H0 2 = 2H0 + 2 470-662 - 12.25 26.6 therm. [203] - 10.60 V2 25.07 ii from k_ and K [203, 883] tl - 10.60 1/2 25.1 from k_ and K [883] 473-623 - 12,60+0.4 26.9+0.1 therm. [40 3 592-656 - 11.12 1/2 26.56 it [203, 883] n - 12.69 27.1 therm. [202,203, 40] 630-1020 - 12.60 26.9 H [1340] 707 4,29 - - - it [45] 1400-2300 - 13.40 25 ± 5 shock [807] 1511 1500-2100 - - - - n [555] 1512 2000 ~9 - - - ii [7761 473-1020 - 12.61+0,04 26.91+0.12 - 1513 H0 2 + ? = HOj + 2 286-302 _ 12.77 7.0+0.6 therm. [859] 300 7.29 - - - n [571] 232 Reaction R0 2 + S0 2 = SO, + NO N0 2 + NH, = HM0 2 + + NH~ N0 2 + N 2 H^ = HN0 2 + NgHj N0 2 + CH^ = HN0 2 + + CH, K0 2 + CH,CO = = CH, + C0 2 + NO N0 2 + CH,CHO = HN0 2 + + CH,CO N0 2 + CHOCHO = HN0 2 + + CHOCO N0 2 + HCOOH = ? HOp + HCOOD = ? N0 2 + DCOOH = ? N0 2 + DCOOD = ? N0 2 ♦ COC1 = C0 2 + + NO + CI H0 2 + NOC1 = N0 2 C1 + + NO N0 2 + XeF 2 = N0 2 F + + XeF ::o 2 + XeF^ = N0 2 F + + XeF, T°K 434-504 572-795 810-880 673-773 308-328 293-353 391-416 448-478 464 464 464 464 654-746 573 350 350 la k -12 2.17+0.03 2.02+0.02 1.99+0.03 1.36+0.02 6,82 T 1 IgA ~14.14 12.7 15.83 9.0 9.2 12.85 11.9 11.84 ~26.5 27.5 26.7 21.0 22.74 12.6 16.0 19.8 -0.16+0.25 Method therm. therm. , stat. therm. therm, ti therm. therm. therm. therm. therm. therm. therm. therm. therm. therm. Literature £1713 3 [1341] [1362] [719] [1768] [361] [361] [1073] [1487] [109] [109] [109 3 [109] [1488] 139] [8581 [358] Remarks 1504 1504 1504 1514 233 Reaction H0 2 + CHpClp = HH0 2 + + CHClo HO, + CHC1, = HH0 2 + + CC1, H0 2 + H0 2 = U 2 0^ R0 2 + HO, -*- HgOc B0 2 + C^ — HO- + C~H~ •*- B0 2 ♦ HCHO = HCHO.HOo K0 2 + Ar = HO + + + Ar H0 2 + 2 = HO + ♦ + 0, T°K 562-653 545-595 298 293-303 303-313 433-493 493-553 443-493 391-433 433-457 1400-2300 1400-2300 a 1500-2100 1860-2200 1600-2000 Ig k lg A 11.7 11.8 10.1 12.0 16.17 e a. 78 21.58 16.07 2 21.67 -3/2 ■3/2 23.8+0.2 28.3+0.2 12.5 18.0 15.0 15.1 19.0 65.4 71.4 65.9 72.0 Method therm, therm. therm. therm. n therm. therm. n shock it from k_ and K shock n n shock Literature [618] [618] [322, 333] [779] [780] £406] n [I486] [1251 ] [807] [807, 776] [807] [555] [776] [558] Remarks 1515 1515 1516 1517 1518 1504 1504 1504 1519 1520 1521 1522 234 Reaction HO, + CO = HO- + CO.- HO, + HO, = 2H0 2 + 2 HO, + HOC1 = H0 2 C1 + + H0 o HO, + H 2 = H0 2 + + + H HO, ♦ H0 2 = HO + 2 + + HO- T°K 298-538 550-1100 313 1400-2300 473-703 500-1100 Igk 7.84 Iq A 12.98 12. 41^ 25 11.07 11.23 11.36 11.28+0.10 -2 6.46 7.7+.1.0 49.6 3.2±1.0 3.9 4.4+0.7 3.95±0.22 Method therm. shock [1377] therm. shock therm. shock n Literature [244] [855, 851] [807] [40] [440] [1377] Remarks 1523 1524 1468 1525 1526 235 REACTIONS OF SATURATED MOLECULES AND ELECTRONICALLY EXCITED PARTICLES Reaction Hp + Dp = 2HD para-*U + Oo = Op + = + ortho^o H 2 + 2 = OH + OH Hp + Pp = HP + HP + Cl~ = HC1 + HC1 Hg + Cl 2 + I~ = HI + HI H, + I 2 H 2 + C0 2 = 0H + HC0 H 2 + HC1 = HC1 + H 2 Kp + HBr = HBr ♦ Hg *2 + HI = HI + ■a H2 ♦ DCl = HD ♦ HCl 752-823 T°K 1060-1420 86-373 293 ^758 960-1080 1400-2500 633-738 821-984 Hg ♦ CpHg = CpH, + H 1180-1774 1200-1700 H 2 ♦ C^ = CgHg ? 748-823 Hg ♦ CgH^ -»• CgHg 823 H 2 * C 2 H 2 = °2 H A- 768-808 788 H 2 + H = H+H + H 3000-4500 821-984 693-753 Igk 2.14 1.4 lg A 12.84 2.38 14.92 14.40 12.4 12.78 11.38 10.85 13.82 12.7 13.0 12.80 12.76 18.08 1/2 1/2 1/2 1/2 42.26 0.27 45 67.0 39 ~30 * 25 * 15 * 36 40.74 95.76 57+4 53.4 -1/2 44±3 60.7 60.6 43.15 42.0 103.25 Method shock therm. tl (I. comp. shock , comp. diff. fl. therm. calc. therm. , P -0 therm. therm. , p *0 therm. . P ■» therm. n therm, therm. therm. n shock Literature [1263 [524,5*0,522] [520] [1763] [ 1408 ] [1326] [1228, 1287] [1209, 1228] [1733] [ 1209 ] [1446] [1290] [1434] [ 1436] [1434] [1435, 1338] [151] [152] [1226] [1594.3 [1471] n [602] Remarks 1527 1528 1529, 1530 1531 1532, 1533 1534 1535 1536 239 Reaction H 2 +Ar=H+H+Ar Xe = H + H + Xe H 2 +H 2 = H + H + H, Hp + HgO = H + H + + H 2 ortho-D~ 4 °2 = s o 2 + para- ■ D 2 D 2 + I 2 = DI + DI D 2 + HC1 = HD + DC1 L~ + HBr = DBr ♦ HD T>2 + IUS x HD ♦ HDS Do ♦ BH, = DH ♦ JJEpD Dg + CH^ = HD ♦ CH,D Dg ♦ CgHg = (H-D)- — exchange Dg ♦ CoH^ s CgHiD * + HD T°K 300-4000 960-1080 2290-3790 2900-4700 1750-2750 3000-4500 300-3500 3000-4500 960-1080 83-293 633-800 765-843 783-900 821-984 1260-1590 1300-1700 1440-1755 1000-1500 1260-1560 iq k Ig A 16.91+0.06+ + lg(1- _ e 6000/T) 22.54 12.33 18.62 21.00 17.25 5 -1/2 - 2 1/2 -1.0251 -3/2 -1/2 17 .47+lgCl- _ e -6O00/T )+ +0.20 20.25c 23.84 1.20 12.50 13.80 12.1 -1/2 -3/2 - 2 Method 103,24 108.0 92,6 103.24 103.24 103,25 1/2 1/2 1/2 103.25 108.0 0.105 40.79 26.2 57.4 52.0+2.2 comp. shock n shock from k_ and K shock comp. therm. therm. therm. f stat. therm. therm, shock shock shock therm, shock Literature [1737] [1408] [1173] [829] [488] [602] [1737] [602] [1408] [520, 522] [ 1450] [690] [1436] [1434] [2621 [1007] [15751 [125] [124] Remarks 1537 1538., 1529 1539 1191 1532 1540 240 Reaction D~ + CpH 2 -*- CpHD + + HD and CgDg ♦ Hg B 2 + 2 = »0 + HO H 2 +H = H+H+H H 2 + He = H + H + He H 2 + Ar ♦ H ♦ At Hp + Hp + H + B, H 2 +M«B+B+M 2 + 80 = S0 2 ♦ 2 + HBr = H0 2 * Br 2 + CH^ a H0 2 + CH, 2 + HCHO = Hg ♦ C0 2 ♦ + (?) o 2 + = + 0+0 T°K 1300-1665 1400-4300 3000-8000 6000-9000 6000-10000 n 8000-15000 6000-10000 6000-9000 6000-10000 n 8000-15000 3000-8000 6000-9000 6000-10000 n 8000-15000 3000-8000 440-530 700-800 1500 1535-1850 900-1350 2800-5000 5000-7500 la k 12.10+0.15 IgA n - - 24.96 -5/2 22.61g -3/2 22.63g -3/2 19.85 - 1 22.47 ? -3/2 22.18+0.17 -1.6 19. 72^ - 1 17.2? 8 -1/2 16.77g -1/2 19.41 4 - 1 21.14+0.04 -1,6 17.57 7 -1/2 17.68 -1/2 21.68 -3/2 22.75 -1.7 21.55+0.11 5 -1.6 17. 28^ -1/2 13.3+0.3 12.5 - - 18.05 -1/2 19.95 - 1 128.5 224.9 224.9 224.8 224.9 224.9 N a 224.8 224 „9 n N n 224.8 224.9 10. Oil. 37.7 52.9+4.6 20.6±1.9 118.0 Method shock shock n n n shock shock N ■ shock rt shock dis. , flow therm. shock n shock shock n Literature Remarks [124 i 971, 1541 [8463 [899, 582, 1634. 76, 15781 [1638] 1542, 1543 [276] [325] [325, 276] [32] [325] [276] [325, 2761 [325] [32] [1688] [276] [325, 276] [825] [32] [1638] 1542,1544 [1615] [13421 [770] [38] [38] [275] [303] 1545 1546 1547, R 241 Reaction T°K 2 +Ar=0+0+Ar 2 *IesO*0+X« Og ♦ H 2 = ♦ ♦ Ig o 2 ♦ Og ■ o ♦ o ♦ o 2 °2 * °°2 * ° * ° * ^2 0~+M«0+0+K Oj ♦ Oj « 30 2 0, ♦ OIL = ? 0, ♦ CgH^ * OpS^O ♦ + °2 or - C A° 3 °3 * °2 H 2 B ? Ox ♦ 1-hexene a ■ C 6H 12 ♦ 2 or -». — °6«12°3 2800-5000 3400-7500 4200-7000 5000-11000 5000-18000 n 300-18000 1750-2750 9000-8000 2600-7000 2800-3900 3000-5000 3000-8000 4000-7000 6000-7000 2600-7000 2400-3000 3500-7000 343-373 843-383 308-340 * 808-828 808-828 281-800 Igk lg A ! n E 5.54 16.71 18.55±1.00 18.33 7 14.46 16.40 18.38 15.04+ ♦led- ^-2200/T) 21.00 18.86 28.76 21.29 25.05 4 19.51 25.03 19.03iP.95 25.36±1.37 13.9+0.46 18.56 12.65 13.68 10.16 11. a -1/2 ±0.$ - 1 -1/2 - 1 -3/2 - 1 -7/2 -3/2 -5/2 - 1 -5/2 -2.6* +0.4 118.0 6.75 7.47. - 1 117.96 118.0 118.0 n n n n n 118.0 39 ± 7 118.0 18.8 24.0+0.5 13.9 15.35 Method 4.8 ~0 shock n shock shock H ■ N n M shock shock shock therm. • therm. n therm. therm, therm. Literature [275] [303] [1716J [1635] [1636] n [1636, 957] [488] [1638] [617, 1742] [275, 303] [1065] [1638] [1716] [303] [1457] [1716] [1761] [632] [463] n [283] [284] [283] Remarks 1548 1547 1549 1550 1551 1552 1553 1675,1554 1555 242 Reaction °3 + c 2*4 *** c 2*4°3 °3 + c 3 ? 6 ■*" C 3 F 6°3 0, ♦ (CP,CF) 2 ■+■ — (c* 5 cp) 2 o 3 Oj ♦ Hg = 2 ♦ ♦ I 2 °3 * °2 = °2 * ° * °2 0, + 0, = o 2 + ♦ 0, T°K ? 2 +HI = P + HP+I ?2 ♦ HBr = P ♦ HP ♦ Br P 2 + C^ = C^P + P P 2 ♦ Ha = P ♦ P ♦ He 1400-2000 ? 2 + ir e ? t ! ♦ to - 1300-1700 - 38.5 P 2 +M = P+P+M 1000-1600 n n 1300-1600 1300-2670 1665-2670 ci 2 ♦ 0, = CIO ♦ cio 2 - - 14.7 689-863 343-863 343-373 343-863 343-383 343-403 388-403 298 298 298-430 288-333 Ig k 6.91 7.11 6.04 7.08 7.08 Ig A 14.39 14.76+0.05 15.30 14.89 15.66+0.02 15.92J 15.90 10.70 16.3 15.49 12.49 18,1*5 11.56g 12.85 12.18 10.23 13.9 a. 9 23.15+ +p.8 (CHjHOg BOC1 ♦ BOOl > 2B0 ♦ TOBr 4- HOBr = 2B0 + + Br~ T°K la k 713-833 720-950 743-808 1750-2750 705-742 728-932 678-878 468 1800 650-1200 800-1200 291±2 373-574 423-524 ■ n n 451-566 1020 265-288 * 7.48 ~8.95 10.68 8.58j0.15 lg A Method Literature Remarks 16.93 17.23 17.50 26.83 19 .0*0 .9 18.4 13 10.3 19.7 4.08 8.92 13 46.8 15.2±1.0 11.8 11.63g 13.19 12.5 12.?ip.3 12.78 13.8 1/2 -1 45.5*0.5 46.8 47.0*0.7 50 .l^l .0 48.1*2.9 48.0 48 4.44 49.0 -7.5 1/2 1/2 45 47.3 30. 6*1.8 therm. a comp. therm. m therm. dis. ,Hp, flow pyr. iso— -0 ? B 7 0B0 [84] a [91] [488, 1284] [576] [785] [624] [878] [546] [12881 [258] [1288] Hg photo. j [ 952] [1288] 22.0 24.0 24.5 23.4 23.6*0.7 25.99 14.1 shock M photol. CHJT. therm. N ■ m ■ from k and K therm. therm. 1608 1609, R 41 1610. 1611, 1618 [724, 8541 [677, 724] [352] 1579, 1524 [15a] u 1561, 47 [41] [1516] [1470] [961, 1524] 1614,1615 1616, R 1617 250 Reaction T°K la k Ig A Method Literature Remarks HOI + HOI s 2H0 + I 2 BgHg + CH 5 PH 2 = = CHjPHgBHj + BHj ? CgH^ + CgH^ = CgHc + ♦ CjjHj = Wa C^Hg-1 ,3+ acrolein = 1f2,3t6— cetrahydro- bcn/.aldchvde C^Hg-1,J+ crotonal- dchydc = 1,2,3,6- — totrahydro— — toluylaldchydc Ve ^ 2C 2 H 3 2C 5 Hg( isoprcne ) = = ^O^ 2 1.3-pentadienc - = So^e 2 2,3-diniethvl butadi- ene- 1,3 = C-pHp^. isoprcne + acrolein = = 2,3,4,5- tciraliydro-- -U- loluvlaldelndc 333 298 839-873 1169-1784 623-873 599-703 429-605 515-573 1209-1412 559-644 552-692 480-673 492-606 10.6 14.82 14.7 11.17 6 10.22 9.16, 8.95> 15.4 10.34 10.54, 10.16 9.01 1/2 64.0 64.7 35.0 24.7+1 19.7 22 ± 1 99.5 28.9 26.0 25.3 18.7 pulse photol. therm. therm. therm. ther therm. therm. therm. thetm. the [1254] [2503 [211] [151] [1225] [1544, 718] [932] 1619 1618 [932] [151] [1545] [718] [718] [932] 251 Reaction C 2 H 2 * °2 H 2 3 ? C ^2 * C 2 D 2 « C 2 HD * + OpHD 2 cyclopentadiene a cyclopentadiene + acro- lein a 2,5- endomcthy- lc nc -1,2,5,6— tctrahydro- benzaldchydc c a H 6 ♦ C 4 H 6 "*■ C 8 H 12 (3-vinyl cyclohexcne) ^^ + C 8 a i2 "* °i&\a (A3, 3 -octahvdrodiphenyl) HCHO + HCHO = ? CHjCOHHg + CHjCOOH = ? 2CH,C0HH2 = HH, ♦ + CHjCOOH ♦ CH,CH BP, + CH,HH 2 = =• BP,HH~C 3 HH 2 CH 5 BPj + (CH 5 ) 2 HH = = BP 5 NH(.CH 5 ) 2 BP, + (CrU),H = BP 3 H(CH 3 ) 5 CF 4 + At = CP, ♦ P + ♦ Ar T°K ! Ig k t- 768-808 1150-1450 353-423 393-467 405-455 351-483 446-660 446-660 783-880 698-817 698-817 299 298 297 1700-3000 11,90 13,51 12,57 ~12 Ig A f n E Method Literature j Remarks 9.11 4 7.93 9.77c 9.17, 9.96 14.11 15.73 14.04 11. 32^0. 09 11. 59*0. 40 34.79 1/2 16.7 14.9 16.9 15.2*1 23.69 38.0 47.8 47.0 30.10i ±0. 18 36.2i0.84 -4.64 122.42 therm, shock therm. n n therm. therm. therm. therm. n photol. acetamide photol acetamide therm. therm. therm. dis. , flow ■.hock , est. [1471] [124, 8463 [924 3 [718, 9333 [958] [932, 1120] [934] [934] [561] n [51] [51] [606] L606] [606] [1402] [11331 1620 1621 1622 1623 1624 1625 252 Reaction T°K Igk Ig A n E Method Literature Remarks CPjl + Ar = CF, ♦ I ♦ 1700-3000 m* 30.35 5 -4.0 57.38 5 shock , est. [1133] •t- Ar CgPg + Ar = CF, ♦ CF, h 1700-3000 - 20.92 1/2 76.5 shock, est. [1133] ♦ Ar CP 2°2 + C 2 P 4 = Cf 2° * 296 - — - photochem. C745] 1626 + CgP^O 398 - - - - ■ M D cp 2 o 2 + c 3 p 6 - 297 - - - - Hg photo. [1358] 1627 = 2CP 2 ♦ CF,CP CPgOg + CgP^. = C? 2 ♦ 296 - - - - photochem. [745] 1628 + 2CP 2 398 - - - - ■ m ■ C^ ♦ Ar = CH ♦ Cfl ♦ 1700-2000 - ~ 17.23 —100.4 shock [871a] ♦ Ar CNC1 * Ar = CS t CI ♦ 2000-2800 - 16.58 91.5 shock [1370] ♦ Ar CP,CB ♦ CgH^ -•- 365-445 - 10. 0*0. 4 27 ± 3 therm. [560] -*• CPjC^CHgGH CP,CH ♦ C,Hg -*• 673-723 - 17 ± 2 51.50 therm. [716] -*• C? 3 C 5 H 6 CK A1(CH 3 ) J -»- CH, + 571-607 - - - - therm. [1648] + A1(CH 3 ) 2 253 Reaction T°K | Igk lg A n E ! Method Literature Remark He'^S,,) ♦ Ho ♦ He = 77 12.00 5 - - - dis. [1234] 3 He 2 ♦ He 279 13.90 - - - It [1030] 300 13.84 - - - n [1234] ■ 13.96 - - - n [1233] n 14.02 - - - " [157] n 14.07 - - - n [1361] 366 14.19 - 1.55 n [1030] Xe' ♦ Ze « i£ ♦ e 4000-9000 - 14.55 1/2 36.2±4.6 shock [703] 0' ( 1 D) + ^ = OH ♦ H 300 14.06 - - - photol. Op [1655a] 1233 0«( 1 D) ♦ 2 ♦ 2 » room 13.86 - - - photol. 5 [1456] 1629 = o, + o 2 0« ( 1 D) ♦ Oj = 2 ♦ 2 205-298 = 12.36 - - - photochem. [1417] 273-323 - 14.38 2.4*1.0 photol. 2 [1456] room 12.62 - - - it 11 1629 II I4.24jt0.24 - - - pulse photol. 0, [1418] n - - - - photol. C02 [1571] 1630 room * 12.26 - - - pulse photol. °3 [559] 0»( 1 D) ♦ H 2 = 2 ♦ 300 14.03 - - - photol. [1655a] 1233 ♦ H 2 0»( 1 D) ♦ ^0 » 20H room - - - - photol. 0- 5 [885] 1631 0' ( 1 D) ♦ CH^ = OH ♦ 300 14.12 - - - photol. 2 [1655a] 1233 ♦ OH, 0»( 1 D) ♦ C^ * BCO ♦ room - - - - pulse photol. [1150] ♦ CI 0«( 1 D) ♦ OgHg « OH ♦ 298 - - - - photol ]jo [1167] ♦ OgHc "-OBxO ♦ OH, 0»( 1 D) ♦ OjHg . n-C^, room 14.32 - - - photol h 2 [1643] 1632 is "-QJBy ♦ OH -* OjH^H 264 Reaction 0'( 1 D) ♦ 0^ * s CgH^O ♦ H and CExCHO 0'( 1 8) ♦ -— 2 0' ( 1 D) ♦ CO -•- 00 2 0' ( 1 D) ♦ CO = GO- 0'( 1 D) ♦ C0 2 -•- C0 ? 8' ( 1 D) ♦ COB = 8 2 ♦ CO S'( 1 D) ♦ C 2 H 6~*" -*- CgH^SH S ( ( 1 D) ♦ CjHg -fc- -*- CjH^ S'( 1 D) ♦ cyclo-C^Hg — -»• cyclo -C^HJBH CI' (3^/3) ♦'ECl = ■ Clg ♦ I Cl»(3 2 P 1/2 ) ♦ ci ♦ ♦ lr ■ 01*2 ♦ At Cl'(3 2 P 1/2 ) ♦ 01 ♦ ♦ Cl 2 « Cl»2 ♦ 01 2 Br'C 2 !^) ♦ Br ■ Br 2 ♦ ly Br' (A 1/2 ) ♦ IBr - ■ Br 2 ♦ I T°K 298 300 room n 303-496 303-496 303-496 303-496 300 293 293 1300-2300 800 Iqk 11.03 12.3 13.48 5.62 11.08 Ig A 13,26 14.37 14.97 ~12.26 Method phou B 2 dis. , flow pulse photol CO, photol photol co 2 pulse photol photol COS photol COB photol QOS photol (JOS pulse photol. dis. dis. shock pulse photol. Literature [1167] [16551 [368] [369] [1655a] [1572] [369] [945] [945] [9451 [945] [482] [812] [812] [1214] [482] Remarks 1633 1634 1635 459 1636 1687 1638 1639 1640 1641 1641 255 Reaction T°K lg k j lg A Method I Literature ! Remarks > IC1 + CI s IBr ♦ Br - i 2 ♦ CI x*C9fr 1/8 > ♦ n* - a lg + Br M EL * OJBm It(52p V2> ♦ °2 H 6 * s H ♦ OgHe I,(52p i/2> ♦ CHjI . « lg ♦ OB. • lg ♦ CgHc * X 2 ♦ °3 H 7 ■ i 2 ♦ °3*p I'CS^/g) ♦ n-C^B^I . « lg ♦ C^Hq ■ lg ♦ C^Bj /v300 *v 300 ~300 ~300 800-368 833-868 ~800 ■ 350-780 ~ 800 ~300 ~300 ~ 800 ~ 300 11.10 11.95 12.81 12.41 10.25 10.42 12.01 * 12.01 '&& * 11.08 ♦ i0.04* < 11.08 * 10.04 11.25*0.5 5.0*0.8 7.0*0.3 pulse photol. pulse photol. pulse photol. pulse photol. photol. I, photol. J 1.9*0.5 pulse photol. 1478] photol Of ,1 pulse photol. OHjI (480] [1114] photol. Ofjl [480] photol. OTjI [480] photol. c? 3 i [480] photol. Ofjl [480] photol. OT3I [480] [479] [479] [479] [479] [294, 295] [295] 1642 1648 266 Reaction T°K Ig k Ig A n E Method Literature Remarks ♦ tert-C^Hgl = Ig + ~300 ^ 11.33 ± JP.16* - photol. [480] ♦ V9 Hg« (^P) ♦ C^ = Eg + 296 - - photo-ex. [1357] 1644 + 20P 2 B0» (A 2 E *) + Hg = HO ♦ 296 - - - - photo-ex. [7*1] 1645 + H + H BO'O^E) ♦ BO = B 2 ♦ room 13.23 - - - photol. [1074] + 2 HO 1 (A 2 E ) > COg a BO + 296-578 - - - - tm [400] 1646 ♦ COgandBOg ♦ 00 B0« U 2 Z *) ♦ OH^ a B0+ 296 - - - - photo-ex. [7413 1647 ♦ CH- + H B0»a 2 I*) + CgHg B 296 and 468 - - „ - photo-ex. [741] 1648 ■ BO ♦ CgHc ♦ E B0* 2 ♦ B0 2 a BO, + BO 2000 - ~11.95 4 1/2 shock [997, 998] O'gC^g) ♦ H » OH ♦ 600-800 >10.78 - - - fl. [1709] O'gC^dg) ♦ Oj = 20 2 ♦ room «11 - — — dis. f flow [1047] ♦ tt 9.17^0.09 - - - dis. [1083] o« 2 ( 1 2: v ♦ o 5 - room? 11.56 - — • dis. f flow [1047] » 20 2 + ■ 12.62^ jfcO.05 — — - photol. [8^3 0* 2 ♦ 0, s Og ♦ 2 ♦ room - - - - dis. , 0g [1062] 1649 CH« 2 ♦ CO -w OHgCO room? - - - - photol. [4473 1650 SH« 2 ♦ C^ -*. CjHg 297 — — - - Hg photo. [967] 1651 257 Reaction T°K Igk Ig A n E Method Literature Remarks CT, 2 * °3% — Vs 297 - - - Hg photo. [9673 1652 CH'p ♦ CgMcCHCHg "•" 297 - - - - Hg photo. [9673 1653 "*" c sPio CH* 2 + iso-C^H- ■*■ 297 - - - - Hg photo. [967] 1654 "*" C 5*10 CH' 2 ♦ ^(^4% ■*■ 297 - - - - Hg photo. [967] 1655, 1654 — °5*10 CH«2 ♦ tran<;- 297 - - - - Hg photo. [967] 1658 -* c 7*14 CH* 2 ♦ CHgCBCHCHg -*- 297 - - - - Hg photo. [967] 1659 -^ CH» 2 ♦ cyclo-C^Hg -»• room - - - " )notol.C%H 2 [508] 1660 ^^ CH*g ♦ CHjOBgCl * room - - - - 'hoiol.QW QQ [100] 1661 ■ CHgGl ♦ CgHc °*'2 * •A " 2Cf 2° 302-400 ■ Hg photo. [746] 1662 268 REMARKS 1. The two values of k for each temperature were obtained under two extreme assumptions as to the residence time of H atoms in the reactor. 2. The rate constants of the reactions H + H 2 = H 2 + H, H + para-H 2 = ortho-H 2 + H 3 1 and H + ortho-H 2 = para-H 2 + H are in the ratio of l:-^:-^. For theoretical cal- culations of the k of the given reaction see [777, 877, 1394]. See also [1381, 1394a, 1457a], 3. The T factor characterizing the probability of a tunnel transition is E (i 2ttRT \ and P RT . 2ttRT " = ^ m when — : — r < 1 2ttRT hv* hv* hv* hv* . 2ttRT r = 2RT CSC 2RT When 17 > 1 where E is the height of the potential barrier and v* is the imaginary fre- quency of asymmetric linear oscillation of the transition complex [134]. For the, given reaction v* = 1,178, 2i cm -1 . The'valu* of k< calculated by this formula at 1,000°K is 10 11 - 69 [995]. This formula must probably be considered as the most exact one. See also [1394a]. 4. Obtained using the data of [516]. 5. The authors of [186, 187] have shown that elimination of air diffusion through the walls reduces the exchange rate of H 2 + D 2 = 2HD by a factor of two. They therefore consider the data of [519, 1540] to be too high (by a factor of about two). 6. Table XII 5. The formula is given with reference to [187, 519, 613, 1540]. In [1712] (p. 254) it is shown that according to the transition state theory the E in the Arrhenius formula should increase with increasing T. 7. The formula was obtained on the basis of [519, 613, 1104, 1540], 8. Obtained on the basis of [519, 613, 1540], the values of k obtained in [519, 1540] being reduced by one-half [187]. 259 9. If the values of k obtained in [995, 1318] for the reaction H + H 2 = H 2 + H are assumed to be closest to reality and if the mean theoretical k ratio 0.40 [1394] is used, we will have 10 11 * 28 for 1,000°, i.e., a value which is half that measured in [187]. 10. For theoretical calculations of the k of this reaction see [187, 777, 1394, 1592]; see also [1394a, 1457a]. 11. Using the theoretical relation for the constants [1394] and the result of [995] for 1,000°, we get 10 11 - 18 . 12. This formula should probably be considered the most exact. See also [995]. According to [995] it can be extrapolated to 1,000°. 13. See also [1581]. 14. For calculations of the k of this reaction see [187, 526, 777, 995, 1394]. See also [1394a, 1457a]. 15. The reaction of hot H atoms is examined in [333]. 16. Calculated by the least-squares method (LSM) on the basis of [187, 1380, 1585] and on the basis of the value of k at 1,000° calculated from the k of the reaction H + H 2 = H 2 + H and from the theoretical k ratio in these reactions. It is not ruled out that the formula in [1380], extended to a temperature range of up to 1,000°, is more accurate. 17. In the opinion of Kaufman and Del Greco [895], the rate constant of this pro- cess apparently cannot be represented by an Arrhenius formula with constant pre-exponential factor for a broad temperature range (hence the two formulas given by them). The inaccuracy of the given formula is pointed out in [1491]. 18. The author of [973] also obtained theoretical expressions for the k of the reactions H + 2 = OH + and D + 2 = OD + 0, from which the complex temper- ature dependence of the pre-exponential factor follows. 19. The accuracy of the pre-exponential factor is 30-40%; the accuracy of E is 0.8-1.0. 260 20. Obtained using the data of [78, 450, 533, 1700, 1735] and K. 21. Accuracy is ± 20%. 22. In connection with the low value of E, the authors point to [973], where it was shown by calculation that E should equal 16.7 at 300° and 14.0 at 2,000°. 23. This value was obtained using the inaccurate formulas for the k of the reac- tions H 2 + 2 = 20H and OH + H 2 = H 2 + H given in [488]. 24. Obtained on the basis of the data of [87, 372, 533, 534, 537, 895, 1378]. See also [93]. 25. Based on the data of [87, 371, 533, 895, 1378]. The authors also cite formu- las such as k = vT exp I- —J and k = AT exp I- pTjr). 26. Obtained from the data of [87, 394, 534, 895, 1378, 1440, 1735]. 27. Calculated by the least-squares method on the basis of [78, 469, 533, 700, 895, 973, 1378, 1700, 1707, 1735, 1756, 1757]. 28. See also [248]. 29. A value of k = 6 x 10 12 for 300 e is listed, with reference to [607] and [728]. 30. Given is the mean value of the constant. The electron excitation energy of OH is 2 Z + - 2 n = 88.3. 31. Calculated on the basis of the rate constant of the inverse reaction [537] and of the equilibrium constant. See also [824]. 32. Obtained taking the data of [78, 387, 537, 1700] into account. See also [1707]. 33. Calculated from the recommended k_ and K. The latter was taken from [895]. 34. Obtained considering [450, 537, 1639]. 35. Obtained on the basis of the data of a number of authors. 36. E = 21.8 was chosen arbitrarily. 261 37. From the temperature coefficient the authors find E = 6.0. See also [710]. 38. Calculated from the relation for the constant k of the reaction 2H02 = H 2 02 + 2 at 293°, assuming it is independent of the temperature, and from the relation for the k of the reaction H + 2 = OH + 0; k = 10 14 - 31 exp(- 16 ^°° ). A value one-and-one-half smaller is obtained using the recommended formula. 39. Obtained on the basis of [91] and [565] with the recommended k of the reaction H + 2 = OH + 0. 40. The rate constants of the reactions H + H0 2 = H 2 + 2 , H + H0 2 = H 2 + and H + H0 2 = 20H are in the ratio 1.0:1.2:0.1 [1726]. According to [395], the k of the first of these reactions amounts to 0.33 ± 0.12 of the sum of the rate constants of all three reactions (at room temperature), and the k of the last reaction is greater than one-half the k of the second reaction. 41. This formula, obtained on the basis of a number of assumptions, is rather in the nature of an estimate. 42. The large pre-exponential factor in this formula, greater by two orders than the gas-kinetic-theory-collision factor, makes it somewhat improbable. Also improbable for the same reason is the formula k = 10 16 * 25 exp ( ±-= — I, which is obtained on the basis of the formulas in [91] and [1408]. The formula in [91] is probably closest to reality. 43. Given for the ratio of the k of this reaction and of the reaction H + H 2 2 = H 2 + H0 2 at 440°C is 8.1 ± 2. 44. The ratio of the k of this reaction to the k of the reaction H + C 2 H^ -*■ C 2 H5 is 2.1 ± 0.1. 45. Calculated by the least-squares method on the basis of [141, 570, 573, 575, 941, 1241, 1416, 1464]. 46. According to [437], the data in [436] may be erroneous because of the influ- ence of the hot hydrogen atoms. 262 47. The expression was obtained on the basis of k_ = io 11 * 59 exp ( — I (page 209) — == — I calculated from [1765]. 48. The ratio of the k of the reaction H + C2H4 ■> C2H5 to the k of this reaction • ml 41 / 540 ± 120 \ is IO 1 * 41 exp^ — j. 49. Calculated from k_ = 10 11 * 82 exp I ■=-= — ) (page 188) and from the equilibrium constant K = k/k 2 = 10 1 - 20 exp fe~M , 11765]. 50. The rate constant was obtained from the k ratio calculated in [1731] for the reactions + O3 = 20 2 and + 2 + 2 = O3 + 2 . The latter was taken as k = 10 13.92±0.21 (700 ± 200 V K 0+0 2 +0 2 P ' RT / 51. The constant k_ was calculated from data obtained by various authors (see note 366) and is given on page 65. K was taken from [895]. 52. io 1,3±0,1 exp(- — i r= ) has been obtained for the ratio of k of the reactions of H with HC1 and with Cl 2 . 53. Calculated on the basis of ^i+HCl , ft 1/Q . ft rt „,. / 1,540 ± 130 \ j- = (0.143 ± 0.033) exp^ ! — J [944] and of the formula Wl - (3.5 ± i. S , xon/r ^p(- Ijos^joo) [379]. See also [831] . 54. The formula (0.143 ± 0.033) exp (- 1?540 R ^ 13Q ), (T = 273-335°) is given in [944] for the ratio of k of the reactions H + HC1 = H 2 + CI and H + Cl 2 = HC1 + CI. 55. With reference to [1613] and [944], 10 0,7 expl-rhz — j is given for the ratio of the k of this reaction to that of the reaction H + HC1 = H 2 + CI. 56. The ratio of the k of this reaction to the k of the reaction H + HC1 = H 2 + CI is 20. 263 57. Calculated from the difference in E found in [768] and [1213] for the reactions H + CI 2 = HC1 + CI (1) and H + 2 + H0 2 (2); Ex - E 2 = 2. 3 ± 0. 4 (mean value) and E 2 = - 1.28 ± 0.09 [621]. See also [204]. 58. Calculated on the basis of the ratio of k of the given reaction and the re- action H + HC1 = H 2 + CI, as measured in [438] and [944], and of the formula recommended in the latter for k. 59. E = 1.0 was obtained on the basis of the fact that the E of the reaction H + HBr =» H 2 + Br is about 1.0 and the ratio of the k of this reaction and of the reaction H + Br 2 = HBr + Br (= 0.12) is, according to [196], independent of the temperature in the temperature range 0-300° C. 60. The ratio of k of the reactions H + Br 2 - HBr + Br and H + HBr = H 2 + Br is 8.4. 61. The formula was obtained using the ratio of ki* = 8.4k3, H + Br 2 = HBr + Br (4), H + HBr = H 2 + Br (3), measured in the temperature range of 303-575°, and of ku the k of the reaction Br + H 2 = HBr + H [196]. We note that 5 < rf- when T a 1,400° [235]. See also [1491]. 62. The k ratio of the reactions H + Br 2 = HBr + Br and H + HBr = H 2 + Br is 10 0.9»+±0.24 # 63. Obtained from the k of the reaction H + HI = H 2 + I [1449] and from the ratio k T J*±l2. = k H+HI 3.5 ± 0.3 [1511]. From the (apparently) more exact ratio k H+I 2 ■ = 16.7 k H+HI [799] follows k = 10 13 - 27 /F . 64 • The value 4 x 10" 2 exp( 4,500 p ,r 8 °° ) was obtained for the k ratio of this reac- \ RT ' tion and of the reaction H + HI = H 2 + I with a large excess of argon, in the absence of hot hydrogen atoms stemming from the process HI + hv = H + I. This ratio must be considered inaccurate, since it yields E ^_4.5 ± 0.8 for 264 the E of the reaction H + HI = H2 + I, which contradicts the data of all other work. 65. See also [1190]. 66. The k ratio of the reactions H + HI = H 2 + I (4) and H + I 2 = HI + I (5) is 0.075 ± 0.009 at 667° and 0.083 ± 0.007 at 800°. The possibility of consid- ku erable inaccuracy in the calculation of r- 2 - in [1449] is pointed out in [799]. k 5 67. See also [1287, 1491]. ke)' 68. The k ratio of this reaction to the reaction H + HI = H 2 + I is 4.95 exp ( ' 69. The k ratio of this reaction to the reaction H + HI = H 2 + I is 12 ± 1, the difference E = ± 0.25. 70. The data of [1436], recalculated on the basis of a more exact value for the equilibrium constant H 2 ^ 2H, are given in [554]. 71. Obtained from the data of [43, 379, 1316]. See also [547]. 72. Calculated by the least-squares method on the basis of [379, 554, 1436]. 73. Obtained from the k of the reaction Br + H 2 = HBr + H [196] and from K. 74. From the data of [198] near 500° we obtain E = 0.5 ± 0.5. 75. Given with reference to [81] and [305]. 76. On the basis of the data of [659], the value 0.06 was obtained for the k ratio of the reactions H + HI = H 2 + I and H + I 2 = HI + I. The rate constant of the first reaction was calculated from k_ and K. 77. The authors also do not exclude the reaction H + C1 2 = HC1 + C10. 78. Given as the recommended formula in [1289] and [1290], with reference to [474] 79. The expression 3 exp ( jr= — j was obtained for the k ratio of the reactions H + C0 2 = OH + CO and H + H 2 = H 2 + OH. !. Obtained from k_ = 5.6 x 10 11 exp (- 1 ^ 8 ° ) and from K. 80. 265 81. Obtained from the measured k ratio of this reaction to the reaction H + D2O = HD + DO and from the k of the latter. 82. Calculated on the basis of the data of [1505] and of the equilibrium constant H 2 =^ 2H [1765]. See also [164]. 83. According to [1289], E = 33.0. In [594], with reference to [1589] and [1691], is given the formula k = 1.3 x 10 15 exp / ±= — ). In [1289], with reference to Kaskan and Browne, the formula k = 2.7 x l0 17 T-°« 79 exp( ^- — ) was given. See also other formulas in [1289] . 84. This formula was used in [497] in the temperature interval 750-1,000°. 85. The authors do not exclude the reaction of H2 with N2H3 . 86. Obtained using the data of [533] and [1364]. 87. Obtained on the basis of [469, 533, 1364]. 88. For other formulas and the values obtained for k by a number of authors, see [1288]. 89. Obtained on the basis of the measured k ratio of the reactions H + NO2 = /3 130 \ OH + NO and H + CI2 = HC1 + CI, 0.16 exp^Hb — ), and of the recommended k for the latter reaction. 90. Obtained on the basis of the measured (in [49]) k ratio of the reactions H + 2 + H 2 = H0 2 + H 2 and H + N0 2 = OH + NO, equal to 1.01 * 10 2 ± 10% (T = 633°) , and of the recommended k for the first reaction. 91. Calculated on the basis of [49, 1243, 1344] with the more accurate values of the constants given in [49, 1344] obtained using the recommended values. 92. The formula k = 10 13 - 17 exp (- 2 ^°° ) satisfies the data of [258, 386, 390]. 93. See also [742, 1288]. The authors of [258] point out that k is essentially- independent of the temperature. 94. Obtained from the k of the reaction D + CHi^ = HD + CH 3 (multiplied by 1.4) 266 using the known k of the reaction D + H2 = HD + H. 95. The data of [163, 539, 845, 1276, 1695 and 1704] were used. (o onn \ RT )' 97. Obtained on the basis of [163, 473, 539, 845, 943, 1695, 1704 and 1746]. 98. Obtained from the data of [93, 94, 539, 963, 966, 1015, 1036]. 99. Obtained in [541] on the basis of old data given in [1424]. 100. Calculated by the least-squares method on the basis of [473, 539, 845, 1695, 1696, 1702, 1704, 1746 and 1757]. 101. In [1522], and also in [1423] and [1430], it is assumed that the reaction takes place according to the scheme H + C 2 H6 = CH^ + CH3 . 102. The activation energy of the reaction of addition of a hydrogen atom to -propylene is taken to be 2.2 [290]. 103. The enthalpy of the reaction is taken to be AH 2 g8 = 6.2. 104. The formula k 2 = lO 12 - 408 /F exp(- »2 ) for the k of the reaction H + 2 = OH + was used in calculating the given k (from the measured k ratio) . On the basis of the recommended formula we get k = io 13 * 90 exp (- — :h= — ) for the reaction with C3H8 and k = 10 ltf * 01 exp(- -rr — for the reaction with / 7 330 \ iso-C4H 10 . For the reaction H + C2H4 -* C 2 H 5 we get k = 10 13 * 67 exp (- -g= — J. 105. Estimate, taking the data for the paraf fines into account. 106. The value 38 was obtained in [86] for the ratio of this constant to the k of the reaction H + 2 = OH + at 813° (see [80]); a value of 40 was obtained in [1718] at 753°. 107. The formula was obtained on the basis of [1423, 1430, 1522], 108. Obtained using the data of [162, 436, 541]. 267 109. Obtained on the basis of the data of [93, 161, 162, 436, 541]. 110. Obtained on the basis of the data of [93, 436, 541]. 111. Calculated by the least-squares method on the basis of [93, 331, 541, 1423, 1430, 1522, 1697, 1698]. See also [1695, 1704]. 112. The difference in E of the reactions H + C 3 H 8 = H 2 + C3H7 and H + C3H 6 ■»■ C3H7 is 4. 113. The k of the reaction H + 2 = OH + [93a] was used. Using the recommended constant, we get 11.46 instead of 11.66. 114. Obtained on the basis of [83, 436, 905]. 115. Calculated by the least-squares method on the basis of [83, 905, 906, 1644, 1646, 1698, 1757, 1766, 1767]. The values measured at room temperature in [1367, 1428, 1518, 1522] were not considered. The formula k = io 13 ' 96±0 ' n x exp(- — '- irE J is obtained in the temperature interval 333-512° on the basis of [905, 906, 1644, 1646]. 116. The value of k for the reaction H + 2 = OH + (5.1 x 10 9 ) at 520°C was used [82]. The recommended figure yields 11.58 for reaction with n-C^Hio and 11.83 for reaction with iso-Ci+Hio* 117. Calculated from the measured k ratio of this reaction and the reaction H + C 3 H 8 = H 2 + C3H7 0.5 exp(-^= — ) and the k of the latter; k = 10 14 * 12 x / 8 200 \ exp (- —£7= — I. Using the recommended formula for the k of this reaction we get 1 ml2 71 / 5,150 \ k = lO 1 ^-' 1 exp(- — — J. 118. The data of [436] were used, assuming that the k of the reactions D + RH = DH + R and H + RH = H 2 + R are identical. 119. Calculated by the least-squares method on the basis of [98, 906, 1646, 1698] using the recommended values for the constants. 120. Calculated by the least-squares method on the basis of [98, 1646]. 121. Obtained using the k of the reaction of H with trimethylethylene [15]. 268 122. Obtained assuming that the rate constant of the reaction H + H 2 = H 2 + H is 10 8 . 1 , according to [613]. This figure practically coincides with that mea- sured in [1318], which must be considered more accurate. 123. The use of the recommended k of the reaction H + 2 = OH + yields 11.22 (instead of 11.40). 124. The authors of [1511] state that the constant they measured may be valid for the reaction H + C 2 H 2 ■* C^Ho. 125. The ratio of the k of this reaction to that of the reaction H + C^H^ -* C 2 H 5 is 1.7+ 0. 2. 126. Obtained from the measured ratio of the k of this reaction to the k of the reaction H + C 2 H 4 -> C 2 H 5 [2], and E 2 = 4.1 [828]. 127. The ratio of the k of this reaction to the k of the reaction H + C 2 H^ -> C 2 H 5 is 1.15 ± 0.10. This figure was obtained for dilution with carbon dioxide, which leads to thermalization of the hydrogen atoms. In [1432] the authors obtained 2.32 + 0.11 (without dilution). 128. The k ratio of this reaction and the reaction H + C^H^ -> C 2 H 5 is 1.9 ± 0.1. 129. The k ratio of this reaction and the reaction H + C^H^ -+ C^H^is 1.05 ± 0.05. This figure was obtained for C0 2 dilution, which leads to thermalization of the H atoms. The figure 2.00 + 0.05 was obtained without dilution. 130. The ratio of the k of this reaction to the k of the reaction H + C^H^ -> C 2 H 5 is 3.2 ± 0.1. 131. The ratio of the k of this reaction to the k of the reaction H + C^H^ -> C 2 H 5 is 3.7 ± 0.1. 132. The ratio of the k of this reaction to the sum of the k of the reactions + HCO = OH + CO and + HCO = C0 2 + H is 3 ± 2. 133. Measured in [300] was the ratio of the k of this reaction to the k of the reaction H + C 3 D 8 = HD + C3D7. 269 134. The formula was obtained on the basis of the k of the reaction D + H2 = HD + H, k = 1.2 x 10 12 /F exp(- 5 jg°° ) [943], taking [187] into account. On the basis of the recommended formula for the k of the latter reaction we get the formula k = 10 13 * 92 exp /- SZ ) for the k of the reaction H + HCHO = H 2 + HCO and the formula k = 10 13 - 22 exp(- fa ) for H + DCDO = HD + DCO. 135. Calculated using the k of the reaction D + H 2 = HD + H, k = 3 * 10 13 x exp( £= — ) [1394, 1491]. On the basis of the recommended formula we get k . 10 13.92 exp (. *j|30 . 136. Obtained on the basis of the measured values Eg - E = 1,010 ± 80, A_ 1.13 ± 0.09 (H + D 2 C0 = HD + CDO, B) [1094] and E A = Eg, A A = A g [166, 1529]. k k B 137. Obtained assuming — = — , where k, k , kg, and k p are the rate constants of the reactions H + HCHO = H 2 + CHO, D + DCDO - D 2 + CDO (A), H + H 2 = H 2 + H (B) and D + D 2 = D 2 + D (C) , on the basis of the data of [187, 943, 1094, 1394]. 138. Obtained assuming r— = 1.4 (see the preceding remark) on the basis of [187, 943, 1094, 1394]. 139. Obtained on the basis of [87, 223], assuming equality between the k of the reactions H + DCDO - HD + DCO and D + DCDO = D 2 + DCO, taking into account the recommended k of the reaction D + H 2 = HD + H. 140. See remark 134. Using the recommended formula for D + H 2 = HD + H we get 1 ir.13 22 / 5,330 \ k = 10 13 « ZZ exp(- -g — J. 141. The authors of [979] assert that the interaction of H with CH3CHO is repre- sented not by the reaction H + CH3CHO = H 2 + CH 3 CO, but by H + CH3CHO - CHit + HCO [1077] . 142. Calculated on the basis of [722, 1757]. 143. Obtained assuming that the k of the reaction CH 3 + 2 -*- inactive products is considerably greater than the k of the reaction CH3 + 2 = OH + HCHO. 270 144. Calculated by the least-squares method on the basis of [24, 1409]. 145. The k ratio of the two reactions is 0.09. 146. The k ratio of the two reactions is 3.3. 147. A = 0.24. 148. The k ratio of the two reactions is 0.33. 149. The k ratio of the two reactions is 1.6. 150. The k ratio of the two reactions is 3.4. 151. The k ratio of the two reactions is 0.55. 152. The k ratio of the two reactions is 0.21. 153. The k ratio of the two reactions is 0.38. 154. The k ratio of the two reactions is 1.5. 155. Obtained from the measured ratio of the k of this reaction to the k of the reaction H + HI = H 2 + I, k = 10 12 * 04 . 156. The steric factor is taken as 0.1. 157. The authors note the particular purity of the H£. 158. Given in [1491], with reference to [1413], is log k > 17.6. 159. n = -1 was chosen arbitrarily. 160. The accuracy is estimated as ±50%. 161. Obtained taking [1322, 1374] into account. 162. Calculated from graph 6 in [1459]. 163. The constant k for M = Ar in the temperature range 300-2,000° was calculated in [140, 148] under various assumptions as to the parameters determining the 271 interaction of the colliding particles. 164. The accuracy is estimated as ±30%. According to the data of the author, the effectiveness of Kr and Xe is equal to the effectiveness of Ar. 165. Calculated by the least-squares method on the basis of [829, 981, 983, 1220, 1322, 1459]. 166. Calculated from the data of [18] with allowance for diffusion and convection in the flux. 167. The authors of [983] believe that the somewhat lower value they obtained for the constant kp, compared to the data of prior papers, must be explained by the presence of water in the hydrogen in these papers. They assume that the temperature-dependence of k (M = Ar) in a broad temperature range is closest to k ~ T~ , even though it is close to the room temperature k ~ t~ 0,6 - • . 168. The measurement error is estimated by the author to be 20%. 169. Obtained under the assumption that the efficiencies of N 2 and H2O are the same. 170. The figure given in [1339] is divided by two in conformity with the chosen determination of the constant k . P 171. Calculated by the least-squares method on the basis of [18, 20, 468, 469, 525, 809, 829, 965, 1055, 1322, 1413, 1437, 1459, 1627, 1673]. 172. It is assumed that the efficiencies of N 2 and H2O are the same in the reactions H + H + M = H 2 + M and H + OH + M = H 2 + M [468]. 173. This figure was obtained on the basis of the incorrect assumption that only H 2 molecules are effective as particles M. 174. The authors of [1491] point out that the data of [983] should be more exact, since in the preceding articles the effect of the presence of water in the hydrogen was disregarded. Given in [1491] is k < 10 16,lf8 . 175. Obtained with allowance for [257, 1072]. 272 176. The efficiencies of CO and CO2 are taken to be the same. 177. Here M refers to gases in the flame. 178. It is assumed that all the gases in the flame are equally efficient [468]. 179. These values of k were taken from calculations of the detonation front in the mixture 2H 2 + + Xe. See also [1287]. 180. Obtained on the basis of [257, 468, 878, 1313]. 181. The authors of [1196] assume that the reaction we studied is H + OH + M = H2O + M, but they note that their method does not permit distinguishing this reaction from the reaction OH + OH + M = H2O2 + M. 182. In the range 1,400-2,000° the authors of [1376] did not detect a temperature dependence of the ratio of the rate constants of the reactions H + H + Ar = H 2 + Ar and H + OH + Ar = H 2 + Ar. 183. Obtained from [468, 1072, 1339]. 184. This figure was obtained under the assumption that the efficiency of H2O is somewhat greater than that of H2, O2 and N2. Since it was shown at a later date [468] that the efficiencies of all these gases are probably quite close to each other, the real value of the recombination constant of H + OH + H2O = H 2 + H2O at 1,650° should be less than that given in the table. 185. M is a mixture of CO and H2. 186. Given without reference. 187. See also [386], The relative efficiencies of He:Ne:Ar:H 2 are 1.0:1.1:1.3:2.2, 188. H-atom diffusion was taken into account. 189. ±30%. 190. Obtained using the data of [395, 620, 699]. 191. Obtained using the data of [79, 395, 621]. 192. Obtained using the constant measured from the location of the upper ignition limit of the mixture H 2 -0 2 . 193. Calculated by the least-squares method on the basis of [371, 395, 621, 982]. 194. See also [247] . 195. According to the measurements of a number of authors, the relative values of the efficiency of various gases (M) at 800° are expressed by the following figures : H 2 °2 N 2 He Ar co 2 H 2 CF, SF 6 References 1 1 - - - 2 10 - _ [1614] 1 0.33 0.55 0.41 - 1.39 6.6 - - [49] (633°) 1 0.35 0.43 - - 1.47 5 - - [1745] 1 0.37 0.43 - 0.18 1.53 - 2.29 2.65 [1019] 1 0.35 0.43 0.36 0.20 1.47 14.3 - - [1006,1491] 1 -- - - - - 6.4 - - [85] See also [1354] . Also given in [1019] are the relative efficiencies of var- ious gases for the reaction D + 2 + M = D0 2 + M. In the cited paper the question of the efficiency of various molecules is discussed from the view- point of collision theory and of energy exchange (see also [455, 1563]). 196. Obtained under the assumption that the efficiency of H2 is greater by a factor of five than that of argon. Recommended in [395] is the formula k = 2 x i 15 exp(-^P) or 5 x 10 21 T" 2 . 197. Obtained on the basis of the data of [264, 788]. 198. Obtained under the assumption that E^ - -3- x E5 = 0, where E^ is the E of the reaction H + H0 2 = 20H and E 6 is the E of the reaction 2H0 2 = H 2 2 + 2 . 199. Warren [1573] found that the temperature coefficient of the second ignition limit of hydrogen corresponds to E = 20; hence, in view of the fact that the E of the reaction H + 2 = OH + is 16-17, we get E = 3-4 for the reaction H + 2 + M = H0 2 + M. See also [79] . 200. The efficiency of 2 amounts to 0.49 of the efficiency of H 2 . 274 201. The authors of [787] consider the data of [99, 1221, 1328] to be compatible, assuming that the reaction has an E = -4. 202. Calculated by the least-squares method on the basis of [79, 395, 972], In the last reference the efficiency of H2 is taken to be five times greater than that of Ar. In reality, however, this difference is probably closer to 10 [1745], and the k of [395], multiplied by two, is taken for the calculation. 203. Obtained on the basis of [99, 1221, 1328] (see also [788]), assuming that the increase in the ratio JEIl 2 with increasing temperature, found by Warren [1573], is due to the difference in activation energy of H + O2 + M = HO2 + M [4] with M = 2 and H2 . We note that Warren himself interprets this fact differently. 204. According to [85], the efficiency of H2O relative to that of H2 in the range 733-813° is 6.4 ± 0.7; according to [95] it is 6.0; according to [1744], in the range 712-738°, it is 5.5; according to [1715], in the range 769-858°, it is 5.0; and according to [49], at 633°, it is 6.5 ± 1.6. According to [1614], H2O is more efficient than H2 in the reaction H + O2 + M = HO2 + M by a factor of 14 at 793° and, according to [264, 265] by a factor of 60 at 319°. 205. Obtained from the ratio of the k of the reactions H + S0 2 + H 2 = HS0 2 + H 2 and H + O2 + H2 = HO2 + H2, equal to 2.0 ± 0.3, and from the k of the second reaction, as calculated from the data of [78, 92, 99, 787] (7.24 x 10 15 ). The recommended formula for the second reaction yields 10 16 . 3 0±1 . 03 < 206. The authors do not exclude the possiblity that the constant they measured is too high. 207. See [1593]. 208. According to [875] the three principal components of the burned gas, N2 , H2 and H2O, are not greatly different in efficiency than M (within one order of magnitude). The two values were obtained by different methods. 275 209. Assuming that M = H 2 0, the authors of 1875] get k - 10 17 * 6 . 210. p = 6.7 mm Hg. 211. The data of [956, 1217] were used. 212. Obtained using the k recommended for the reaction H + n-C^Hin = H 2 + CuHq. 213. The measurements were made at a total pressure of 2 mm Hg. This induces us to doubt the conclusion of the authors of [245] that the reaction is second- order and, consequently, to doubt the accuracy of measurement of k. 214. At room temperature (290-300°) the relative values of the k of H-atom addition to various molecules (assuming that the reaction is second-order) are express- ed, according to the data of various authors, by the following figures [1491]: iso- iso- trans- om C 3 H 6 Ci+Hs-l Ci+Hs 0^8-2 CijH 8 -2 (CH3) 2 CC(CH 3 )2 CH 2 CHCHCH 2 C 6 H 6 Literature 1 0.32 - 0.76 1.06 0.83 0.98 - - [15,1105,1106] 1 1.6 - __ [218] 1 1.79 1.94 4.41 0.84 1.05 1.45 8.67 - [847] 1 1.3 - 13.3 0.94 0.52 2.05 23.5 0.1 [1644, 1645] 215. Calculated from the measured ratio of the k of the given reaction to the k of the reaction H + C 3 H 8 = H 2 + C3H7. The formula k = 10 13 * 81 exp (- 7 > 830 \ \ RT ' was chosen for the latter in [97]. 216. Obtained from the measured ratio of the k of the given reaction to the k of the reaction H + 2 = OH + (mean value -466) using the recommended k of the last reaction. 217. Obtained on the basis of the data of [97, 847, 1644]. 218. Calculated by the least-squares method on the basis of [97, 220, 847, 1116, 1644]. 219. Calculated by the least-squares method on the basis of [97, 220, 847, 1116, 1644, 1728]. 276 220. Obtained from the measured ratio of the k of the reactions H + C^Hi^ + H2 = C 2 H 5 + H 2 and H + 2 + H 2 = H0 2 + H 2 (3.12 ± 0.3) and from the k of the last reaction (2.0 x 10 16 ). The use of the recommended value yields log k = 17.39 221. Used are the data of [97, 753, 1294], from which we get the formulas k = 10 8 - 97 exp(- jg ) for the reaction C 2 Hf = C 2 H 4 + H and k = 10 13 - 47 exp x (- RT -^= — ) for the reaction H + C 2 ^ = C 2 Hj [753]. It is assumed that de- activation of C 2 H 5 takes place for each collision with H 2 . The ratio of the efficiencies of H 2 , 2 and N 2 is 1:0.75:0.4. 222. From [436] we get 10 * 90 exp/ — ) f or the ratio of the k of the reaction H + H 2 S = H 2 + SH to that of the given reaction. Hence, on the basis of the E of the first reaction, 2.7, [1562a], we get E = 1.74. 223. Disregarded in calculating the constant was its dependence on the pressure, which varied from 5 to 150 mm Hg. 224. The data of [290, 436] were used. 225. Pressure = 5 atm. £= — ) for the k of the reaction 6,220 RT H + C 3 H 8 = H 2 + C3H7. 227. Obtained from relative measurements for the accepted value of the k of addi- tion of H to trans-C lt H 8 -2; k = 6.3 x 10 11 . 228. See also [436]. 229. The difference between the E of the reactions H + C 3 H 6 -> CH3CHCH3 (1) and H + C 3 H 6 ■*- CH 3 CH 2 CH 2 (2) in the temperature interval 303-473° is E 2 - E x = 2.4 [1135]. It is therefore necessary to assume that iso-C 3 H7 forms pre- dominantly at temperatures close to room temperature. 230. Calculated from the ratio of the k of the given reaction to the k of the reaction H + C 3 H 8 = H 2 + C 3 H 7 , k = 10 12 - 2 /F exp (- ^~^). Using the data of [290, 1400] the author of [1644] finds k = 10 12 - 8 exp (- 1>5Q0 ) for the reaction H + C 3 H 6 ■* C 3 H 7 ; then, taking this formula as a standard t "he gets k =To T2 ^ 9 ~exp(- J ^ L ) for H + C^ •> C 2 H 5 and k = 10 13 - exp (- ^|) 277 for H + C 3 H 8 = H 2 + C3H7. 231. Calculated from the measured ratio of the k of the given reaction to the k of the reaction H + C 3 H 8 = H 2 + C3H7; k = 10 12 - 2 /F exp (- 7 '^ 00 ) [1644]. r= — ) was chosen for the k of the standard reaction H + C3H8 = H 2 + C3H7. 233. Taken as standard. 234. The accuracy is 15%. 235. The recommended formula for the k of H addition to trans-Ct f H3-2 was used. 236. The pressure is several mm Hg. 237. According to [805], the k measured in [464] must be increased by about 40%. 238. The hydrogen pressure is 1-15 mm Hg. 239. This figure is considered by the authors to be more exact than the one obtained earlier in [1106], owing to the better purification of the benzene in [15]. 240. Obtained on the basis of a different interpretation of the data of [1192] under a number of assumptions . 241. E is the threshold of the reaction D* + H 2 = DH + H, where D* is a hot atom formed during photolysis of DX (X = I, Br). 242. v* = 1136.21 cm" 1 . 243. See also [1581] . 244. Formula obtained on the basis of the data of [519, 613]. 245. Calculated by the least-squares method on the basis of [187, 995, 1318, 1585]. 246. The value calculated from the theoretical ratio of the constants [1394] and from the k of the reaction H + H 2 = H 2 + H, namely, 10 11 * 69 [995], is 10 11 ' 30 . 278 247. For calculations of the k of the given reaction see [187, 777, 1394]. 248. The value calculated from the theoretical ratio of the constants [1394] and from the k of the reaction H + H 2 = H 2 + H, namely, 10 11 - 69 [995], is 10 11 - 17 . 249. The data of [995] must obviously be considered as more accurate. We note that the value of k (at 1,000°) calculated by the given formula, namely, k = 10 11,tf2 , agrees essentially with that obtained on the basis of the ratio of the constants [1394] and of the k of the reaction H + H 2 = H 2 + H, i.e., 10 11 - 69 [995], namely, 10 11 - 36 . 250. The ratio of the rate constants of the reactions D+D 2 = D 2 + D, D+ ortho-D 2 = 1 ? para-D 2 + D and D + para-D 2 = ortho-D 2 + D is ltyiy. According to [187] , the values obtained for k in [519] should be half as large. According to [519], the difference in E of the reactions D + D 2 = D 2 + D and H + H 2 = H 2 + H is 0.51. 251. Theoretical calculations of the k of the given reaction are presented in [777, 995, 1394]. 252. According to [519], the rate of this reaction (2) at 873-923° is slower by a factor of 2.4 than the reaction H + H 2 = H 2 + H (1); E 2 - %i =0.51. 253. Calculated by the least-squares method on the basis of [973, 1698, 1722]. The formula agrees essentially with that calculated from the mean lg A and E. 254. Measured was the ratio of the k of the given reaction to the k of the reaction D + I 2 = DI + I (0.073). 255. E = 6.2 was obtained from the temperature coefficient of the reaction rate. Assuming that the steric factor is 0.1, the authors of [616] obtain E = 11. They do not rule out the possibility that the reaction proceeds in part on the surface at room temperature. 256. E = 12 is given in [612] without reference to the authors. 257. Obtained on the basis of the measured ratio of the k of the reactions D + H 2 = HD + H and D + D 2 S = D 2 + DS to the k of the first reaction; k = 10 13 * 1 * 1 x exp(- LM) [519] . 279 258. Obtained using the recommended formula for D + H2 = HD + H. 259. According to [1102], identical steric factors (0.33) correspond to the re- actions of D with NH3 and D with PH3 . 260. From the ratio of the rates of the given reaction to the reaction H + D2 = HD + D, with the E of the latter equal to 6, we get 12.5. 261. E = 14-15 is given in [612] without reference to the authors. 262. The formula was obtained using the rate constant of the reaction D + H2 " HD + H; k= 1.2 x 10 12 /F exp(- 5 ^°° ) [943]. 263. Obtained using the recommended formula for the reaction D + H2 = HD + H. 264. E was obtained under the assumption that the steric factor is 0.1. 265. Obtained with the k of the reaction D + H 2 = DH + H equal to lO 13 * 1 * exp x I ™ — ), according to [519]. The use of the recommended formula yields / 11 730 \ k = 10 14 * 70 exp( :*= — j. This formula, which was obtained on the basis of the formula given in the table must be considered as hardly probable in view of the large values of A and E. 266. The k ratio of the given reaction and of the reaction D + iso-C^Hy -*■ C3H7D is ~ 0.2. 267. See remark 265. Using the recommended formula for D + H 2 = HD + H we get k = 10 ,b exp I- — *= — ). This expression is in good agreement with the re- sults obtained in [1367]. In the case of reaction D + n-C^Hjo = HD + C^Hg, use of the recommended expression also gives better agreement with [1367]. 268. See remark 265. Using the recommended formula for D + H 2 = HD + H, we get k - io»*.»» «p(- *j|3&). 269. See remark 265. Using the recommended formula for D + H 2 = HD + H, we get k-10».™«p(-2jP). 270. The discrepancy between the data of [1104] and [1367] is explained by the authors of [1367] as being due to the difference in the chosen reaction 280 mechanism. The results obtained in the two papers on the consumption of hydrogen atoms agree. 271. See remark 265. Using the recommended formula for D + H2 = HD + H, we get k = ioi-.oo «p(-2jZ30). 272. See remark 265. Using the recommended formula for D + H 2 = HD + H, we get k=10^exp(-^P). 273. See remark 134. Using the recommended formula for D + H2 = HD + H, we get 1 ir.13 22 / 4>430 v k = 10 ics « z ^ exp( g — J. 274. The accuracy is estimated to be 30%. 275. According to graph 8 in [1459] the rate constant of the reaction D + D + D = D2 + D decreases approximately by a factor of 4 when the temperature increases from 3,000 to 4,500°. 276. The formula was calculated from graph 7 in [1459]. 277. The efficiency of O2 is 0.22 of the efficiency of D 2 • 278. The relative values of the efficiencies of stabilization of DO* (relative to 2 ) are D 2 :Ar :N 2 :C0 2 rCF^ :SF 6 - 1.95:0.52:1.55:3.82:2.59:6.28. 279. The rate constant is referred to the k of CH3CI, which is taken to be 5 x 10 10 . The activation energy was calculated on the basis of the formula k = 5 x 10^ expf-f^). 280. The activation energy was calculated from the ratio of the effective number of collisions to the total number. 281. Calculated from the average number of collisions per conversion. 282. See also [733]. 283. Given with reference to the unpublished study of Warhurst and Whittle. 284. Given with reference to the unpublished study of Quayle and Warhurst. 281 285. See also [717] . 286. The pre-exponential factor Is taken to be 5 x 10 11+ . 287. The pre-exponential factor and the activation energy were calculated on the basis of [596]. These data differ strongly from those obtained earlier and, in the opinion of the authors of [596], are more accurate. 288. The k ratio of the reactions Na + CNC1 = NaCl + CN and Na + CNC1 = NaCN + CI, as defined from the yield of NaCl and NaCN, is 4 at 300°C and about 8 at 500°C. 289. Given with reference to the unpublished work of Walker and Warhurst. 290. Recalculation of the data of [514] with the introduction of a correction for the temperature dependence of the light absorption of Na. 291. The activation energy was calculated by the formula k = 10 llf « 7 expl- ==■). 292. Given in [881] is the quantity k(M) . The constant was calculated for p = 1 atm. M corresponds to a mixture of H 2 , 2 , N 2 and H 2 0. 293. The constant was measured for p = 6 mm Hg. C 3 H 8 294. See also [883], p. 145. 295. See also [883], p. 146. 296. This number is given with a reference to an unpublished work. It is also indicated that the temperature at which the given constant was measured should be considerably higher than 300°. 297. See also [240, p. 22; 706, 894]. 298. Given with reference to [1551]. 299. Calculated by the least-squares method on the basis of the data of [384, 388, 389, 938, 1066, 1434, 1551, 1622]. 300. The authors of [689] present arguments which insist on the greater accuracy 282 of their data compared to the previously obtained value of k = 10 9 «08 a t 293° [1305] . 301. See remark 300. The previously obtained value is 1010.08 a t 293° [1305]. 302. Given in [689], with reference to [1240], are the values 10 10 * 52 at 291° and 10 10,5 at 328°, which differ from those calculated on the basis of the given formula by a factor of 2.5. 303. In the opinion of the authors of [1612], the reaction proceeds via the for- mation of an intermediate complex HC1N, which then reacts with an N atom. 304. Calculated from the measured k ratio of the given reaction and the reaction + OH = O2 + H (1.4 ± 0.1) and from the k of the latter reaction, as mea- sured in [394] . 305. See other formulas in [1288]. 306. It is assumed that the reaction takes place in an ideally homogeneous reactor. 307. The k ratio of the reactions N + 2 = NO + and N + NO = N 2 + is 1Q0.97 exp |_ 18^00). 308. The ratio of the k of the reaction N + 2 = NO + to the k of the given reaction is about 0.07. 309. Given with reference to [631]; see also [1639]. 310. Calculated on the basis of the data of [384, 388, 389, 758, 894, 1241, 1550]. 311. The discrepancy between the data of [1546] and [1244] must be attributed, apparently, to the difference in the methods of determining the total constant. 312. The k ratio of the reactions N + NO2 = N 2 + and N + NO2 = 2N0 is 4.7 ± 1.2 and is independent of the temperature in the interval 300-700°. See also [727] . 313.' See also [1241] . 283 314. The strong discrepancy between the data of [1244] and [726] (differing by about 2 orders) is undoubtedly due to method errors committed in one of the studies. The data of [1244] must apparently be considered as being closer to reality. 315. The over-all rate constant (of the reaction N + N0 2 = 2N0, N 2 + 0, N 2 + 2 , N 2 + 20) is (l.lj ± 0.1 3 ) x 1013 [1244]. 316. According to [310, 310a], the reaction of N atoms with C0 2 is of the second order in N and of the first order in C0 2 , both at 196° and at 298°, and is, apparently, a reaction between N 2 (A^E + ) occurring during the recombination of N atoms and C0 2 : N 2 + C0 2 = N 2 + CO + 0. 317. The data of [1241], obtained for the kinetics of the reaction in its earlier stage, must be considered as more accurate. 318. The constants were calculated using the k of the reaction of N with propane (apparently, N + C 3 H 8 = NH + CH3CHCH3) , k - 10 12 - 72 exp (- 5>50Q ) , \ RT ' assuming that only the N atoms are active particles. The authors of [867] state that in the low-temperature region the reaction apparently takes place by means of excited N molecules, but by means of N atoms in the high-temper- ature region. In the latter case they do not rule out the possibility of a chain-reaction mechanism. 319. According to [178], N + C 2 H 6 ■+ NC 2 H 6 -*. HCN + H 2 + CH 3 . 320. In the opinion of the authors of [1663], the reaction follows the scheme N + C 2 H 6 = HCN + CH 3 + H 2 . 321. In [676] k was measured in the temperature interval 273-377°. The Arrhenius plot, constructed by the least-squares method using points considered by the authors to be more reliable (in the interval 273-325°), corresponds to the r 1 1 mlO 56 + 62 / 290 ± 840 \ formula k = 10 1U •°°- u > 0/L exp I — I. 322. It is shown in [760] that the reaction of N atoms with C 2 Hi + cannot be repre- sented by the simple mechanism N + C 2 Hi t = HCN + CH 3 , N + CH 3 = HCN + 2H, 284 a fact which is reflected in the dependence of the measured k on the quantity (C 2 H4) (N) The real k is obtained by extrapolating the measured k to (C2HO0 -> 0. (N) This is probably true of the reactions of N with all the olefins. 323. This number was obtained by the titration method using NO. 324. The rate constant was measured from the yield of HCN. 325. Given is the mean value of k while pointing out the small value of E. The author assumes that the primary formation is the complex C2HI+N, which either reacts with the N atom (= N2 + 02*1^) or decomposes, probably to HCN + CH3 . See also [1662] . 326. See also [240, 1626]. 327. Obtained for the initial stage of the reaction; see remark 322. The given constant probably corresponds to the reaction of addition of an N atom to the olefin. 328. Turbulent mixing of the gas is assumed. 329. See, however, [143, 240, pp. 17-20; 1655, 1658]. 330. Of the two values preference must probably be given to the lower value [762, 763]. See remark 342. 331. Calculated from the k of dissociation, measured at 6,000-10,000°; see [276]. 332. See also [1015, 1016]. 333. See, however, [276]. 334. Calculated on the basis of the data of [309, 763], assuming that k ~ T~ 2 . 335. According to [763], k is temperature-independent in the interval 273-453°. 285 336. Obtained from the data of £276, 381, 965] . 337. See also [240, p. 18]. The authors of [240] note the unpublished data of Thrush, according to which the E of N atom recombination is -0.975 ± 0.14. 338. According to [512] this number should be increased to 16.21. 339. M is a mixture of N2 and N. 340. The decrease in the k of N atom recombination with increasing temperature also follows from theoretical calculations of this constant [148]. 341. See also [1015] . 342. Calculated by the least-squares method on the basis of [105, 276, 309, 324, 512, 763, 965, 1015]. Not taken into account were the high values of k, which may be due to the presence of impurities. 343. See also [13] . 344. Given in [312] are the relative efficiencies of H2 , He, Ar, N2 , CO2 , N2O and H 2 in the recombination of N + N, N + 0, and also 0+0, I + I, 0+N0, H + O2 and + O2 , from the data of various authors. 345. M = O2, 0, Nq or Ar. The formula was obtained on the basis of the statisti- cal theory [908] using the data of [303] for the reaction 20 + Ar = O2 + Ar. 346. See also [240, 1655, 1656, 1657]. 347. The figure 10 1 5 « 59±0 • Qlf is given in [240] with reference to Thrush's commu- nication. 348. The theoretical value of the constant, calculated in [965], is 1.9 x 10 15 . According to the calculations of [965], at high temperatures the constant should vary with the temperature as 1/T. A rough estimate of the constant of recombination of nitrogen and hydrogen atoms obtained in an electrical discharge yields k = 2 x 10 15 at room temperature [891]. 349. M = N2 with an admixture of NO. 286 350. M = NO, or N. 351. M = 2 , N 2 or Ar. 352. The authors do not rule out the mechanism N + C 2 H 2 = CN + CH 2 . 353. See also [1631]. In the absence of 2 the rate of consumption of is less by a factor of 3 to 5 than in the presence of 2 . This is explained quanti- tatively by the formation of H0 2 and by the reaction of with H0 2 . 354. Obtained on the basis of [78, 311, 394, 537, 1584, 1632]. 355. Used were the data of [394, 1632] at 400°. 356. Obtained from [78, 537]. 357. The error is estimated to be ±40%. E is chosen arbitrarily as 10.2. 358. Calculated by the least-squares method from the data of [387, 700, 806, 1584, 1632, 1700, 1707]. 359. Calculated by the least-squares method on the basis of [972, 1586]. 360. The atoms were obtained as a result of the processes H + N0 2 = OH + NO, 20H = H 2 + 0. 361. Obtained on the basis of the data of [93, 394] and of K. 362. Calculated using the k of the inverse reaction. The authors of [895] have doubts about the possibility of representing the k of the reaction + OH = O2 + H by the Arrhenius formula. 363. Given in [892] is a value 1 12.78. 364. Given with reference to [450], where the k of the inverse reaction is deter- mined at room temperature. 365. Formula obtained on the basis of measurements at 310° of the k of the inverse reaction, for which E is taken equal to 1, and of the equilibrium constant 287 + H2O ** 20H, which can be represented by the formula n r>oo /17,060 \ = 0.092 exp(-^ — J K = P ° Ph2 ° P 2 in the temperature interval 300-2,400°. 366. Calculated by the least-squares method, according to [242, 450, 474, 880, 892, 1028, 1583, 1623] . 367. The formula k - 10 13 » 56 exp ( ~^-) is given in [217] on the basis of E = 8.7, calculated by the Polanyi-Semenov rule, and of the value of k taken from [1022]. 368. Obtained using k = 1.95 x 10 13 exp (- jg ) for 18 + 18 0N 18 = 18 2 + N 18 [941]. 369. The formula must be considered as incorrect, since k_ obtained from it and from K is too great in value (3 x 10 7 at room temperature) . 370. Calculated by Davidson on the basis of the data given in [631]. The authors of [489] show that according to their data, k at 3,000° should be 35% greater. 371. Given with reference to [631]. See also [706, 1134]. 372. Given with reference to [631, 489]. This formula must probably be considered as being more accurate. 373. The formula was obtained using the data of [894], and also [388, 938, 1066] for the k of the inverse reaction. 374. This formula must obviously be considered more accurate. We note that the E of the inverse reaction (7.5) plus the reaction heat (32) yields E = 39.5. 375. See, however, [894, 899]. 376. Calculation by the least-squares method from the data of [894, 1550] leads ^ c •, 1 -,,U2 92+0 96 / 40,500 ± 6,400 \ to the formula k = io lz « yz - u « 30 exp^- ! — l J. 377. The ratio of the k of the given reaction to the k of the reaction + NO + N0 2 is 0.70. 288 378. It may be possible that the reaction being discussed here is + N 2 = 2N0. 379. From another assumption as to the destruction of atoms in [896], E ~ 26 [530] . Kaufman [891] assumes that the E of this process should be closer to 21. The rate constant in [896] is more in the sense of an estimate. 380. On the basis [896] the formula 10 2 . 62 exp(— jih= — ) is obtained for the ratio of the k of the given reaction to the k of the reaction + N 2 = 2N0. 381. Calculated on the basis of [558, 896]. This formula must be taken as being the most accurate. 382. Formula obtained using the formula for the k of 3 decomposition given in [869]. 383. The given constant is the sum of the constants of + N 2 = 2N0 and + N 2 = 2 + N 2 . In the opinion of the authors of [558], the first is probably prev- alent over the second. According to [896] , the k of the second reaction is less than that of the first by a factor of 6 to 70 in the given temperature interval. 384. The ratios of the k of the given reaction to the k of the reaction + Ci+Hs-l ->- Ct+HsO and to the k of the reaction + iso-Ci+Hg ■*■ iso-C^HgO are equal respectively to 1.9 and 0.34. 385. According to [141] this figure should be increased by a factor of 1.6. 386. The author of [1416] considers the data of [941] to be more accurate than his own data. 387. This value was obtained from the measured ratio of the k of this reaction to that of the reaction + 2 + N 2 = O3 + N 2 (k 2 ), multiplied by the nitrogen concentration. According to [144], k2(N2) = 2.8 * 10 . 388. Obtained on the basis of measurements of the k of the reaction + O2 + Ar = 3 + Ar and of the data of [144, 145]. 389. See also [1032]. 289 390. This formula was obtained in [378] using a more accurate value for the heat of formation of 0. 391. Obtained from the data of a number of authors. 392. See, however, [1366]. 393. The ratio of the k of the given reaction to that of the reaction + O2 + M = n j. vr • -m5 92 / 5,000 ± 1,000 \ O3 + M xs 10°* r ^ exp I — j. 394. Obtained from the measured k ratio of the reactions + 2 + 2 =03+02 (1) and + 3 = 20 2 (2), p- = 2 x 10" 5 and ki = lO 14 - 43 [901]. * ki 395. The authors of [1061] consider this figure to be more accurate than that obtained in [1241]. 396. Schiff [1356] does not exclude the possibility that this figure is too high because of insufficient purification of the gas in the experiments carried out in [1241] . 397. The formula was obtained using the data of [632], 398. The activation energy was taken from [144] with a correction for the correct value of the heat of dissociation of oxygen. See also [145]. 399. Calculated by the least-squares method on the basis of [144, 145, 378, 397, 869, 991, 992, 1061, 1062, 1241, 1731, 1761]. A calculation by [144, 145, 869, 1731] (excluding the rest of the data) yields k = H) 13 - 1510 - 11 x / 5,000 ± 220 \ \ RT /• 400. It was shown in [1632] that the consumption of does not depend on the presence of 2 . 401. See also [1631]. The complex reaction conditions and the number of assump- tions made in calculating this constant make the formula obtained in [1631] not particularly reliable. The authors of [1631] believe that this formula expresses the rate constant of the disappearance of atoms in the presence of a gas reacting with them (in particular, from 4 to 6 atoms are expended for each molecule of H 2 ) . 290 402. Calculated by the least-squares method on the basis of [1632, 1748]. 403. The k ratio of the reactions + CH 2 = CO + 2H and CH 2 + C 2 H 2 ■*■ C3H4. is 2.7 ± 1.0. 404. The reaction is not reliably established. 405. Calculated from the data of [538]. 406. Measured in the presence of oxygen as the carrier gas. 407. Measured in the presence of nitrogen as the carrier gas. 408. A minimum of 8 atoms is expended for each molecule of CH^ . 409. According to [1678], k is the total constant of the indicated reaction and of the reaction + CH4 = CH 2 + H 2 0. 410. + CH 4 = CH 2 + H 2 is taken in [1427] as the limiting process for the reaction of atomic hydrogen with methane and is assigned the measured acti- vation energy 8.1. Not ruled out is the possibility that this process is + CHi* = OH + CH 3 [ 1424, p. 601] . 411. Calculated by the least-squares method on the basis of the data of [13, 245, 539, 1584, 1633, 1678, 1695, 1704, 1710 and 1711]. 412. The rate constant of the reaction + C 4 H 8 -1 -> C^HsO is taken as io 13 « 18tf x 413. The authors of [1678] believe that the given reaction takes place according to the scheme + C 2 H 6 = HCHO + H 2 + CH 2 . 414. Calculated by the least-squares method on the basis of the data of [1584, 1678]. 415. The difference in E of the given reaction and of the reaction of with C 3 F 6 is 1.6. 416. See also [1547]. 291 417. Calculated on the basis of the measured (in [574]) value of k of the reaction of with cis-2-pentene and of the measured (by Svetanovic) k ratios of the reactions of atoms with various compounds. 418. According to [416], at 24°C the k of the reaction + n-C^Hjo = OH + C^Hg is less by a factor of 22 ± 5 than the k of the reaction + 02^ •> 02^0. 419. The author of [1641] states that this reaction probably takes place with rupture of the C-C bond. The rate constant of the total reaction is 10 9,82 . 420. Determined from the measured ratio of the k of the given reaction to that of the reaction + C 3 F 6 -» C 3 F 6 0. 421. On the basis of an analysis of the reaction products the authors of [1680] adopted the following scheme: + C4H10 = HCHO + H2 + CH2CH2CH (ki) and + CitHjo = CH3CHO + H 2 + CH3CH (k 2 ); f = k l = k 2- 422. Calculated by the least-squares method on the basis of the data of [507, 1046, 1703] , which are probably the most reliable. 423. See remark 419. The rate constant of the total reaction is 10 •. 424. See remark 419. The rate constant of the total reaction is 10 9 * 5 . 424a. The Arrhenius equation is not fulfilled. An approximately straight line is obtained only in the interval 225-380° with E = 1.5. The authors consider the following mechanism to be the most probable: + C2H4 = H 2 C CHf = HCHO + CH 2 . 425. The authors take k as corresponding to the sum of the two reactions. 426. This formula must evidently be considered the closest to actual fact, as well as the values of k measured at room temperature. 427. The ratio of the k of the given reaction to the k of the reaction + C2F^ = CF2O + ... is expressed by the formula 10 1,17 exp( jj= — j. 428. The authors of [1682] do not rule out the parallel occurrence of other re- actions. The given formula yields 10 9 * 52 for room temperature, a value which 292 is two orders lower than those measured in [417] and [574] . 429. According to [542], k is weakly dependent on the temperature. The authors do not exclude the possibility of the reaction + C2H2 = HC2O + H. 430. The difference in E between the given reaction and the reaction of with C 3 F 6 is 1.2. 431. The authors of [1444] leave the question of the products of this reaction open, although they believe the splitting off of the H atom to be probable. Calculated in terms of the k of the reaction of with C3F6 , k = 7.7 x 10 11 exp(-^) [1359]. 432. From an analysis of the reaction products the authors of [1681] conclude that CO and aldehydes are formed primarily as a result of the attack of the atom. See, however, [891]. 433. The authors of [1681] associate the constant they measured with ring fracture, 434. Calculated by the least-squares method on the basis of [1444, 1681]. 435. The following relationship was obtained for the reactivities of the different groups in the C 2 H 5 0H molecule at 700-800°C: CH 3 :CH 2 :OH = 3.3:2.8:1.0. 436. The ratio of the k of the given reaction to the sum of the rate constants of this reaction and of the reaction of + HCO = C0 2 + H is 0.8 ± 0.1. 437. See [1424, p. 599]. 438. Obtained on the basis of [595, 1182]. 439. It was shown in [417] that at room temperature the rate of the reaction of with CH3CHO amounts to 0.7 ± 0.1 of the rate of the reaction of with 02^. The recommended value for the k of the last reaction was used. 440. The formula k = 10 13 « 80 exp(- J? ) was obtained in [1462]. The authors of [1049] state that a formula intermediate between the formulas of [1049] and [1462] should be closer to reality. 293 441. Obtained on the basis of the measured ratio of the k of the given reaction to that of the reaction + CHi* = OH + CH3 , 1.1 exp(— — ) and to the k of the last reaction k = (1.7 ± 0.2) x 10 13 exp (- 8 '^°° ) [1584]. 442. The ratio of the k of the given reaction to the k of the reaction + C2H4 ■> products is 1.03. The recommended k was taken for the latter. The ratio of the k of the given reaction to the reaction + C^Hs-l -*■ products is 0.23. 443. The following formulas were obtained for the ratio of the k of the reactions + C2H1+ ■+ C 2 H\0, + C 3 H 6 -> C 3 H 6 0, + C^Hg-l ■> C^HgO and + C 2 H 2 = CH 2 + CO (?) to the k of the given reaction: 10 - 646 exp (- ^fjp), 10° - 60±0 - 04 , — ) and 10 1 * 17 exp ( :h= — ). The rate constant was calculated on the basis of the first of these ratios and of the recommended k for the first of the given reactions. 444. The ratio of the k of the given reaction to that of the reaction + C3F6 = CF3CFO + CF2 is 6.5 and the ratio of the sum of the rate constants of the reactions + C 3 F 6 = FCFO + CF3CF and + C 3 F 5 = CF3CFO + CF 2 to the k of the reaction + 2 + M = O3 + M is 1.85 x 10~ 5 . The ratio of this sum to the k of the reaction + C2H4 = products is 3.45 * 10~ 2 . 445. See also [747]. 446. The following formulas were obtained for the ratio of the k of the reactions + C 2 H 6 =0H + C 2 H 5 , + C 3 H 8 = OH + C3H7 , + C 2 Hi+ ■* C2H4O and + C 3 H 6 -> C 3 H 6 to the k of the given reaction: 10°« 65 exp (- -rj= — ), 10 ' 85 exp x / 1,600 \ in o 974 /650\ . 1rtl 43 / 1,200 \ (- ~tr- )' 10 • exp (-if) and 10 exp (- "RT~)- 447. (M) > 1.7 x 10" 8 . 448. Recalculated in [1140] from the data of [1311] with allowance for the hetero- geneous destruction of atoms. 449. Given in [148] are the theoretical values of the constants of recombination of H, N and atoms and of N atoms with 0, which differ but little from the measured values. From theory it follows that the constant k in these cases should vary in inverse proportion to the temperature. 294 450. This formula was obtained by the least-squares method from the data of [301, 701, 1323, 1636]. The remaining values given in the table for the k of re- combination of atoms on argon were not taken into account, since it is highly probable that their high value is due to the presence of impurities. 451. The temperature dependence k ~ T" 1 was taken arbitrarily. A decrease in the constant k with increasing temperature also follows from theoretical calcu- lations of this constant [148, 1008]. The inverse dependence of k p on T obtained in [1666] was doubtlessly due to experimental errors. 452. It was shown in this reference that the ratio of the efficiencies of the various molecules of M is N 2 :Ar :He:N 2 0:C0 2 :SFg = 1 :<0 .3 : 0.3: 1.4: 3. 0:3.0. The authors view the figure given in [1139] as preliminary. 453. Calculated by the least-squares method on the basis of [1015, 1139, 1140]. 454. The large scatter of the values of k is attributed to the difficulty in allowing for the contribution of the reaction + 2 + 2 = O3 + 2 , which competes with the given reaction at small concentrations of atoms, and also to the possible disagreement between the rates of recombination and formation of 2 when measuring the recombination rate from the absorption spectrum of 2 in the ground state, since a portion of the molecules could have been formed in the excited state (see [891, p. 281]). 455. See the critical comments in [900]. 456. The authors of [966] note the low accuracy in determining k. 457. Calculated by the least-squares method on the basis of [275, 304, 635, 891, 900, 925, 1055, 1065, 1323, 1324, 1741]. 458. The relation k ~ T obtained by the author must be considered erroneous. 459. When p = 7-25 mm Hg the second-order k does not depend on the pressure. The authors state that this indicates the long lifetime of COf. 460. M = N or NO. 461. Mixture of 2 and Xe. 295 462. Given for M = Ar is a rate constant equal to the quantity j* a , where k 3 , 5 / k 4 and k 5 are the k of the processes + CO + M = C0 2 + M (3) , C0 2 = C0 2 + hv (4) and C0 2 + M = C0 2 + M (5). Values of k for He, Ne, 2 and N 2 are also given in [393] . 463. The activation energy was calculated using the data of [393]. The low value of k is connected with the extinction of luminescence [393]. 464. See also [392]. 465. The order 3 was chosen arbitrarily by the authors of [214]. The figure 2 x 10 13 , which is the mean value of k, is given as a lower limit. The upper limit is less than 1 x 10 llf . Apparently the reaction has a negative temper- ature coefficient. 466. Obtained using the k of the reaction + 3 = 20 2 , k = 10 13 « 26±0 . 35 exp ) ± RT 467. See [1289, 1172b] / 4,100 ± 500 \ . ,- [- — * «j ). See page 67. 468. M = CO + 2 . 469. Given in [725] is the formula k = 10 12 . 255 exp (- Jh=- ). 470. Obtained on the basis of the data of [393, 1739]. 471. Obtained from the measured ratio of the k of the reaction + 3 = 20 2 to the k of the given reaction, (4.37 ± 1.67) x exp (- —* ^ j, and the k of the first reaction, k = l O l 3 .26±0.35 exp (_ 4,100^± 500 j [1731]; M = q 2 + CO. 472. Mixture of CO, 2 and N 2 . 473. Calculated for a mean temperature of 490° from the measured ratio of the k of the reaction + 3 = 20 2 (2) to the k of + CO + M = C0 2 + M (3) . The rate constant of the first of these reactions was taken from [1731]. From the data of [604] it follows that j* 2 - = lO 1 - 4 exp(- -Jj — ). The author concludes that £3^0. 474. The authors find that the reaction follows a second-order law even at such a 296 low pressure as 0.2 mm Hg, which is possible only if the lifetime of the quasi-molecule COO exceeds 10 sec. 475. The authors of [1669] and [1670] find that the reaction + CO ■> C0 2 takes place under the experimental conditions (p = 4.2 mm Hg) according to a second- order law. 476. Total pressure (CO in an excess of O2) is 2.5-3.7 mm Hg. 477. The given figure, which is the rate constant of formation of the activated complex, was obtained using the data on isotopic exchange [766] . 478. It was shown in [568] that the discrepancy (of several orders) between the value of k obtained in [449] and the data of other studies is due to the presence of excitation mechanisms. 479. The rate constant was obtained assuming that the collision of NO and and the radiation of light are one elementary act. But on the basis of the idea that the spectrum observed during the interaction of with NO is not con- tinuous (and also on the basis of kinetic data) the authors of [241] believe that the process + NO = NO2 + hv is ruled out. 480. In contrast to [567] , where the light yield was measured over the entire transmission spectrum of NO2 , k was estimated in [889] from the radiation intensity at 5,500 A. 481. Obtained on the basis of the data of [392, 567, 997]. 482. Calculated by the least-squares method on the basis of [255, 392, 567, 879, 889, 997]. 483. The authors of [505] find that He, Ar and 2 are equally efficient. 484. The author considers the efficiencies of N 2 , 2 and Ar to be the same. 485. See also [891]. 486. Given in [903] are the k of the reaction + NO + M = N0 2 + M for various M. The relative efficiencies are He:Ar :0 2 :N 2 :C0 2 :N 2 0:CHi t rNFi^SFg :H 2 = 297 0.83:1.00:1.00:1.55:2.17:2.17:2.34:2.34:2.67:6.33; k(M = 2 ) = 10 16 » 33±0 ' 07 . 487. According to [392], the NO2 formed in this reaction is in the electronically excited state. 488. Calculated by the least-squares method on the basis of [392, 558, 1195, 1582] 489. Obtained from the measured (in [558]) k of the inverse reaction and from K. 490. It is indicated that CO2 and N2O are about 1.5 times more efficient than 0£. 491. M = 2 , Ar or He. 492. M = 2 , N 2 or Ar . 493. See also [861]. 494. C0 2 or N 2 0. 495. Mixture of O2 with Ar. 496. Mixture of N 2 and NO. 497. See also [904] . 498. Obtained using the data of [144, 145, 378, 632, 869, 901, 1320, 1660]. 499. Obtained using the data of [378, 869, 901] and data on the thermal decomposi- tion of ozone [145, 632, 1320, 1660]. 500. The relative efficiencies of the M particles in the reaction + 2 + M = 3 + M at 295 ± 3°: 2 N 2 CO C0,Ar Ar He 3 C0 2 ,N 2 SF 6 Literature 1 0.93 - - - 0.78 2.3 2.4 - [144] 1 1 1 - - 10 - [889, 890] 1 0.89 - _ 0.57 0.77 2.3 2.2 - [327] 1 1 1 - - 2.6 - [505] - l a ) - 0.05 - 0.16 - 0.8 0.14 [1075] lb) 0.5 0.1 - 0.2 1 - [159] 1 0.28 0. 62 - 0.22 0.13 - 0.8 - [928] a) Here the efficiency of nitrogen is taken to be 1. b) These figures characterize the retardation of O3 photolysis. 298 There are no signs of a variation in relative efficiency with temperature [378]. 501. The relative efficiencies are Ar :He:C02 :N20 = 1.0:0.8:5:5. 502. Obtained on the basis of the data of [145, 869]. 503. Calculated by the least-squares method on the basis of [377, 378, 395, 869, 904, 1160, 1355, 1731]. 504. See also [1538]. Not taken into account was the reverse diffusion, which may be of considerable significance under the experimental conditions of [505, 891, 900]. The relative efficiencies are 2 :He:Ar:C0 2 = 1.0:1.0:1.0:2.6. Indications of the presence of substantial quantities of excited 2 molecules formed in the discharge were obtained in [505] . 505. Obtained taking diffusion of atoms into account. Without allowance for diffusion we get 4.6 x 10 lt+ (instead of 6.0 x 10 lt+ ). 506. The figure 10 14 - 02±0 ' 2k was obtained in [454] on the basis of the data of [966]. 507. Calculated from the data of a number of authors, taking into account exchange phenomena in the system O-O2-O3 . 508. The authors disregard the recombination of atoms at the walls. Therefore, the values of k they obtained must be considered as somewhat high [900] . 509. The efficiencies at 298° are 2 :He:Ar:C0 2 = 1.0:0.74:0.90:3.1. 510. Calculated by the least-squares method on the basis of the data of [110, 145, 505, 964]. 511. The formula in [144, 145] must probably be considered as the most accurate. 512. According to [632] the ratio of the efficiencies of 2 and 3 is 0.3 ± 0.05. 513. According to [505] the relative efficiencies are 2 :He:Ar:C0 2 = 1.0:1.0:1.0:2.6 514. Obtained on the basis of [505, 904, 1160]. 299 515. While noting the sharp difference (better than one order) between the value of k measured by them and the values obtained earlier in [889, 1940], the authors find no explanation for this difference. In view of the fact that the values of k differ by a factor of less than 2 in earlier studies, they must evidently be considered as being closer to the true value. 516. The authors of [1155] believe all the previously obtained values of k to be too high because of the failure to take the adsorption of atoms at the walls of the reactor into account. 517. The authors find that the k of the given reaction is appreciably greater than the k of the reaction + 2 + S0 2 = 3 + S0 2 . 518. Mixture of S0 2 and N0 2 . 519. M is flame gas. The rate constant was calculated on the basis of the esti- mated (in [545]) value, at 1,650°, of the k of the reaction + SO3 = 2 + S0 2 (k = 1 x 10 12 ) . 520. Obtained from experimental data in [573] . 521. Obtained from the measured ratio of the k of the given reaction to the k of the reaction + 2 + N 2 = 3 + N 2 [144] . See also [575]. 522. Calculated on the basis of data obtained under the assumption that k = 5 x 10 lt+ for the reaction + N0 2 = NO* [570]. But this assumption con- tradicts the data of [941] . 523. According to [416] the reaction of with C 2 H t+ at 300-400° takes place in accordance with the scheme + C2H4 + C 2 Hi t 0* + CH 3 + CHO or CH 3 + H + CO. Shock stabilization of C 2 H 4 0* leads to C 2 H tt 0. 524. Given in [420] is the ratio of the k of the given reaction to the k of the reaction of with cyclohexane at 25°C and 127°C, and also the ratio of the pre-exponential factors and the difference in E between the given reaction and the reaction of with cyclopentene. 525. See also [418]. Calculations on the basis of the measured k ratio of the 300 reaction of atoms with the given compound and with isobutene; chosen for the latter was k = 1.3 x 10 13 [574]. 526. Given in [1359] is k = 10 13 - 20 exp (- 2 ^°° ). 527. The ratio of the k of the given reaction to the k of the reaction + H 2 CCHCH 3 -»■ C 3 H 6 is 0.17. 528. The ratio of the k of the given reaction to the k of the reaction + C^Fi^ = CF 2 + ... is expressed by the formula 10^«^5 exp I- ). 529. Obtained on the basis of the data of [420, 574]. 530. On the basis of an analysis of the reaction products, the authors of [1679] relate the k they measured to the formation of the complex C^^O, which de- composes into HCHO + CH 2 . 531. Calculated by the least-squares method on the basis of [418, 419, 420, 504, 507, 574, 1359]. 532. The ratio of the k of the given reaction to the k of the reaction + C 2 Fl,. ~ CF 2 + ... is 4. 533. Calculated from the measured ratio of the k of the given reaction to the k of the reaction + N0 2 = 2 + NO. The value for the latter was taken from [941] 534. The ratio of the k of the given reaction to the k of the reaction + C 2 F tt = >20 RT CF 2 + ... is expressed by the formula 10° •" exp (- — j^p). 535. Obtained from the measured ratio of the k of the given reaction to the k of the reaction + CS 2 = SO + CS. The reasons for the discrepancy (by a factor of less than or equal to 2) between the data of the various authors are dis- cussed in [1416] (as well as in [504]). 536. Given are the ratios of the pre-exponential factors of the k of the given reaction and of the reaction of addition to cyclopentene and the difference in activation energies. See also [1416]. 537. The ratio of the k of the given reaction to the k of the reaction 301 + H 2 CCHCH 3 -> C 3 H 6 is 4.8. 538. Calculated on the basis of [504, 574, 1353]. The results of [1416] agree with those calculated by the given formula, within the limits of the measure- ment accuracy. 539. Given in [420] is the ratio of the k of the given reaction to the k of the reaction of with cyclopentene, the ratio of the corresponding pre-exponential factors and the difference in E (on the basis of measurements at room temper- ature and at ~125°C) . 540. The ratio of the k of the given reaction to the k of the reaction + H 2 CCHCH 3 ■*■ C 3 H 6 is 0.50. 541. The ratio of the k of the given reaction to the k of the reaction + H 2 CCHCH 3 -> C 3 H 6 is 0.21. 542. The ratio of the k of the given reaction to the k of the reaction + H 2 CCHCH 3 -> C 3 H 6 is 0.61. 543. The ratio of the k of the given reaction to the k of the reaction + H 2 CCHCH 3 -»■ C 3 H 6 is 0.45. 544. The ratio of the k of the given reaction to the k of the reaction + H 2 CCHCH 3 -*■ C 3 H 6 is 0.011. 545. The ratio of the k of the given reaction to the k of the reaction + C 4 H 8 -1 -+ C^HqO is 0.077. 546. The ratio of the k of the given reaction to the k of the reaction + H 2 CCHCH 3 •* C 3 H 6 is 0.086, 547. The activation energy is estimated to be 27 ± 6. The difference in E of the reactions S + COS = SO + CS and S + COS = S 2 + CO is about 19. 548. A survey of the reactions of sulfur atoms is given in [697]. 549. M corresponds to a mixture of COS with Ar or N 2 . 550. M corresponds to a mixture of CS 2 with Ar or N 2 . 302 551. The k of the reaction Se + C2H4 + CH 2 SeCH 2 was used [292]. 552. The formula for the k of the reaction F + C 2 H 6 = HF + C 2 H 5 , k = 1.00 x 10 13 * expl ^7=-) , was used as a standard. Obtained in 11109] for the k ratio of the reactions F + H 2 = HF + H (kj) and F + CH H = HF + CH3 (k 2 ) in the range 9o« /oqo K i r\* / 500 ± 200 \ 298-423 was jp- = 1.05 expl — J. 553. Calculated on the basis of collision theory. 554. The activation energy was taken arbitrarily equal to zero. 555. See also [581]. 556. According to [31], the k ratio of the reactions F + n-Ct+Hj q - HF + CH 2 CH 2 CH 3 (k p ) and F + n-C^ = HF + CH 3 CHCH 2 CH 3 (k s ) at temperatures of 298 and 459° can be expressed by the formula h and the k ratio of the reactions F + iso-C H H 10 = HF + CH 2 (CH 3 ) 2 CH (k p ) and F + iso-C^Hxo = HF + (CH 3 ) 3 C (kj,) at 298° is ~ = 1.39 ± 0.16. 557. Given in [581] are the relative values of the k of splitting the H atom from the groups CH 2 X, CH 2 and CH 3 . The k of the reactions F, Br + CH 2 XCH 2 CH 2 CH 3 = HF, HBr + CH 2 XCH 2 CH 2 CH 2 (X = H, F, CI) was taken as unity. The given value of k was obtained for the k of the standard reaction 10 13,I+5 . 558. Obtained on the basis of [43, 1330, 1436]. 559. (1.24 ± 0.03) expl zr= — j was obtained for the k ratio of the reactions of CI with H 2 and HD. The formula given in the table was obtained on the basis of 1 ml3 92 + 03 / 5,480 ± 140 \ ,_..., k Cl+H 2 = lO 13 ' 92 - - 03 exp( - ) [547]. ^S a / 97 ± 20 \ 560. The measured k ratio of the reactions of CI with H 2 and D is (1.44 ± 0.06) * / 1,128 ± 17 \ _, . . , n - 13 q 2+0 03 / 5,480 ± 140 \ , exp^— * — J. The formula k = 10 1 5 » y ^- u « UJ expl- — ' — ) was taken for the k of the first reaction 1547], See also 1948], 561. The k ratio of the reactions CI + H 2 = HC1 + H (1) and CI + D 2 = DC1 + D (2) at 273 and 305° is 13.4 and 9.75, from which we get E 2 - E l = 1.63 and A x :A 2 0.66. The value Ex = 5.5 was taken from [43]. See also [547]. 303 562. The k ratio of the reaction of CI with H2 and D2 at T = 303° found in [521] was = 3 . 563. The rate constant of the reaction CI + H2 = HC1 + H was taken as k- 10 13 - 92 exp(-^||^) [547]. 564. Calculated by the least-squares method on the basis of [344, 1232]. / 552 ± 7 \ 565. (1.35 ± 0.03)exp — ) was obtained in [868] for the k ratio of the re- actions of CI with H 2 and HF. The formula k + = 10 13 * 92 exp ( L rt~ ) was chosen for the reaction of CI with H2 [547]. 566. The measured ratio of the k of the reaction CI + H2 = HC1 + H to the k of the given reaction is (1.27 ± 0.03) exp ( 797 R * 14 ). The formula io 13 - 92±0 « 03 x exp ( i irE ) was taken for the k of the first reaction [547]. (1 /. 99 \ ~ RT )' The formula k = io 13 . 92±0 - 03 exp(- 5,480 R ^ 14 ° ) was chosen for the k of the first reaction [547]. 568. The measured k ratio of the reactions of CI with H 2 and I 2 is 1.54s ex P\~ rt — )' The formula from [547] was chosen for the k of the first reaction. 569. Obtained using the k for Br + Br + C0 2 - Br 2 + C0 2 [1300]. 570. Obtained assuming that the k of recombination of I and CI atoms are equal. 571. Calculated from the k of the reaction of H + HC1 = H 2 + CI [1436], from the ratio of the k of the latter to the k of the reaction H + Cl 2 = HC1 + CI, 0.14 exp(- 1 R ^ 4 ° ) [944], and from the K of CI + HC1^C1 2 + H. 572. Recalculated using the recommended formula for the k of the reaction HC1 + H = H 2 + CI. 573. The ratio of the k of the reaction CI + C10 2 = Cl 2 + 2 to the k of the given reaction is io 1 - 0310 - 15 . 574. See, however, [268]. 304 575. A calculation on the basis of the data of [268] and of the thermochemical data of [1765] yields k = 10 15 - 26 exp(- ^^). 576. Calculated using the k of the reaction CI + H 2 = HC1 + H [547]. 577. This constant was obtained from its measured (in [1276]) ratio to the rate constant of the reaction CI + H 2 = HC1 + H, k = 0.79 * 10 ltf exp(- y j!2 ). 578. Obtained from the measured k ratio of the given reaction and of the reaction CI + H 2 = HC1 + H, 10° * 59 exp(- > ), and of the last reaction. 579. Obtained using the k of the reaction CI + CHi+ = HC1 + CH 3 [947]. 580. Obtained using the k of the reaction CI + CH 4 = HC1 + CH 3 , k = 2.4 x 10 13 x exp(- ^p). See also [346]. 581. Obtained using the k of the reaction CI + C 2 H 6 = HC1 + C 2 H 5 , k = 10 13 * 95 x exp(-^)[547]. 582. See also [947]. 583. Obtained using the k of the reaction CI + CH 4 = HC1 + CH 3 , k = 2.4 x 10 13 x exp(-^°)[5471. 584. The formula 1.8 exp( =H= ) was obtained for the k ratio of the splitting of secondary (k ) and primary (k_) H atoms from n-C^HjQ. 585. Taken as standard is the k of the reaction CI + n-C^Hj = HC1 + n-C^Hg, k = 10 i3.92 exp (L my 586. The formula 2.1 expl r-E ] was obtained for the k of splitting of tertiary (kp) and primary (kp) H atoms from iso-C^Hig. 587. Obtained by the least-squares method on the basis of [949, 951, 1276]. 588. The k of the reaction CI + CH^ = HC1 + CH 3 was used, k = io 13 . 37 * - 17 x / 3,850 ± 60 \ ro/Ql exp^ ! — p^ j [949]. 589. See also [951]. 305 590. Obtained on the basis of [947, 1276] using the k of the reaction CI + CH^ = HC1 + CH 3 , k = 2.4 x 10 13 exp(- 3 >fj° ). (3 850 \ i ^f-j for CI + CH^ = HC1 + CH 3 [949]. 592. Obtained on the basis of [947] using the k of the reaction CI + CH^ = HC1 + CH 3 [547]. 593. The k ratio of the given reaction and of the reaction CI + 0201^ -* C 2 Cl5(?) • in3 20 / 7,000 \ is 10 d «^ u exp^ ~^~j- 594. Obtained using k cl+CHC1 [947]. 595. (1.4 ± 0.2)exp( -= ) was obtained in [1179] for the k ratio of the re- actions of CI with CHC1 3 and CDCI3 . 596. Obtained on the basis of [1179, 947] using the k of the reaction CI + CH^ = HC1 + CH 3 [947]. 597. Obtained using the k of the reaction CI + CHC1 3 = HC1 + CC1 3 , k = 10 12 - 81f x «p(- ^0) [547]. 598. The k ratio of the reactions CI + CH 3 I = CH 3 C1 + I and CI + CH 3 I = HC1 + CH 2 I in L / 9,000 \ is 6 x 10 4 exp[ ~^f~j- 599. Given with reference to [949, 1275], where this reaction is not considered. Obtained using the k of the reaction CI + CH^ = HC1 + CH 3 , k = 1.2 x 10 13 x / 3,830 \ exp (" -RT~ J' 600. Obtained from the measured ratio of the k of the given reaction to the k of the reaction of CI with C 2 H 5 C1, as determined in [1276]. 601. The formula was chosen arbitrarily. 602. Obtained from the measured ratio of the k of the given reaction to the k of the reaction of CI with methyl chloride and the k of the last reaction, as determined in [947]. 306 603. If the ratio of the k of the given reaction to the k of the reaction of CI + CH3CI = HC1 + CH 2 C1 (standard reaction) given in Table 2 of [362] is correct, lg A should be expressed by the value 12.83. 604. The following primary step of pyrolysis is accepted: (CH 2 C1)2 "*■ C2H4 + CI2 with an activation energy of 72. E = 5 was chosen arbitrarily. 605. Calculated by the least-squares method from [182, 1508]. 606. The ratio of the k of this reaction to the k of the reaction CI + C2H3CI2 ■*■ products is 10 2 * 1 exp( SS )• Cited in [804] with reference to [106, 107, 108, 803]. 607. Obtained from the measured ratio of the k of the given reaction to the k of the reaction of CI with chloroform, as determined in [947]. 608. Obtained on the basis of [636, 947] using the k of the reaction CI + CH4 = HC1 + CH 3 , k = 2.4 x 10 13 exp(- ^fp)- 609. See also [346, 499]. 610. Obtained on the basis of the accepted k values of the reactions CI + n-C^o = HC1 + CH2CH2CH2CH3 (1), CI + n-Ci+Hxo = HC1 + CH 3 CHCH 2 CH 3 (2), CI + CH2FCH2CH2CH3 = HC1 + CH 2 FCH 2 CHCH 3 (3) and CI + CF 3 CH 2 CH 2 CH 2 CH 3 = HC1 + CF 3 CH 2 CH 2 CHCH 3 (4): kj = 10 13 - 2 exp(- ^||] and k 2 = k 3 - ki+ = 10 13 - 3 x exp (- — — ] [949]. The authors of [598] consider their formulas to be highly approximate . 611. See [1216]. 612. According to [380], the re-examined data of [812] agree with the data of [380] 613. See, however, [75]. 614. Mentioned in [75] are the errors committed in [1018] in estimating the CI concentration, which explains the excessively low value of k. 615. According to [811], the recombination of chlorine atoms is accomplished in the following two stages: CI + Cl 2 ■* Cl 3 , Cl 3 + CI = 2C1 2 . 307 616. CCli* is ~ 6.5 times more efficient than CI2 . In contrast to [775], it was established in [345] that CI2 is at least five times more efficient than Ar (and also SF 6 ) and is 6.5 times less active than CCI4. From [1541] it follows that CI2 is considerably more efficient (by a factor of 20 to 60) than Ar . A decrease in the constant of CI atom recombination with increasing temperature (k ~ T -2 ) was found in [345]. 617. Obtained by the least-squares method on the basis of [75, 345, 811]. 618. M corresponds to compositions of from 0.04 Cl 2 + 0.96 Ar to 0.25 Cl 2 + 0.75 Ar. 619. M corresponds to a mixture of 0.05 Cl 2 + 0.95 Ar. In the opinion of the authors, Cl 2 is considerably more efficient than Ar . 620. Obtained from the k of the reverse reaction, measured in [41], and from the equilibrium constant. 621. Obtained by the least-squares method on the basis of [47, 364]. 622. Estimate. M corresponds to a mixture of 2 with Cl 2 . 623. Mixture of Cl 2 and 2 . 624. Obtained from the measured k relation using the k of the reaction CI + CHCI3 = HC1 + CCI3, k = 10 12 * 84 exp(- >ZZ J [947]. The authors do not rule out the fact that the k of CI + CCI3 •> CCli* does not depend on the temperature. In this case they take k = 10 13 * 8 . 625. The authors also do not rule out the reaction CI + C 2 HCli + = HC1 + C 2 Cli + or Cl 2 + C 2 HC1 3 . 626. Calculated from the measured k ratio of the given reaction and the reaction CI + C 2 H 6 = HC1 + C 2 H 5 . The rate constant of the latter is taken to be 1.5 x 10 13 [949]. 627. The relative efficiencies are Cl 2 rC^ :C 2 H 6 :SF 6 :C0 2 = 1.00:1.29:2.89:0.70:1.08, 628. Cited with reference to [346, 636]. 308 629. See also [499]. 630. The authors of [64] show that hot radicals are formed in this reaction. 631. Obtained from the experimental data of [63], assuming that E - 0. 632. Obtained from the measured ratio of the k of the given reaction to the k of the reaction CI + C 3 H 8 = HC1 + C 3 H 7 , k = 10 1 * 4 - 01 exp (- -~) [547]. 633. The temperature is not mentioned. 634. See also [456] . 635. All the cited data were obtained by Goldfinger and his colleagues. Appar- ently, the formula proposed in [547] must be considered more accurate. 636. The ratio of the k of the given reaction to the k of the reaction CI + C 2 HC1 5 = HC1 + C 2 Cl 5 (k) is 10 3 * 8 exp/ ' ). The formula was obtained with k = 10 12 - 68 exp(- ^||^) [547]. 637. The recommended formula for the k of the reaction CI + CHC1 3 = HC1 + CC1 3 was used. 638. The data of [198] were recalculated in [233] on the basis of the more exact equilibrium constant of Br 2 ^ 2Br. 639. Recalculated in [233] on the basis of the more exact equilibrium constant of Br 2 ^2Br. See also [547, 1227]. 640. Obtained from the data of [233] and the corrected data of [69, 197]. 641. Calculated by the least-squares method on the basis of [69, 198, 233, 937, 1000]. For the interval 550-980°, on the basis of [69, 1434] with allowance for the theoretical relationship between the pre-exponential factors of the k of the reactions of Br atoms with H 2 and D 2 , the authors of [547] obtain the formula k = H) 11 *. 1 * 3 * * 14 exp(- > =| ), which they consider to be most accurate. As is evident, the two formulas agree with the error limits. See also [666] . 309 642. Recalculated on the basis of more exact thermochemical data. See also [1504a]. 643. Calculated by the least-squares method on the basis of [69, 233]. The authors of [547] consider the formula k = 10 14 - 29±0 - ll+ exp(- 21,400 * 38 ° ) to be most \ RT ' accurate in satisfying the theory of the isotopic effect. 644. Calculated by the least-squares method on the basis of [233, 1712]. 645. Obtained from the measured (in [403, 1466]) (averaged) k ratio of the given reaction and of the reaction Br + CHF 3 = HBr + CF 3 , 10° • 884 ±° - 03k exp x j— 2 znE j, and from the k of the latter [25], taken as standard. 646. This formula was obtained by the authors of [405] on the basis of the mea- sured k ratio of the given reaction and of the reaction Br + CHF3 = HBr + CF3 a a *v i t -t, i «.«. <-• 1 ml3 kO I 23,600 ± 700 \ and of the k of the latter reaction, k = io 10 «^ u expl z — I. In subsequent papers [403 and 1466] they give lg A = 13.14g instead of lg A = 13.34. 647. Taken as standard is the k of the reaction Br + CH 3 Br = HBr + CH 2 Br, k = em ml 3 / 15,850 \ 5.01 x 10 ld exp[- — ^ — J. 648. This formula must obviously be considered as the most accurate; the authors of [547] note, however, that the real E may be lower, E = 18.18 (as a result of the fact that the E of the reaction of recombination of Br atoms is taken to be zero) . See also [405] . 649. These data are considered to be unreliable by the authors of [550]. 650. On the basis of the k of the reaction Br + CH 3 Br = HBr + CH 2 Br, k = 10 13 * 73 x / 16,050 \ rQ17l eXp (--RT- ) [937] ' 651. Obtained from the measured k ratio of the reaction Br + CH^ = HBr + CH 3 and of the given reaction and from the k of the first reaction [547] . 652. Recalculated on the basis of the formulas k = 10 1 3 • 107±0 « 035 exp x / 22,320 ± 110 \ , , n _ 13 n ?K+o o?o / 19,310 ± 60 \ . \- 2 ^ J and k = 10 ici ."^±u ."^ u exp(- ! — ^ ) for the reaction Br + CF 3 H = HBr + CF 3 and Br + C 2 F 5 H = HBr + C 2 F 5 , which were taken as standards. 310 653. Taken as standard was the k of the reaction Br + CH 3 Br = HBr + CH 2 Br, k = 1013.73 exp (_ i^|50) [937] . 654. This formula must be considered as the most accurate. See, however, remark 648. 655. According to [581], the k ratio of the reactions Br + n-C^Hjn = HBr + CH 3 CHCH 2 CH 3 and Br + n-C^Hj Q = HBr + CH 2 CH 2 CH 2 CH 3 is 2/3(82 ± 15) at 400°. 656. The formula is estimative in nature and was selected so that the experimen- tally established characteristics of the relative reactivities in the reac- tions of splitting of hydrogen by the Br atom [Br + CH 2 XCH 2 CH 2 CH 3 (X = H,F,CF 3 )] from various positions in the CH 2 XCH 2 CH 2 CH 3 molecule would be satisfied. 657. From the data of [550], using the formula adopted in this reference for the k of the standard reaction Br + CH 3 Br = HBr + CH 2 Br, k = 10 13 .73 e xp (- l2, )> it follows that k = 10^.19*0.12 exp (_ 1 ° y22 L ± 23A ), i.e., the formula agrees essentially with that given in [547], The pre-exponential factor in the formula k = IOI 3 . 22 exp I ~ — j, as given in [550], must be considered as erroneous . 658. Given with reference to [550] . 659. According to [31], at 419° the k ratio of the reactions Br + n-C^Hio = HBr + CH 2 (CH 2 ) 2 CH 3 (k p ) and Br + n-Ci+H 10 = HBr + CH 3 CHCH 2 CH 3 (k g ) is h and the k ratio of the reactions Br + iso-Ci+Hio = HBr + CH 2 (CH 3 ) 2 CH(k p ) and Br + iso-Ci^o = HBr + (CH 3 ) 3 C(k T ) is 7T- = 1,640 ± 300. 660. According to [31], the k ratio of the reactions Br + iso-Ci^o = HBr + (CH 3 ) 3 C and Br + iso-Ct^o = HBr + (CH 3 ) 2 CHCH 2 is 1,640 ± 300 at 419°. 661. Noting the contradiction between the thermal and photochemical data, Benson and Buss [147] believe that all the data are erroneous because of the failure 311 5 = 82 ± 15 to take heterogeneous processes into account. 662. The pre-exponential factor, which exceeds the gas-kinetic factor by 3 to 4 orders, is apparently due to a chain. The formula proposed in [500] must be considered as incorrect. 663. See also [149, 800]. 664. In [1384] 1.24 x 10 3 was obtained for the ratio of the k of the given reaction to the k of the reaction Br + H 2 = HBr + H. 665. The ratio of the k of the given reaction to the k of the reaction Br + C 6 H 5 CH 2 D = DBr + C 6 H 5 CH 2 is (1.08 ± 0.25) exp( 1>43 ° * 11Q ). 666. See, however, [25]. 667. Obtained on the basis of the measured k ratio of the given reaction and of /2 480 + 40 \ the reaction Br + CH^ = HBr + CH 3 , (0.56 ± 0.03) exp( ? RT " /» and the k of the latter reaction [547]. See also [403, 404]. 668. Obtained on the basis of the measured k ratio of the given reaction and of the reaction Br + CH^ = HBr + CH 3 , (0.24 ± 0.01) exp( 2 > 000 * 40 ), and the k of the latter reaction [547]. See also [403, 404]. 669. Obtained on the basis of the measured k ratio of the reaction Br + CH4 = HBr + CH 3 and of the given reaction, (7.2 ± 0.9) exp( 3 > 760 * 14Q ), and from the k of the first reaction [547]. See also [403, 404]. 670. Calculated by the least-squares method on the basis of [405, 1466]. 671. Obtained under the assumption that the E of recombination of Br atoms equals zero. 672. Bromine isotope. 673. Obtained on the basis of the measured k ratio of the reaction Br + CH4 = HBr + CH 3 and of the given reaction and from the k of the first reaction [547]. See also [404] . 312 674. Obtained on the basis of the accepted values of the k of the reactions Br + n-CifHio = HBr + CH2CH2CH2CH3 (1), Br + n-Ci+Hio = HBr + CH3CHCH2CH3 (2), Br + CH2FCH2CH2CH3 = HBr + CH 2 FCH 2 CHCH3 (3) , Br + CF3CH2CH2CH3 = HBr + CF3CH2CH2CHCH3 (4): kj = 10 13 ' 1 exp (- 13 '^ 00 ) and k 2 = k 3 = k 4 = 10" •« exp(-M) [550]. 675. The relative k of the reactions of splitting of the H atom from the positions a, 3, Y and 6 (CH 2 C1CH 2 CI$2CH3) are 34, 32, 82 and 1. 676. The efficiencies of the various gases are also given in [772, 1327] (see also [1191]). 677. See, however, [1296]. 678. According to [629], the ratio of the recombination constants of Br atoms for M = Br 2 and Ar is 130 at 300°, 110 at 350° and 90 at 400°. 679. Obtained using the recombination constant for M = Br 2 ; 5 x 10 16 [357]. 680. According to [236], the efficiency of Br 2 exceeds that of Ar by a factor no greater than 8. 681. Obtained using the data of [1218]. 682. Obtained from the data of [232, 1442]. 683. Obtained using the data of [1442]. 684. Calculated by the least-squares method on the basis of [116, 233, 235, 236, 270, 629, 1297, 1301, 1442]. 685. Calculated on the basis of [232, 1297, 1301, 1442]. 686. See also [305] . 687. In the investigated temperature range Ar:Br 2 :C0 2 = 1:100:4. 688. Obtained using the data of [1218]. 689. Calculated by the least-squares method on the basis of [116, 232, 233, 236, 313 305, 358] . 690. The authors of [233] find that HBr is only slightly more efficient than argon. 691. Calculated on the basis of [232, 629, 1297, 1301]. 692. The efficiency of 0(0113)1+ is greater by a factor of 175 than that of H 2 . See, however, [1054]. 693. Mixture of H 2 , Br 2 and HBr. 694. 0.6% Br 2 in Ar. 695. M corresponds to 2 to 5% Br 2 in oxygen. 696. M corresponds to 2 to 5% Br 2 in Ar. 697. M corresponds to 98% C0 2 and 2% Br 2 . 698. M corresponds to 2% Br 2 + 98% N 2 . 699. M corresponds to 5% Br 2 + 95% He. 700. M corresponds to 2% Br 2 + 98% CO. 701. Obtained by extrapolating the results relating to hot atoms. 702. Obtained on the basis of an analysis of the data of [117, 401]. 703. Calculated by the least-squares method on the basis of [659, 799, 948, 1446, 1449]. 704. See also [1207]. 705. For the k ratio of the reactions H + HI = H 2 + I and H + I 2 = HI + I the author of [1449] obtains 0.070 ± 0.02 at 667° and 0.082 ± 0.012 at 800°, from which it follows that this ratio is independent of the temperature. The au- thor also states that the E of the indicated reactions equal zero. 706. Obtained using the K measured in [634]. 314 707. Given as the best formula obtained on the basis of Polanyi's rule for reac- tions of the given class. See also [547]. 708. Calculated by the least-squares method on the basis of [562, 634, 656]. 709. The measured k ratio of the reactions I + C2H5 = HI + C2H4 and I + C2H5 ■*■ C 2 H 5 I is 0.33 ± 0.03. 710. Obtained on the basis of the k of the reverse reaction and of calculation of the entropy factors. See also [154]. 711. See, however, [634], where the typographic error in [562] is pointed out and the corrected formula k = 10 ,0 exp I £= — ] is given (taking the equilib- rium constant measured in [634] into account) . This formula yields values which are several orders lower than those obtained with the uncorrected formula. 712. Calculated by the least-squares method on the basis of [154, 213, 562, 1192]. 713. Calculated by the least-squares method on the basis of [24, 486, 985]. The formula obtained from k_ and K must obviously be considered the most accurate [24]. 714. Calculated by the least-squares method on the basis of [154, 734, 1192, 1448], The formula k = io 13 . 81± °. 2 exp (- 16 ' 900 * 500 ) > obtained as the average of the data of [734, 1192, 1448], must obviously be considered the most accurate. 715. Calculated from the data of [35] for an empty vessel using the equilibrium constant from [695]. 716. The sum of the k of the given reaction and of the exchange reaction T , _ _ _ _ _ _ , _ . in i3 / 13,500 ± 800 \ I + C 2 F 5 I = C 2 F 5 I + I xs 10 1;s - u exp^ l — J. 717. Given in [547] with reference to [1192, 1448] is the formula k = 10 llt « olf * exp(- !=■), where E = 18,000-19,300. 718. The formula was obtained from the data of [440], notwithstanding the asser- tion of the authors that the measured rate constant is not the product 315 I — (I) k]/Ki , but IC5K, where ki is the k of the given reaction, Ki = , r , (n-C 3 H7)(l2) 2 ^ (n-C 3 H 7 I) and ks is the k of the reaction n-C3Hy + I2 = iso-C3HyI + I. See, however, [1448]. 719. Obtained on the basis of an estimate of the entropy. 720. Rate constant of the total reaction. 721. According to [142], racemization in one elementary step is extremely improb- able. 722. In [142] this formula is given as being more probable, agreeing better with the experimental data than the formula k = 10 13 * 9 exp(- — rr — I, which in [1193] represents the k of Walden inversion. 723. Obtained using K. 724. This reaction was introduced into the mechanism of decomposition of alkyl iodides [142] in connection with a reinterpretation of the data of [1193]. 725. In the presence of 8.83 x 10" 6 moles Cm -3 of CF3I. 726. Obtained without allowing for recombination on iodine molecules. 727. The low rate of recombination of iodine atoms at very low contents of I 2 in inert gas (He, Ne, Ar , Kr, Xe) , which is incompatible with the recombination constants measured under other conditions, is explained by Christie [353] as being due to the fact that the limiting process in this case is deactivation of the vibrationally excited iodine molecules formed during recombination. 728. See also [1252]. 729. Calculated by the least-squares method on the basis of [237, 510, 1253]. 730. According to [260, 1346], the relative efficiencies at 293° are Ar:He:Ne:Kr: Xe:H2:N2:02:C02:CHi + :C3H 8 :n-C5H 1 2:cyclo-C 6 H 1 2:C 2 Ht t :C 6 H 6 :CClt t = 1:0.47:0.50: 1.2:1.6:1.3:1.2:1.8:3.7:2.4:8.4:13:15:4.7:2.4:14. See also [1253]. 316 731. k :k ^30 at 1,300° and * 250-600 at 300°. According to [259], the p,I 2 p,Ar ratio k :k decreases with increasing temperature, amounting to 600 at p,I 2 p,Ar 300°. 732. Calculated by the least-squares method on the basis of [237, 259, 260, 355, 1253, 1442]. 733. kjj rkjj = 1.1 at 326°. 734. According to [259], k „ :(1.05 ± 0.05) = k at 326°. p,H 2 P,U 2 735. Relaxed nitrogen. 736. Unrelaxed nitrogen. 737. The authors consider the assumption of unrelaxed nitrogen to be more accurate. 738. Calculated by the least-squares method on the basis of [234, 237, 1346] (un- relaxed nitrogen) . 739. Calculated by the least-squares method on the basis of [237, 1253]. 740. The authors of [1194] consider the first of these formulas as more accurate. 741. The ratio of the k of the reaction I + C 2 H 5 = HI + CH 3 CH0 to the k of the reaction I + C 2 H 5 -*■ C 2 H 5 0I is (2 ± 1.5) * 10" 3 . 742. See also [219]. 743. Given in the article are the relative rates of H abstraction, and also of insertion by the CH 2 group, with respect to the C-H bond. 744. The ratio of the k of the given reaction to the k of the reaction CH 2 + (CD 3 ) 3 CH = CH 2 D + CD 2 (CD 3 ) 2 CH is 0.61. 745. The ratio of the k of the reaction CH 2 + C 3 H 8 •*■ n-Ci+Hxo to the k of the given • - 1 q / 70 ± 10 \ reaction xs 1.8 expl — — I. 746. The ratio of the k of the reaction CH 2 + n-C^o -* n-C 5 H 12 to the k of the • n 7 / 260 ± 30 \ gxven reaction is 0.7 expl — I. 317 747. See also [769, 1321] . 748. The ratio of the k of the reaction CH2 + iso-Ci*Hio "* iso-CsHi2 to the k of ,u .••iq / 190 ± 20 \ the given reaction is 1.3 expl — 1. 749. The ratio of the k of the reaction CH 2 + n-CsH^ + n-CeH^ to the k of the • n n / 200 ± 50 \ given reaction is 0.7 expl — I. 750. The ratio of the k of the reaction CH 2 + n-CsH 12 + n-C 6 H ltt to the k of the . . „ / 350 ± 50 \ given reaction is 1.3 expl — I. 751. Given are the relative reactivities of the double bonds: 02^ :C2H3F:C2H 2 F2 C 2 HF 3 :C 2 Fi t = 1.0:0.60:0.33:0.16:0.10. 752. The ratio of the k of the given reaction to the k of the reaction CH 2 + iso-C^Hs + C 5 H 10 is 0.35 ± 0.1. 753. See also [593, p. 150] and [1295]. 754. Given are the relative rates of addition and formation with respect to various bonds. 755. The ratio of the k of the given reaction to the k of the reaction CH 2 + iso-C 4 H 8 -► C 5 H 10 is 6.64 ± 0.14. 756. See also [592, 593, p. 150]. 757. The ratio of the k of the given reaction to the k of the reaction CH 2 + iso-C 4 H 8 ^ C 5 H 10 is 0.35 ± 0.03. 758. See also [273, 274; 593, p. 150]. 759. The ratio of the k of the given reaction to the k of the reaction CH 2 + iso-Ci^ -> C 5 H 10 is 0.56 ± 0.02. 760. See also [273, 274, 589; 593, p. 150]. 761. The ratio of the k of the given reaction to the k of the reaction CH 2 + iso-C^Hg -> C 5 H 10 is 0.33 ± 0.04. 318 762. The ratio of the k of the given reaction to the k of the reaction CH 2 + iso-C^Hg -*- C 5 H 10 is 0.31 ± 0.02. 763. See also [590; 593, p. 150]. 764. The ratio of the k of the given reaction to the k of the reaction CH 2 + iso-C^Hg -»■ C 5 H 10 is 0.64 ± 0.03. 765. The ratio of the k of the given reaction to the k of the reaction CH 2 + iso-C^Hg -> C 5 H 1Q is 0.96 ± 0.05. 766. The difference in E of the reactions CH 2 + CH 2 F 2 = C 2 H 3 F + HF and CH 2 + CH 2 F 2 -> C 2 E k 7 2 is 2.7. 767. The ratio of the k of the given reaction to the total k of the reaction of CH 2 with C 2 H 5 C1 is less than 0.14. 768. The rate constant of 2CH 3 -* C 2 Hg is taken to be k = 1013.34 [1401]. 769. See also [413]. 770. See also [1597]. 771. The activation energy of 2CH3 -> C 2 Hg is taken to be zero. 772. See also [1523] . 773. Given with reference to [1235, 1597]. 774. It was shown in [1610] that the value of E = 13.2 ± 1.0 must be corrected to 10.5 ± 1.0. 775. Given in [733] are the following values of E: 5.5; 6.5; 6.0; 6.5; 8.2; 6.2; 7.2. 776. The difference in E of the given reaction and of the reaction CH 3 + CH3COCH3 = CH 4 + CH 2 C0CH 3 is 2.3. 777. Obtained assuming that the steric factor is 0.1. See also [1142]. 319 778. The k ratio of the reactions of CH 3 with D 2 and with C 6 H lt (CH 3 ) 2 is 6.4. According to [271], this ratio is 5.3 at 700°. 779. According to [1610], the figure 14.3 must be corrected to 12.2 ± 1.0. 780. Calculated by the least-squares method on the basis of [1039, 1040, 1041, 1310, 1597] . 781. Given in [1764] is E = 33 ± 1.5 and, from an estimate of the thermal effect of the reaction, 27 ± 3. 782. The reaction was chosen in preference. The author obtains 1:278 for the ratio of the k of this reaction to the k of the reaction CH 3 + I 2 = CHoI + I. 783. See also [94] . 784. The scheme of the reaction was given preference. The formula was obtained from the measured ratio of the k of the given reaction to the k of the reaction of CH 3 with acetone, using the recommended k of the latter reaction. 785. The k ratio of the reactions CH 3 + HBr = CH^ + Br and CH 3 + Br 2 ■ CH 3 Br + Br is 10 1,96 expl- — *r= — j. The formula given in the table was obtained on the basis of the recommended formula for the k of the reaction of CKU with HBr. 786. The ratio of the k of the given reaction to the k of the reaction CH 3 + HBr = CH^ + Br is 5. The given value of k was obtained on the basis of the recom- mended k of the latter reaction. 787. The ratio of the k of the given reaction to the k of the reaction CH3 + 2 = CH 3 2 is 820. According to the data of [119], the latter reaction is second order. 788. The ratio of the k of the reactions CH 3 + I 2 = CH 3 I + I and CH 3 + HI = CH^ + I is 4.4 exp^jrj. 789. Obtained as the mean of the data of [562, 1192, 1448]. 790. Calculated from the k of the reverse reaction [949], which was obtained on the basis of the k of the reaction CI + H 2 = HC1 + H, k = 8.0 x 10 13 exp x 320 (-5*§L) [43, 44]. 791. See also [1466] . 792. Page 188. Calculated from the k of the reverse reaction [1276] and from K. 793. The authors of [1275] point out that the low value of E in [1425] must evidently be explained by the fact that, as is well known [1180], the values of E are usually low when studying reactions of CH3 obtained by photolysis of acetone at low temperatures. 794. See also [1524, p. 199]. 795. The ratio of the k of the reaction CH3 + I 2 = CH 3 I + I to the k of the given reaction is 28.7 expf ? I. The authors find that hot CH3 radicals play a part in the latter (CH 3 + HC1 = CH 4 + CI) . 796. Obtained by averaging the parameters of the formulas cited in [499, 1275, 1524]. 797. See also [147] . 798. Measured was the ratio of the k of the reaction CH 3 + HBr = CH4 + Br to the k of CH 3 + I 2 = CH3I + I, which was 0.064, on the average. The difference in E of these reactions, 0.8 ± 0.3, was obtained under the assumption of equality between the ratio of the steric factors of these reactions and that of the reactions H + HBr = H 2 + Br and H + Br 2 = HBr + Br; the given value of E of the reaction CH 3 + HBr = CH^ + Br was obtained on the basis of the E of CH 3 + I 2 = CH3I + I, which was taken to be 0.5 ± 0.5. 799. Obtained assuming that the E of the reaction CH 3 + I 2 = CH3I + I is zero. Obtained for the logarithm of the k ratio of the reaction CH 3 + HBr = CH U + Br and of this reaction was -0.3 ± 0.13 - —*-, — _ ~ ^ — . H 4.575 T 800. Obtained using the k of the reaction CH 3 + I 2 = CH3I + I, k = 10 12 - 9 exp (- 800 R * 400 )[562, 1192, 1448]. 801. Obtained assuming that the E of the reaction CH 3 + I 2 = CH 3 I + I is zero. Obtained for the logarithm of the k ratio of the reaction CH3 + HBr = 321 950 CH^ + Br and of this reaction was -0.125 - 4.575 T' 802. Obtained from [551, 1617]. See remark 800. 803. Obtained from the measured k ratio of the reactions CH3 +12= CH3I + I and CH3 + HI = CH^ + I and from the k of the first of these reactions, calculated from the k of the reverse reaction and from K. 804. According to [154], the k ratio of the reactions of CH3 with HI and I2 at 553° is 0.15. The given figure was obtained on the basis of the recommended k of the reaction of CH3 with I2 • 805. The formula was obtained from the recommended k of the reverse process and from the equilibrium constant, which can be represented by the formula K = p 0H p CH^ P H 2 P CH 3 n u / 16,777 \ = 0.16 exp(-— j^-j in the temperature range 1,000 to 2,000° with an error not exceeding 3.5%. 806. In [816a] 4.0 ± 0.3 was obtained for the difference in E of the reaction CH 3 + CH3CHO = CH 4 + CH3CO and of the given reaction. The value of E of the first reaction, 6.8, was used in calculating E [55]. 807. We will have E = 3.49 ± 0.56 if we use the recommended value for the E of the reaction CH 3 + CH 3 CH0 = CH^ + CH3CO. 808. See also [680] . 809. Obtained from the ratio of the k of the given reaction to the k of the re- action CH 3 + CH3CHO = CH^ + CH3CO using the k recommended for the latter. 810. Calculated by averaging the parameters of the formulas obtained on the basis of [673, 1529]. 811. The rate constant of the reaction CH3 + NO -* CH3NO was taken to be 10 12 . 812. The reaction mechanism was not established exactly. 813. Calculated from the graph. 322 814. Used was the k of the reaction CH 3 + CH3COCH3 = CH^ + CH 2 COCH 3 , k = 10 11 * 59 x «p(-^Zft) 11737]. 815. A = 0.036 ± 0.003. 816. A = 0.06. See [78, 749]. 817. Obtained from the measured value, A = 0.055, and from the recombination k of CH 3 + C 2 H 5 = C 3 H Q (k = 101*0. 818. The measured ratios of the pre-exponential factors and the difference in E of the reactions CH 3 + CH 3 COCH 3 = CH^ + CH 2 COCH 3 and CH 3 + C 2 D 6 = CH 3 D + C 2 H 5 are 0.20 and -5.23 ± 0.16. Taking the E of the first of these reactions to be 9.6 ± 0.1, the authors obtain E = 14.8 ± 0.3 for the second reaction. The difference in E of these reactions -2.0, obtained in [1315a], is considered by the authors of [1088] to be erroneous because of the small temperature interval (50°). 819. A = 0.058 ± 0.004. 820. The recombination constants of all the radicals were taken to be 101 1 *. 821. a = 0.165 ± 0.005. 822. A = 0.216 ± 0.032. 823. A = 0.30. 824. A = 0.08. 825. A = 0.85 ± 0.1. 826. A = 0.70 ± 0.04. 827. See also [922]. 828. Measured was the difference in E (0.64) of the given reaction and of the re- action CH 3 + Hg(CH 3 ) 2 = CH^ + CH 2 HgCH 3 ; from this, on the basis of the E of the latter reaction, namely 9 [642], the authors find the given value. 323 829. The k ratio of the reaction of CH 3 with butane and of CH3 + Hg(CH 3 ) 2 = CH 4 + ... is 10°. 27 exp(^||). 830. Calculated by the least-squares method on the basis of [640, 866, 1307, 1525] 831. Calculated by the least-squares method on the basis of [158, 182, 866, 1307, 1525]. 832. Calculated by the least-squares method on the basis of [158, 182, 1525]. 833. Calculated by the least-squares method on the basis of [1307, 1525, 1526, 1530]. 834. According to the data given in [1530], lg A = 9.93. 835. According to the data given in [1530], lg A = 9.17. 836. Obtained on the basis of [1307, 1525]. 837. The rate constant of 2CD 3 ■> C 2 D 6 was taken to be 10 13 * 58 [1401]. 838. Recalculated from the data of [1525]. 839. Obtained from the measured k ratio of the given reaction and of the reaction CH 3 + iso-C^Hxo = CH4 + Ci*H 9 and from k = 6.8 x 10 1 ° exp (- *^° ) [1525] for a recombination k for methyl radicals of 2.2 x 10 13 [140]. 840. Using the recommended formula for CH3 + iso-C^H^o = CH^ + C^Hg we get k = 1O 10.07 exp (. Lg20), 841. It was pointed out in [1426] that the method used in [1474] to determine E is erroneous . 842. Calculated by the least-squares method on the basis of [422, 1127, 1528]. 843. Using the recommended formula for CH3 + iso-C^Hio = CH^ + Ci+Hg we get k = 7,120 mlO 72 / 7»120 \ 10 iU - /z exp(- -^ — J. 844. Using the recommended formula for CH3 + Iso-C^Hiq = CH^ + Ci^Hg we get k 324 _ 845. Using the recommended formula for CH3 + iso-Ci+Hio = CHi+ + Ci+Hg we get k = w».ee exp (. 1^20). 846. Using the recommended formula for CH3 + iso-C^Hio = CH4 + Ct+Hg we get k = ,«l] l CH3OCH3 was taken to be zero. At 29 °C the k ratio of the reactions CH 3 + CH 3 = CH 4 + CH 2 and CH 3 + CH3O ■*■ CH3OCH3 is 1.2 and 2.6 at 142°C. 853. k = 10 13 ' 34 was chosen for 2CH 3 •»- C 2 H 6 and k = 10 13 - 2 for CH 3 + CH 3 -* CH3OCH3 . 854. Calculated on the basis of V = 2 and of the k of the reactions 2CH3 -*■ C 2 Hg (1) and 2CH 3 -> (CH 3 0) 2 (2), k x = lO 13 * 34 [1401] and k 2 = 10 13 «°. The quantity k 2 was obtained from the measured k of the reverse reaction [715, 1465] and from the entropy factors [158] . 855. A = 1.51 ± 0.2; A = 1.2 and 2.6 is given in [669] with reference to [1431]. 856. A = 1.4 in the entire temperature interval, which leads the author to conclude that the E of the disproportionation reaction is 0. 857. The ratio of the k of the given reaction to the k of the reaction of H abstraction from OH is 0.66. 858. Obtained under the assumption that the k of the reactions CH3 + CH3OH = CH^ + CH3O and CH 3 + CD3OH = CH U + CD 3 are equal to each other. 859. Calculated by the least-squares method on the basis of [1237, 1529]. 325 860. The ratio of the k of the given reaction to the k of the reaction of H abstraction from OH is 2.7. 861. The ratio of the k of the given reaction to the k of the reaction of H abstraction from OH is 0.34. 862. According to [660a], E = 11. 863. The rate constant of recombination of CH3 and CH3OCH2 is taken to be 2.2 x 10 13 . 864. Calculated by the least-squares method on the basis of [1027, 1529]. 865. In the indicated temperature interval the k ratio of the reactions CH 3 + (CH 2 )20 = CH1+ + C 2 H 3 and CH 3 + Hg(CH 3 ) 2 = CHi* + CH 2 HgCH 3 is 0.343. Since this ratio is constant, the E of the two reactions are probably constant. 866. Calculated by the least-squares method on the basis of [641, 1237]. 867. The rate constant of CH 3 + CH3O ■* CH3OCH3 is taken to be 1.6 * 10 13 [158]. 868. Obtained on the basis of the measured k ratio, assuming that the k of the re- actions 2CH 3 ■* C 2 H 6 and 2HC0 = H 2 + 2C0 are 10 13 ' 34 . 869. On the basis of the data of [55, 168, 475, 912]. 870. Obtained from the measured ratio of the k of the given reaction to the square root of the k of CH3 recombination, which is equal to k = 2.1 x 10 vT, according to [641]. 871. Estimate from the CO yield. 872. Calculated by the least-squares method on the basis of [55, 168, 230, 231, 977] 873. In the opinion of the authors of [1021] , the curvature of the Arrhenius line plotted from the data of [55, 168, 475, 912, 1021, 1555] is possibly due to the tunnel effect. 326 874. Actually, according to [1021] , the given reaction takes place according to the scheme CH 3 + CH3CHO = (CH 3 ) 2 CH (11) I (CH 3 ) 2 CH -> (CH 3 ) 2 C0 + H (12) v u and k is expressed by the formula k = z ; — : • k_n + ki 2 875. Given with reference to 1921]. 876. See also [169, 1111]. 877. In the experiments of [484], the pressure of the acetone exceeded 100 mm Hg. 878. Obtained from the measured ratio of the k of the given reaction to the square root of the k of CH 3 recombination with p •*■ »; k = (2.00 ± 0.15) 10 12 /F. 879. The rate constant of 2CH 3 ■* C 2 H 6 is taken to be 2.1 x 10 12 /f [1737]. 880. The rate constant of 2CH 3 -> C 2 H 6 is taken to be 4.5 * 10 13 [641]. 881. Obtained on the basis of the data of various authors. The data were recal- culated taking into account the dependence of the k of the reaction 2 CH 3 -> C 2 H 6 on T and p. See also [427]. 882. The difference in E of the reactions of CH 3 with (CD 3 ) 2 C0 and with (CH 3 ) 2 C0 is 1.67 ± 0.09 and the ratio of the steric factors is 1.305 ± 0.085. The formula recommended for the k of the second reaction was used. 883. Calculated by the least-squares method on the basis of [53, 1273]. 884. Given with reference to the private communication of Kutschke. 885. The activation energy is 1.1 if the E of the reaction CH 3 + CF 3 -»• CH 3 CF 3 is zero. 886. 9 = (2.0 ± 0.2) exp( 170 R ^ 80 ). See also [1264]. 887. See also [671]. 327 888. Obtained from the k ratio of the given reaction and of the reaction CH +1 = CH I + I and from the k of the latter, calculated from the k of the reverse reaction and from K. 889. Calculated from the k ratio given in [1448] for the given reaction and the reaction CH3 + HBr = CHi^ + Br and from the k recommended for the latter. 890. Calculated by the least-squares method on the basis of [671, 1529]. The mean lg A and E yield the formula k = io 11 .07±0.08 exp (_ 8 » 550 R * 150 y 891. The given constant is not a constant of one elementary reaction. 892. Calculated by the least-squares method on the basis of [227, 671]. 893. Calculated by the least-squares method on the basis of [959, 1529]. 894. Given in the same reference is the formula k = 10 • expl- —?r= — 1. 895. In [227] the incorrect calculation of the Arrhenius curve is indicated as the reason for the low value of E obtained in [959] . 896. Obtained from the k of the total reaction and of the reaction with ND2CH2CH2ND2 assuming the absence of a secondary isotope effect. 897. Obtained from the k ratio of the reactions CH 3 + NH2CH2CH2NH2 = CHi* + NH 2 CHCH 2 NH 2 and CHi* + NHCH 2 CH 2 NH 2 . 898. Calculated by the least-squares method on the basis of [227, 229, 664]. 899. The previously obtained values of E = 7.6-8.4 are considered by the authors of [661] and [1509] to be incorrect, because the reaction CH3N2CH3 + hv = C2H6 + N2 was not taken into account when determining them. 900. The corrections applied by the authors of [1509] to the data of [865] take into account the part played by direct formation of ethane in the photolysis of (CH 3 N) 2 . In the opinion of the authors of [1509], the data of [53, 673, 1508] are also subject to correction. 901. In the opinion of the authors of [1509], the low value obtained for E in [1507] is explained by the fact that the reaction takes place partially at 328 the wall under the experimental conditions. 902. Calculated by the least-squares method on the basis of [644, 661, 664, 667, 671, 681, 865, 1277, 1498, 1508, 1509]. 903. A = 0.04. 904. The difference in E of the reaction of CH3 with (CH3) 2 and of the given re- action is 2-3. The cited figure is given using the E recommended for the latter reaction. 905. Calculated by the least-squares method on the basis of [641, 797, 1308]. 906. The k ratio of the reactions CH 3 + Hg(CH 3 ) 2 = C 2 H 6 + ... and CH 3 + Hg(CH 3 ) 2 : CHi+ + ... is 10 4,75 exp(— jjh= — j. The formula was obtained using the formula recommended for the k of the latter reaction. 907. The formula recommended for the reaction CH 3 + Hg(CH 3 ) 2 = CH4 + CH 2 HgCH 3 was used. 908. Obtained with a number of assumptions. 909. M = (CH 3 ) 2 N 2 + ~3C0. 910. The neopentane pressure is 150-280 mm Hg. 911. The rate constant of the reaction 2CH 3 ■»■ C 2 H 6 at 200°C is taken to be lO 14 - 40 . 912. Obtained using the data of [493]. 913. M = 3% CH3I + 97% C0 2 . 914. See [12]. 915. Calculated from the measured ratio of the k of the reaction CH 3 + I 2 = CH 3 I + I to the k of the given reaction, 6, under certain assumptions as to the relationship between the pre-exponential factors of the k of these re- actions. 329 916. See also [1053]. 917. Obtained at pressures of about 0.2 mm Hg . 918. See also [578; 1524, p. 122]. 919. p = Pu = 10 mm Hg. Not excluded is the possibility of an intermediate pressure region. 920. The reaction is second order at an acetaldehyde or neopentane pressure greater than 100 mm Hg . 921. According to [787], the efficiency of CO2 is lower than that of acetone by a factor of 10. 922. See also [1081] . 923. The k ratio of the reactions CH3 + 2 + CH3I = CH 3 2 + CH3I and CH3 + I 2 = CH 3 I + I is 5.4 x 10 3 (293°). 924. The acetone pressure is less than or equal to 200 mm Hg. Given in [351, 352] is k = 10 *. The efficiency of C0 2 is lower by a factor of about 10. 925. Mean value. The authors note a slight decrease in k with increasing tempera- ture. 926. M is a mixture of (CH 3 )i t C, CH 3 N 2 CH 3 and 2 . 927. See also [1081], where the ratio of the k of the given reaction to the k of the reaction CH 3 + 2 = HCHO + OH, 1.12 x 10 5 at 250°C and 7.08 x 10 5 at 200°C, is given. 928. 10 2 ' 53 exp( — ±= — J was obtained for the k ratio of the reactions CH 3 + 2 + M^ 18,000\ RT CH 3 2 + M and CH 3 + 2 = HCHO + OH 929. From the data of [119] the authors find 820 for the ratio of the k of the re- action CH 3 + I 2 = CH3I + I to the k of the given reaction. 930. Obtained from the k ratio of the reactions CH 3 + 2 -*■ CH 3 2 and CH 3 + CH3NNCH3 = CH^ + CH 2 NNCH 3 , 6.8 x 10^ (123°C) and 3.3 x 10^ (161°C) , and 330 from the E of the second reaction (7.3). 931. Obtained from the data of a large number of authors. 932. Calculated from the data of 1477, 935, 1401]. 933. The ratio of the k of the given reaction to the k of recombination is 0.27 ± 0.07. 934. Obtained on the basis of the data of [477, 935, 1401]. Given in [1737] are the efficiencies of various gases relative to CH3COCH3 . 935. p = 75 mm Hg. 936. p He = 8 mm Hg. 937. p = 50 mm Hg. 938. p = 30 mm Hg. 939. p = 5 to 100 mm Hg. 940. p = 10 mm Hg. K 941. f = ■ = 1.9 ± 0.1, where k3 , ki+ and k 5 are the k of the reactions 2CH 3 ■+■ v / kJkF C 2 H 6 , CH 3 + CD 3 -> CH3CD3 and 2CD 3 ■*■ C 2 D 6 . 942. Calculated by the least-squares method on the basis of [509, 1044]. 943. See also [1524, p. 303]. 944. The ratio of pre-exponential factors and the difference in E of the given re- action and of the reaction CH 3 + isooctane = CH^ + CeHi7 are, respectively, 8.6 and -1.03. 945. Calculated by the least-squares method on the basis of [226, 422, 792]. 946. Calculated by the least-squares method on the basis of [226, 422, 792] using the formula recommended for the reaction CH 3 + iso-Ci+HjQ = CH^ + C^Hg . 331 947.

CgH 18 was taken to be lO 1 ^ and of the reaction 2CH 3 + C 2 H 6 , 1013.36 [1401]. 956. Obtained using the recommended formula for the reaction CH 3 + iso-C^HjQ = CH^ + C^Hg . 957. V = 2.1. 958. The ratio of pre-exponential factors and the difference in E of the given re- action and of the reaction CH 3 + isooctane = CH^ + C g H 17 are 5.8 and -1.29, respectively. 959. The ratio of pre-exponential factors and the difference in E of the given re- action and of the reaction CH3 + isooctane = CH4 + CgHiy are 12.6 and -3.38, respectively. 960. The ratio of pre-exponential factors and the difference in E of the given re- action and of the reaction CH3 + isooctane = CH^ + CqRu are 12.6 and -3.38, respectively. 961. See also [487]. 332 962. The ratio of pre-exponential factors and the difference in E of the given re- action and of the reaction CH3 + isooctane = CH4 + CsHjy are 7.6 and -3.22, respectively. 963. The ratio of pre-exponential factors and the difference in E of the given re- action and of the reaction CH3 + isooctane = CH4 + CsHjy are 5.7 and -3.36, respectively. 964. A = 1.25. 965. The rate constant of the reaction CH 3 + CH 3 = CH^ + HCHO was taken to be 2q1 3 . 38 966. Obtained from the measured ratio of constants under the assumption that the k of the reaction CH 3 + HCO = CH4 + CO is 10 13 ' 34 . 967. 9 = 0.10. 968. A = 0.06. 969. V = 1.65 ± 0.15. 970. Obtained was the mean value of the quantity i = -kT =0 - 7±0 - 3 - where k 2 , k 5 and k 4 refer to the reactions 2CH 3 -> C 2 H 6 (k 2 ) , 2CH 2 COCH 3 -»• (CH 2 C0CH 3 ) 2 (k 5 ) and CH 3 + CH 2 COCH 3 -> C 2 H 5 COCH 3 (ki+) . 971. For the quantity v/ k 2 k 3 ~ where ki , k 2 and k 3 are the k of the reactions CH 3 + CF 3 -> CH 3 CF 3 , CH 3 + CH 3 C 2 H 6 and CF 3 + CF 3 ■> C 2 F 6 , the authors obtain (2.0 ± 0.2) exp( =r| ) , whence they conclude that E} = E 2 = E 3 - 0. 972. The following relations were obtained: E^ - %E 2 - ^E, = -1.07 + 0.1 and 333 Al - = 0.52 ± 0.06, /A 2 A 3 where E and the pre-exponential factors are those of the reactions CH 3 + CF 3 ■> CH3CF3 (1) , 2CH 3 -> C 2 H 6 (2) and 2CF 3 ■* C 2 F 6 (3) . 973. V = 2 ± 1. 974. Measured was the k ratio of the reactions CH 3 + CH 3 N 2 CH 3 -> (CH 3 ) 2 N 2 CH 3 and CH 3 + CH 3 N 2 CH 3 = CH4 + CH 2 N 2 CH 3 ; 4.0 (123°C) and 5.5 (161°C) . 975. Calculated by the least-squares method on the basis of [644, 791, 865, 912]. 976. Obtained by a different method in the same paper was the formula k = 11 78 / 10 , 100 \ 10 11 '™ exp(- y J. 977. Calculated by the least-squares method on the basis of [755, 1039, 1041, 1597], 978. Obtained on the basis of the measured ratio of the k of the given reaction and of the reaction CD3 + CD 3 C0CD 3 = CDi+ + CD 2 C0CD 3 using the recommended formula for the latter. 979. The rate constant was obtained using the recommended formula for the k of the reaction CD 3 + (CD 3 ) 2 C0 = CD^ + CD 2 C0CD 3 , taken as standard. 980. See also [428, 429]. 981. Obtained using the mean value of the quantity hi:/k^(CT> 3 + CD 3 C0CD 3 = CDi t + CD 2 C0CD 3 , ki : 2CD 3 = C 2 Dg , k 2 ) from the measurements of other authors [428] and from the value k 2 = 10 13 - 58 [1401]. 982. The rate constant for recombination of CD 3 radicals was chosen as 10 13 * 7 . 983. Calculated by the least-squares method on the basis of [650, 1088, 1525, 1600] 984. The rate constant was obtained using the k of the reaction CD 3 + CD3COCD3 = CD^ + CD 2 C0CD 3 , k = 3.5 x 10 10 /f exp (- — rhr — ), which was considered as standard [1085, 1086]. 334 985. The data of [1084] were used. 986. The recommended formula for the k of the reaction CD 3 + C 2 Hg = CHD 3 + C 2 H 5 was used . 987. See also [671, 824] . 988. The mean value of A is 0.051. 989. See also [660a] . 990. Obtained under the assumption that abstraction of primary H does not depend on the mass of the hydrogen atom in the secondary position. 991. Given with reference to [1089]. 992. A = 0.31. 993. Calculated by the least-squares method on the basis of [647, 650, 1090]. 994. See also [1269, 1307] . 995. A = 1.8. 996. Obtained assuming the equality of the k of CD 3 + CD 3 0H = CD 3 H + CT> 3 and CD 3 + CH 3 0H = CD 3 H + CH 3 0. 997. In view of the smallness of the secondary isotope effect [47, 1084] the k of this reaction was considered equal to the k of the reaction CD 3 + CD 3 0H = CD 3 H + CD 3 0. 998. Not indicated is the value chosen for the k of CD 3 recombination. 999. Obtained using the k of the reaction CT> 3 + (CH 3 ) 2 C0 = CHD 3 + CH 2 C0CH 3 given in this table. 1000. The authors consider the value of the pre-exponential factor to be insuffi- ciently reliable because the concentration of CD 3 C0CHD 2 was not accurately known. 335 1001. Calculated from the measured difference in E of the reactions of CD3 with (CD3)2CO and (CH3)2CO and from the equality of the E of the reactions of CD 3 and CH3 with (CH3>2CO, which was established in [1086]. The E recommended for the latter reaction was used. 1002. The authors point out that the E is too low in [1041] because of the curva- ture of the Arrhenius plot. 1003. Given with reference to [1086, 1527]. 1004. The rate constant of the reaction 2CD3 = C2D6 is taken to be independent of the temperature and is 3.8 x 10 13 [1401]. 1005. Obtained on the basis of a number of assumptions and from the E of the re- action CH 3 + CH3COCH3 = CHtt + CH 2 C0CH 3 , which is taken to be 9.6. 1006. Calculated by the least-squares method on the basis of [181, 409, 428, 660a, 680, 1039, 1041, 1398, 1527, 1597]. 1007. ?= 0.38 at 150°C and 0.6 at 30°C. 1008. k 12 9 = — — — — = 1.99, /kjpq~iT where ks , ki2, km are the k of the reactions 2CD3CO + (CD3C0)2, CD3 + CD3CO -> CD3COCD3 and 2CD3 -> C2D 6 . According to [1602], f - 1.65, and according to [297], 2.2. 1009. The authors of [1059] believe this figure to be more accurate than the one they obtained earlier [1058]. 1010. Estimate based on the E of the reaction C2H5 + D2 = C2H5D + D and on the difference in zero point energy. 1011. See also [873, 1136] . 1012. Obtained from the measured ratio of the k of the given reaction to the square root of the k of the reaction 2C2H5 ■*• C^Hj q , which is taken to be M».» (9.1* t 1.2) * vfi expl 13 ' 73 ^ 1 26 ° ). 336 1013. Obtained from the measured k ratio of the reactions C 2 H 5 CHCH2 ■*■ CH 3 + C3H5 (1.9 x 10" 1 * sec- 1 ) and 2C 2 H 5 = C 2 H 6 + C z &k and Ci^q [922]. 1014. On the basis of [712, 994]. 1015. Measured was the ratio of the k of the given reaction to the k of the re- action C 2 H 5 + C 2 H 5 COC 2 H 5 = C 2 H 6 + C 2 H it C0C 2 H 5 . The rate constant was obtained on the basis of the k of the reaction C 2 H 5 + C 2 H 5 C0C 2 H 5 = C 2 H 6 + C 2 H l+ COC 2 H 5 [976] . 1016. The k ratio of the reactions C 2 H 5 + HBr = C 2 H 6 + Br and C 2 H 5 + Br 2 = C 2 H 5 Br + Br is 0.66. 1017. See also [147] . 1018. The ratio of the k of the given reaction to the k of the reaction C 2 H 5 + 2 C 2 H 5 2 is 13; that of the given reaction and of the reaction C 2 H 5 + NO = C 2 H 5 NO is 7. 1019. The k ratio of the reactions C 2 H 5 + I 2 = C 2 H 5 I + I and C 2 H 5 + HI = C 2 H 6 + I is 8. 1020. E = 0.2 was chosen arbitrarily. 1021. Estimate. The k ratio of the reactions of C2H5 with HI and I 2 is 0.15. 1022. Obtained from the measured k ratio of the reactions C 2 H5 + I 2 = C 2 H 5 I + I (2) and C 2 H 5 + HI = C 2 H 6 + 1 (3) (lg _£ = 0.58 + ^p ; 6 = 2.303RT) and E 2 = 0.2 was chosen arbitrarily. 3 1023. The rate constant for recombination of C2H5 radicals was chosen as 2.0 x 10 13 . 1024. A = 0.11. 1025. A = 0.135. 1026. A = 0.11. 337 1027. Obtained using the k of the reaction C 2 Ri+ + C 2 Hi f = C 2 H 5 + C 2 H 3 , k = 10l»f.82 exp(- — g — 1 {211] and the k of the reaction 2C 2 H 5 •* C^q, k = 10 13.61 [1403]. 1028. A = 0.132 ± 0.017. 1029. A = 0.13 ± 0.02. 1030. A = 0.12 ± 0.01. 1031. Measured was the difference in the E of disproportionation and recombination (1.2); the E of the recombination reaction was chosen as zero. 1032. Obtained on the basis of the measured k of recombination and of the ratio of the k of disproportionation and recombination [820] . 1033. a = 0.136 ± 0.02. 1034. The activation energy of the reaction 2C 2 H 5 -> C^Hjq was taken to be 0. 1035. It is pointed out in [218] that hot C 2 H 5 radicals are formed upon photolysis of Hg(C 2 H 5 ) 2 ; this must be ascribed to the differences in obtaining such radicals by this method, as found in the study of C 2 H 5 reactions by various authors . 1036. Obtained by the method of intermittent illumination. 1037. A = 0.125 ± 0.01. 1038. Regardless of T, A = 0.12. 1039. A = 0.130 ± 0.007. 1040. A = 0.25. 1041. A = 0.13. 1042. A = 10 _0 « 213±0 ' 01lf exp (- * — -). Using the value of A measured at room temperature by the authors of [1312] we will have A = 10°« 3tf exp ( ^ — ). 1043. A = 0.065 ± 0.006. 338 1044. A = 0.06 ± 0.04. 1045. A = 0.081 ± 0.010. 1046. A = 0.053 ± 0.007. 1047. A = 0.181 ± 0.010. 1048. a - 0.2. 1049. A = 0.43 ± 0.03. The author concludes that In the case of photochemically obtained radicals, A is greater than when the radicals are generated in a state of thermodynamic equilibrium. 1050. A = 0.125 ± 0.011. 1051. A = 0.3. 1052. A = 0.21 ± 0.02. 1053. A = 0.43. 1054. A = 0.19. See also [1261] and remarks 1459, 968. 1055. A = 0.02 ± 0.02. 1056. A = 0.04 ± 0.005. 1057. A = 0.498 ± 0.02. 1058. A = 0.283 ± 0.2. 1059. A = 1.7. 1060. A = 0.23 ± 0.01. 1061. A = 0.54 ± 0.01. 1062. A = 0.48. 1063. A = 0.31. 339 1064. A m 0.25 ± 0.01. 1065. A = 0.08 ± 0.04. 1066. A = 0.60 ± 0.01. 1067. A = 0.27 ± 0.01. 1068. A = 0.20 ± 0.02. 1069. A = 0.74 ± 0.3. 1070. A = 0.72 ± 0.01. 1071. A = 0.8. 1072. A = 0.265 ± 0.05. 1073. A = 0.38 ± 0.03. 1074. Determined from the yield of CO. 1075. Calculated by the least-squares method on the basis of [53, 228, 645, 838, 976, 1495]. 1076. The rate constant of the reaction 2C2H5 -> C^H^o was taken to be 10 14 . 1077. A = 0.22. in7Q a n noi / 2,200 ± 200 \ 1078. A = 0.021 expl— 2 — I. 1079. A = 0.4. 1080. The activation energy for recombination of radicals is taken to be zero. 1081. A = 0.05 ± 0.04. 1082. Calculated from the k of the reverse reaction and from the equilibrium constant under the. assumption that the heat of reaction is zero. 1083. The author assumes that the reaction proceeds in two ways: 340 C 2 H 5 + N0 2 ■*- C2H5NO* "*■ C 2 H 5 + NO and C 2 H 5 + N0 2 = HN0 2 + C 2 H 4 . 1084. The authors take the mean value from [1403], 10 13 * 41 , for the k of the re- action 2C 2 H5 -> Ci+Hio- The constant was measured at a pressure of from 0.48 to 10.3 mm Hg in a mixture of (C 2 H5N) 2 and (C 2 H5) 2 0. 1085. The data for 373° were omitted. The authors of [465] view the incorrect determination of the C 2 H5 concentration in [860] as the reason for the deviation (by a factor of 100) from the value they obtained. 1086. Obtained using the k of the reaction C 2 H 5 + Cl 2 = C 2 H 5 C1 + CI [637]. 1087. The authors get 6 * 10" 4 for the k ratio of the reaction C 2 H 5 + C 2 H 5 C0C 2 H 5 = C 2 Hi + C0C 2 H5 and the given reaction. The value of 10.05 is given using the recommended k of the first reaction. 1088. Measured at 640 mm hydrogen. 1089. Calculated by the least-squares method on the basis of [921, 980, 1247]. 1090. See also [872]. 1091. Reasons are expressed in [921] for doubting the correctness of the tempera- ture coefficient for this reaction given in [1404] . 1092. See also [922]. 1093. The mean value is given. 1094. 9 - 1.9 ± 0.2. 1095. 9= 1.93 ± 0.20. 1096. 9m 2. 1097. 9= 2.04. 1098. The authors of [837] point out that their data are based on a direct 341 determination of the C 2 fraction, and not on an indirect one, as in [839]. 1099. 9 = 2.56 at 365° and 3.15 at 510°. 1100. V = 1.7 (?). 1101. p = 400 mm Hg, ethane. 1102. Calculated by the least-squares method on the basis of [1012, 1029]. 1103. The data of [290, 436] were used. 1104. A = 0.0985 ± 0.008. 1105. The rate constant of recombination of C 2 D 5 radicals is taken as 10 11+ . 1106. The rate constant of recombination of CH 3 CD 2 radicals is taken as 10 ll+ . 1107. This formula is given as an improved formula over the one obtained in [1608]. 1108. The k ratio of the given reaction and the reaction n-C 3 H 7 + 2 = n-C 3 Hy0 2 is 22 and that of the given reaction and the reaction n-C 3 H 7 + NO = n-C 3 H y N0 is 11. 1109. The k ratio of the reaction n-C3H 7 + I 2 = n-C3H 7 I + I and of the reaction n-C 3 H 7 + HI = C 3 H 8 + I is 3-8. 1110. The k ratio of the given reaction and the reaction iso-C 3 H 7 + 2 = iso-C 3 H 7 2 is ~3, and that of the given reaction and the reaction iso-C 3 H 7 + NO = iso-C 3 H 7 N0 is 22. 1111. Estimate. The k ratio of the reactions of n-C 3 H 7 with HI and I 2 is 0.11. 1112. The authors state that A = 0.2 and is independent of T, in contrast with their previous study [1279] . 1113. A = 0.057 ± 0.05 . 1114. A = 0.141 ± 0.015. 1115. A = 0.154 ± 0.004. 342 1116. A = 0.156 ± 0.01. 1117. A = 0.125 ± 0.01. 1118. A = 0.18. 1119. A = 0.408 ± 0.020. 1120. A = 0.5 ± 0.05. 1121. A = 0.12 ± 0.01. 1122. A = 0.690 ± 0.015. 1123. A = 0.5. 1124. A = 0.50. A = 10" ' 95 exp(^||) is obtained from the data of [494]. 1125. A = 1.5 at 30°C and 2 at 200°C. 1126. The mean value Is A = 0.537. 1127. A = 0.6. 1128. A = 0.7. 1129. A = 1.2. 1130. A = 0.67. 1131. A = 0.52 ± 0.9. 1132. A = 0.52 ± 0.09. 1133. The activation energy of recombination of radicals is taken to be zero. 1134. See also [841]. 1135. The ratio of the k of recombination of n-C3Hy and n-Ci+Hg to the square root of the product of the k of recombination of 2-x n-C3H 7 and 2-x n-Ci+Hg is 2.0 ± 0.2. 343 1136. Obtained on the basis of the k of the reaction 2C3H7 = C3H8 + C3H5 , measured between 298 and 464°, 10 i3 * 2 , assuming that the recombination constant of 2C 3 H 7 is 10 11+ . 1137. The rate constant of recombination of sec-C^Hy radicals is taken to be lO 14 . 1138. The authors of 1916] believe this result to be not completely reliable. 1139. Obtained on the basis of a number of assumptions from the data for CH3CD2CH2 with allowance for the isotope effect. 1140. Obtained with k = 2.2 x 10 13 for the reactions 2CH 3 ■*■ C 2 H 6 and CH 3 + n-C 3 H 7 -*■ Ci+^Q 11401]. 1141. Calculated by the least-squares method on the basis of [299, 823, 911, 916]. 1142. The authors of [954] comment on the approximate nature of their formula, emphasizing in particular the excessively high value of E. 1143. Calculated by the least-squares method on the basis of [917, 954]. 1144. A = 0.63 ± 0.04. 1145. According to [207], the k of this reaction is apparently intermediate between the rate constants of addition of HI to C 2 Hi,. and C3H6. 1146. A = 0.15. 1147. The k ratio of decay to CH 3 CDCH 2 + D and CD 2 CH 2 + CH 3 at 715° is -0.017. 1148. Measured was the ratio of the k of the given reaction to the k of the reaction CH 3 CD 2 CH 2 4- CH 3 + CD 2 CH 2 . 1149. Measured was the ratio of the k of the given reaction to the k of the reaction CD3CHCH3 ■* D + CD 2 CHCH 3 . 1150. A = 0.14. 1151. A = 5. 344 1152. A = 0.078 ± 0.005. 1153. A = 0.075. 1154. A = 1.5 at 24°C and 3.5 at 220°C. 1155. A = 0.42. 1156. Calculated from the data of I960] using the quantity A = 0.165 determined in [1111]. 1157. A = 0.95. 1158. A = 1.5. 1159. A = 0.61. 1160. A a 1.2. 1161. A = (0.23). 1162. A = (2.0). 1163. 10 5 is given in [147], with reference to [500], for the ratio of the pre- exponential factors of this reaction and of the reaction (CH3)3C + Br2 = (CH3)3CBr + Br. The activation energy of the latter reaction is taken to be zero. 1164. The difference in E of the given reaction and of the reaction (CH 3 ) 3 C with I 2 is 1.4 and the ratio of the pre-exponential factors is =1. 1165. A = 2.32 ± 0.05. 1166. A = 4.5 at 23°C and 6.5 at 300°C. 1167. A = 7.4. The author concludes that the tert -C^Hg radicals are vibrationally excited. 1168. A = 2.2. 1169. A = 3.19. 345 1170. A = 1.33 ± 0.24. 1171. Given with reference to [750, 751]. 1172. See, however, [825], where the k ratio obtained for the reactions (CH 3 ) 2 CDCH 2 -» (CH 3 ) 2 CCH 2 + D and CH 3 DCCH 2 + CH 3 is = 0.004, more than an order lower than the values extrapolated by the formula given in [1111] . The authors of [825] indicate a probable reason for the inaccuracy of this formula. 1173. Given is the k ratio of decay of iso-Ci+Hg to (CH 3 ) 2 CCH 2 + H and to CH 3 CHCH 2 + CH 3 , calculated from the measured ratio of the corresponding k of decay of the (CH 3 ) 2 CDCH 2 radical, taking into account the isotope effect. 1174. Given with reference to [1103]. 1175. Given with reference to [278], where E = 40 is given for iso-Ci+Hg. 1176. Measured was the k ratio of decay of (CH 3 ) 2 CDCH 2 to (CH 3 ) 2 CCH 2 + D and to CH 3 CDCH 2 + CH 3 , the mean value of which is 0.004 in the indicated tempera- ture range. 1177. The rate constant of the given reaction is immeasurably greater than the k of the reaction (CH 3 ) 2 CDCH 2 -> (CH 3 ) 2 CCH 2 + D. 1178. The ratio of the pre-exponential factors of the k of the reactions (CH 3 ) 3 CCH 2 + HBr = (CH^C + Br and (CH 3 ) 3 CCH 2 + Br 2 = (CH 3 ) 3 CCH 2 Br + Br is 105.«+9 - 106.04 and the difference in E is 9.9. 1179. Measured at 300°K in [984] are the k of dissociation of chemically (by attachment of H atoms to olefins) activated (hot) radicals: 3-methyl- butyl-2, 3-methyl-pentyl-2 , 3-ethyl-pentyl-2, 2-methyl-pentyl-3, 2-methyl- hexyl-3 and 3-methyl-hexyl-3. Given are the differences between the k of the reactions of hot and thermalized radicals. 1180. The data of [681] for the reaction CH 3 + cyclo-C^CHO = CH^ + cyclo-C 3 H 5 CO were used. 346 1181. Obtained under the assumption that the k of the reaction CH3 + cyclo-C^I^ ■*■ CH^-cyclo-C^H^ is lO 1 ^. The pre-exponential factor is taken to be the same as for cyclo-C^Hy [649]. 1182. The activation energy was obtained assuming that A = 10 13 . 1183. A = 1. 1184. A = 0.45. 1185. The yields of cyclo-C 6 H 8 -l,3, cyclo-C 6 H 8 -l,4 and C 12 H 14 are 11, 20 and 69%, respectively. 1186. Given is the ratio of the k of the given reaction to the k of the reaction C 2 H + HC 2 Br = C4H2 + Br. 1187. The approximate formula (estimate) for the k of the reverse reaction, k =* im13 8 / 6,000 \ A 10 lo »° expl ±7= — J was used. 1188. The ratio of the k of the given reaction to the k of the reaction C 2 H 3 + C 2 H 3 C1 -> C^Cl is 29. 1189. The rate constant of the reverse reaction was set arbitrarily as k = ml2 8 / 1>000 \ 10 1Z « B expl- -r*j — I. 1190. The formula (estimate) k_ - 10 13 * expl- — jb; — J was used. 1191. Given with reference to [257, 1072]. 1192. The approximate value (estimate) k = 10 13 * 4 was used. 1193. The approximate value (estimate) k = 10 13 * 7 was used. 1194. The approximate value (estimate) k = 10 11 * 13 was used. 1195. According to [552], the pre-exponential factor may be erroneous because of the failure to account for light absorption by the diphenyl. 1196. The activation energy of the reaction C 6 H 5 CH 2 + Br 2 = C 6 H 5 CH 2 Br + Br was taken to be zero. The ratio of the pre-exponential factor of this reaction and of the reaction given in the table is 1 : 10 3 . 347 and of the reaction given in the table is 1:10 3 . 1197. The k ratio of the reactions of CgHi+Cl^ with D 2 and with CgHi^CH^ is 24.6. According to [271], this ratio is 10.7 at 700°. 1198. The rate constant of the reaction C 6 H 5 0CH 2 + CH 3 -> C 6 H 5 0C2H 5 was taken to be 3.3 x 10 13 . 1199. The ratio of the k of the given reaction to the square root of the k of the reaction 2CF 2 •*- C 2 ?k is 10 1 * 86 . 1200. The ratio of the k of the given reaction to the square root of the k of recombination of CF 2 radicals is 72.7. 1201. See also [399]. 1202. The ratio of the k of the given reaction, which is considered to be the reaction CF 2 (triplet) + C 2 Fi f -> cyclo-C 3 Fg, to the k of the reaction CF 2 (triplet) + 2 -> CF 2 2 is 0.40. 1203. The rate constant of CF 3 + CF 3 -> C 2 F 6 is taken to be 10 13 * 36 [61]. 1204. See also [320, 1269]. 1205. See also [1265]. 1206. See also [1266]. 1207. Calculated by the least-squares method on the basis of [37, 66, 1272]. 1208. Calculated by the least-squares method on the basis of [66, 1272]. 1209. The formula 10° - 578±0 .° 84 expf 2171 * 159 1 was obtained for the ratio of the k of the given reaction to the k of the reaction CF 3 + HBr = CF 3 H + Br. 1210. The formula 10° . 638±0 - ° 62 expf 2983 * 118 ) was obtained for the ratio of the k of the given reaction to the k of the reaction CF 3 + HBr = CF 3 H + Br. 1211. Obtained using the k of the reaction CF 3 + Br 2 = CF 3 Br + Br, k = 10 12 * 36 x expf- Mj [22, 1533]. 348 1212. The k ratio of the given reaction and the reaction CF3 + Br 2 = CF 3 Br + Br is 10-0.33±0.08 exp /_ 3,000 ± 260 \ Mong ^^ ^ expression lo -0.58±0.08 x I 2 170 ± 160 \ * 1 expl i — 1 obtained in [1533] at 328-607°, the authors also give ir»-0 58±0 Ok I 2,130 ± 90 \ c 000 -,,-,-0 10 u,DO U,UH expl- — 2 — J for 328-755 . 1213. The k of the reaction CF 3 + I 2 = CF 3 I + I, i.e., 2.6 x 10 12 , was used. 1214. Given are the ratio of the k of the reaction CF3 + CH 3 = CF3CH3 + M to the k of the given reaction for T ■ 423° and various M, and also the following relative efficiencies: cyclo-C 6 F 12 : (CF 3 ) 2 CO: (CH 3 ) 2 C0:N2 = 1.00:071:031:0.053. 1215. The values of A, E and k H /kp were calculated theoretically for various re- actions and compared with the data known from the literature. It is assumed that the activation energy of recombination of CF3 radicals is zero. If the latter is equal to 2 kcal/M, E should be 1 kcal/M greater. 1216. The rate constant was obtained on the basis of [9, 67, 68, 320, 626]. 1217. Obtained under the assumption of a certain reaction volume. 1218. Calculated by the least-squares method on the basis of [9, 67, 320, 626, 1274]. k 420 x 10^ 1219. In conformity with the theory of Bigeleisen, In tt = In 1.40 H : K. >r2 was obtained for the k ratio of the given reaction and the reaction CF 3 + CH 2 D 2 = CDF 3 + CH 2 D. 1220. See also [922]. 1221. The recombination rate constant of CF3 was taken to be 10 13 » 31 +. 1222. Calculated by the least-squares method on the basis of [9, 67, 68, 320, 626, 1144, 1272, 1274]. 1223. Calculated by the least-squares method on the basis of [68, 1144, 1272, 1274]. 1224. A//A~ and E - 1/2 E are given. P P 349 1225. The rate constant of the reaction 2CF 3 = C 2 F 6 (k 2 ) was taken to be 2.3 x 10 13 [61]. Also used were the data of [68] for \hq : fk^ (CF 3 + iso-Cz+Hio = CF 3 H + tert-Ci+Hg ,k 8 ) . 1226. The k of the reaction CF 3 + CHi+ - CF 3 H + CH 3 , 10 11 - 88 exp( 10?80 ° ~ T 4 °° ) , was used. 1227. Using the recommended formula for the reaction CF 3 + CH^ = CF 3 H + CH 3 we will have k = 10 10 - 83 exp(- Z ^)« 1228. Using the recommended formula for the reaction CF 3 + CH^ = CF 3 H + CH 3 we will have k = 10 11 - 83 exp(- ■ Z jf^). 1229. The ratio of the k of the given reaction to the k of the reaction CF 3 + CD3OH - CF 3 H + CD 3 is 10 1 ' 36 exp(- 2>29 ° * 10 ° ) and the k of the reaction CF 3 + CH 3 OH = CF 3 H + CH 2 0H is 10° •*» exp(- 2 > 3 °° R ^ 8 °° ). 1230. Using the recommended formula for the reaction CF 3 + CH^ = CF 3 H + CH 3 we •11 u 1 mil 93 / 9,460 \ will have k = lO 11 * 30 expl ±7= — I. 1231. See, however, [627]. 1232. The rate constant of CF 3 recombination is taken to be 10 13 * 3 ^ [61]. 1233. Obtained using the k of the deactivation process 0' (* D) + 2 = + 2 , k = 10 13 - 38 . 1234. This formula is considered by the authors of [626] to be more accurate (the formula was obtained for a mixture containing CD^) . 1235. According to [10], the k ratio of the reactions CF 3 + CH 2 C1 2 = CHF 3 + CHC1 2 and CF 3 + CH 2 C1 2 = CF 3 C1 + CH 2 C1 is (0.49 + 0.3) exp(— «-2 — 1= J in the temperature interval 306-449 C. 1236. The reason for the divergence of the data obtained for the photolysis of CF 3 C0CF 3 and CF 3 NNCF 3 is discussed in [11]. The authors arrive at the conclusion that the former are more reliable. 1237. Measurements at 25 mm Hg of CH 3 Br + 20 mm Hg for CF 3 C0CF 3 . 350 1238. Measurements at 180 mm Hg of CH 3 Br + 20 mm Hg for CF3COCF3. The authors do not explain the pressure dependence of k obtained by them. 1239. Obtained from the measured k ratio of the given reaction and of the reaction of CF 3 with 2,3-dimethylbutane, 2.2 x 10 9 . 1240. Obtained from the measured k ratio of the given reaction and of the reaction CF 3 + 2,3-dimethylbutane = CF3H + C 6 H 13 using the k of the latter, taken from [1272], but with E = 4.7 (see [422], table V). 1241. The ratio of the k of the given reaction to the k of the reaction CF 3 + [(CH 3 ) 2 CH] 2 = CF 3 H + (CH 3 ) 2 CCH(CH 3 ) 2 is 93.0. 1242. The ratio of the k of the given reaction to the k of the reaction CF 3 + [(CH 3 ) 2 CH] 2 = CF 3 H + (CH 3 ) 2 CCH(CH 3 ) 2 is 278. 1243. The ratio of the k of the given reaction to the k of the reaction CF 3 + [(CH 3 ) 2 CH] 2 = CF 3 H + (CH 3 ) 2 CCH(CH 3 ) 2 is 101.0. 1244. The ratio of the k of the given reaction to the k of the reaction CF3 + [(CH 3 ) 2 CH] 2 = CF 3 H + (CH 3 ) 2 CCH(CH 3 ) 2 is 781. 1245. The ratio of the k of the given reaction to the k of the reaction CF 3 + [(CH 3 ) 2 CH] 2 = CF 3 H + (CH 3 ) 2 CCH(CH 3 ) 2 is 49.8. 1246. See, however, [1210]. 1247. The ratio of the k of the given reaction to the k of the reaction CF 3 + [(CH 3 ) 2 CH] 2 = CF 3 H + (CH 3 ) 2 CCH(CH 3 ) 2 is 0.82. 1248. This E is obtained if it is considered that the reactions CH 3 + CH3 -+ C 2 H 6 (2) and CH 3 + CF 3 ■> CH3CF3 (1) do not have an activation energy. The authors found E = 2.14 + 2Ej - E 2 . 1249. cp = 1.95. 1250. Cp = 1.77 ± 0.10. 1251. The ratio of the k of the given reaction to the k of the reaction CF3 + [(CH 3 ) 2 CH] 2 = CHF 3 + (CH 3 ) 2 CCH(CH 3 ) 2 is 7.0. 351 1252. The ratio of the k of the given reaction to the k of the reaction CF 3 + [(CH 3 ) 2 CH] 2 = CHF 3 + (CH3) 2 CCH(CH 3 )2 is 31.7. 1253. The temperature is given approximately. 1254. cp = 2.0 ± 0.5. 1255. The ratio of the k of the given reaction to the k of the reaction CF 3 + [(CH 3 ) 2 CH] 2 = CHF 3 + (CH 3 ) 2 CCH(CH 3 ) 2 is 36.8. 1256. The rate constant of recombination of C 2 F 5 radicals was taken to be 10 lif,olf . 1257. The rate constant of the reaction 2C 2 F 5 •»■ C^Fjq was taken to be lO 14 . 1258. Calculated by the least-squares method on the basis of [975, 1259, 1266]. 1259. The authors of [1265] consider these data to be more accurate than those they obtained earlier. 1260. The ratio of the k of the given reaction to the k of the reaction C 2 F 5 + Br 2 = C 2 F 5 Br + Br is lO" -^ 5 ± 0-06 exp (_ 2 ? 750^± 250 ^ 1261. The rate constant of the reaction 2C 3 F 7 ■*■ CgF llf was taken to be 10 llf . 1262. Calculated by the least-squares method on the basis of [623, 1123, 1266]. 1263. ab = (0.743 ± 0.046) exp( ltf40 -^ 5 ° ) was obtained for the relationship / k k" v RT aa Db between the k of recombination of C 3 F 7 radicals with C 3 Fy(k ), CH 3 radicals with CH 3 (k ) and C 3 F 7 radicals with CH 3 (k ,) . 1264. A = 0.6(298°) and 3.5(577°). Under the conditions of [1282], recombination takes place in the intermediate pressure range. See also remark 1674. 1265. The rate constant of reaction of CH 2 F radicals was taken as 2.2 x 10 13 . 1266. The rate constant of recombination of CHF 2 radicals was taken to be 10 13 * 36 . 1267. The rate constant of recombination of CHF 2 radicals was taken to be 2.2 x 10 13 , 352 1268. The ratio of the k of the given reaction to the square root of the k of recombination of CCI3 is 10 5#tt6 expf -hr — ). 1269. The ratio of the k of the given reaction to the k of the reaction CCI3 + C 2 C1 5 ■> products is 10° * 18 exp( £= — J and to the square root of the k of the reaction 2 CC1 3 ■+ C 2 C1 6 is lO 5 -^ 6 exp (- 5 * j°° ) . 1270. The k ratio of the reactions CC1 3 + HBr = CC1 3 H + Br (1) and CC1 3 + Br 2 = CCl 3 Br + Br (2) is lq : k 2 = 0.04, Ej = E 2 < 7. 1271. The value of the k of the reaction 2 CC1 3 •+ C 2 C1 6 , namely, k = 6.31 x 10 11 [499], was used. See, however, [1481, p. 1218]. 1272. The k ratio of the reactions of splitting of primary (k ) and secondary (k ) — jh= — J. The total constant k = 6 k + 4 k . 1273. See also [1478, 1482]. 1274. A = 0.11 ± 0.02. 1275. The rate constant was taken equal to the k of the reaction CC1 3 + n-C^Hjg = CHCI3 + CH 3 CH 2 CHCH 3 . 1276. Given with reference to [1481]. 1277. Given in [1478] were lg A = (10.3) and E = (7.2). 1278. The value of A was calculated from a graph, the k of recombination of CC1 3 radicals being taken equal to 10 ll+ . 1279. A = 0.22 ± 0.03; cp = 2. 1280. cp = 2.0. 1281. Given in [1107] is A = 10 8 - 8lf . 1282. Obtained on the basis of the measured (in [451]) k of the reaction CC1 3 + Cl 2 = CCl^ + CI and the ratio of this constant to the square root of the k of recombination. 1283. See, however, [1478, p. 42]. 353 1284. A = 0.14 ± 0.03. 1285. cp = 2.5 ± 0.2. 1286. The rate constant of 2 CF 2 C1 -> C2F1+C12 was taken to be independent of the temperature. 1287. A = 0.04. 1288. A < 0.5. 1289. cp = 2.4. 1290. cp a 2. 1291. cp = 2.2. 1292. Given with reference to [346, 636]. 1293. A < 0.1. 1294. The difference in E of the given reaction and 1/2E of the recombination of C2H3CI2 radicals is - 0. 1295. The activation energy was taken to be 0. 1296. The difference in E of the given reaction and 1/2E of the recombination of CHC1CHC1 2 radicals is 3.1. 1297. The activation energy of recombination of C2HC11J. radicals is taken to be 0. 1298. The difference in E of the given reaction and 1/2E of the recombination of C2HC11J radicals is 5.4. 1299. The ratio of the k of the given reaction to the square root of the k of the reaction 2 CgHCl^ -> products is lO 5 - 1 ^ ±0.02 exp (_ 4 ? 880 r ^ 40 ). 1300. The rate constant of the reaction 2 C 2 HClL i -»■ C^Cl^ was taken to be lO 12 * 1 * 8 «p(--22f)[*30l. 354 1301. See [343], where a more exact value is given, with reference to Dainton, for the ratio of the k of the given reaction to the square root of the k of the reaction 2 C^HCl^ -*■ products. 1302. The difference in E of the given reaction and 1/2E of the reaction of C 2 C1 3 radicals (recombination + disproportionation) is 7.4 (from the values given in [1373] for the ratio of the k of the given reaction to the square root of the k of the reaction of the radicals we get E = 8.45 and lg A: /A ~ = 2.72). 1303. The ratio of the k of the given reaction to the square root of the k of recombination (or disproportionation) of C2CI5 is Kr* 06 exp( * rE 1, The rate constant of the latter reaction was taken to be lO 14 . 1304. The ratio of the k of the given reaction to the k of the reaction C 2 C1 5 ■*■ CoClu + CI is lO 4 * 7 exp| — *= — J and to the square root of the k of recom- V RT // - v bination of C 2 C1 5 is lO 4 - 06 expf- ^jr) (366-428°). 1305. The ratio of the k of the reaction C 2 H 2 Br ■+■ C 2 H 2 + Br to the k of the given • ink 5k I 5,800 ± 500 \ reaction is 10^ ,J ^ expl- — 8 — I. 1306. The difference in E of the given reaction and of the reaction C 2 H 2 Br + Br 2 C 2 H 2 Br 2 + Br is 5.8 ± 0.5. 1307. The difference in E of the given reaction and of the reaction C 2 H 2 Cl 2 Br + Br 2 = C 2 H 2 Cl 2 Br 2 + Br is 6.2. 1308. The rate constant of the reaction 2 CC^C^ -*■ (CCl 3 C 2 Hi t ) 2 was taken to be 10 11 . 1309. According to [1095], the reaction apparently takes place according to the scheme 2 NH = N 2 + 2H. 1310. Mean value in the temperature interval 1900-2400°. 1311. The ratio of the rate constants of the reactions of NH with 2 , C 3 H 6 and C 2 Hit is 40 : 2 : 1. 1312. The rate constant is pressure- independent in the range 425-850y . 355 1313. The constant is essentially independent of T in the temperature range 2,300-3,000°. 1314. By correcting the data of [1002] (dividing the pre-exponential factor by 2.7) the author of [461] shows that these corrected data are close to the extrapolated Arrhenius line obtained in [461] . 1315. See also [537]. 1316. Obtained using the data of [469, 895, 1628]. 1317. Obtained on the basis of the measured value of the constant at 300°, the k ratio of the reactions OH + H 2 = H 2 + H and OH + CO = C0 2 + H, measured in [89, 471, 474, 532,1535], and the k of the reaction OH + CO = C0 2 + H from the data of [470, 474, 532, 871, 1589, 1590]. See also [91]. 1318. This formula was obtained on the basis of the value of the constant measured at 310° and of the data of [537]. 1319. Obtained using the result of [895]. 1320. Calculated by the least-squares method on the basis of [469, 471, 474, 685, 895, 1326, 1628, 1707]. / 4 400 \ 1321. The author also gives the formula k /k r . 1J _ 1 _ riri = 17 exp £=; — J for the k Ori+D2 Orl+LU \ Rl / ratio of the given reaction and the reaction of OH with CO. He considers this formula to be more accurate than the formula obtained in [1535], k 0H+D 2 /k 0H+C0 = 16 ° eXp (" *mP)' 1322. Calculated on the basis of the measured k ratio of the given reaction and the reaction OH + H 2 = H 2 + H and of the recommended k of the latter reaction, 1323. Obtained by the least-squares method on the basis of [687, 1535]. 1324. The formula recommended in [895] was obtained on the basis of the value of k measured at 310° [450] and the accepted value of E = 1,000 ± 500 cal/M. 1325. See also [488, 1374, 1408]. 356 1326. 4.7 was obtained for the k ratio of the reactions OH + H 2 2 = H 2 + H0 2 and OH + H 2 = H 2 at 500° C. The rate constant of the given reaction was calculated on the basis of the recommended k of the reaction OH + H 2 = H 2 + H. 1327. 10 was obtained for the k ratio of the reactions OH + H 2 2 = H 2 + H0 2 and OH + CO = C0 2 + H. The recommended formula was used. 1328. Calculated on the basis of [89, 91, 683, 684, 783]. 1329. The authors of [1189] believe that the 30-fold discrepancy between the rate constants resulting from the inaccuracy of the two methods of determining k (because of a number of assumptions made in doing so), namely, from the rate of flame propagation and from the temperature dependence of the lower ignition limit, must be considered inadmissible. 1330. Calculated by the least-squares method on the basis of [1189, 1441]. Because of the large pre-exponential factor the formula (and possibly the reaction mechanism) is dubious. 1331. It was shown in [1623] that the value for the k of the given reaction obtained in [729] is too low. 1332. The value of [759] corrected according to [1623]. 1333. For other formulas proposed by a number of authors see [1289]. 1334. The k ratio of the reactions of OH with H 2 and CO is (31 ± 5) exp(- 4,000 ± 300 \ \ RT / and that of the reactions of OH with D 2 and CO is (160 ± 30) exp(- 6 > 400 -| 30 j. The formula for the k of the reaction OH + CO = CO + H was obtained on the basis of the recommended formula for the k of the reaction OH + H 2 = H 2 + H. 1335. Obtained on the basis of [87, 469, 474, 532, 533, 1535, 1589]. See also [1372]. 1336. Obtained on the basis of the constant measured at 300° and of an analysis of the experimental data at high temperatures. 357 1337. On the basis of the data of [532, 803, 1073, 1251]. 1338. Obtained on the basis of the data of [532, 1589, 1693]. 1339. Obtained from the data of [87, 471, 1535]. If, in addition, the data of [532, 1589, 1590, 1693] are used, k is expressed by the formula k = 10 12.6 ± 0.3 x exp /_ 6,200 ± 600 RT / 1340. Calculated by the least-squares method on the basis of the data of [89, 474, 532, 685, 759, 871, 1256, 1535, 1623]. 1341. According to [185], the k ratio of the given reaction and of the reaction of OH + CO = C0 2 + H at 525°C is 2.1. 1342. See, however, [1424, p. 606]. 1343. 10 2 * 2 expl ±=, — ) is obtained for the k ratio of the reactions OH + CH^ = H 2 + CH 3 and OH + CO = C0 2 + H; from this, on the basis of the recommended formula (the k of the reaction OH + CO = C0 2 + H) , follows k = 10 13 * 8 x / 7,810 ± 1,600 \ e . r7Q/ , exp^ 2 — — ! I. See also [784a]. 1344. The k ratio of the reactions OH + CH^ = H 2 + CH 3 and OH + H 2 = H 2 + H is 1.0 ± 0.2. The constant was calculated from the recommended k of the reaction OH + H 2 = H 2 + H. 1345. Calculated from the data of [185]. 1346. Given with reference to [258]. 1347. Obtained using the data of [185, 474, 539, 781, 1589]. 1348. Obtained using the data of a number of authors for the k ratio of the given reaction and the reaction OH + CO = C0 2 + H and the k of the latter reaction, 10^.5 e*p(-|^)[474]. 1349. Calculated by the least-squares method on the basis of [94, 473, 539, 595, 685, 1589, 1625]. 1350. Calculated on the basis of the measured k ratio of the given reaction and the reaction OH + H 2 = H 2 + H using the recommended value for the latter constant. oco 1351. Obtained on the basis of the data of [98, 686], which are apparently more accurate. 1352. Calculated by the least-squares method on the basis of [97, 1590, 1692]. 1353. Calculated by the least-squares method on the basis of [543, 1256, 1692]. The formula cannot be considered reliable because the data of [1692], in which the OH radicals were obtained from a discharge in water vapor, were used in its derivation. 1354. 33 ± 3 was obtained at 500°C in [185] for the k ratio of the given reaction and of the reaction OH + CH^ = H 2 + CH3 under the assumption that the reaction OH + HCHO predominates over the reactions of HO2 and 2 with HCHO. The recommended k of the last reaction was used. , 1355. Obtained from the measured k ratio of the given reaction and of the reaction OH + CO = CO2 + H and the recommended value for the k of the latter. 1356. The k ratio of the reactions OH + CHCO = H 2 + CHO and OH + CH^ - H 2 + CH 3 in the temperature interval 798-923° can be expressed by the formula 10° * 16 expl— jh= — ). Using the recommended k of the latter reaction this yields the formula given in the table. 1357. Given as a preliminary result. 1358. Mean of the data of [185, 781, 1590]. 1359. The value of the k of the reaction 20H = H 2 + 0, measured in [450], was used. 1360. Obtained using the k of hydroxyl recombination, measured in [1196]. The data of [176], which differ from those of [287] by a factor of -60, must be considered less accurate. See [287, 802], 1361. The reaction probably takes place according to the scheme 2 OH + H 2 2 = 2 H 2 2 [688]. 1362. Given with reference to a communication of Davidson. 359 1363. The rate constant of the reaction 2 HO2 ■ H2O2 + O2 was taken to be 1.8 x 10 (given with reference to Foner and Hudson, who give this figure for 20°C). See also [91]. 1364. According to [118], the k ratio of the reactions H0 2 + H 2 = H 2 + OH (ki) and HO2 + H2O = H2O2 + OH (k2) at room temperature is k2 : kj = 4,700, from which the authors of [118] conclude that Ej - E2 = 5. 1365. 280 ± 60 was obtained for the k ratio of the reactions H0 2 + HCHO = H 2 2 + HCO and H0 2 + CO = C0 2 + OH. 1366. According to [185], the ratio of the k of the given reaction to the k of the reaction H0 2 + CO = C0 2 + OH at 525° C is 340 ± 80. 1367. See also [1284]. 1368. The ratio of the k of the given reaction to the k of the reaction CN + O2 = NCO +0 is 0.1. 1369. According to [1370], k = 4.7 x 10 8 at 300°. The reaction products are not indicated in [1223]. 1370. Calculated on the basis of [1223, 1370]. 1371. The ratio of the k of the given reaction to the k of the reaction CN + O2 = NCO +0 is 6.2. 1372. The ratio of the k of the given reaction to the k of the reaction of CN with n u • on / 3,700 ± 200 C 2 H 6 is 20.6 expl i — 1373. The ratio of the k of the given reaction to the k of the reaction CN + C3H 8 = HCN + iso-C3H 7 is 1.1 expl E-= 1 and to the k of the reaction CN + C 3 H 8 = HCN + n-C 3 H 7 is 1.0 exp( 10 ° jl^ 200 ) . 1374. The ratio of the k of the given reaction to the k of the reaction CN + C3H3 una j. • n u • 1 I 1Q0 = 300 ^ HCN + 1SO-C3H7 is 1.2 expl — 1375. Given with reference to [1329]. 360 1376. If the reaction takes place according to a second-order law, k = 10 12,3 . 1377. A = 0.5. Given with reference to unpublished work by Phillips. 1378. A = 0.1. 1379. The given reaction is 80 times faster than the reaction CH 3 + (CH 3 ) 2 CO = CH 3 0H + CH 2 C0CH 3 . 1380. According to [789], the k of the given reaction at 373° is 80 times greater than the k of the reaction CH 3 + CH3COCH3 = CH3OH + CH 2 C0CH 3 . The difference in E of these reactions is -7 (T = 373-423°). 1381. Obtained under the assumption that the k of the reaction CH3 + CH3OH = CH^ + CH3O is equal to the k of CD 3 + CD 3 0H = CD 3 H + CD 3 and under a number of other assumptions. 1382. Obtained using the k of the reaction CH 3 + CH 3 ■*• CH3OCH3, k = 10 13 « 5 [158]. 1383. Given in [669] (with reference to [158]) is a value of lg A which is lower by 0.4, in view of the fact that different values for the k of the reaction CH 3 + CH3O ■* CH3OCH3 (10 13 * 1 and 10 13 ' 5 ) were used in these studies. 1384. Calculated on the basis of the data of [158, 1401] with k = 10 13 * 1 for the reaction CH 3 + CH 3 ■> CH3OCH3 [668]. 1385. A = 9.3 ± 0.6. 1386. A = 60. 1387. Obtained from the measured k ratio under the assumption that the k of the reactions 2 CH 3 -> C 2 H 6 and CH 3 + CH 3 ■+ CH 3 0CH 3 are 10 13 « 3lt [1401] and 10 13 ' 1 [670], respectively. 1388. The difference in E of the given reaction and the reaction CH 3 + HCHO = CH3OH + HCO is 3.0-4.0. Given in [669], with reference to [1465], is E = 6.0. 361 1389. Given with reference to [788a], where the formula 150 expl -h= — J was obtained for 323-408°, expressing the k of the given reaction to the square root of the k of the reaction 2 CH 3 = CH 3 0H + HCHO. 1390. The rate constants of the reactions CH 3 + CH 3 -> (CH 3 ) 2 and 2CH 3 -> C 2 H 6 were taken to be 10 11+ and lO 13 * 34 . 1391. Calculated from the measured values of the quantity — ~ — , where k 8 , kg and k k are the k of the reactions CH 3 + CH 3 COOCH 3 = CH 3 0H + CH 2 COOCH 3 (k 8 ) , 2 CH 3 -> C 2 H 6 (k 6 ) and CH 3 + CH 3 -> CH 3 OCH 3 (k u ) , assuming that Eg = 0, E^ = 1392. Given in [669], with reference to [1601], were E = 6.6 and lg A = 10.6. 1393. The authors of [1144] estimate k with accuracy to within an order of magnitude. 1394. Obtained on the basis of the data given in [1239, 1424]. 1395. The ratio of the k of the given reaction to the k of the reaction CH 3 + N0 2 •* CH 3 0N0 2 is 2.7. 1396. The ratio of the k of the reaction CH 3 + NO + CH 3 0N0 to the k of the given reaction is 1.8. 1397. Calculated from the k of the reverse reaction. 1398. A = 1.4. 1399. A = 1.8. 1400. A < 0.075? 1401. A > 5.7? 1402. Obtained under the assumption that the E of the reaction 2 CH 2 0H -* (CH 2 0H) 2 is 0. 1403. The ratio of the k of the given reaction to the k of the reaction C 2 + C^Hg C 5 H 6 + CO is 100 ± 20 and to the total k of the reaction C 2 + 2 = C0 2 + CO and 2 CO + is 135 ± 30. 362 1404. A = 0.46. 1405. A = 2.3. 1406,. The rate constant of the reaction C 2 H 5 + C 2 H 5 -»• (C 2 H 5 ) 2 was set at lO 13 * 34 . 1407. A = 1.3. 1408. The ratio of the k of the given reaction to the k of the reaction C 2 H 5 -»- HCHO + CH 3 is expressed by the formula 10° - 8 ± °- 3 exp( 10?7Q ° R ^ 1 ? 500 \ 1409. A a 12. 1410. A = 12 ± 2. 1411. The ratio of the k of the given reaction to the k of the reaction C 2 H 5 + N0 2 -*• C 2 H 5 0N0 2 is 2.5. 1412. Calculated using the average value of the k of the reverse reaction, k = 1.6 x 10 llf exp/- 34 Jct° )> [715], obtained from the data of [721, 1306, 1149]. 1413. The rate constant of the recombination of radicals is taken to be 2.2 x 10 13 . 1414. Obtained assuming that the E of the reaction 2 CH 3 0CH 2 ■*■ CH 3 0CH 2 CH 3 0CH 2 is 0. 1415. A = 0.16 [407]. 1416. Obtained from the measured k ratio of the reaction of disproportionation and attachment (0.15 ± 0.03) and from the calculated k of the latter reaction, 6 x 10 10 . 1417. Obtained from the measured k = knki 2 /(k-u + kj 2 ) (see remark 874), assuming that k_ n > k 12 using K = kn/k-n [298]. 1418. Obtained under the assumption that the k of the reaction (CH 3 ) 2 CH0 + ester = (CH 3 ) 2 CH0H + R is k = 10 11 exp(- 4 ^ 00 ). 1419. See also [546, 767]. 1420. The relative efficiencies at 200°C are iso-C 3 H 7 0N0 : H 2 : Ar : N 2 : CO : NO : C0 2 : N 2 : SF 6 = 1.00 : 0.20 : 0.08 : 0.12 : 0.14 : 0.10 : 0.38 : 0.39 : 0.40. 363 1421. This formula is considered by the authors of [407] to be more accurate than the one obtained earlier [546], when the measurements were made at constant pressure. Given in [407] are the relative efficiencies of 18 gases. 1422. Found using the k of the reaction (CH 3 ) 2 CHO + NO = (CH 3 ) 2 C0 + HNO, k - 10 10 (E = 0) [33]. The previously obtained formula [1024] is considered by the authors of [407] to be less accurate. 1423. The relative efficiencies are (CH 3 ) 2 CH0N0 : Ar : N 2 : NO : C0 2 : C 2 H 6 : C 3 H 8 : n-C^HjQ : (CH 3 ) 3 CH = 1.00 : 0.06 : 0.04 : < 0.1 : 0.4 : 0.7 : 0.7 : 0.6. 1424. The ratio of the k of the given reaction to the k of the reaction (CH 3 ) 3 C0 -*■ CH 3 C0CH 3 + CH 3 is 10 2 - 43 exp( 3 ^ 00 ). 1425. The ratio of the k of the given reaction to the k of the reaction tert- Ci+HgO + N0 2 ■* tert-C^HgONO is 1.7. 1426. Calculated using the mean value of the k of the reverse reaction, k = 4 x 10 15 exp/- 37 ^°° ) [715], obtained from the data of [1168, 1302]. 1427. The rate constant of the reaction (CH 3 ) 3 C0 + NO -* (CH 3 ) 3 C0N0 is taken to be 1Q10.5. 1428. M corresponds to a mixture of [(CH 3 ) 3 CO] 2 and NO. 1429. The authors of [767] show that the assumption made in [172, 1079] and else- where that the reaction is first order does not correspond to reality, since it leads in particular to an excessively low value for the pre-exponential factor. With the aid of the data of [429] the authors of [767] get a value for the pre-exponential factor, lO 13 * 64 - °* 7 , which is close to that given in the table. 1430. See also [229, 243, 669 (pp. 96-97), 767, 1082, 1158, 1159, 1273, 1309, 1528, 1558]. 1431. See also [122]. 364 1432. Trotman-Dickenson points out [1524, p. 306], that both A and E can be lower than as listed here. 1433. The activation energy of the reaction (CH 3 ) 3 C0 + NO ■*■ (CH 3 ) 3 CONO was taken to be 0. The rate constant of this reaction and of the reaction CH 3 + NO •*■ CH 3 N0 were considered to be equal. See, however, [767]. 1434. Obtained with k = 3.3 x 10 13 for the reaction C 6 H 5 OCH 2 + CH 3 •* C 6 H 5 OC 2 H5. 1435. The ratio of the k of the given reaction to the k of the reaction iso- C 3 H 7 2 -»• CH 3 CH0 + CH 3 is expressed by the formula 10 1 * 8 ± °« 3 exp 12,600 ± 1,600 RT 1436. The ratio of the k of the given reaction to the k of the reaction iso- C 3 H 7 2 + CH 3 CH0 + CH 3 is expressed by the formula 10° « 9 exp( 16>70 ° _Z 1 ? 500 J, 1437. For a critique see [300]. 1438. Obtained on the basis of the data of various authors and of a number of assumptions. 1439. See, however, [130]. 1440. The difference in E of the reactions HCO ■> H + CO (1) and HCO + 2 = C0 2 + OH (2) is Ej - E 2 a 14. 1441. The authors of [1519] conclude that under their experimental conditions the reaction is heterogeneous. 1442. Obtained using the k of the reaction CH 3 CO -»- CH 3 + CO, k = 1.66 x 10 10 RT Ml ^p). [787, 788] 1443. Obtained assuming that the k of the decay of the CH 3 C0 radical to CH 3 + CO is expressed by the formula k = 10 13 expj *J= — ) sec -1 . 1444. Obtained from the ratio of the k of the given reaction to that of the reaction CH 3 C0 -> CH 3 + CO, k = 10 10 - 22 exp(- 13 »^°° ) [1081]. 1445. The authors of [678] assume that the complex reaction mechanism proposed in [1517] does not play an appreciable part under their experimental conditions 365 1446. The rate constant of the reaction 2 CH3CO -»■ (CH 3 CO)2 was taken to be 1.8 x 10 13 . 1447. Obtained on the basis of the data of various authors with k = 10 for the reaction 2 CH3CO ■*■ (CH 3 C0) 2 . 1448. The difference in E of the reactions CH3CO -> CH 3 + CO (1) and CH3CO + Ci+Hg + Ci(HgCH3C0 (2) is Ej = E 2 = 8.1. Taking E 2 = 5.4, the authors of [1557] find Ex = 13.5. 1449. The activation energy of the reaction CH3CO + 2 = ? was taken to be 0. 1450. Obtained assuming that the E of the reaction of CH3CO with 2 is zero. 1451. Calculated by the least-squares method on the basis of [30, 297], 1452. The rate constant of recombination of C 2 H 5 was taken to be 10 13 * 1 * . 1453. M is a mixture of azoethane and C 2 H 5 CH0. 1454. Given in [1524] with reference to [1608]. 1455. Obtained for E = from E = 10 + 1/2 E , where E is the E of recombination P P P of C 3 H 6 COC 3 H7 radicals. 1456. Obtained assuming that the E of the reaction CH 3 CD 2 + CH 3 CDCOCD 2 CH 3 -*■ CH 3 CD 2 CH 3 CDCOCD 2 CH 3 is 0; the E of the reaction CH 3 CD 2 + CH 3 CD 2 COCD 2 CH 3 = CH 3 CD 3 + CH 3 CDCOCD 2 CH 3 was taken to be 8.7. 1457. According to the reaction mechanism proposed in [201], the tabulated con- stant is equal to the product of the reaction Cl 3 + CO = C0C1 2 + CI and (C1Q the equilibrium constant K = 4 — ^ tM . 4 (Cl 2 ) a / 2 1458. The reaction mechanism of CIO + CIO probably cannot be considered as finally established. See [376]. 1459. A = 0.19-0.20. 1460. Obtained on the basis of the measured k ratio and of an estimate of the k of the reactions C 2 C1 5 + 2 -> C 2 C1 5 2 and C 2 C1 5 + C 2 C1 5 2 -* C 2 C1 5 2 C 2 C1 5 . 366 1461. Taking into account the data of [1335], which were obtained from photolysis of C0C1 2 , the author gives lg h. - lg (30 + 5) - 3 > 000 * 20 ° , g k 2 g " 2.303 RT where kj is the k of the reaction C0C1 + Cl 2 = C0C1 2 + CI and k 2 is the k of the reaction C0C1 + 2 = C0 2 + CIO. 1462. The formula 2 x 10 ~ 3 expl *= — ) was obtained for the k ratio of the given reaction and of the reaction CF3CO + Br 2 = CF 3 C0Br + Br. 1463. Obtained taking into account the change in paramagnetism of NO with tem- perature. 1464. It was shown in [302] that the reaction of two NO molecules is, in reality, the reaction 2 NO = N 2 + 0. See also [893]. 1465. Calculated by the least-squares method on the basis of [582, 899, 1629, 1659]. 1466. Calculated by the least-squares method on the basis of [582, 899, 1629]. Apparently the reaction N 2 + 2 = N 2 + takes place [1629]. 1467. See also [1170]. 1468. The authors of [40] estimate the accuracy of the pre-exponential factor to a factor of 3. 1469. Calculated by the least-squares method on the basis of [570, 572, 1377]. 1470. Calculated from the rate constant of the reverse reaction, measured in [244], and from the equilibrium constant K = P CQ P N0 : P co P NQ > which can be repre- sented in the range 500-3,000° by the formula k = 3.964 expl- — ^ — ). 1471. Given in [1492] for this reaction is a formula with the pre-exponential factors 10 n » 7tf and 10 11 * 70 . In the latter case, E = 2.4. 1472. Obtained under the assumption that the rate of reaction is equal to the rate of N0 2 photolysis. 367 1473. Calculated by the least-squares method on the basis of [398, 710, 850, 853, 1241, 1242]. 1474. Calculated by the least-squares method on the basis of [44, 47]. 1475. The ratio of the k of the reaction NO + CIO - N0 2 + CI to the k of the given reaction was 0.30 ± 0.05. 1476. A = 0.305. 1477. A = 0.17. See also [1080]. 1478. See [883, pp. 175, 176]. 1479. See also [773]. 1480. Given in [1524] is the formula k = 10 18 * 7 expl £= — J obtained under the assumption that the given reaction is limiting. 1481. Calculated on the basis of the data of [199, 205, 244, 856, 1064, 1414]. 1482. Calculated from the data of [193, 244, 1414, 1517]. According to [1517], the constant is essentially the same in the interval 0-65°C. But since the authors of this work found a certain dependence of the constant k . d(N0 2 ) 1 dt (N0)2(0 2 ) on the NO concentration, they assume a more complex mechanism for this reaction, in which NO 3 participates in equilibrium with NO + 2 . See also [42, 1506]. 1483. See also [1035, pp. 107-112]. 1484. See [883, pp. 165-172]. 1485. See [1382, pp. 311-320]. 1486. According to [1506, 1517], the mechanism of this reaction takes place according to the following scheme: 368 NO + 2 s* N00 2 , NOO* + NO - N00 2 NO*, N00 2 NO* -> 2 N0 2 . E = 1.75 is the E of the reaction as a whole. 1487. The authors showed that the given reaction follows the mechanism 2 NO + 2 = 2 N0 2 . 1488. Calculated by the least-squares method on the basis of [244, 254, 411, 630, 678, 1063, 1414]. 1489. Obtained on the basis of the data of [927, 961, 1513, 1515, 1516, 1561, 1579] 1490. According to [1579], in the indicated temperature range E increases with T from 3.73 to 9.86. See also [872]. 1491. The authors of [961] point out that large errors are inevitable under the experimental conditions of Trautz et al., and as a result their data are hardly reliable. See also [1524, p. 265]. 1492. E is ~7.6 in the temperature interval 400-566°. 1493. The authors of [1579] state that the fact that, as they found, the Arrhenius equation is not fulfilled (E increases from 4 to 10 when the temperature increases from -23°C to 300°C) supports Bodenstein's hypothesis [1121] that the reaction takes place according to the mechanism 2 NO = (N0) 2 (NO) 2 + Cl 2 = 2 N0C1. 1494. See [833, pp. 172-174]. 1495. The formula was obtained from the k of the reverse reaction and from K, using the data of [1513, 1515, 1516]. 1496. Calculated by the least-squares method on the basis of [47, 961, 1579]. The formula k = 10 11 - 14 ± °- 29 exp(- 5>56 ° R ^ 53 ° ) is obtained when [1561] is taken into account. It is not ruled out, however, that the Arrhenius equa- tion need not be fulfilled because of side reactions; see [1524, p. 266]. 369 1497. See [883, p. 174]. 1498. The ratio of the k of the given reaction to the k of the reaction CH3CONO - CH3CO + NO is 102.1 ± 0.8 7l3,000 R ± l l0 00 \ t 1499. The second-order k in the formula i— 22. = k(N0)(0o) was measured. The at *- Arrhenius equation is not fulfilled, which is attributed by the authors to the complicated character of the reaction. 1500. The ratio of the k of the given reaction to the k of the reaction CH3CO + N0 2 = CH 3 + C0 2 + NO is 10°« 7l+ exp(- 2 j*2° ). 1501. Obtained under the assumption that the k of the reaction 2 (CH 3 ) 2 N ->■ [(CH 3 ) 2 N] 2 is 10 ll+ . 1502. The efficiency of N 2 and 2 is chosen arbitrarily to be the same as that of Ar. 1503. Calculated using the data of [288, 412]. 1504. See also [1563]. 1505. The isotope effect of hydrogen (C 12 and C 13 ) is also studied in [852]. 1506. Calculated from the graph. 1507. According to [411], SjMUL = « ± 2 _ 1508. Calculated by the least-squares method on the basis of [244, 288, 412, 852, 1488]. 1509. Obtained on the basis of the data of [779] and of K. 1510. The authors of [46] point out that the k of the given reaction, determined by them in [45], is accurate to a factor of 2 and that the E of this reaction must be greater than the E of the reaction 2 N0 2 = 2 NO + 2 . They there- fore consider the estimate of E (-23) made in [440] to be incorrect. 1511. In view of the large value they obtained for the pre-exponential factor, the authors of [807] state that at high temperatures the reaction probably does not follow Bodenstein's simple scheme 2 N0 2 = 2 NO + 2 . 370 1512. The sum of the rate constants of the given reaction and the reaction NO2 + N0 2 = N0 3 + NO is expressed by the formula 9 x 10 12 exp( J= — J. 1513. Calculated by the least-squares method on the basis of [40, 202, 203, 1340]. 1514. Calculated indirectly using the equilibrium constant and other data. 1515. The given value of E is the E of the rate of consumption of NO2 and can agree with the E of the reaction N0 2 + RH = HN0 2 + R only in the initial period. 1516. Obtained from k and K. In the opinion of Trotman-Dickenson [1524], E should be close to zero. (9 *}nn \ —*r= — I was obtained for the ratio of the k of the given reaction to the k of the reaction NO + NO3 = 2 N0 2 at p = 57 mm Hg and the formula 10 -2,2 exp( J at p = 400 mm Hg. 1518. The k ratio of the reactions N0 2 + N0 3 ■> N 2 5 and NO + N0 3 = 2 N0 2 at 303° is 0.082 for 400 mm Hg and 0.043 for 57 mm Hg; at 313° it is 0.11 for 400 mm Hg and 0.057 for 57 mm Hg. 1519. The change in k is associated by the authors with a change in the reaction mechanism, apparently due to dissociation of N0 2 . 1520. Calculated in [807] from the k of the reverse reaction, measured in [573], and from the equilibrium constant. 1521. The sum of the rate constants of the given reaction and of the reaction + N0 2 = NO + 2 is expressed by the formula 1.2 x 10 22 T" 3 / 2 exp(- l? I. 1522. According to [558], the efficiency of 2 is equal to the efficiency of Ar. 1523. The k ratio of the reactions N0 3 + CO = N0 2 + C0 2 and N0 3 + NO = 2 N0 2 is 10 2 * 8 expl £= — J. The recommended formula was chosen for the k of the latter reaction. 371 1524. The formula was obtained from K and from the k of the reverse reaction, measured in [573], under the assumption that the latter is proportional to r 3 / 2 . 1525. Given with reference to the unpublished work of Schott and Davidson. 1526. Calculated by the least-squares method on the basis of [40, 440, 1377]. 1527. The cited formula was obtained for the constant in the equation — ; — = n dt k(Ar)°' 98 (D 2 )°' 66 (H 2 )°« 38 . Such a reaction rule is explained by the authors of [126] as the "vibrational activation" mechanism, in which the rate of the exchange reaction is determined by the rate of excitation of the molecules entering into the reaction, up to a certain critical level. See also [261]. 1528. The formula expresses the sum of the rate constants of the reaction para-H 2 + ortho-H2 + 2 and of the reverse reaction. 1529. The values for the constants were chosen so as to get optimum agreement between the calculated and measured induction periods. 1530. See also [488]. 1531. According to [1733, 1734], the reaction follows the scheme H 2 + F 2 = H + HF + F. 1532. Thermal reaction between iodine and hydrogen, which has been studied by a large number of authors [180, 192, 225, 614, 659, 882, 929, 1034, 1469] (see also [883, 1227, 1382]), was interpreted as the simple bimolecular reaction H 2 + I 2 = 2 HI. In 1955, however, Benson and Srinivasan [155] showed that this reaction is also accompanied by a radical chain reaction, which takes place with the participation of I and H atoms. This reaction mechanism was confirmed experimentally in 1959 by Sullivan [1446]. 1533. See [415]. 1534. Given in [1435] is E > 51. 1535. The data of [1338] were reinterpreted in [1435]. 372 1536. The k ratio of the reactions of H2 and D2 with C 2 Hl,. is 2.5. 1537. The formula was obtained on the basis of the recombination rate constants measured in [602, 828, 983, 1220, 1322, 1375, 1376, 1459] and of K. 1538. The data of [1322, 1374] were used. 1539. The formula is given with reference to Davidson. 1540. The discrepancy between the data of [690, 1436] is explained by the authors of [1436] by the fact that the reaction of atoms was disregarded in [690]. For this reason, the formula in [1436] must be considered as more accurate. 1541. Benson [150] contends that the radical deuterium exchange mechanism is more probable than the molecular mechanism suggested by Bauer. 1542. Given with reference to Byron. 1543. See also [706, 1634, 1737a]. 1544. M = 0, Ar, NO or 2 . 1545. See also [1410]. 1546. Not excluded is the possibility that the reaction being discussed here is the reaction 2 + CH 2 = HCOOH +0 [38]. 1547. See also [706]. 1548. According to [275] , the ratio of the efficiencies of N 2 and 2 in the tem- perature interval 2,800-5,000° is 1:4. 1549. Obtained from the constant for M = Ar [303] by multiplication by 9. 1550. Obtained from the constant for M = Ar [303] by multiplication by 3. 1551. Obtained on the basis of [275, 617, 1065, 1716]. 1552. The electronically excited C0 2 molecule is believed to originate in the process CO + + M = C0 2 + M. 373 1553. M = air. See also [706, 1638]. 1554. Benson and Axworthy [144] consider the detection of the reaction 2 3 = 3 2 in [632] to be erroneous, due to the temperature gradient in the reactor. 1555. In the presence of 0? . 1556. In the temperature range 769-910°, the k for M = Ar is lower by a factor of 1.54 ± 0.17 than for M = N 2 [869]. 1557. Obtained on the basis of [144, 869, 1660]. 1558. Obtained using the data of [632]. 1559. The constant depends on the pressure. Given is a value extrapolated to p = 00. 1560. The efficiency of Kr is close to that of Ar. 1561. Obtained using the data of [849]. 5% F + 95% Ar. According to [1386], the efficiency of Kr is somewhat greater than that of Ar. For M = Xe, the reaction takes place according to a complex mechanism, including XeF 2 and, probably, XeF. 1562. 5% F 2 + 75% Ar + 20% Kr. 1563. 10% F 2 + 70% Ar + 20% Kr. 1564. 5% F 2 in Ar. Fluorine is apparently more efficient that argon. 1565. < 1% F 2 in Ne. 1566. 6% F 2 + 94% Ar. 1567. The efficiency of CI is 10 times greater than that of Ar. 1568. Mixture of CH^ + Cl 2 in Ar. 1569. M = 0.25 Cl 2 + 0.75 Ar. 374 1570. M = 0.2 CI2 + 0.8 Ar and 0.25 CI2 + 0.75 Ar. Measurements in 0.04 Cl 2 + 0.96 Ar [775] show that the efficiencies of Cl 2 and Ar are essentially the same. 1571. The hypothesis is made in [317] that the large values of k measured in [775], which differ by one order from the data of [317, 827, 1542], may be due to photodissociation of CI2. See also [1542]. 1572. M = 0.05 CI2 + 0.95 Ar. 1573. M = 0.02 Cl 2 + 0.98 Ar. 1574. M = 0.005 CI2 + 0.990 Ar + 0.005 Kr. 1575. This formula, accurate to 30%, represents the data obtained in [462]. In the opinion of the authors of this reference, the failure to fulfill the rule of the classical collision theory for the number of degrees of freedom possible for a diatomic molecule must, perhaps, be attributed to the fact that the Boltzmann energy distribution is not fulfilled when the reaction takes place at high temperature. 1576. Doubts are raised in [1542] as to the reliability of application of the mass-spectrometry method in [462], 1577. (Cl 2 ) : (Ar) =1:5. 1578. Obtained on the basis of [317, 827, 1542]. Extrapolation to T = 298° and k_ calculation of the k of recombination by the formula k = -^ (K taken from J p K [1766]) yields k = 10 16,0 . The measured value of the k of the reaction CI + CI + Ar = CI2 + Ar at room temperature is, according to [380, 812], 10 15 - 63 . 1579. The data of Willard et al. were used for the k of recombination of Br atoms, measured at temperatures from room to -430°. See also [305]. 1580. M = 0.05 Br 2 + 0.95 Ar. 1581. Measured is the k of dissociation of Br2 in He, Ar, N 2 , CO, O2 and CO2; the values of the k of recombination, calculated in terms of K, are listed. 375 1582. The k of dissociation of bromine in mixtures with argon was measured; the values of the k of recombination, calculated in terms of K, are listed. 1583. The tabulated value of A was calculated under the assumption that the activation energy of the recombination process is zero [1524]. The recom- bination rate constants were measured at 293°. 1584. Indicated in [1520] is the observed transition from second to first order upon the dissociation of iodine in argon. 1585. Calculated from the k of recombination, measured at room temperature, assuming that it does not depend on the temperature. 1586. The k of dissociation of iodine in He, Ar, N 2 , 2 and C0 2 was measured; given is the k of recombination, calculated in terms of K. 1587. See also [183]. 1588. M is argon with small admixtures of HF, H 2 and F 2 . In the case of mixtures that do not contain fluorine, a somewhat more accurate formula is k = 10 ^ T -2 exp (_ 134J00). 1589. According to [826], a formula with a smaller E is more accurate. 1590. The authors of [1385] note that the previous formula gives a better descrip- tion of their experimental data. 1591. See [883, pp. 149-151]. 1592. Trotman-Dickenson [1524, p. 259] indicates the excessively high value ob- tained in [1192] for the pre-exponential factor and gives a corrected value, stating, however, that it is not particularly accurate. 1593. See also [1080]. 1594. According to [180], within the limits of the measurement error (± 0.5) the E of the reactions 2 DI = D 2 + I 2 and 2 HI = H 2 + I 2 are equal; the ratio of the pre-exponential factor is A^ : A^ = 1 : 1.57. For the reverse reactions V « i„_ = 1 : 1.95. 376 1595. The ratio of the k of the given reaction to the k of the reaction HI + CH3I = I 2 + CH^ is 1 : 1.42. 1596. p = I - 22.4 atm. 1597. Given in [1289, 1290] as the recommended formula. 1598. Given is a summary of all the known data for M = Ar and N 2 . 1599. Calculated on the basis of [444, 445, 556, 1201]. 1600. Calculated by the least-squares method on the basis of [444, 556]. 1601. According to [1197], the k in the given case is a complex quantity obtained from the reaction mechanism of [609] under the assumption of fixed concen- trations of SO3 and electronically excited S0 2 . 1602. In view of the fact that the true activation energy turns out to be 74 if it is assumed that four harmonic vibrations participate in the activation of the molecule, which is the same as the excitation energy of the triplet state of SO2, the authors conclude that the constant they measured is the rate constant of excitation. The excited molecule then reacts according to the scheme S0 2 + S0 2 = SO 3 + SO. 1603. See also [999]. 1604. E = 71.5 was chosen arbitrarily. 1605. The given formula is, apparently, the doubled k. See [1201]. 1606. The authors conclude that a formula intermediate between the two formulas given by them must be considered to be more correct. 1607. This formula contradicts the preceding formula and must probably be replaced by the formula k = 10 20 • 85 T- 3 / 2 exp/- 11 ^ 6 °° ). 1608. According to the data of a number of authors, the relative efficiencies of various M are: 377 M = N 2 2 Ar He CO 2 H 2 H 2 2 Reference 1 0.71 - 0.53 1.24 4.3 5.9 [785] 1 0.78 0.67 - - 6.0 6.6 [84] 1 (0.78) - 0.57 - 6.0 5.4 [576] 2 : N 2 = 0.78 : 1 was chosen arbitrarily in [576]. 1609. Obtained on the basis of the data of [84, 624, 785, 1078, 1354]. 1610. Obtained on the basis of the data of [624, 785, 1078, 1354]. Referring to the reaction mechanism, the authors of [785] took 1/2 the measured efficiency of k for the k given by them. 1611. It was shown in [785] that the contradictory results of [624, 1078, 1354] can be placed in complete agreement with the results of this study if the furface reaction is taken into account in an appropriate manner and if the data obtained in these references are recalculated for a reaction whose rate is proportional to the product (M) (H 2 2 ) . 1612. According to [1354], the decomposition rates of H 2 2 and D 2 2 are the same if the conditions are the same. 1613. According to [624], D 2 2 decomposes at the same rate as H 2 2 . See also [1354]. 1614. The data of [1561] are corrected in [47] with allowance for radical reaction, which is appreciable when T > 450°. 1615. See also [448]. 1616. The data of [1561] were also used in obtaining this formula. 1617. Calculated from the k of the reverse reaction [961] and from the equilibrium constant [446] . 1618. See [1382, pp. 291-293]. 1619. The ratio of the rate constants of the reactions of B 2 H 6 with (CH 3 ) 3 N, (CH 3 ) 2 PH and (CH 3 )PH 2 is 8 : 5 : 1. 378 1620. See [1382, pp. 290-291]. 1621. See [1382, pp. 299-301]. 1622. Not excluded is the possibility that the given reaction equation is a stoichiometric equation. 1623. The authors point out that the E of this reaction is infinitesimal. The formula 10 13 /k = 12.6 + 1.16/p (p in mm Hg) is given for k as a function of pressure. 1624. The activation energy of this reaction is infinitesimal. The formula 10 13 /k = 0.31 + 0.444/p (p in mm Hg) is given for k. 1625. The activation energy of this reaction is infinitesimal. The formula 10 13 /k = 2.68 + 0.041/p (p in mm Hg) is given for k. 1626. The ratio of the k of the given reaction to the square root of the k of the reaction 2 CF 2 2 = 2 CF 2 + 2 is 3.1 at 296° and about 6.3 at 398°. See also [746]. 1627. The ratio of the square of k of the reaction R0 2 + C 3 F 6 = 2 RO + r' to the k of the reaction 2 R0 2 = 2 RO + 2 > 4.4. R and R' = CF 2 or CF 3 CF. 1628. The ratio of the k of the given reaction to the k of the reaction CF 2 2 = CF 2 + C 2 F lf is 0.5 at 296° and 1.1-2.0 at 398°. 1629. The rate constant of the reaction ' + 2 = + 2 was taken to be 10 9 * 38 [808]. 1630. Given is the ratio of the k of the given reaction to the k of the reaction 0' + 2 + M = 3 + M, multiplied by (M) , equalling 41. See, however, [1365] 1631. The rate constant of the given reaction is lower by a factor of 4 ± 1 than the k of the reaction + 3 = 2 2 . 1632. The authors of [1643] believe that ( l S) is possibly the excited atom. 1633. The rate of the reaction of O' with C^H^ is faster by a factor of 300 th that with C 2 H 6 . 379 an 1634. k = 10 if the reaction takes place according to the scheme O'^D) + CO + C0 2 = C0 2 + C0 2 . 1635. The ratio of the k of the given reaction to the k of the reaction O'^D) + C0 2 ■*■ C0 3 is 55 ± 5. 1636. Calculated from the measured ratio of the k of the reaction O'^D) + O'C-^D) + C0 2 = 2 + C0 2 to the square of the k of the given reaction (7.8 x 10 3 sec), assuming that the k of the first reaction is equal to the k of the reaction + + C0 2 = 2 + C0 2 , measured in [1311]. 1637. Obtained from the measured k ratio of the reactions O'^D) + CO -*■ C0 2 and O'^D) + C0 2 -* C0 3 with k = 10 12 * 78 for the first reaction. 1638. The k ratio of the reaction S + COS = S 2 + CO and the given reaction is 1.4-2.2. 1639. The ratio of the k of the reaction s' + COS = S 2 + CO to the k of the given reaction is 1.9. 1640. The ratio of the k of the reaction s' + COS = S 2 + CO to the k of the given reaction is 2.0. 1641. Cl' and Cl 2 denote Cl( 2 P]/2) and Cl 2 ( 3 JlJ"), respectively. 1642. Obtained from the measured k ratio, taking the k of the process I + C3H3 = 1 + C 3 H 8 to be 3.43 x IO 10 at 30°C [481]. 1643. The constant is the sum of the k of the given reaction and of the process l' (5 2 Pih) + CH3I = I(5 2 P3J2) + CH3I. From a comparison with the k measured in [1114] the authors of [478] conclude that the ratio of these constants is « 10" 2 at 300°. 1644. The ratio of the k of the given reaction to the k of the reaction Hg' + N 2 = Hg + N 2 + is 0.31. See also [1647]. 1645. The ratio of the total k of the reactions NO* + NO = 2 NO, N 2 + 2 , N 2 + to the k of the given reaction is 100 : 32. 380 1646. The given reaction is faster than the reaction of NO' with NO and does not depend on the temperature. 1647. The ratio of the total k of the reactions NO ' + NO = 2 NO, N 2 + 2 , N 2 + to the k of the given reaction is 100 : 86. 1648. The ratio of the total k of the reactions NO' + NO = 2 NO, N 2 + 2 , N 2 + to the k of the given reaction is 2.45 at 296° and 0.67 at 468°. 1649. The k ratio of the reactions 2 + 3 = 2 + 2 + and + 3 = 2 2 is 1.7. 1650. The ratio of the k of the given reaction to the k of the reaction CH 2 + CH 2 C0 -*■ products is 0.14 ± 0.02 and to the k of the reaction CH 2 + trans- Ci+H 8 -y C 5 H 10 is 0.10 ± 0.02. 1651. The ratio of the k of the given reaction to the k of the reaction l C\A.' 2 + iso-Ci+Hs ■+ C 5 H 10 is 0.51 ± 0.01. 1652. The ratio of the k of the given reaction to the k of the reaction ^H^ + iso-C^Hs -> C 5 H 10 is 0.65 ± 0.01. 1653. The ratio of the k of the given reaction to the k of the reaction l CR' 2 + iso-C^Hs -v C 5 H 10 is 0.83 ± 0.02. 1654. See also [490]. 1655. The ratio of the k of the given reaction to the k of the reaction l CR' 2 + iso-C^Hs -> C 5 H 10 is 0.70 ± 0.03. 1656. The ratio of the k of the given reaction to the k of the reaction iCH^ + iso-C 4 H 8 -> C 5 H 10 is 0.71 ± 0.08. 1657. The ratio of the k of the given reaction to the k of the reaction iCH,? + iso-Ci^Hs -* C 5 H 10 is 1.08 ± 0.08. 1658. The ratio of the k of the given reaction to the k of the reaction 1 CH 2 + iso-CttHe ■> C 5 H 10 is 1.10 ± 0.10. 1659. The ratio of the k of the given reaction to the k of the reaction 1 CH 2 + iso-O+Hs -> C 5 H 10 is 2.01 ± 0.06. 381 1660. The ratio of the k of insertion into the C-H bond to the k of the reaction of attachment to the double bond is -0.09. 1661. The ratio of the k of the given reaction to the total k of the reaction of CH 2 with C 2 H 5 C1 is greater than 16.3. 1662. The ratio of the k of the given reaction to the k of the reaction CF 2 + CF 2 2 = C^ + 2 is about 1. 1663. According to [714] this constant is the constant of recombination of NH 2 radicals. But in view of the fact that at such low pressure as 0.4-0.8 mm Hg the constant turns out to be independent of the pressure, it should pro- bably be considered as a constant of disproportionation [457] . 1664. The authors note that up to 7.6% H 2 was obtained in [37], whereas the per- centage of H 2 in the given reference was less than 0.3. 1665. The k ratio of the reactions CH 3 + 2 + M = CH 3 2 + M and CH3 + 2 = HCHO + OH, measured at 473° and 523°, is lO 2 ^ 1 exp ( 18 ^ 00 1666. Measured was the k ratio of the reactions + 3 = 2 2 and + 2 + 2 = 3 + 2 (10 5 - 30 ). 1667. Obtained from the measured ratio of the k of the given reaction to the k of the reaction H + 2 + M = H0 2 + M (0.193 ± 0.019)10~ 3 ; the k of the latter reaction was taken to be 10 15 * 96 . The activation energy was determined using the calculated pre-exponential factor [1712]. 1668. Also calculated in [1394a] were the k of the reactions H + T 2 = HT + T, D + T 2 = DT + T, T + H 2 = HT + H and T + D 2 = DT + D for 200-1250°. 1669. Also given in [1655a] is the sum of the k of the given reaction and the reaction + NO + M = N0 2 + M. 1670. Obtained from the measured k ratio of the given reaction and the reaction iso-C 3 H 7 -> H + C 3 H 6 and from the k of the latter reaction, k = 10 15 * x expj- — ■?-= — J; k was taken from the data of a number of authors 382 1671. The ratio of the k of the given reaction to the k of the reaction + N2O O2 + N2 does not depend on the temperature; it is 1.2 ± 0.2. 1672. The ratio of the k of the given reaction to the k of the reaction CI + C2H3CI2 -*• products is lO 4,4 expj— £= — J. Given in [804] with reference to [106, 107, 108, 803]. 1673. The authors of [1357] do not rule out the possibility that the first step in the reaction of with C2F4 is the formation of the complex C2Fi f 0. The ratio of the k of this reaction to the k of the reaction + 02^ ■* C2H4O is 1.03 (296°0). 1674. See also [1261]. A = 0.19-0.20 was obtained in this reference. A = 0.06 is given for the reaction CFH 2 + CF 2 H = CFH3 + CF2 . 1675. See also [1382]. 1676. lg k has been corrected. 1677. See also [1664]. 1678. See also [1697, 1695]. 383 LITERATURE Ackerman M. , Disc. Faraday Soc, No. 37, 209 (1964). Ackerman M. , Chiltz G. , Dusoleil S., Goldfinger P., Martens G. , Van der Auwera D., Nature, 179 , 731 (1957). Ackerman M. , Chiltz G., Goldfinger P., Martens G. , Bull. Soc. Chim. Belg. , 66, 325 (1957). Akeroyd E.I., Norrish R.G.W., J.Chem.Soc, 890 (1936). Adam J., Dusoleil S., Goldfinger P., Bull .Soc .Chim. Belg. , 65, 942 (1956). Adam J., Goldfinger P., Bull . Soc .Chim. Belg. , 6_5, 561 (1956). Adam J., Goldfinger P., Gosselain P. A. , Bull .Soc .Chim. Belg . , 65, 549 (1956). Albers E.A. , Hoyermann K. , Wagner H.G., Wolfrum J., Twelfth Combustion Symposium, Abstracts of papers, The Combustion Institute, Pittsburgh, Pa., 1968, p. 53. Alcock W.G., Whittle E., Trans . Faraday Soc, 61_, 244 (1965). AlcockW.G., Whittle E., Trans . Faraday Soc, 62, 134 (1966). Trans. Faraday Soc, 62, 664 (1966). Ber.Bunsenges.Phys.Chem. , 72, 227 Alcock W.G., Whittle E. Allen E.R. , Bagley K.W. (1968). 13. Allen E.R., Cadle R.D., Symposium on Chemiluminescence , 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 29. 30. il. 32. 33. 34. 35. 36. 37. 38. 39. 40. Duke University, 1965, p. 85 Allen E.R., Pitts J.N., J.Phys .Chem. , _70_, 1691 (1966). Allen P.E.M., Melville H.W. , Robb J.C., Proc .Roy .Soc . , A 218 311 (1953). Allen R. , Keck J.C., Camm J.C., Phys . Fluids, 5, 284 (1962). Amdur I., J. Am. Chem. Soc. , 57, 856 (1935). Amdur I., J. Am. Chem. Soc. , 60, 2347 (1938). Amdur I., Pearlman H. , J. Chem. Phys . , 8, 998 (1940). Amdur I., Robinson A.L., J. Am. Chem. Soc. , 55, 1395 (1933). Amphlett J.C., Whittle E., cited in [i860]. Amphlett J.C., Whittle E., Trans . Faraday Soc, 62^ 1662 (1966). Amphlett J.C., Whittle E., Trans .Faraday Soc, 63^ 80 (1967) Amphlett J.C., Whittle E., Trans . Faraday Soc, 63, 2695 (1967). Amphlett J.C., Whittle E., Trans . Faraday Soc, 64, 2130 (1968). Andersen H.C., Kistiakowsky G.B., J. Chem. Phys . , 1_1_, 6 (1943) Andersen H.C., Van Artsdalen E.R., J. Chem. Phys., _12, 479 (1944). Andersen H.R.,Jr., Scheraga H.A. , Van Artsdalen E.R., J. Chem. Phys. , 21_, 1258 (1953). Andersen R.D. , Taylor H.A. , J.Phys . Chem. , 56, 498 (1952). Anderson H.W. , Rollefson G.K., J. Am. Chem. Soc , 63, 816 (1941). Anson P.C. , Fredricks P.S., Tedder J.M. , J.Chem.Soc, 918 (1959). Appleton J. P. , Steinberg M. , Liquornik D.J., J. Chem. Phys . , 48, 599 (1968). Arden E.A. , Phillips L., Shaw R. , J.Chem.Soc, 5126 (1964). Armstrong D.A., Winkler C.A. , Canad . J.Chem. , 3_3, 1649 (1955) Arnold L.B.,Jr., Kistiakowsky G.B., J. Chem. Phys . , 1, 166, 287 (1933). Arrington C.A., Brennen W. , Glass G.P., Michael J.V. , Niki H., J. Chem. Phys. , 43, 525 (1965). Arthur N.L., Bell T.N., Canad .J.Chem. ,44 , 1445 (1966). Asaba T., Yoneda K. , Kiakihara N. , Hikita T., Ninth Symposium on Combustion, 1962, Academic Press, N.Y.-Ldn, 1963, p. 193. Ashmore P.G., Burnett M.G., Trans .Faraday Soc, 57, 1315 (1961). Ashmore P.G., Burnett M.G. , Trans .Faraday Soc, 58, 253 (1962). 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. urnett M.G., Trans .Faraday Soc, 5_8, 1801 urnett M.G., Tyler B.J., Trans .Faraday Soc Ashmore P.G. , B (1962). Ashmore P.G., B 5_8, 685 (1962). Ashmore P.G., Chanmugam J., Trans . Faraday Soc., 49, 254 (1953) . Chanmugam J., Trans . Faraday Soc., 49, 270 Levitt B.P., Research Correspondence, 9, Levitt B.P., J. Chem. Phys. , 2_7, 318 (1957). Spencer M.S., Trans . Faraday Soc, 55, 1868 Spencer M.S., Trans .Faraday Soc, 60, 1608 Tyler B.J., Trans .Faraday Soc, 58, 1108 Ashmore P.G. (1953). Ashmore P.G. S25 (1956). Ashmore P.G. Ashmore P.G. (1959). Ashmore P.G. (1964). Ashmore P.G. (1962). Ashmore P.G., Wesley T.A.B., Tenth Symposium on Combustion, 1964, The Combustion Institute, Pittsburgh, Pa., 1965, p. 217. Aspden J., Maccoll A., Ross R.A. , Trans .Faraday Soc, 64, 965 (1968). Ausloos P., Murad E. , J. Am. Chem. Soc. , 80, 5929 (1958). Ausloos P., Steacie E.W.R., Canad .J.Chem. , 32, 593 (1954). Ausloos P., Steacie E.W.R., Bull. Soc .Chim. Belg. , 63, 87 (1954). Ausloos P., Steacie E.W.R., Canad .J.Chem. , 3_3, 31 (1955). Ausloos P., Steacie E.W.R., Canad .J.Chem. , 33., 39 (1955). Ausloos P., Steacie E.W.R., Canad .J.Chem. , 23, 47 (1955). Ausloos P., Steacie E.W.R., Canad .J.Chem. , 33, 1062 (1955). Ausloos P., Steacie E.W.R., Canad .J.Chem. , 33, 1530 (1955). Aymonino P.J., Sicre J.E., Schumacher H.J., J. Chem. Phys . , 22_, 756 (1954). Ayscough P.B., J .Chem. Phys . , 24, 944 (1956). Ayscough P.B., Cocker A.J., Dainton F.S., Hirst S., Trans. Faraday Soc, 58, 295 (1962). Ayscough P.B., Cocker A.J., Dainton F.S. Faraday Soc, 58, 318 (1962). Ayscough P.B., Cocker A.J., Dainton F.S. Weston M., Proc .Chem. Soc . , 244 (1961). Ayscough P.B., Dainton F.S., Fleischf resser B.E., Trans. Faraday Soc, 62^, 1838 (1966). Ayscough P.B., Polanyi J.C., Trans .Faraday Soc, 5_2, 960 (1956). Ayscough P.B., Polanyi J.C., Steacie E.W.R., Canad .J.Chem. . 33, 743 (1955). Ayscough P.B., Steacie E.W.R., Canad .J.Chem. , 34, 103 (1956). Bach F., Bonhoeffer K.F., Moelwyn-Hughes E.A., Zs. Phys. Chem. , B27, 71 (1934). Hirst S. , Trans. Hirst S., 70.BBack M.H. , Canad .J.Chem. , 43, 106 (1965). 71. Back R.A., Dutton W., Winkler C.A., Canad .J.Chem. , 37 2059 (1959). 72. Back R.A. , Takamuku S., J. Am. Chem. Soc. , 86, 2558 (1964). 73. Back R.A., Winkler C.A., Canad .J.Chem. , j_2, 718 (1954). 74. Ogryzlo E.A., Canad .J.Chem. , 39, 2556 (1961). 75. Bader L.W. , Ogryzlo E.A., Nature, 201, 491 (1964). 76. Bahn G.S., Pyrodynamics , 1_, 147 (1964). 77. Baker G., Shaw R. , J.Chem.Soc, 6965 (1965). 78. Baldwin R.R., Trans .Faraday Soc, 5_2, 1344 (1956). 79. Baldwin R.R., Ninth Symposium on Combustion, 1962, N.Y.-Ldn, Academic Press, 1963, p. 218. 80. Baldwin R.R., Ninth Symposium on Combustion, 1962, N.Y.-Ldn, Academic Press, 1963, p. 604. 384 81. Baldwin R.R., Ninth Symposium on Combustion, 1962, N.Y.-Ldn, Academic Press, 1963, p. 667. 82. Baldwin R.R., cited in [98] . 83. Baldwin R.R., Trans . Faraday Soc . , 6_0, 527 (1964). 84. Baldwin R.R., Brattan D., Eighth Symposium on Combustion, 1960, Baltimore, Williams and Wilkins, 1962, p. 110. 85. Baldwin R.R., Brooks C.T., Trans . Faraday Soc, 5_8, 1782 (1962). 86. Baldwin R.R., Corney N.S., Simmons R.F., Fifth Symposium on Combustion, 1954, Reinhold, 1955, p. 502. 87. Baldwin R.R., Cowe D.W. , Trans .Faraday Soc, 58, 1768 (1962) . 88. Baldwin R.R., Everett C.J., Walker R.W. , Trans .Faraday Soc. , 64, 2708 (1968). Baldwin R.R., Jackson D., Walker R.W. , Webster S.J., Tenth Symposium on Combustion, 1964, The Combustion Institute, Pittsburgh, Pa., 1965, p. 423. 89. 90. 91. 92. 93. 94. 95. 96. 97. 98. 99. 100. 101. 102. 102a. 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116. 117. 118. 119. 120. 121. 122. 123. Baldwin, R.R., Jackson D. , Walker R.W. , Webster S.J., Trans. Faraday Soc, 63, 1665 (1967). Baldwin R.R., Jackson D., Walker R.W. , Webster S.J., Trans. Faraday Soc, 6_3, 1676 (1967). Baldwin R.R., Mayor L., Doran P., Trans .Faraday Soc., 56, 93 (1960). Baldwin R.R., Melvin A., J.Chem.Soc, 1785 (1964). Baldwin R.R., Norris A.C., Walker R.W. , Eleventh Symposium on Combustion, 1966, The Combustion Institute, Pittsburgh, Pa., 1967, p. 889. Baldwin R.R., Precious R.M. Baldwin R.R. , Simmons R.F., 955, 964 (1957). Baldwin R.R., Simmons R.F., Soc, 62, 2486 (1966). Nature, 1_69, 290 (1952). Trans . Faraday Soc., 53 , Walker R.W., Trans .Faraday 60, 1236 Baldwin R.R., Walker R.W. , Trans . Faraday Soc (1964). Baldwin R.R. , Walsh A.D., Disc.Faraday Soc, No. 17, 96 (1954). Bamford C.H., Casson J.E., Hughes A.N., Proc .Roy .Soc . , A 306 , 135 (1968). Bamford C.H. , Norrish R.G.W., J.Chem.Soc, 1504 (1935). Bansal K.M., Freeman G.R., J. Am.Chem. Soc . , 88, 4326 (1966). Bansal K.M. , Freeman G.R., J. Am.Chem. Soc . , 90, 7190 (1968). Barnard J. A. , Cohen A., Trans .Faraday Soc, 64, 396 (1968). Bar-Nun A., Lifshitz A., J.Chem.Phys . , 47, 2878 (1967). Barth C.A. , Ann .Geophys . , 20, 182 (1964). Barton D.H.R. , Howlett K.E., J.Chem.Soc, 155 (1949). Barton D.H.R. , Howlett K.E., J.Chem.Soc, 2033 (1951). Barton D.H.R., Onyon P.F., J. Am.Chem. Soc. , 72., 988 (1950). Barton D., Yankwich P.E., J.Phys .Chem. , 71, 3455 (1967). Basco N. , Proc. Roy. Soc. , A 283 , 302 (1965). Basco N. , Nicholas J.E., Norrish R.G.W. , Vickers W.H.J. , Proc. Roy. Soc. , A 272 , 147 (1963). Basco N., Norrish R.G.W. , Proc . Roy . Soc . , A 283 , 291 (1965). Basco N. , Pearson A.E., Trans .Faraday Soc, 63, 2684 (1967). Boocock G. , Cvetanovic R.J., Canad . J.Chem. , 3_9, 2436 (1961). Bascombe K. N. , Tenth Symposium on Combustion, 1964, The Combustion Institute, Pittsburgh, Pa., 1965, p. 55. Basila M.R., Strong R.L. , J.Phys .Chem. , 67, 521 (1963). Bates J.R., Lavin G.I., J- Am. Chem. Soc. , 55, 81 (1933). Bates J.R., SalleyD.J., J. Am.Chem. Soc. , 55, 110 (1933). Bates J.R. , Spence R. , J. Am.Chem. Soc. , 5_3, 1689 (1931). Batt L., J.Chem.Phys., 47, 3674 (1967). Batt L., Cruickshank F.R., J.Phys .Chem. , 70, 723 (1966). Batt L., Cruickshank F.R., J.Phys .Chem. , _7_I, 183 6 (1967). Bauer S.H., cited in [1345]. 124. 125. 126. 127. 128. 129. 130. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140. 141. 142. 143. 144. 145. 146. 147. 148. 149. 150. 151. 152. 153. 154. 155. 156. 157. 158. 159. 160. 161. 162. 163. 164. 165. Bauer S.H., Eleventh Symposium on Combustion, 1966, The Combustion Institute, Pittsburgh, Pa., 1967, p. 105. Bauer S.H., Jeffers P., Zevos N. , J.Phys .Chem. , 71, 4412 (1967). Bauer S.H., Ossa E., J.Chem.Phys., 45, 434 (1966). Bawn C.E.H., Evans A.G. , Trans .Faraday Soc, 3J_, 1392 (1935). Bawn C.E.H., Evans A.G., Trans .Faraday Soc, 33, 1571 (1937). Bawn C.E.H., Evans A.G., Trans . Faraday Soc, 33_, 1580 (1937). Bawn C.E.H., Milsted J., Trans .Faraday Soc, 35., 889 (1939). Beck P.W., Kniebes D.V., Gunning H.E., J.Chem.Phys., 22, 672 (1954). Beck P.W., Kniebes D.V., Gunning H.E., J.Chem.Phys., 22, 678 (1954). J. Am.Chem. Soc, 84, 3417 Bell J. A. , Kistiakowsky G. (1962). Bell R.P., Trans. Faraday Soc, 55_, 1 (1959). Bell T.N., Kutschke K.O. , Canad . J.Chem. , 42, 2713 (1964). Bellas M.G., Strausz O.P., Gunning H.E., Canad .J .Chem. , 43, 1022 (1965). Belles F.E., Lauver M.R., J.Chem.Phys., 40, 415 (1964). Belles F.E., Lauver M.R. , Tenth Symposium on Combustion, 1964, Combustion Institute, Pittsburgh, Pa., 1965, p. 285. Bennett J.E., Blackmore D.R., Proc .Roy .Soc . , A 305 , 553 (1968). Benson S.W., Ninth Symposium on Combustion, 1962, Academic Press, N.Y.-Ldn, 1963, p. 760. Benson S.W., J.Chem.Phys., 3_8, 12 51 (1963). Benson S.W., J.Chem.Phys., 38, 1945 (1963). Benson S.W., J.Chem.Phys., 48, 1765 (1968). Benson S.W., Axworthy A.E., J.Chem.Phys., 26_, 1718 (1957). Benson S.W., Axworthy A.E., J.Chem.Phys., 42, 2614 (1965). Benson S.W., Bose A.N., J.Chem.Phys., 37, 2935 (1962). Benson S.W., Buss J.H. , J.Chem.Phys., 28, 301 (1958). Benson S.W., Fueno T., J.Chem.Phys., 36, 1597 (1962). Benson S.W., Graff H. , J.Chem.Phys., 20, 1182 (1952). Benson S.W., Haugen G.R., Eleventh Symposium on Combustion 1966, The Combustion Institute, Pittsburgh, Pa., 1967, p. 114. Benson S.W., Haugen G.R. , J.Phys .Chem. , 71., 1735 (1967). Benson S.W., Haugen G.R., J.Phys .Chem. , _71_, 4404 (1967). Nangia P.S., Benson S.W., J. Am. Chem. Soc , 86, 2770, 2773 (1964). Benson S.W., O'Neal E., J.Chem.Phys., 34, 514 (1961). Benson S.W., Srinivasan R. , J.Chem.Phys., 23, 200 (1955). Teranishi H. , Benson S.W., J. Am.Chem. Soc. , 85, 2887, 2890 (1963). Benton E.E., Ferguson E.E., Matsen F.A., Robertson W.W. , Phys.Rev., U8_, 206 (1962). Berces T., Trotman-Dickenson A.F., J.Chem.Soc, 348 (1961). Beretta U. , Schumacher H.J. , Zs .Phys .Chemie , B 17 , 417 (1932). Berkowitz J., Chupka W.A., Kistiakowsky G.B., J.Chem. Phys. , 25_, 457 (1956). Berlie M.R., Le Roy D.J., J.Chem.Phys., 20, 200 (1952). Berlie M.R., Le Roy D.J., Disc.Faraday Soc, No. 14, 50 (1953). Berlie M.R., Le Roy D.J., Canad .J.Chem. , 32, 650 (1954). Bernecker R.R., Smith L.C., J.Phys .Chem. , 71, 2381 (1967). Beutler H., Polanyi M. , Naturwiss., 13, 711 (1925). 385 166. 167. 168. 169. 170. 171. 172. 173. 174. 174a 175. 176, 177. 178. 179. 180. 181. 182. 183. 184. 185. 186. 187. Bigeleisen J., J.Chem.Phys . , 17, 675 (1949). Bigeleisen J., Klein F.S., Weston R.E., Wolfsberg M. , J.Chem.Phys., 30, 1340 (1959). Birrell R.N. (1960). Birrell R.N. (1960). Birse E.A.B. 164 (1940). Birss F.W., Danby C.J. A 239 , 154 (1957). Birss F.W. , Danby C.J. A 239, 154 (1957). Trotman-Dickenson A.F., J.Chem.Soc, 2059 Trotman-Dickenson A.F., J.Chem.Soc, 4218 Melville H.W. , Proc . Roy . Soc . , A 175 , Hinshelwood C.N Proc .Roy. Soc . , Hinshelwood C.N., Proc . Roy .Soc . , Blacet F.E. Blacet F.E. Blacet F.E. 4011 (1962) Blacet F.E. (1952). Bell W.E., Disc. Faraday Soc, No. 14, 70 (1953). Calvert J.G., J. Am.Chem.Soc. , 73.> 661 (1951). Hall T.C., Leighton P. A. , J. Am.Chem. Soc , 84, Pitts J.N., Jr., J. Am.Chem. Soc. , 74, 3382 Black C, Porter G. , Proc .Roy .Soc , A 266 , 185 (1962). Blackmore D.R., Hinshelwood C.N. , Proc . Roy .Soc , A 271 , 34 (1963). Blades H., Winkler C.A., Canad . J.Chem. , ^9, 1022 (1951). Blaedel W.J., Ogg R.A. , Leighton P. A., J. Am.Chem.Soc. , 64, 2499,2500 (1942). Blagg J.C.L., Murphy G.M. , J.Chem.Phys., 4, 631 (1936). Blake A.R., Henderson J.F., Kutschke K.O., Canad .J.Chem. , 39, 1920 (1961). Blake A.R., Kutschke K.O., Canad .J.Chem. , _3_7> 1462 (1959). Blauer J. A. , J.Phys.Chem. , 72, 79 (1968). Blauer J. A. , J.Phys.Chem., 72, 79 (1968). Blundell R.V., Cook W.G.A., Hoare D.E., Milne G.S., Tenth International Symposium on Combustion, 1964, The Combustion Institute, Pittsburgh, 1965, p. 445. Boato G., Careri G. , Cimino A., Molinari E., Volpi G.G., Nuovo Cimento, 1_0, 993 (1953). Boato G. , Careri G., Cimino A., Molinari E., Volpi G.G., J.Chem.Phys., 24, 783 (1956). 188. Boddy P.J., Robb J.C., Proc .Roy . Soc . , A 249 , 518, 532, 547 (1959). 189. Boddy P.J., Steacie E.W.R., Canad .J.Chem. , 38, 1576 (1960). 190. Boddy P.J., Steacie E.W.R., Canad .J.Chem. , 39, 13 (1961). 191. Boden J.C., Thrush B.A. , Proc Roy . Soc . , A 305 , 107 (1968). 192. Bodenstein M. , Zs .Phys .Chem. , 13, 56 (1894); 22_, 1 (1897); 29, 295 (1899). 193. Bodenstein M. , Z. f .Elektrochem. , 24, 183 (1918). 194. Bodenstein M. , Brenschede W. , Schumacher H.J., Zs .Phys .Chem. , B 35 , 382 (1937); B 40 , 121 (1938). 195. Bodenstein M. , Jockusch H., Shing-Hou Chong, Zs.Anorg. Allgem.Chem., 231 , 24 (1937). 196. Bodenstein M. , Jung G., Zs .Phys .Chem. , 121_, 127 (1926). 197. Bodenstein M. , Lind S.C., Zs .Phys .Chem. , 57, 168 (1906). 198. Same as [l97j. 199. Bodenstein M. , Boes F., Lindner, Ramstetter H. , Zs .Phys .Chem. 100 , 87 (1922). 200. Bodenstein M. , Lutkemeyer H. , Zs .Phys .Chem. , 114 , 208 (1924). 201. Bodenstein M. , Plaut H., Zs .Phys .Chem. , 110 , 399 (1924). 202. See [199], p. 68. 203. See [199], p. 106. 204. Bodenstein M. , Schenk P.W. , Zs . Phys .Chem. , B 20 , 420 (1933). 205. Same as C 193] . 206. Bose A.N., Benson S.W., J.Chem.Phys., 37, 1081 (1962). 207. Bose A.N., Benson S.W., J.Chem.Phys., 38, 878 (1963). 208. Bowles R. , Derbyshire H., Majer J.R., Patrick C.R., Nature, _185, 683 (1960) . 209. Bowles R., Majer J.R., Robb J.C., Trans .Faraday Soc, 58, 1541 (1962). 210. Bowles R., Majer J.R., Robb J.C., Trans .Faraday Soc, 58, 2394 (1962). 211. Boyd M.L., BackM.H., Canad .J .Chem. , 46, 2427 (1968). 212. Boyd M.L., wu T.M. , BackM.H., Canad . J. Chem. , 46 , 2415 (1968). 212a. Boyd R.K., Brown J.D., Burns G. , Lippiatt J.H., J.Chem.Phys., 49, 3822 (1968). 212b. Boyd R.K. , Burns G., Lawrence T.R., Lippiatt J.H., J.Chem. Phys., 49, 3804 (1968). 213. Boyd R.K., Downs G.W., Gow J.S., Horrex C, J.Phys.Chem., 67, 719 (1963). 214. Brabbs T.A., Belles F.E., Eleventh Symposium on Combustion, 1966, The Combustion Institute, Pittsburgh, Pa., 1967, p. 125. 215. Brabbs Th.A., Belles F.E., Zlatarich S.A., J.Chem.Phys., 38, 1939 (1963). 216. Bradley J.N., Butlin R.N. , Lewis D., Trans .Faraday Soc, 63, 2962 (1967). 217. Bradley J.N., Dobson D.C., J.Chem.Phys., 46, 2872 (1967). 218. Bradley J.N., Melville H.W. , Robb J.C., Proc .Roy .Soc , A 236 , 318 (1956). 219. Bragg J.K., McCarty L.V., Norton F.J., J. Am.Chem.Soc. , 7_3, 2134 (1951). Braun W. , Lenzi M. , Disc.Faraday Soc, No. 44, 252 (1967). Braun W. , McNesby J.R., Bass A.M., J.Chem.Phys., 46, 2071 (1967). 220. 221. 222. 223. 224. 224a. 225. 226. 227. 228. 229. 230. 231. 232. 233. 234. 235. 236. 237. 238. 239. 240. 241. 242. 243. 244. 245. Braunwarth V., Schumacher H.J., Kolloid Zs . , 184 (1939). Brennen W.R., Gay I.D., Glass G.P., Niki H. , J.Chem.Phys., 43, 2569 (1965). Brennen W., Niki H., J.Chem.Phys., 42, 3725 (1965). Brenschede W. , Zs .Phys .Chem. , B 41 , 237 (1938); B 41 , 254 (1938). Bright N.F.H., Hagerty R.P., Trans .Faraday Soc, 43 697 (1947). Srinton R.K. , J.Chem.Phys., 29, 781 (1958). irinton R.K., Canad .J.Chem. , 38, 1339 (1960). irinton R.K., Steacie E.W.R., Canad .J.Chem. , 33, 1840 (1955). Brinton R.K., Volman D.H., J.Chem.Phys., 20, 25 (1952). Brinton R.K., Volman D.H., J.Chem.Phys., 20, 1053 (1952). Volman D.H., Brinton R.K. , J.Chem.Phys., 20, 1764 (1952). Britton D., J.Phys.Chem., 64, 742 (1960). Britton D., Cole R.M. , J.Phys.Chem., 6_5, 1302 (1961). Britton D., Davidson N. , Schott G., Disc.Faraday Soc, No. 17, 58 (1954). Britton D., Davidson N., J.Chem.Phys., 23, 2461 (1955). Britton D., Davidson N. , J.Chem.Phys., 25, 810 (1956). Britton D., Davidson N., Gehman W., Schott G., J.Chem.Phys. 25, 804 (1956). Britton D., Davidson N. , Schott G. , Disc.Faraday Soc, No. 17, 58 (1954). Britton D., van Thiel M. , 18th International IUPAC Congress, Abstracts of Papers, Montreal, 1961, p. 6. Brocklehurst B., Jennings K.R., in: Progress in Reaction Kinetics, vol. 4, Pergamon Press, 1967, p. 1. Broida H.P., Schiff H.I., Sugden T.M., Trans .Faraday Soc, 57, 259 (1961). Brokaw R.S., Eleventh Symposium on Combustion, 1966, The Combustion Institute, Pittsburgh, Pa., 1967, p. 1063. Brook J.H.T., Trans .Faraday Soc, 53, 327 (1957). Brown F. , Crist R.H., J.Chem.Phys., 9, 840 (1941). Brown J.M. , Thrush B.A., Trans .Faraday Soc, 63, 630 (1967). 386 246. Brown J.M. , Thrush B.A., Tuck A.F., Proc . Roy .Soc . , A 302 , 311 (1967). 247. Browne W.G., Smookler G.R., White D.R. , Twelfth Symposium on Combustion, 1968, The Combustion Institute, Pittsburgh, Proc, p. 557. 248. Browne W.G., Verlin J.D., Clark A.H., Porter R.P., Twelfth Symposium on Combustion, 1968, The Combust ion Institute, Pittsburgh, Pa., Proc. p. 1035. 249. 250. 251. 252. 253. 254. 255. 256. 257. 258. 259. 260. 261. 262. 263. 264. 265. 266. 267. 267a. 268. 269. 270. 271. 272. 273. 274. 275. 276. 277. 278. 279. 280. 281. 282. 283. 284. 285. 286. 287. 288. 289. 290. 291. Brumberger H. , Marcus R.A., J.Chem.Phys . , 24, 741 (1956). Brumberger H., Smith W.H., J.Phys .Chem. , 72, 3340 (1968). Bryce W.A., Ingold K.U., J.Chem.Phys., 23, 1968 (1955). Buchanan A.S., McRae J. A., Trans . Faraday Soc, 64, 919 (1968). Buckley E., Whittle E. , Trans .Faraday Soc, 58, 536 (1962). Bufalini J.J., Stephens E.R. , J. Air Water Pollution, 9, 123 (1965). SugdenT.M., Proc. Roy. Soc. Bulewicz E.M., James C.G. A 235 , 89 (1956). Bulewicz E.M., Sugden M.T., Spec.Publ .Chem. Soc. London, No. 9, 81 (1957). Bulewicz E.M. , Sugden T.M. , Trans .Faraday Soc, 54, 1855 (1958). Bulewicz E.M., Sugden T.M., Proc.Roy.Soc, A 277 , 143 (1964). Bunker D.L., Davidson N. , J. Am. Chem. Soc. , 80, 5085 (1958). Bunker D.L., Davidson N. , J. Am. Chem. Soc. , 80, 5090 (1958). Burcat A., Lifshitz A., J.Chem.Phys., 47, 3079 (1967). Burcat A., Lifshitz A., Lewis D., Bauer S.H. , J.Chem.Phys., 49, 1449 (1968). Burg A.B., J. Am. Chem. Soc. , 74,3482 (1952). Burgess R.H. , Robb J.C., Spec.Publ .Chem. Soc. London, No. 9, 167 (1957). Burgess R.H. , Robb J.C., Trans .Faraday Soc, 54, 1008 (1958). Burkley I.B., Rebbert R.E. , J.Phys .Chem. , 67, 168 (1963). Burns G., Canad . J.Chem. , 45, 2369 (1967). Burns G., Canad .J.Chem. , 46, 3229 (1968). Burns W.G., Dainton F.S. , Trans .Faraday Soc, 48, 39 (1952). Burns W.G., Dainton F.S., Trans .Faraday Soc, 48, 52 (1952). Burns G., Hornig D.F., Canad .J. Chem. , 38, 1702 (1960). Burr J.G., Strong J.D. , J. Am. Chem. Soc. , 86, 5065 (1964). Burr J.G., Strong J.D., J.Chem.Phys., 43, 1432 (1965). Butler J.N., Kistiakowsky G.B., J. Am. Chem. Soc. , 82, 759 (1960). Butler J.N., Kistiakowsky G.B. , J. Am. Chem. Soc. , 83, 1324 (1961). Byron S.R., J.Chem.Phys., 30, 1380 (1959). Byron S., J.Chem.Phys., 44, 1378 (1966). Bywater S., Roberts R. , Canad .J.Chem. , 30, 773 (1952). Bywater S., Steacie E.W.R., J.Chem.Phys., _19, 172 (1951). Bywater S., Steacie E.W.R., J.Chem.Phys., 1_9, 319 (1951). Bywater S., Steacie E.W.R., J.Chem.Phys., 1_9, 326 (1951). Cadle R.D., Allen E.R., J.Phys .Chem. , 69, 1611 (1965). Cadle R.D., Powers J.W. , J.Phys .Chem. , 1\_, 1702 (1967). Cadle R.D., Schadt C, J. Am. Chem. Soc. , 74, 6002 (1952). Cadle R.D., Schadt C, J.Chem.Phys., 21_, 163 (1953). Cadman P., Thesis, Birmingham, 1965, cited in [819]. Cafferata L.F.R., Kerr J. A. , Trotman-Dickenson A.F., J. Chem. Soc, 1386 (1965). Caldwell J., Back R.A. , Trans .Faraday Soc, 61_, 1939 (1965). Calhoun G.M. , Crist R.H. , J.Chem.Phys., 5, 301 (1937). Callear A.B., Pereira P.D., Trans. Faraday Soc, 59, 2774 (1963). Callear A.B., Robb J.C., Trans .Faraday Soc, 51_, 638 (1955). Callear A.B., Smith I.W.M. , Disc.Faraday Soc, No. 37, 96 (1964). 292. 293. 294. 295. 2 96. 297. 298. 299. 300. 301. 302. 303. 304. 305. 306. 307. 307a 308. 309. 310. 310a. 311. 312. 313. 314. 315. 316. 317. 318. 319. 320. 321. 322. 323. 324. 325. 326. 327. 328. 329. 330. 331. 332. 333. Tyerman W.J.R., Trans .Faraday Soc, 62, Tyerman W.J.R., Trans .Faraday Soc, 6_2, Wilson J.F., Trans. Faraday Soc, 6_3, 1358 Wilson J.F., Trans. Faraday Soc, 63, 1983 Callear A.B. 371 (1966). Callear A.B. 2760 (1966). Callear A.B. (1967). Callear A.B. (1967). Calvert J.G., J.Phys . Chem. , 61, 1206 (1957). Calvert J.G. , Gruver J.T., J. Am. Chem. Soc. , 80, 1313 (1958). Calvert J.G., Pitts J.N. , Jr., Photochemistry, J.Wiley and Sons, New York, 1966, p. 815. Calvert J.G., Sleppy W.C., J. Am. Chem. Soc . , 81, 1544 (1959). Calvert J.G., Steacie E.W.R., J.Chem.Phys., 1_9, 176 (1951). Camac M. , Camm J., Feldman S., Keck J., Petty C, Inst. Aeron.Sci., 1958, preprint No. 802. Camac M. , Feinberg R.M. , Eleventh Symposium on Combustion, 1966, The Combustion Institute, Pittsburgh, Pa., 1967, p. 137. Camac M. , Vaughan A., J.Chem.Phys., 34, 460 (1961). Camac M. , Vaughan A., cited in [1325]. Campbell E.S., Fristrom R.M. , Chem. Rev., 58, 173 (1958). Campbell E.S., Hirschfelder J.O., cited in [625-a]. Campbell E.S., Nudelman C, (1960), cited in [900]. Campbell E.S., Nudelman C, USAF Report No. AFOSR-TN-60-502, cited in [1366] . Campbell I.M., Thrush B.A., Proc .Chem. Soc . , 410 (1964). Chem. Communications , No. 12, Campbell I.M., Thrush B.A. 250 (1965). Campbell I.M., Thrush B.A. (1966). .Campbell I.M., Thrush B.A. , Chem. Coram., 932 (1967). Trans. Faraday Soc, 6_2, 3366 Campbell I.M., Thrush B.A. , Trans .Faraday Soc, 64 (1968). Campbell I.M., Thrush B.A., Trans .Faraday Soc, 64 (1968). 1265 1275 A., Proc.Roy.Soc, A 296 , 201 Campbell I.M., Thrush (1967). Cann M.W.P., Kash S.W., J.Chem.Phys., 41_, 3055 (1964). Carabetta R. , Kaskan W., Eleventh Symposium on Combustion, 1966, The Combustion Institute, Pittsburgh, Pa., 1967, p. 321. Carabetta R. , Kaskan W.E., J.Phys .Chem. , 72, 2483 (1968). Carabetta R.A. , Palmer H.B., J.Chem.Phys., 46, 1333 (1967). Carbaugh D.C., Munno F.J., Marchello J.M., J.Chem.Phys., 47, 5211 (1967). Carlton T.S., Steeper J.R. , Christenson R.L., J.Phys .Chem. , 70, 3222 (1966). Carmlchael H. , Johnston H. S. , J.Chem.Phys . , 41, 1975 (1964). Carr R.W.,Jr., Gay I.D., Glass G.P., Niki H., J.Chem.Phys., 49, 846 (1968). Carrington T., Davidson N. , J.Chem.Phys., 19, 1313 (1951). Carrington T., Davidson N. , J.Phys .Chem. , 5_7, 418 (1953). Carruthers G., Thesis, Univer.of Illinois, 1964. Cary B., Phys. Fluids, 8, 26 (1965). Casas F., Kerr J. A., Trotman-Dickenson A.F., J. Chem. Soc, 1141 (1965). Castellano E., Schumacher H.J., Zs .Phys .Chem. , N.F. 34, 198 (1962). Castellano E., Schumacher H.J., Zs .Phys .Chem. , N.F. 40, 51 (1964). Caule E.J., Steacie E.W.R. , Canad. J.Chem. , 2£, 103 (1951). Cerfontain H. , Kutschke K.O., Canad .J.Chem. , 36, 344 (1958). Chadwell H.M. , Titani T., J. Am. Chem. Soc. , 55, 1363 (1933). Chanmugam J., Burton M. , J. Am. Chem. Soc. , 78, 509 (1956). Chapin D.M., Kostin M.D., J.Chem.Phys., 48, 3067 (1968). 387 334. 335. 336. 337. 338. 339. 340. 341. 342. 343. 344. 345. 346. 347. 348. 349. 350. 351. 352. 353. 354. 355. 356. 357. 358. 359. 360. 361. 362. 363. 364. 365. 366. 367. 368. 369. 370. 371. 372. 373. 374. 375. Charles S.W., Pearson J.T., Whittle E., Trans . Faraday Soc, 59, 1156 (1963). Charles S.W. , Whittle E., Trans . Faraday Soc, 56, 794 (1960). ChenM.C, Taylor H.A., J . Chem.Phys . , 34, 1344 (1961). Cheng W.J., Szwarc M. , J.Phys . Chem. , 72, 494 (1968). Cher M. , J.Phys .Chem. , 68, 1316 (1964). Cher M., Hoi lingsworth C.S., Sicilio F., J.Phys .Chem. , 70, 877 (1966). Cher M., Hollingsworth C.S., Anal. Chem., 38, 353 (1966). Chesik J. P., Kistiakowsky G.B., J. Chem.Phys . , 2&, 956 (1958). Chilton H.T.J. , Gowenlock B.G. , Trans .Faraday Soc, 49, 1451 (1953). Chiltz G., Dusoleil S., Goldfinger P., Huybrechts G. , Mahieu A.M., Martens G., Van der Auwera D., Bull . Soc Chim. Belg. , 68, 5 (1959) . Chiltz G. , Eckling R. , Goldfinger P., Huybrechts G., Johnston H.S., Meyers L., Verbeke G., J. Chem.Phys . , 38> 1053 (1963). Chiltz G., Eckling R. , Goldfinger P., Huybrechts G., Martens G. , Simoens G., Bull . Soc . Chim. Belg. , 71, 747 (1962). Chiltz G. , Goldfinger P., Huybrechts G., Martens .G. , Verbeke G. , Chem. Rev., 63_, 355 (1963). Chiltz G., Mahieu A.M., Martens G., Bull . Soc. Chim. Belg. , 67, 33 (1958). Chiltz G. , Martens G. , Mahieu A.M., Nature, _180, 1068 (1957). Chinitz W. , Pyrodynamics , 3^. I 97 (1965). Christie M.I., Proc . Roy . Soc . , A 244 , 411 (1958). Christie M.I., Proc . Roy .Soc . , A 249 , 248 (1959). Christie M.I., Proc. Roy . Soc . , A 249 , 258 (1959). Christie M.I., J . Am. Chem. Soc. , 84, 4066 (1962). Christie M.I., Frost J.S., Trans .Faraday Soc, 61_, 468 (1965), Christie M.I. . Proc. Roy . Soc . , Harrison A.J., Norrish R.G.W. , Porter G. . A 231 , 446 (1955) . Christie M.I., Norrish R.G.W. , Porter G., Proc. Roy. Soc. . A 216 , 152 (1953). Thrush B.A., Trans .Faraday Soc, Christie M.I., Roy R.S. 32, 907 (1936). Christie M.I., Roy R.S., Thrush B.A., Trans .Faraday Soc, 55, 1139 (1959). Thrush B.A. , Trans . Faraday Soc. Christie M.I., Roy R.S. 5_5, 1149 (1959). Christie M.I., Voisey M.A. , Trans . Faraday Soc, 63, 2459 (1967). Christie M.I., Voisey M.A. , Trans .Faraday Soc, 63^, 2702 (1967). Cillien C, Goldfinger P., Huybrechts G., Martens G., Trans. Faraday Soc, 63, 1631 (1967). Clark D.T., Tedder J.M. , Trans .Faraday Soc, 62, 405 (1966). Clark T.C., Clyne M.A. A. , Stedman D.H., Trans .Faraday Soc, 62, 3354 (1966). Clark T.C., Clyne M.A. A., Twelfth Symposium on Combustion, 1968, The Combustion Institute, Pittsburgh, Proc, p. 333. Clarke R.P. , Pease R.N., J .Am. Chem. Soc. , 73, 2132 (1951). Clementi E., J . Chem. Phys . , 46, 3851 (1967). Clerc M. , Barat F., J. Chem.Phys . , 46, 107 (1967). Clerc M., Reiffsteck A., J. Chem. Phys . , 48, 2799 (1968). Clough P.N., Thrush B.A., Trans .Faraday Soc, 63^, 915 (1967). Clyne M.A. A., Ninth Symposium on Combustion, 1962, Academic Press, N.Y.-Ldn, 1963, p. 211. Clyne M.A. A., cited in [8l]. Clyne M.A. A., Tenth Symposium on Combust ion , 1964, The Combustion Institute, Pittsburgh, Pa., 1965, p. 311. Clyne M.A. A., Coxon J. A. , Trans . Faraday Soc, 62_, 1175 (1966), Clyne M.A. A., Coxon J. A., Trans .Faraday Soc, 6_2, 2175 (1966), 376. 377. 378. 379. 380. 381. 382. 383. 384. Clyne M.A. A., Coxon J.A. , Proc. Roy. Soc . , A 303 , 207 (1968). Clyne M.A. A., McKenney D.J., Thrush B.A., Disc. Faraday Soc, No. 37, 214 (1964). Clyne M.A. A., McKenney D.J., Thrush B.A. , Trans .Faraday Soc. , 61_, 2701 (1965). Clyne M.A. A., Stedman D.H. , Trans . Faraday Soc, 62, 2164 (1966). Clyne M.A. , Stedman D.H., Disc.Faraday Soc, No. 44, 276 (1967). Clyne M.A. A. , Stedman D.H., J.Phys . Chem. , 71, 3071 (1967). Stedman D.H., Trans .Faraday Soc, 64, 1816 Clyne M.A. A. (1968). Clyne M.A. A. (1968). Clyne M.A. A. Congress, Ab Canada, 1961 385. Clyne M.A. A. (1961). 386. Clyne M.A. A. (1961). 387. Clyne M.A. A. 388. Clyne M.A. A. 389. Clyne M.A. A. 390. Clyne M.A. A. (1962). 391. Clyne M.A. A. (1962). 392. Clyne M.A. A. 393. Clyne M.A. A. 1962, Academ 394. Clyne M.A. A. 395. Clyne M.A. A. 396. Clyne M.A. A. 397. Clyne M.A. A. (1963). Stedman D.H., Trans .Faraday Soc, 64, 2698 Thrush B.A., 18th IUPAC International itracts of papers, Toronto University Press, p. 30. Thrush B.A., Trans .Faraday Soc, 5_7, 69 Thrush B.A., Trans .Faraday Soc, 5_7, 1305 Thrush B.A., Nature, 1_89, 135 (1961). Thrush B.A., Nature, JJ39, 56 (1961). Thrush B.A., Proc .Roy .Soc . , A 261 , 259 (1961). Thrush B.A., Disc.Faraday Soc, No. 33, 139 Thrush B.A. , Disc.Faraday Soc, No. 33, 286 Thrush B.A., Proc . Roy .Soc , A 269 , 404 (1962). Thrush B.A., Ninth Symposium on Combustion , c Press, New York-London, 1963, p. 177. Thrush B.A., Proc. Roy . Soc . , A 275 , 544 (1963). Thrush B.A., Proc .Roy .Soc . , A 275 , 559 (1963). Thrush B.A., cited in [289]. Thrush B.A. , Wayne R.P., Nature, 1_99, 1057 398. Clyne M.A. A. , Thrush B.A., Wayne R.P., Trans .Faraday Soc, 60, 359 (1964). 399. Cohen N. , Heicklen J., J. Chem. Phys . , 43, 871 (1965). 400. Cohen N., Heicklen J., J.Phys .Chem. , _71_> 558 (1967). 401. Cook G.A., Bates J.R. , J. Am. Chem. Soc . , 5_7, 1775 (1935). 402. Cooley S.D., Anderson R.C., Ind .Eng.Chem. , 44, 1402 (1952), 403. Coomber J.W. , Whittle E., Trans .Faraday Soc, 62, 1553 (1966). 404. Coomber J.W., Whittle E., Trans .Faraday Soc, 62, 2183 (1966) . 405. Corbett P., Tarr A.M., Whittle E. , Trans .Faraday Soc, 5_9, 1609 (1963). 406. Cottrell T.L., Graham T.E., J. Chem. Soc, 556 (1953). 407. Cox D.L., Livermore R.A. , Phillips L., J. Chem. Soc, 245 (1966). 408. Coxon J.A., Trans .Faraday Soc, 64, 2118 (1968). 409. Creak G.A., Dainton F.S., Ivin K.J., Trans .Faraday Soc, 58., 326 (1962). 410. Cremer E., Curry J., Polanyi M. , Zs .Phys .Chem. , B 23 , 445 (1933). 411. Crist R.H., Calhoun G.M., J. Chem. Phys . , 4, 696 (1936). 412. Crist R.H., Wertz J.E., J. Chem. Phys . , ]_, 719 (1939). 413. Cullis S.F., Fish A., Ward R.B., Proc .Roy . Soc . , A 2 76 , 527 (1963). 414. Cunningham J. P., Taylor H.S., J. Chem. Phys . , 6, 359 (1938). 415. Cusachs L.C., Krieger M. , McCurdy C.W., J. Chem. Phys . , 49, 3740 (1968). 416. Cvetanovic R.J., J. Chem. Phys . , 23, 1375 (1955). 417. Cvetanovic R.J., Canad . J.Chem. , 34, 775 (1956). 388 418. 419. 420. 421. 422. 423. 424. 425. 426. 427. 428. 429. 430. 431. 432. 433. 434. 435. 436. 436a. 437. 438. 439. 440. 441. 442. 443. 444. 445. 446. 447. 448. 449. 450. 451. 452. 453. 454. 455. 456. 457. 458. 459. Cvetanovic R.J. , J.Chera.Phys . , 25_, 376 (1956). Cvetanovic R.J., J.Chera.Phys., 30, 19 (1959). Cvetanovic R.J., J.Chera.Phys., 33, 1063 (1960). Cvetanovic R.J., Advances in Photochemistry, Vol. 1, p. 115, 1963. Cvetanovic R.J., Irwin R.S., J.Chera.Phys., 46, 1694 (1967). Cvetanovic R.J., Le Roy D.J., J.Chem.Phys . , 2£, 1016 (1952). Cvetanovic R.J., Raal F.A., Steacie E.W.R., Canad . J.Chem. , 31, 171 (1953). Cvetanovic R.J., Steacie E.W.R., Canad . J .Chera. , 31, 158 (1953). Dacey J.R., Mann R.F., Pritchard CO., Canad .J.Chem. , 43, 3215 (1965). Dainton F.S., Ivin K.J., Wilkinson F., Trans .Faraday Soc., 53, 1204 (1957). Dainton F.S. , Ivin K.J., Wilkinson F. , Spec .Publ. Chem. Soc. , 9, 187 (1958). Dainton F.S., Ivin K.J. , Wilkinson F. , Trans .Faraday Soc, 55, 929 (1959). Dainton F.S., Lomax D.A. , Weston M. , Trans .Faraday Soc., 53, 460 (1957). Dainton F.S., Lomax D.A. , Weston M. , Trans .Faraday Soc, 58, 308 (1962). Dainton F.S., McElcheran D.E., Trans .Faraday Soc, 5_1_, 657 (1955). Dalby F.W., Canad . J . Chera. , 36, 1336 (1958). DalbyF.W., J.Chera.Phys., 41_, 2297 (1964). Darwent B. de B., Tenth Symposium on Combustion, 1964, The Combustion Institute, Pittsburgh, Pa., 1965, p. 433. Roberts R. , Disc. Faraday Soc., No. 14, Darwent B. de B. , 55 (1953). Darwent B. de B., Roberts R. , Proc .Roy .Soc. , A 216 , 344 (1953). Darwent B. de B., Wadlinger R.L., Allard Sr. M.J. Chem., 71, 2346 (1967). J.Phys. Armstrong D.A., J.Chem.Phys. Davidow R.S. , Lee R.A. 45, 3364 (1966). Davidson N. , Marshall R. , Larsh A.E.,Jr., Carrington T., J.Chem.Phys., 1_9, 1311 (1951). Davidson N. , Schott G.L. , J.Chem.Phys., 27, 317 (1957). Davidson N. , Sullivan J.H., J.Chem.Phys., _17, 176 (1949). Davies P.B., Thrush B.A. , Trans .Faraday Soc, 64, 1836 (1968). Davies P.B., Thrush B.A., Proc.Roy.Soc, A 302 , 243 (1968). Davies W.O., J.Chem.Phys., 41_, 1846 (1964). Davies W.O., J.Chem.Phys., 43, 2809 (1965). Davison S., Burton M. , J. Am. Chem. Soc , 74_, 2307 (1952). De Graff B.A., Kistiakowsky G.B., J.Phys .Chera. , 7J_, 1553, 3984 (1967). Deklau B., Palmer H.B., Eighth Symposium on Combustion, 1960, Williams and Wilkins, Baltimore, 1962, p. 139. DelGreco F.P., Golorab D., van der Bliek J. A., Cassanova R.A. , Good R.E., J.Chem.Phys., 44, 4349 (1966). DelGreco F.P., Kaufman F., Disc.Faraday Soc, No. 33, 128 (1962). De Mare G.R., Huybrechts G.H., Chem. Phys .Letters , 1_, 64 (1967) . De Mare G.R., Huybrechts G. , Trans .Faraday Soc, 64, 1311 (1968). 84, 1362 (1962). Richmond A. , Dever D. , Calvert J.G. , J. Am. Chem. Soc Dickens P.G., Gould R.D., Linnett J.W Nature, 187, 686 (1960). Dickens P.G., Linnett J.W. , Mol.Phys., 2, 259 (1959). Dickinson R.G., Carrico J.L. , J. Am. Chem. Soc. , 56, 1473 (1934). Diesen R.W. , J.Chem.Phys., 22. 2121 (1963). Diesen R.W. , J.Chem.Phys., 41, 3256 (1964). Diesen R.W. , J.Chem.Phys., 44, 3662 (1966). 460. Diesen R.W. , J.Chem.Phys., 4_5, 759 (1966). 461. Diesen R.W. , J.Phys .Chera. , _72_, 108 (1968). 462. Diesen R.W., Felmlee W.J., J.Chem.Phys., 3_2> 2115 (1963). 463. Dillemuth F.J., Skidmore D.R., Schubert C.C., J.Phys .Chem. , 64, 1496 (1960). 464. Dingle J.R., Le Roy D.J., J.Chem.Phys., _18, 1632 (1950). 465. Dingledy D.P., Calvert J.G. , J .Am. Chem. Soc , 85, 856 (1963). 466. Dixon J. K. , Zs .Phys .Chemie , Bodenstein Festband, 679 (1931). 467. Dixon P.S., Szwarc M., Trans .Faraday Soc, 59, 112 (1963). 468. Dixon-Lewis G., Sutton M.M. , Williams A., Disc.Faraday Soc., No. 33, 205 (1962). 469. Dixon-Lewis G., Sutton M.M. , Williams A., Tenth Symposium on Combustion, 1964, The Combustion Institute, Pittsburgh, Pa. , 1965, p. 495. 470. Dixon-Lewis G., Sutton M.M. , Williams A., J. Chem. Soc, 5724 (1965). 471. Dixon-Lewis G., Sutton M.M. , Williams A., Trans .Faraday Soc., 61, 255 (1965). 472. Dixon-Lewis G-, Williams A., Ninth Symposium on Combustion, 1962, Acad. Press, N.Y.-Ldn, 1963, p. 576. 473. Dixon-Lewis G. Williams A., Eleventh Symposium on Combus- tion, 1966, The Combustion Institute, Pittsburgh, Pa., 1967, p. 951. 474. Dixon-Lewis G., Wilson W.E., Westenberg A. A. , J.Chem.Phys., 44, 2877 (1966). 475. Dodd R.E., Canad .J.Chem. , 33, 699 (1955). 476. Dodd R.E., Smith J.W. , J. Chem. Soc, 1465 (1957). 477. Dodd R.E., Steacie E.W.R., Proc.Roy.Soc, A 223 , 283 (1954). 478. Donovan R.J., Hathorn F.G.M., Husain D., J.Chem.Phys., 49, 953 (1968). 479. Donovan R.J., Hathorn F.G.M., Husain D., Trans .Faraday Soc, 64, 1228 (1968). 480. Donovan R.J., Hathorn F.G.M., Husain D., Trans .Faraday Soc, 64, 3192 (1968). 481. Donovan R.J. , Husain D., Trans .Faraday Soc, 62., 11, 1050 (1966). 482. Donovan R.J., Husain D., Trans . Faraday Soc, 64, 2325 (1968). 483. Dorfraan L.M. , Gomer R. , Chem. Rev., 46, 499 (1950). 484. Dorfraan L.M. , Noyes W.A., Jr ., J.Chem.Phys . , 16, 557 (1948). 485. Dorfman L.M. , Sheldon Z.D., J.Chera.Phys., 17, 511 (1949). 486. Downs G.W. , Thesis, St. Andrews, 1959. 487. Drew Ch.M. , Gordon A.S., J.Chem.Phys., 31, 1417 (1959). 487a.Drumraond L.J., Austr .J.Chem. , 21_, 2631 (1968). 488. Duff R.E., J.Chem.Phys., 28, 1193 (1958). 489. Duff R.E., Davidson N. , J.Chem.Phys., 3_1, 1018 (1959). 490. Duncan F.J., Cvetanovic R.J., J. Am. Chem. Soc . , 84, 3593 (1962). 491. Dunford H.B., J.Phys .Chera. , 6_7, 258 (1963). 492. Durham R.W. , Martin G.R., Sutton H.C., Nature, 164 , 1052 (1949). 493. Durham R.W. , Steacie E.W.R., J.Chem.Phys., 20, 582 (1952). 494. Durham R.W. , Steacie E.W.R., Canad .J.Chem. , 31, 377 (1953). 495. Dusoleil S., Goldfinger P., Mahieu A.M., Martens G. , van der Auwera D., Trans .Faraday Soc, 5_7, 2197 (1961). 496. Dwyer R.J., Oldenberg 0., J.Chem.Phys., 12, 351 (1944). 497. Eberstein I.J., Glassman I., Tenth Symposium on Combustion, 1964, The Combustion Institute, Pittsburgh, Pa., 1965, p. 365. 498. Eckerman J., cited in [325]. 499. Eckling R. , Goldfinger P., Huybrechts G. , Martens G., Meyers L., Sraoes S., Chem.Ber., 93, 3014 (1960). 500. Eckstein B.H., Scheraga H.A. , van Artsdalen E.R., J.Chem. Phys. , 22, 28 (1954). 501. Edgecombe F.H.C., Norrish R.G.W., Thrush B.A. , Proc. Roy. Soc, A 243 , 24 (1957). 502. Egger K.W., Benson S.W., J.Phys .Chem. , 71, 1933 (1967). 389 503. 504. 505. 506. 507. 508. 509. 510. 511. 512. 513. 514. 515. 516. 517. 518. 519. 520. 521. 522. 523. 524. 525. 526. 527. 528. 529. 530. 531. 532. 533. 534. 535. 536. 537. 538. 539. 540. 541. 542. 543. 544. 545. 546. 547. 548. 549. Egger K.W., Golden D.M., Benson S.W. , J. Am.Chem.Soc . , 86 5420 (1964). Elias L., J.Chem.Phys. , 38, 989 (1963). Elias L. , Ogryzlo E.A. , Schiff H.I. , Canad . J.Chem. , 22 1680 (1959). Elias L. , Schiff H.I., Canad .J.Chem. , 38, 1657 (1960). Same as [506] . Elliott C.S., Frey H.M., Trans .Faraday Soc, 64, 2352 (1968). Endrenyi L. , LeRoy D.J., J.Phys .Chem. , 71, 1334 (1967). Engelman R.,Jr., Davidson N.R., J. Am. Chem. Soc . , 82., 4770 (1960). Evans A.G., Walker H. , Trans . Faraday Soc, 40, 384 (1944). Evenson K.M. , Burch D.S., J.Chem.Phys., 45, 2450 (1966). Fair R.W. , Thrush B.A. , Disc. Faraday Soc, No. 44, 236 (1967), Fairbrother F., Warhurst E., Trans .Faraday Soc, _3_1> 987 (1935). Farkas A., Zs .Elektrochem. , 36. 782 (1930). Farkas A., Zs .Phys .Chem. , B 10 , 419 (1930). Farkas A., Orthohydrogen, Parahydrogen and Heavy Hydrogen, Cambridge University Press, 1935, p. 65. Farkas A., J. Chem. Soc, 26 (1936). Farkas A., Farkas L. , Proc Roy . Soc . , A 152 , 124 (1935). Farkas A., Farkas L. , Proc. Roy. Soc, A 152 , 152 (1935). Farkas L. , Farkas A., Naturwiss., 22, 218 (1934). Farkas L., Garbatski U. , J.Chem.Phys., 6, 260, 904 (1938). Farkas A., Melville H.W. , Proc . Roy .Soc . , A 157 , 625 (1936). Farkas L. , Sachsee H., Zs .Phys .Chem. , B 23 , 1 (1933). Farkas L., Sachsee H. , Zs -Phys .Chem. , B 27 , 111 (1934). Farkas L. , Wigner E., Trans .Faraday Soc, 32, 708 (1936). Feld M. , Szwarc M. , J. Am.Chem.Soc. , 82, 3791 (1960). Fenimore C.P., Chemistry in Premixed Flames, Pergamon Press, New York, 1964. Fenimore C.P., Twelfth Symposium on Combustion, 1968, The Combustion Institute, Pittsburgh, Proc., p. 463. Fenimore C.P., Jones G.W. , J.Phys .Chem. , 62, 178 (1958). Fenimore C.P. , Jones G.W. , J.Phys .Chem. , 62, 693 (1958). Fenimore C.P., Jones G.W., J.Phys .Chem. , 6_2 1578 (1958). Fenimore C.P., Jones G.W. , J.Phys .Chem. , 63_, 1154 (1959). Fenimore C.P., Jones G.W., J.Phys .Chem. , lS3, 1834 (1959). Fenimore C.P., Jones G.W. , Eighth Symposium on Combustion, California Inst, of Technol., 1960, Williams and Wilkins, Baltimore, 1962, p. 127. Fenimore C.P., Jones G.W. , J.Phys .Chem. , 6_5, 298 (1961). Fenimore C.P. , Jones G.W. , J.Phys . Chem. , 65, 993 (1961). Fenimore C.P., Jones G.W. , J.Phys .Chem. , 65, 1532 (1961). Fenimore C.P. , Jones G.W., J.Phys .Chem. , 65, 2200 (1961). Fenimore C.P., Jones G.W. , cited in J.Phys .Chem. , 6_5, 2200 (1961), see also [534J. Fenimore C.P., Jones G.W., Ninth Symposium on Combustion, Cornell University, Ithaca, 1962, Acad. Press., N.Y.-Ldn, 1963, p. 597. Fenimore C.P. , Jones G.W. , J.Chem.Phys., 39, 1514 (1963). Fenimore C.P., Jones G.W. , J.Chem.Phys., 41, 1887 (1964). Fenimore C.P., Jones G.W. , Tenth Symposium on Combustion, University of Cambridge, England, 1964. The Combustion Institute, Pittsburgh, Pa., p. 489. Fenimore C.P., Jones G.W., J.Phys .Chem. , 69, 3593 (1965). Ferguson J.M., Phillips L. , J. Chem. Soc, 4416 (1965). Fettis G.C. , Knox J.H. vol. 2, p. 3, 1964. Fettis G.C. , Knox J.H. 1064 (1960). Fettis G.C, Knox J.H. 38, 1643 (1960). in: Progress in Reaction Kinetics, Trotman-Dickenson A.F., J. Chem. Soc, Trotman-Dickenson A.F., Canad .J.Chem. 550. 551. 552. 553. 554. 555. 556. 557. 558. 559. 560. 561. 562. 563. 564. 565. 566. 567. 568. 569. 570. 571. 572. 573. 574. 575. 576. 577. 578. 579. 580. 581. 582. 583. 584. 585. 586. 587. 588. 589. 590. 591. 592. 593. 594. 595. Fettis G.C, Knox J.H. , Trotman-Dickenson A.F., J. Chem. Soc 4177 (1960). Fettis G.C, Trotman-Dickenson A.F., J. Chem. Soc, 3037 (1961), Fielding W. , Pritchard H.O., J.Phys .Chem. , 66, 821 (1962). Finkelstein A., Noyes W.A.,Jr., Disc. Faraday Soc, No. 14, 76 (1953). Fishburne E.S., J.Chem.Phys., 45, 4053 (1966). Fishburne E.S., Bergbauer D.M. , Edse R. , J.Chem.Phys., 43, 1847 (1965). Fishburne E.S., Bilwakesh K.R., Edse R. , J.Chem.Phys., 4_5, 160 (1966). Fishburne E.S., Edse R. , J.Chem.Phys., 41, 1297 (1964). Fishburne E.S., Edse R., J.Chem.Phys., 44, 515 (1966). Fitzsimmons R.V. , Bair E.J., J.Chem.Phys., 40, 451 (1964). Flannary J.B., Janz G.J., J. Am.Chem.Soc. , 88, 5097 (1966). Fletcher C.J.M., Proc. Roy. Soc . , A 146 , 357 (1934). Flowers M.C, Benson S.W., J.Chem.Phys., 38, 882 (1963). Foner S.N., Hudson R.L., Advances in Chemistry, vol. 36, p. 34, 1962. Foner S.N., Hudson R.L., 142nd Meeting of the Am.Chem.Soc, Washington, 1962, p. 34. Foner S.N., Hudson R.L., J.Chem.Phys., 36, 2681 (1962). Fontiin A., Tenth Symposium on Combustion, 1964, The Combustion Institute, Pittsburgh, Pa., 1965, p. 519. Fontijn A., Meyer C.B., Schiff H.I., J.Chem.Phys., 40, 64 (1964). Fontijn A., Rosner D.E., J.Chem.Phys., 46, 3275 (1967). Fontijn A., Schiff H.I., in: Chemical Reactions in the Lower and Upper Atmosphere, Interscience , N.Y. , 1961, p. 239. Ford H.W. , Canad. J. Chem. , 38, 1780 (1960). Ford H.W., Doyle G.J., Endow N. , J.Chem.Phys., 26. 1337 (1957). Ford H.W., Doyle G.J., Endow N., J.Chem.Phys., 32, 1256 (1960). Ford H.W., Endow N. , J.Chem.Phys., 27, 1156 (1957). Ford H.W., Endow N. , J.Chem.Phys., 2_7, 1277 (1957). Ford H.W., Jaffe S., J.Chem.Phys., 38, 2935 (1963). Forst W., Canad. J. Chem. , 36, 1308 (1958). Forst W., Evans H.G.V., Winkler C.A., J.Phys .Chem. , 61_, 320 (1957). Forsyth J.S.A., Trans .Faraday Soc, 3J7 , 312 (1941). Foster K.D., Kebarle P., Dunford H.B., Canad .J.Chem. , 44, 2691 (1966). Franklin J. A. , Goldfinger P., Huybrechts C, Ber .Bunsenges . Phys. Chem., 72, 173 (1968). Fredricks P.S., Tedder J.M. , J. Chem. Soc, 144 (1960). Freedman E., Daiber J.W. , J.Chem.Phys., 34, 1271 (1961). Freeman C.G. , Phillips L.F., J. Phys. Chem. , 68, 362 (1964). Freeman CC, Phillips L.F., J.Phys .Chem. , 72, 3025 (1968). Freeman CC, Phillips L.F., J.Phys .Chem. , 72, 3028 (1968). Freeman CC, Phillips L.F., J.Phys .Chem. , 72, 3031 (1968). Freiling E.C, Johnston H.S., Ogg R.A. ,Jr., J.Chem.Phys., 20, 327 (1952). FreyH.M., Proc.Chem.Soc , 385 (1959). Frey H.M. , Proc .Roy .Soc . , A 250 , 409 (1959). Frey H.M. , Proc .Roy .Soc , A 251 , 575 (1959). Frey H.M. , Trans . Faraday Soc, 57, 951 (1961). Frey H.M. , Trans .Faraday Soc, 58, 516 (1962). Frey H.M. , in: Progress in Reaction Kinetics, vol.2, Pergamon Press, 1964, p. 131. Fristrom R.M., Ninth Symposium on Combustion, 1962, Academ. Press, N.Y.-Ldn, 1963, p. 560. Fristrom R.M., Ninth Symposium on Combustion, 1962, Academ. Press, N.Y.-Ldn, 1963, p. 573. 390 596. 597. 598. 599. 600. 601. 602. 603. 604. 605. 606. 607. 608. 609. 610. 611. 612. 613. 614. 615. 616. 617. 618. 619. 620. 621. 622. 623. 624. 625. 625a 626. 627. 628. 629. 630. 631. 632. 633. 634. 635. 636. 637. 638. Trotman-Dickenson F.A. , J.Chem.Soc . . Frommer L., Polanyi M. , Trans .Faraday Soc . , 30, 519 (1934). Frost A. A., Oldenberg 0., J.Chem.Phys . , 4, 642 (1936). Galiba I., Tedder J.M., Watson R.A. , J.Chem.Soc, 1321 (1964), Garcia Dominguez J. A. , Kerr J. A. J.Chem.Soc, 3357 (1962). Garcia Dominguez J. A. , Trotman-Dickenson A.F. 940 (1962). Garcia Dominguez J. A. , Trotman-Dickenson A.F., cited in [922]. Gardiner W.C.,Jr., Kistiakowsky G.B. , J.Chem.Phys., 35., 1765 (1961). Gartaganis P. A., Canad . J.Chem. , 43, 935 (1965). Garvin D., J. Am.Chem.Soc , 76., 1523 (1954). Garvin D., Broida H.P., Ninth Symposium on Combustion, 1962, Academ. Press, N.Y.-Ldn, 1963, p. 678. Garvin D. , Kistiakowsky G.B., J.Chem.Phys., 20, 105 (1952). Garvin D., McKinley J.D.,Jr., J.Chem.Phys., 24, 1256 (1956). Gatti R. , Staricco E., Sicre J.E. Chem., 35, 343 (1962). Schumacher H.J., Zs.Phys. ,, Proc.Roy.Soc, A 2 76 , Gaydon A.G., Kimbell G.H., Palmer H. 461 (1963). Gaydon A.G., Kimbell G.H., Palmer H.B., Proc.Roy.Soc, A 279 , 313 (1964). Geib K.H., cited in [1382, p. 356] . Geib K.H., Angew.Chem. , 50, 898 (1937). Geib K.H. , Harteck P., Zs .Phys .Chem. , Bodenstein Festband, 849 (1931). Geib K.H., Lendle A., Zs .Phys .Chem. , B 32 , 463 (1936). Geib K.H. , Steacie E.W.R., Trans .Roy .Soc.Canada, 3, 91 (1935). Geib K.H., Steacie E.W.R., Zs .Phys .Chem. , B 29 , 215 (1935). Generalov N.A. , Losev S.A., J. Quant . Spectrosc .Radiat .Transfer , 6, 101 (1966). George D.V.E., Thomas J.H. , Trans .Faraday Soc, 58, 262 (1962). Getzinger R.W. , Eleventh Symposium on Combustion, 1966, The Combustion Institute, Pittsburgh, Pa., 1967, p. 117. Getzinger R.W. , Blair L.S., Sixth Intern. Shock Tube Symposium, Freiburg, Germany, 1967. Getzinger R.W. , Schott G.L., J.Chem.Phys., 43, 3237 (1965). Ghosh P.K., Bair E.J., J.Chem.Phys., 45, 4738 (1966). Giacometti G. , Steacie E.W.R. , Canad .J.Chem. , 36, 1493 (1958). Giguere P. A., Liu I.D., Canad .J.Chem. , 35, 283 (1957). Gilbert J.R., Thomas J.H., Trans .Faraday Soc, 59, 1600 (1963). .Gilbert M. , Altman D., Sixth Symposium on Combustion, 1956, Reinhold Publishing Corp., 1957, p. 222. Giles R.D., Quick L.M. , Whittle E., Trans. Faraday Soc, 6_3, 662 (1967). Giles R.D., Whittle E., Trans .Faraday Soc, 61, 1425 (1965). Giles R.D., Whittle E., Trans .Faraday Soc, 62, 128 (1966). Givens W.G.,Jr., Willard J.E., J. Am.Chem.Soc , 81, 4773 (1959). GlassonW.A., Tuesday Ch.S., J. Am.Chem.Soc . , 85, 2901 (1963). Glick H.S., Klein J.J., Squire W. , J.Chem.Phys., 27, 850 (1957). Glissmann A., Schumacher H.J. , Zs .Phys .Chem. , B 21 , 323 (1933). Golden D.M. , Rodgers A.S., Benson S.W., J. Am.Chem.Soc. , 88, 3196 (1966). Golden D.M. , Walsh R. , Benson S.W., J. Am.Chem.Soc . , 87, 4053 (1965). Golden J. A. , Myerson A.L. , J.Chem.Phys., 28, 978 (1958). Goldfinger P., Huybrechts G., Martens G. , Trans .Faraday Soc, 57, 2210 (1961). Goldfinger P., Huybrechts G., Martens G. , Meyers L., Olbregts J., Trans .Faraday Soc, 61_, 1933 (1965). Goldfinger P., Jeunehomme M. , Martens G., J.Chem.Phys., 29 , 456 (1958). 639. 640. 641. 642. 643. 644. 645. 646. 647. 648. 649. 650. 651. 652. 653. 654. 655. 656. 657. 658. 659. 660. 660a 660b 661. 662. 663. 664. 665. 666. 667. 668. 669. 670. 671. 672. 673. 674. 675. 676. 677. 678. 679. 680. 681. 682. 683. Gomer R. , J.Chem.Phys., .18, 998 (1950). Gomer R. , J. Am. Chem. Soc. , 72, 201 (1950). Gomer R. , Kistiakowsky G.B., J.Chem.Phys., 1_9, 85 (1951). Gomer R. , Noyes W.A.,Jr., J. Am.Chem.Soc. , 71_ 3390 (1949). Gomer R. , Noyes W.A.,Jr., J. Am.Chem.Soc . , 72, 101 (1950). Good A., Thynne J.C.J. , Trans. Faraday Soc, 6_3, 2708 (1967). Good A., Thynne J.C.J. , Trans .Faraday Soc, 63, 2720 (1967). Gordon A.S., J.Chem.Phys., 36, 1330 (1962). Gordon A.S., Canad. J.Chem. , 43, 570 (1965). Gordon A.S., Canad .J.Chem. , 44, 529 (1966). Gordon A.S., Smith S.R. , Drew Ch.M., J.Chem.Phys., 36, 824 (1962). Gordon A.S., Smith S.R., McNesby J.R., Seventh Symposium on Combustion, 1958, Butterworth, London, 1958, p. 317. Gorin E., Acta Physicochim. URSS, 9, 681 (1938). Gowenlock B.G., Canad .J.Chem. , 42, 1936 (1964). Gowenlock B.G. , Polanyi J.C., Warhurst E., Proc.Roy.Soc, A 218 , 269 (1953). Gowenlock B.G., Snelling D.R., Advances in Chemistry, vol. 36, p. 150, 1962. Goy C.A. , Lord A., Pritchard H.O., J. Phys .Chem. , 71 , 1086 (1967). Goy C.A. , Pritchard H.O. , J. Phys .Chem. , 69, 3040 (1965). Goy C.A., Shaw D.H., Pritchard H.O., J. Phys .Chem. , 69, 1504 (1965). Grady Q.J.F., Freeman C.G., Phillips L.F., J. Phys .Chem. , 72, 743 (1968). Graven W.M. , J. Am.Chem.Soc. , 78, 3297 (1956). Gray J. A. , Thesis, Univ. of London, 1950, cited in [669]. .Gray P., Herod A. A., Trans .Faraday Soc, 64, 1568 (1968). .Gray P., Herod A. A. , Trans .Faraday Soc, 64, 2723 (1968). Gray P., Herod A. A., Trans .Faraday Soc, 6_3, 2489 (1967). Gray P., Herod A. A., Jones A., Thynne J.C.J. , Trans .Faraday Soc, 62, 2774 (1966). Gray P., Jones A., Canad .J.Chem. , 4_3, 3485 (1965). Gray P., Jones A., Trans .Faraday Soc, 61_, 2161 (1965). Gray P., Jones A., Trans. Faraday Soc, 62, 112 (1966). Gray P., Jones A., Canad .J.Chem. , 45, 333 (l r .j7). Gray P., Jones A., Thynne J.C.J. , Trans .Faraday Soc, 61_, 474 (1965). Gray P., Shaw R. , Thynne J.C.J. , cited in [1398]. Gray P., Shaw R. , Thynne J.C.J, in: Progress in Reaction Kinetics, Pergamon Press, vol. 4, p. 63, 1967. Gray P., Shaw R. , Thynne J.C.J. , in: Progress in Reaction Kinetics, Pergamon Press, vol. 4, p. 261, 1967. Gray P., Thynne J.C.J. , Trans .Faraday Soc, 59, 2275 (1963). Gray P., Thynne J.C.J. , Tenth Symposium on Combustion, 1964, The Combustion Institute, Pittsburgh, Pa., 1965, p. 435. Gray P., Thynne J.C.J. , Trans .Faraday Soc, 60, 1047 (1964). Greene F.D., Savitz M.L\ , Osterholtz F.D., Lau H.H., Smith W.N. , Zanet P.M., J. Org. Chem., 28, 55 (1963). Greenblatt J.H., Winkler C.A. , Canad .J. Res . , 27 B , 721 (1949). Greenblatt J.H., Winkler C.A., Canad .J. Res . , 27 B , 732 (1949). Greene E.F., Toennies J. P., Chemical Reactions in Shock Waves, Acad. Press, New York, 1964. Greig J.D., Hall P.G., Trans .Faraday Soc, 62, 652 (1966). Greig J.D., Hall P.G., Trans .Faraday Soc, 63., 655 (1967). Greig G., Thynne J.C.J. , Trans .Faraday Soc, 62, 379 (1966). Greig G., Thynne J.C.J. , Trans .Faraday Soc, 62, 3338 (1966). Greig G. , Thynne J.C.J. , Trans .Faraday Soc, 63, 1369 (1967). Greiner N.R. , J.Chem.Phys., 45, 99 (1966). 391 684. Greiner N.R., J.Chem.Phys . , 46, 2450 (1967). 685. Greiner N.R., J.Chem.Phys., 46, 2795 (1967). 686. Greiner N.R., J.Chem.Phys., 46, 3389 (1967). 687. Greiner N.R., J.Chem.Phys., 48, 1413 (1968). 688. Greiner N.R., J.Phys .Chem. , 72, 406 (1968). 689. Grigor M.R., Phillips L.F., Eleventh Symposium on Combustion, 1966, The Combustion Institute, Pittsburgh, Pa., 1967, p. 1171. 690. Gross Ph., Steiner H. , J.Chem.Phys., 4, 165 (1936). 691. Gross R.W.F., Cohen N. , J.Chem.Phys., 48, 2582 (1968). 692. Grotewold J., Kerr J. A. , J.Chem.Soc, 4337 (1963). 693. GrothW., Zs .Phys . Chem. , B 37 , 315 (1937). 694. Gruver J.T. Calvert J.G., J. Am.Chem. Soc . , 78, 5208 (1956). 695. Grygorcewicz C, Laurence G.S., J .Phys .Chem. , 72.. 1811 (1968). 696. Guercione J. A., Wijnen M.H. , J.Chem.Phys., 38, 1 (1963). 697. Gunning H.E., Strausz O.P., Advances in Photochemistry, vol. 4, p. 143, 1966. 698. Gutman D., Belford R.L., Hay A.J., Pancirov R. , J.Phys .Chem. , 70, 1793 (1966). 699. Gutman D., Hardwidge E.A. , Dougherty F.A. , Lutz R.W. , J.Chem.Phys., 4_7, 4400 (1967). 700. Gutman D., Schott G.L., J.Chem.Phys., 46, 4576 (1967). 701. Harr L., Friedman A.S., Beckett C.W., cited in [1324J. 702. Haber F., Sachsee H. , Zs . Phys .Chem. , Bodenstein Festband, 831 (1931). 703. Hacker D.S., Bloomberg H. , J.Chem.Phys., 3_2> 3263 (1963). 704. Haden W.L.,Jr., Rice O.K., J.Chem.Phys., J_0, 445 (1942). 705. Halberstadt M.L. , McNesby J.R., J.Chem.Phys., 45, 1666 (1966). 706. Hall J.G., Eschenroeder A.Q. , Marrone P.V., J. Aerospace Sciences, 29, 1038 (1962). 707. Halstead C.J. , Jenkins D.R., Twelfth Symposium on Combustion, 1968, The Combustion Institute .Pittsburgh, Proc . p. 979. 708. Halstead C.J., Jenkins D.R., Chem. Phys .Letters , 2, 281 (1968). 709. Halstead C.J., Thrush B.A., Nature, 204, 992 (1964). 710. Halstead C.J., Thrush B.A. , Chem.Comm., No. 11, 213 (1965). 711. Halstead M.P., Quinn C.P., Trans .Faraday Soc, 64, 103 (1968). 712. Halstead M.P., Quinn C.P., Trans .Faraday Soc, 64, 1560 (1968). 713. Hamann A., Schumacher H.J. , Zs .Phys .Chem. , B 17 , 293 (1932). 714. Hanes M.H., Bair E.J., J.Chem.Phys., 38, 672 (1963). 715. Hanst P.L., Calvert J.G., J .Phys . Chem , , 63, 104 (1959). 716. Hardman B. , Janz G.J., J . Am.Chem. Soc. , 90, 6272 (1968). 717. Haresnape J.N., Stevels J.M. , Warhurst E., Trans .Faraday Soc, 36, 465 (1940). 718. Harkness J.B., Kistiakowsky G.B., Mears W.H. , J.Chem.Phys., 5, 682 (1937). 719. Harnsberger, Thesis, Univ. of California, 1951, cited in [618]. 720. Harris E.J., Proc. Roy .Soc . , A 173 , 126 (1939). 721. Harris E.J. , Egerton A.C., Proc . Roy .Soc , A 168 , 1 (1938). 722. Harris G.M. , Steacie E.W.R., J.Chem.Phys., 13, 554 (1945). 723. Harris G.M., Steacie E.W.R., J.Chem.Phys., 13, 559 (1945). 724. Harrison H., Johnston H.S., Hardwick E.R., J. Am. Chem. Soc. , 84, 2478 (1962). 725. Harteck P., Dondes S., J.Chem.Phys., 23, 902 (1955). 726. Harteck P., Dondes S., J.Chem.Phys., 27_, 546 (1957). 727. Harteck P., Dondes S., J.Chem.Phys., £9, 234 (1958). 728. Harteck P., Reeves R.R., in: Chemical Reactions in the Lower and Upper Atmosphere, Interscience Publishers, N.Y.-Ldn, 1961, p. 219. 729. Harteck P., Reeves R.R., Mannella G. , J.Chem.Phys., 2_9, 608 (1958). 730. Harteck P., Reeves R.R., Mannella G., J.Chem.Phys., 29, 1333 (1958). 731. Hartel von H. , Zs .Phys .Chem. , B 11 , 316 (1930). 732. 733. 734. 735. 736. 737. 738. 739. 740. 741. 742. 743. 744. 745. 746. 747. 748. 749. 750. 751. 752. 753. 754. 755. 756. 756a 757. 758. 759. 760. 761. 762. 763. 764. 765. 766. 767. 768. 769. 770. 771. 772. 773. 774. 775. 776. 777. 778. 779. Hartel von H., Meer N. , Polanyi M. , Zs .Phys .Chem. , B 19 , 139 (1932). Hartel von H. , Polanyi M. , Zs. Phys .Chem. , B 11 , 97 (1930). Hartley D.B., Benson S.W., J.Chem.Phys., 39, 132 (1963). Hautecloque S., Compt.Rend., 254, 3671 (1962). Hay A.J., Belford R.L., J.Chem.Phys., 47, 3944 (1967). Heath G.A. , Pearson G.S. , Eleventh Symposium on Combustion, 1966, The Combustion Institute, Pittsburgh, Pa., 1967, p. 967. Hogg A.M., Kebarle P., J. Am. Chem. Soc. , 86, 4558 (1964). Heicklen J., J.Phys .Chem. , 70. l12 (1966). Heicklen J., J.Phys .Chem. , _70. 4 ?7 (1966). Heicklen J., J.Phys .Chem. , 70, 2456 (1966). Heicklen J., AIAA Journal, 5, 4 (1967). Heicklen J., Johnston H.S., J. Am. Chem. Soc . , 84, 4030 (1962). Heicklen J., Johnston H.S., A. Am. Chem. Soc . , 84, 4394 (1962). Heicklen J., Knight V., J.Phys .Chem. , 70, 3893 (1966). Heicklen J., Knight V., J.Phys .Chem. , 70, 3901 (1966). Heicklen J., Knight V., J.Chem.Phys., 47, 4203 (1967). Heicklen J., Knight V., J.Chem.Phys., 47, 4272 (1967). Heller C.A., J.Chem.Phys., 28, 1255 (1958). Heller C.A., Gordon A.S., J.Phys .Chem. , 60, 1315 (1956). Heller C.A., Gordon A.S., J.Phys .Chem. , 62, 709 (1958). Heller C.A. , Gordon A.S., J.Phys .Chem. , 64, 390 (1960). Heller C.A., Gordon A.S., J.Chem.Phys., 36, 2648 (1962). Heller W. , Polanyi M. , Trans .Faraday Soc, 32, 633 (1936). Henderson J.F., Steacie E.W.R., Canad . J.Chem. , 38, 2161 (1960). Henkin H. , Taylor H.A. , J.Chem.Phys., 8, 1 (1940). .Herod A. A. , Chem.Comm., No. 15, 891 (1968). Herron J.T., J.Chem.Phys., 33, 1273 (1960). Herron J.T., J.Chem.Phys., 35, 1138 (1961). Herron J.T., J.Chem.Phys., 45, 1854 (1966). Herron J.T., J .Phys . Chem. , 69, 2736 (1965). Herron J.T. , J.Phys .Chem. , 70, 2803 (1966). Franklin J.L. , Bradt P., Dibeler V.H. , 29, 230 (1958). Herron J.T. , J.Chem.Phys . Herron J.T., Franklin J.L., Bradt P., Dibeler V.H., J.Chem.Phys., 30, 879 (1959). Herron J.T., Huie R.E., J.Phys .Chem. , 72, 2235 (1968). Herron J.T., Huie R.E., J.Phys. Chem. , 72, 2538 (1968). Herron J.T., Klein F.S., J.Chem.Phys., 40, 2731 (1964). Hershenson H., Benson S.W., J.Chem.Phys., 21. 1889 (1962). Hertel E., Zs .Phys .Chem. , B 15 , 325 (1931). Herzog B.M., Carr R.W. , Jr., J.Phys .Chem. , 71, 2688 (1967). Higgin R.M.R., Williams A., Twelfth Symposium on Combus- tion, 1968, The Combustion Institute, Pittsburgh, Proc, p. 105. High Temperature Reaction Rate Data No. 1, Department of Phys. Chem., Leeds University, 1968. Hilferding K. , Steiner W. , Zs .Phys .Chem. , B 30 , 399 (1935), Hinshelwood C.N., Green Th.E., J.Chem.Soc, 730 (1926). Hinshelwood C.N., Mitchell J.W., J.Chem.Soc, 378 (1936). Hiraoka H. , Hardwick R. , J.Chem.Phys., 36, 1715 (1962). Hiraoka H., Hardwick R. , J.Chem.Phys., 39. 2361 (1963). Hirschfelder J., Eyring H. , Topley B., J.Chem.Phys., 4, 170 (1936). Hirt T.J., Palmer H.B., in: Proceedings of the 5th Conference on Carbon, Oxford Univ. Press, Vol. 1, 1962, p. 406, 639. Hisatsune I.C., Crawford B. , Ogg R.A. , J. Am. Chem. Soc. , 79, 4648 (1957). 392 780. 781. 782. 783. 784. 784a 785. 786. 787. 788. Hisatsune I.C., McHale A. P., Nightingale R.E., Rotenberg D.L., Crawford B.,Jr., J.Chem.Phys . , 2_3, 2467 (1955). Hoare D.E., Nature, 1_94, 283 (1962). Hoare D.E. , Canad . J.Chem. , 40, 2012 (1962). Hoare D.E. , Proc . Roy .Soc . , A 291 , 73 (1966). Hoare D.E., Milne G.S., Trans .Faraday Soc, 63,, 101 (1967). Hoare D.E. , Peacock G.B., Proc . Roy . Soc . , A 291 , 85 (1966). Hoare D.E., Protheroe J.B., Walsh A.D. , Trans . Faraday Soc, 55, 548 (1959). Hoare D.E., Ting-Man Li, Walsh A.D. , Twelfth Symposium on Combustion, 1968, The Combustion Institute, Pittsburgh, Proc. p. 357. Hoare D.E., Walsh A.D., Trans .Faraday Soc, 53, 1102 (1957). Hoare D.E. , Walsh A.D., Chem. Soc.Spec.Publ . , No. 9, 17 (1957), cited in [ll5J . 788a. Hoare D.E., Wellington C.A., Eighth Symposium on Combustion, 1960, Williams and Wilkins, Baltimore, 1962, p. 472. 789. 790. 791. 792. 793. 794. 795. 796. 797. 798. 799. 800. 801. 802. 803. 804. 805. 806. 807. 808. 809. 810. 811. 812. 812a 813. 814. 815. 816. 816a. 817. 818. 819. 820. Hoare D.E., Whytock D.A. , Canad .J.Chem. , 45, 865 (1967). Hodges J.H., Miceli A.S., J.Chem.Phys., 9, 725 (1941). Hoey G.R., Kutschke K.O., Canad .J.Chem. , 33, 496 (1955). Hogg A.M., Kebarle P., J. Am. Chem. Soc . , 86, 4558 (1964). Holmes J.L. , Kutschke K.O., 18th International IUPAC Congress, Abstracts of papers, Toronto University Press, 1961, p. 40. Holmes J.L. , Kutschke K.O., Trans .Faraday Soc, 58, 333 (1962). Holmes J.L., Rodgers P., Trans .Faraday Soc, 64, 2348 (1968). Holroyd R.A. , Klein G.W. , J.Phys . Chem. , 67, 2273 (1963). Holroyd R.A. , Noyes W.A.,Jr., J. Am. Chem. Soc. , 76, 1583 (1954). Holroyd R.A. , Pierce T.E. , J.Phys .Chem. , 68, 1392 (1964). Horie 0., Ishii Yu. , Amano A., J.Phys .Chem. , 68, 1264 (1964). Hormats E.I., van Artsdalen E.R., J.Chem.Phys., _19, 778 (1951). Home D.G., Gosavi R. , Strausz O.P., J.Chem.Phys., 48, 4758 (1968). Home D.G., Norrish R.G.W. , Nature, 215 1373 (1967). Howlett K.E., Trans. Faraday Soc, 48, 25 (1952). Howlett K.E., Trans. Faraday Soc, 48, 35 (1952). Hoyermann K.H., Wagner H.Gg., Wolfrum J., Zs .Phys .Chem. , N.F. 55, 72 (1967). Hoyermann K. , Wagner H.Gg., Wolfrum J., Ber . Bunsenges . , 71, 599 (1967). Huffman R.E. , Davidson N., J. Am. Chem. Soc. , 81_, 2311 (1959). Hunten D.M. , McElroy M.B., Rev.Geophys . , 4, 303 (1966). Hurle I.R. , Eleventh Symposium on Combustion, 1966, The Combustion Institute, Pittsburgh, Pa., 1967, p. 827. Husain D., Norrish R.G.W. , Proc .Roy .Soc . , A 273 , 165 (1963). Hutton E., Nature, 203, 835 (1964). Hutton E., Wright M. , Trans .Faraday Soc, 61_, 78 (1965). .Huybrechts G., Martens G., Meyers L., Olbregts J., Thomas K. , Trans .Faraday Soc, (S_l, 1921 (1965). Huybrechts G. , Meyers L., Trans .Faraday Soc, 62_, 2191 (1966). Huybrechts G. , Meyers L. , Verbeke G., Trans . Faraday Soc., 58, 1128 (1962). Huybrechts G., Olbregts J., Thomas K., Trans .Faraday Soc., 63, 1647 (1967). Imai N., Toyama 0., Bull .Chem. Soc. Japan, 33, 1120 (1960). Imai N. , Toyama 0., Bull, Chem. Soc. , Japan, 33, 1120 (1960). Inaba T., Darwent B. de B. , J.Phys .Chem. , 64, 1431 (1960). Lossing F.P., J.Chem.Phys., 21, 368, 1135 Ingold K.U (1953). Ip J.K.K. , Ivin K.J. , Burns G., Disc. Faraday Soc, No. 44, 241 (1967). Steacie E.W.R., Proc .Roy .Soc . , A 208 , 25 (1951). 821. 822. 823. 824. 825. 826. 827. 828. 829. 830. 831. 832. 833. 834. 835. 836. 837. 838. 839. 840. 841. 842. 843. 844. 845. 846. 847. 848. 849. 850. 851. 852. 853. 854. 855. 856. 857. 858. 859. 860. 861. 862. 863. 864. 865. Izod T.P.J. , Wayne R.P., Proc .Roy .Soc , A 308 , 81 (1968). Jackson F.W. , J.Phys .Chem. , 56, 2631 (1934). Jackson W.M. , McNesby J.R., J. Am. Chem. Soc. , 83, 4891 (1961). Jackson W.M. , McNesby J.R., Darwent B. de B., J.Chem.Phys., 37, 1610 (1962). Jackson W.M. , McNesby J.R., Darwent B. de B., J.Chem.Phys., 37, 2256 (1962). Jacobs T.A. (1967). Jacobs T.A. Cohen N., Giedt R.R., J.Chem.Phys., 46, 1958 Giedt R.R., J.Chem.Phys., 39, 749 (1963). Giedt R.R., Cohen N. , J.Chem.Phys., 43, 3688 Jacobs T.A. (1965). Jacobs T.A., Giedt R.R. , Cohen N., J.Chem.Phys., 4_7, 54 (1967). Jacobs T.A., Giedt R.R., Cohen N., J.Chem.Phys., 48, 947 (1968). Jacobs T.A. (1968). Giedt R.R., Cohen N. , J.Chem.Phys., 49, 1271 Szwarc M. , J. Am. Chem. Soc . , 74, Jacquiss M.T., Roberts J.S 6005 (1952). Jaffe S., Ford H.W. , J.Phys .Chem. , 71, 1832 (1967). Jaffe S., Klein F.S., Trans. Faraday Soc, 62, 2150 (1966). Jaffe S., Klein F.S., Trans .Faraday Soc, 62, 3135 (1966). James D.G.L., MacCallumD., Canad .J.Chem. , 43, 633 (1965). James D.G.L., Ogawa T., Canad .J.Chem. , 43, 640 (1965). James D.G.L. , Steacie E.W.R., Proc .Roy .Soc . , A 244 , 289 (1958). James D.G.L. (1958). Steacie E.W.R., Proc.Roy .Soc . , A 244 , 297 Steacie E.W.R., Proc.Roy. Soc, A 245 , 470 Suart R.D., J. Am. Chem. Soc. , 86, 5424 (1964). Suart R.D., J.Phys .Chem. , 69, 2362 (1965). Suart R.D., Trans .Faraday Soc, 64, 2735 Suart R.D., Trans .Faraday Soc, 64, 2752 James D.G.L. (1958). James D.G.L. James D.G.L. James D.G.L. (1968). James D.G.L. (1968). Jamieson J.W.S., Brown G.R. , Canad .J.Chem. , 42, 1638 (1964), Jeffers P., Bauer S.H. , cited in [416]. Jennings K.R., Cvetanovic R.J., J.Chem.Phys., 3_5, 1233 (1961). Johnson Ch.D., Britton D., J.Chem.Phys., 38, 1455 (1963). Johnson Ch.D., Britton D., J.Phys .Chem. , 68, 3032 (1964). Johnston H.S., Crosby H.J., Harvey J.C., J.Chem.Phys., 22, 689 (1954). Johnston H.S. Johnston H.S. 1002 (1957). Johnston H.S. Johnston H.S. 4208 (1955). Johnston H.S. Johnston H.S. Johnston H.S. J. Am. Chem. Soc. , 21, 4542 (1951). Bonner W.A. , Wilson D.J., J.Chem.Phys., 26, Crosby H.J., J.Chem.Phys., Jj), 799 (1951). Foering L. , White J.R. , J. Am. Chem. Soc. , _7_7, Leighton F., J. Am. Chem. Soc. , 75, 3612 (1953). Slentz L.W., J. Am. Chem. Soc , 73, 2948 (1951). Tschuikov-Roux E., XVIIIth International IUPAC Congress, Abstracts of papers, Toronto University Press, 1961 p. 40. Johnston H.S., Woolfolk R. , J.Chem.Phys., 41, 269 (1964). Johnston H.S., Yost D.M., J.Chem.Phys., _17, 386 (1949). Jolley J.E., J. Am. Chem. Soc. , _79, 1537 (1957). Jonathan N. , Petty R. , Trans. Faraday Soc, 64, 1240 (1968). Jones G.R., Cvetanovic R.J., Canad .J.Chem. , 39. 2444 (1961). Fenimore C.P., Jones G.W., Comb. Flame, 8, 231 (1964). Jones J.L., Ogg R.A., J.Am. Chem. Soc . , 59, 1931 (1937). Jones M.H., Steacie E.W.R., J.Chem.Phys., 2J,, 1018 (1953). 393 866. 867. 868. 869. 870. 871. 871a 872. 873. 874. 875. 876. 877. 878. 879. 880. Jones M.H., Steacie E.W.R., Canad . J .Chem. , 31, 505 (1953). Jones W.E., Winkler C.A. , Canad .J. Chem. , 42, 1948 (1964). Jones W.M. , J.Chera.Phys . , 19, 78 (1951). Jones W.M. , Davidson N. , J. Am.Chem.Soc . , 84, 2868 (1962). Jost W. , Zs.Phys.Chem. , B_3, 95 (1929). Zs.Phys.Chem. , N.F. 881. 882. 883. 884. 885. 886. 887. 888. 889. 890. 891. 892. 893. 894. 895. 896. 897. 898. 899. 900. 901. 902. 903. 904. 905. 906. 907. 908. 909. 910. Jost W. , Schecker H.Gg., Wagner H.Gg. 45, 47 (1965). Jost W. , Wagner H.Gg., In: Chemische Eleraentarprozesse, Berlin, Heidelberg, New York, 1968, p. 219. Jungers J.C., Joris G., Bull . Soc .Chim. Belg. , 50, 61 (1941). Jungers J.C., Taylor H.S., J.Chem.Phys . , 6, 325 (1938). Kale J.D., Timmons R.B., J.Phys .Chem. , 72_, 4239 (1968). Kallend A.S., J.Phys .Chem. , 70, 2055 (1966). Kallend A.S., Trans .Faraday Soc, 63, 2442 (1967). Karplus M. , Porter R.N., Sharma R.D. , J.Chem.Phys., 40, 2033 (1964). Kaskan W.E., Comb. and Flame, 2, 229 (1958). Kaskan W.E. , Comb. and Flame, 2, 286 (1958). Kaskan W.E., Browne W.C., Gen .Electric/Space Science Lab. Report, GE TIS R64SD37, July 1964. Kaskan W.E., Tenth Symposium on Combustion, 1964, Academic Press, N.Y.-Ldn, 1965, p. 41. Kassel L.S., Proc .Nat .Acad . Sci .Wash. , J^, 358 (1930). Kassel L.S., Kinetics of Homogeneous Gas Reactions, The Chemical Catalog Co., New York, 1932. Kassel L.S., J. Am.Chem.Soc . , 54, 3949 (1932). Katakis D., J.Chem.Phys., 47, 541 (1967). Kato A., Cvetanovic R.J., Canad. J. Chem. , 45, 1845 (1967). Kato A., Cvetanovic R.J., Canad .J. Chem. , 46_, 235 (1968). Kaufman E.D., Reed J.F., J.Phys .Chem. , 6J_, 896 (1963). Kaufman F., Proc .Roy . Soc . , A 247 , 123 (1958). Kaufman F. , J.Chem.Phys., 28, 352 (1958). Kaufman F., In: Progress in Reaction Kinetics, Pergamon Press, vol. 1, p. 3, 1961. Kaufman F., Ann.Geophys . , 20, 106 (1964). Kaufman F., Eleventh Symposium on Combustion, 1966, The Combustion Institute, Pittsburgh, Pa., 1967, p. 144. Kaufman F., Decker L.J., Seventh Symposium on Combustion, 1958, Butterworth, 1959, p. 57. Kaufman F. , Del Greco F.P., Ninth Symposium on Combustion, 1962, Acad. Press, N.Y.-Ldn, 1963, p. 659. Kaufman F. , (1956). Kaufman F. . (1956). Gerri N.J., Bowman R.E. , J.Chem.Phys., 25, 106 Gerri N.J., Pascale D.A. , J.Chem.Phys., 24, 32 Kaufman F., Kelso J.R., J.Chem.Phys., 23, 602 (1955). Kaufman F. , Kelso J.R., J.Chem.Phys., 2_3, 1702 (1955). Kaufman F., Kelso J.R., Chemical Reactions in the Lower and Upper Atmosphere, Interscience , N.Y.-Ldn, 1961, p. 255. Kaufman F., Kelso J.R., Disc. Faraday Soc, No. 37, 26 (1964). Kaufman F., Kelso J.R., J.Chem.Phys., 40, 1162 (1964). Kaufman F., Kelso J.R., Symposium on Chemiluminescence , Duke University, 1965. Kaufman F., Kelso J.R., J.Chem.Phys., 46, 4541 (1967). Kazmi H.A., Diffendorf R.J., Le Roy D.J., Canad. J. Chem. , 41, 690 (1963). Kazmi H.A. , Le Roy D.J., Canad . J . Chem. , 42, 1145 (1964). Kebarle P., J.Phys .Chem. , 67, 351 (1963). Keck J.C., J.Chem.Phys., 29, 410 (1958). Kelly R., Winkler C.A., Canad .J. Chem. , 3_7> 62 (1959). Kent R.A., McDonald J.D., Margrave J.L., J.Phys .Chem. , 70, 874 (1966). 911. Kerr J. A. , Calvert J.G., J. Am.Chem.Soc . , 83, 3391 (1961). 912. Kerr J. A., Calvert J.G., J.Phys .Chem. , 69, 1022 (1965). 913. Kerr J. A., Lloyd A.C., Trans .Faraday Soc, 63, 2480 (1967). 914. Kerr J. A. , Slater D.H., Young J.C., J. Chem. Soc. , A, 104 (1966). 915. Kerr J. A., Trotman-Dickenson A.F., J. Chem. Soc, 3322 (1957). 916. Kerr J. A., Trotman-Dickenson A.F. , Trans .Faraday Soc, 55 , 572 (1959). 917. Kerr J. A. , Trotman-Dickenson A.F., Trans .Faraday Soc, 55 , 921 (1959). Trotman-Dickenson A.F., J. Chem. Soc, 1602 (1960), 918. Kerr J. A. 919. Kerr J. A. 920. Kerr J. A. 921. Kerr J. A. 922. Kerr J. A. Trotman-Dickenson A.F., Trotman-Dickenson A.F.. J. Chem. Soc, 1607 (1960). J. Chem. Soc, 1609 (1960). 923. 924. 924a 925. 926. 927. 928. 929. 930. 931. 932. 933. 934. 935. 936. 937. 938. 939. 940. 941. 942. 943. 944. 945. 946. 947. 948. 949. 950. 951. 952. 953. Trotman-Dickenson A.F., J. Chem. Soc, 1611 (1960). Trotman-Dickenson A.F., In: Progress in Reaction Kinetics, Pergamon Press, Vol. 1, p. 105, 1961. Kevorkian V., Heath C.E., Boudart M. , J.Phys. Chem. , 64, 964 (1960). Khambata B.S., Wassermann A., Nature, 139, 669 (1937). .Kibby Ch.L., Weston R.E. , Jr., J.Chem.Phys., 49, 4825 (1968). Kiefer J.H., Lutz R.W. , J.Chem.Phys., 42, 1709 (1965). Kirk A.D., Knox J.H. , Trans .Faraday Soc, 56, 1296 (1960). Kiss A., Rec.Trav.Chim.Pays-Bas, 42, 112 (1923). Kistiakowsky G.B., Zs.Phys.Chem., 117, 337 (1925). Kistiakowsky G.B., J. Am. Chem. Soc. , 50, 2315 (1928). Kistiakowsky G.B., Tenth Symposium on Combustion, 1964, The Combustion Institute, 1965, p. 520. Kistiakowsky G.B., Kidd P.H., J. Am.Chem.Soc. , 79, 4825 (1957). Kistiakowsky G.B., Lacher J.R., J. Am.Chem.Soc. , 48, 123 (1936). Kistiakowsky G.B., Mears W.H. , J. Am.Chem.Soc . , 58, 1060 (1936). Kistiakowsky G.B. , Ransom W.W. , J.Chem.Phys., 7, 725 (1939). Kistiakowsky G.B., Roberts E.K., J.Chem.Phys., 2_1, 1637 (1953). Kistiakowsky G.B., Smith W.R., J. Am.Chem.Soc , 57_, 269 (1935). Kistiakowsky G.B., van Artsdalen E.R., J.Chem.Phys., 12 , 469 (1942). Kistiakowsky G.B., Volpi G.G., J.Chem.Phys., 2_7, 1141 (1957). Kistiakowsky G.B., Volpi G.G., J.Chem.Phys., 28, 665 (1958). Klassen N.V. , Onysgchuk M., McCabe J.C., Winkler C.A. , Canad. J. Chem., 36, 1217 (1958). Klein F.S., Herron J.T. , J.Chem.Phys., 41, 1285 (1964). Klein F.S., Herron J.T., J.Chem.Phys., 44, 3645 (1966). Klein R. , McNesby J.R. , Scheer M.D., Schoen L.J., J. Chem. Phys., 30, 58 (1959). Klein F.S., Wolfsberg M. , J.Chem.Phys., 34, 1494 (1961). Knight A.R., Strausz O.R., Malm S.M., Gunning H.E., J.Am. Chem. Soc, 86, 4243 (1964). Knox J.H., Chem. and Ind., 50, 1631 (1955). Knox J.H., Trans. Faraday Soc, 58, 275 (1962). Knox J.H., Musgrave R.G. , Trans .Faraday Soc, 63^ 2201 (1967). Knox J.H., Nelson R.L. , Trans. Faraday Soc, 55, 937 (1959). Knox J.H. , Riddick J., Trans. Faraday Soc, 6j2, 1190 (1966). Knox J.H., Trotman-Dickenson A.F., Spec.Publ .Chem. Soc. , London, No. 9, 35 (1957). Kohout F.C., Lampe F.W., J.Chem.Phys., 46, 4075 (1967). Kominar R.J., Jacko M.G., Price S.J., Canad .J. Chem. , 45, 575 (1967). 394 954. 955. 956. 957. 958. 959. 960. 961. 962. 963. 964. 965. 966. 967. 968. 969. 970. 971. 972. 973. 974. 975. 976. 977. 978. 979. 980. 981. 982. 983. 984. 985. 986. 987. 987a 988. 989. 990. 991. 992. 993. 994. 995. Konar R.S., Marshall R.M. , Purnell J.H., Trans .Faraday Soc, 64, 405 (1968). Kondratlev V.N., Seventh Symposium on Combustion, 1958, Butterworth Sclent .Pubis ., 1959, p. 41. Kondratiev V.N. , Tenth Symposium on Combustion, 1964, The Combustion Institute, Pittsburgh, Pa., 1965, p. 319. Kondratiev V.N. , Nikitin E.E., J. Chem.Phys . , 4_5, 1078 (1966). Konig G., Dissertation, Berlin, 1938, cited in [1382, p. 256 and 301] . Kozak P.J., Gesser H., J.Chem.Soc, 448 (1960). Kraus J.W. , Calvert J.G., J. Am.Chem. Soc . , 79. 5921 (1957). Krauss W. , Saracini M. , Zs .Phys .Chem. , A 178 , 245 (1937). Krech M. , Price S.J.W., Canad . J.Chem. , 45, 157 (1967). Kretschmer C.B., cited in [956]. Kretschmer C.B., Petersen H.L., J. Chem. Phys Kretschmer C.B., Petersen H.L. , J. Chem. Phys . , (1963). 33, 948 (1960). 39, 1772 31, 1196 Canad .J.Chem. , 45, 665 Krongelb S., Strandberg M.W.P., J. Chem. Phys. (1959). Krzyzanowski S., Cvetanovic R.J. (1967). Kuntz R.R., J. Phys. Chem. , 69, 2291 (1965). Kuntz R.R., J. Phys. Chem. , 71, 3343 (1967). Kuppermann A., White J.M. , J. Chem.Phys . , 44, 4352 (1966). Kuratani K. , Bauer S.H., J. Am. Chem. Soc . , 87, 150 (1965). Kurzius S.C., Dissertation, Princeton University, 1964. Kurzius S.C., Tenth Symposium on Combustion, 1964, The Combustion Institute, Pittsburgh, Pa., 1965, p. 385. Kurzius S.C., Boudart M. , Comb. Flame, VI, 477 (1968). Kutschke K.O., Canad .J.Chem. , 42, 1232 (1964). Kutschke K.O., Wijnen M.H.J. , Steacie E.W.R., J. Am. Chem. Soc . 74, 714 (1952). Laidler K.J., Liu M.T.H. , Proc .Roy .Soc . , A 297 , 365 (1967). Lambert R.M. , Christie M.I. , Gollesworthy R.C., Linnett J.W. Proc. Roy. Soc. , A 302 , 167 (1967). Lambert R.M. , Christie M.I., Linnett J.W. , Chem. Communica- tions, 388 (1967). Lampe F.W. , Field F.H., Canad .J. Chem. , 3_7> " 5 (1959). LarkinF.S., Canad . J. Chem. , 46, 1005 (1968). Larkin F.S., Thrush B.A., Disc. Faraday Soc, No. 37, 112 (1964). Larkin F.S., Thrush B.A., Tenth Symposium on Combustion, 1964, The Combustion Institute, Pittsburgh, Pa., 1965, p. 397. J. Chem. Phys . . Larson C.W. , Rabinovitch B.S., Tardy D.C. 47, 4570 (1967). Laurence G.S., Trans .Faraday Soc, 63, 1155 (1967). Lawrence R.H., Firestone R.F., J. Am. Chem. Soc. , 88, 4564 (1966). Lawrence T.R., Burns G., Proc. 6th Intern. Shock Tube Symp. 1967. .Leathard D.A. , Purnell J.H. , Proc .Roy .Soc . , A 306 , 553 (1968). Leermakers J. A. , J. Am. Chem. Soc . , 55, 4508 (1933). Leggett C, Thynne J.C.J. , Trans .Faraday Soc, 62, 2504 (1967). Leifer E., J. Chem. Phys . , 8, 301 (1940). Leighton F., Urbach H.B., Wojtowicz J. A., Zaslowsky J. A., Abstracts of the 135th Meeting of the Am. Chem. Soc . , Atlantic City, New Jersey, 1959. Leighton F., Urbach H.B., Wojtowicz J. A. , Zaslowsky J. A., Abstracts of Papers, 136th Meeting, Am. Chem. Soc, p.46-S. Leighton Ph. A., Cross P.C. , J. Chem. Phys . , 6, 345 (1938). Le Roy D.J. , Kahn A., J. Chem.Phys . , 15, 816 (1947). Le Roy D.J., Ridley B.A., Quickert K.A., Disc. Faraday Soc. No. 44, 92 (1967). 996. Levitt B.P., Thesis, Cambridge Univ., 1956. 997. Levitt B.P., J. Chem. Phys . , 42, 1038 (1965). 998. Levitt B.P., J. Chem. Phys . , 43, 766 (1965). 999. Levitt B.P., Sheen D.B., Trans .Faraday Soc, 63_, 2955 (1967). 1000. Levy A., J. Phys .Chem. , 62, 570 (1958). 1001. Levy A., The High Temperature Kinetics of the H 2 -Br 2 Reaction, Wright Air Development Center T.R. 57-486, cited in [305]. 1002. Levy J.B., Copeland B.K.W., J. Phys .Chem. , 69, 3700 (1965). 1003. Levy J.B., Copeland B.K.W., J. Phys .Chem. , 72, 3168, (1968). 1004. Levy E.M., Winkler C.A., Canad .J. Chem. , 40, 686 (1962). 1005. 1006. 1007. Levy J.B., Copeland B.K.W., J. Phys .Chem. , 69, 408 (1965), von Elbe G., Lewis B. , J. Chem. Phys . , 10, 366 (1942). Lifshitz A., Lifshitz C, Bauer S.H. 87, 143 (1965). J. Am.Chem. Soc . 1008. Light J.C., J. Chem. Phys. , 36, 1016 (1962). 1009. Light J.C., J. Chem. Phys. , 40, 3221 (1964). 1010. Lin J., Light J., J. Chem. Phys . , 45, 2545 (1966). 1011. LinM.C, Back M.H., Canad .J.Chem. , 44, 505 (1966). 1012. Lin M.C., Back M.H., Canad. J.Chem. , 44, 2357 (1966). 1013. LinM.C, BackM.H., Canad .J.Chem. , 44, 2369 (1966). 1014. Lin M.C., Laidler K.J., Canad .J.Chem. , 45, 1315 (1967). 1015. Lin S.-C, Teare J.D., Phys. Fluids, 6, 355 (1963). 1016. Lin S.-C, Fyfe W.I., Phys. Fluids, 4, 238 (1961). 1017. Linnell R.H., Noyes W.A.,Jr., J. Am. Chem. Soc . , 72, 3986 (1951). 1018. Linnett J.W., Booth M.H., Nature, 199, 1018 (1963). 1019. Linnett J.W., Selley N.J., Zs .Phys .Chem. , N.F. 3_7, 402 (1963). 1020. Lipscomb F.J., Norrish R.G.W., Thrush B.A., Proc. Roy. Soc A 233 , 455 (1956). 1021. LiuM.T.H., Laidler K.J., Canad .J.Chem. , 46, 479 (1968). 1022. Liuti C, Dondes S., Harteck P., J. Am.Chem. Soc . , 88, 3212 (1966). 1023. Liuti C, Dondes S., Harteck P., J. Phys .Chem. , 72_, 1081 (1968). 1024. Livermore R.A., Phillips L., Chem. Coram., 253 (1965). 1025. Long J., Skirrow C, Trans .Faraday Soc, 58, 1403 (1962). 1026. Lossing F.P., Ingold K.U. , Tickner A.W. , Disc.Faraday Soc, No. 14, 34 (1953). 1027. Loucks L.F., Canad .J.Chem. , 45, 2775 (1967). 1028. Loucks L.F., Laidler K.J., Canad .J.Chem. , 45, 2767 (1967). 1029. Loucks L.F., Laidler K.J., Canad .J.Chem. , 45_, 2795 (1967). 1030. Ludlum K.H., Larson L.P., Caffrey J.M.,Jr., J. Chem.Phys . , 46, 127 (1967). 1031. Ludwig B.E., McMillan G.R., J. Phys .Chem. , 72, 762 (1967). 1032. Lundell O.R., Ketcheson R.D., Schiff H.I., Twelfth Symposium on Combustion, 1968, The Combustion Institute, Pittsburgh, Proc. p. 307. 1033. Madhavan N., Jones W.E., J. Phys .Chem. , T2, 1812 (1968). 1034. Magee E.M., J. Am. Chem. Soc . , J9_, 5375 (1957). 1035. Magee J.L., Shand W. , Eyring H. , J. Am. Chem. Soc . , 62, 677 (1941). 1036. Mahan B.H., Solo R.B., J. Chem. Phys . , 37. 2669 (1962). 1037. Majer J.R., Phillips D., Robb J.C., Trans .Faraday Soc, 61, 110 (1965). 1038. Majer J.R., Phillips D., Robb J.C., Trans .Faraday Soc, 61, 122 (1965). 1039. Majury T.C, Steacie E.W.R., Canad .J.Chem. , 2P_. 800 (1952). 1040. Majury T.C, Steacie E.W.R., J. Chem. Phys . , 22. 197 (1952). 1041. Majury T.C, Steacie E.W.R., Disc.Faraday Soc, No. 14, 45 (1953). 395 1042. Mandelcorn L. , Steacie E.W.R., Canad . J.Chem. , 32, 79 (1954). 1043. Mandelcorn L., Steacie E.W.R., Canad .J.Chem. , 32, 331 (1954). 1044. Mandelcorn L., Steacie E.W.R., Canad . J. Chera. , 32, 474 (1954). Mantei D.A. , Bair E.J., J. Chem.Phys . , 49, 3248 (1968). Marsh, G., Heicklen J., J.Phys .Chem. , 7Jl> 25 ° (1967). 1045 1046 1047 1048. 1049. 1050. 1051. 1052. 1053. 1054. 1055. 1056. 1057. 1058. 1059. 1060. 1061. 1062. 1063. 1064. 1065. 1066. 1067. 1068. 1069. 1070. 1071. 1072. 1073. 1074. 1075. 1076. 1077. 1078. 1079. 1080. 1081. 1082. 1083. 1084. March R.E., Furnival Sh.G., Schiff H.I., Photochemistry and Photobiology, 4, 971 (1965). March R.E., Polanyi J.C., Proc . Roy .Soc . , A 273 , 360 (1963). Same as [ 1046] . Marcotte F.B., Noyes W.A. , Jr., Disc. Faraday Soc, No. 10, 236 (1951). Marcotte F.B., Noyes W.A. , Jr., J. Am. Chem. Soc . , 74, 783 (1952). Marcus R.A. , Darwent B. de B., Steacie E.W.R., J. Chem.Phys. 16, 987 (1948). Marcus R.A., Steacie E.W.R., Zs . Naturforsch. 4a, 332 (1949). Marshall R. , Davidson N. , J. Chem.Phys . , 21, 659 (1953). Marshall T.C., Phys. Fluids, 5, 743 (1962). Marte J.E., Tschuikow-Roux E., Ford H.W., J. Chem. Phys . , 39, 3277 (1963). Martens G. , Disc. Faraday Soc, No. 33, 297 (1962). Maschke A., Shapiro B.S., Lampe F.W., J. Am. Chem. Soc. , 85, 1876 (1963). Maschke A., Shapiro B.S., Lampe F.W., J. Am. Chem. Soc. , 86, 1929 (1964). Masson C.R., J. Am. Chem. Soc. , 74, 4731 (1952). Mathias A., Schiff H.I., Disc. Faraday Soc, No. 37, 38 (1964). Mathias A., Schiff H.I., J. Chem.Phys . , 40, 3118 (1964). Matthes Fr . , Dissertation, Berlin, 1933. Matthes Fr . , cited in [1382, p. 314]. Matthews D.L., Phys. Fluids, 2, 170 (1959). Mavroyannis C, Winkler C.A. , in: Chemical Reactions in the Lower and Upper Atmosphere, N.Y.-Ldn, Interscience , 1961, p. 287. Mavroyannis C, Winkler C.A. , Canad .J.Chem. , 39, 1601 (1961). Mavroyannis C, Winkler C.A. , Canad . J.Chem. , 40, 240 (1962). Maybury P.C., Koski W.S., J. Chem. Phys . , 19, 1327 (1951). Maybury P.C., Koski W.S., J. Chem. Phys . , 21, 742 (1953). Mayer S.W., Schieler L., Johnston H.S., J. Chem. Phys . , 45, 385 (1966). McAndrew R., Wheeler R. , J.Phys .Chem. , 66, 229 (1962). McDowell C.A., Thomas J.H., Trans .Faraday Soc, 46_, 1030 (1950). McGee J.J. , Heicklen J., J .Chem.Phys . , 41, 2974 (1964). McGrath W.D. , Norrish R.G.W., Proc . Roy . Soc. , A 242 , 265 (1957). McHale E.T., Knox B.E., Palmer H.B., Tenth Symposium on Combustion, 1964, The Combustion Institute, Pittsburgh, Pa., 1965, p. 341. McKnight Ch., Niki H. , Weinstock B., J .Chem.Phys . , 47, 5219 (1967). McLane C.K., J. Chem. Phys . , J_7, 379 (1949). McMillan G.R., J. Am. Chem. Soc . , 82^, 2422 (1960). McMillan G.R., J .Am. Chem. Soc. , 83, 3018 (1961). Calvert J.G., Oxidation and Combustion I, 83, Amsterdam, 1965, cited in [ 1438a] . McMillan G., Wijnen M.H.J. , Canad . J . Chem. , 36, 1227 (1958). McNeal R.J., CookG.R., J . Chem. Phys . , 47, 5385 (1967). McNesby J.R., J .Phys .Chem. , 64, 1671 (1960). McMillan G.R Reviews, Vol 1085. 1086. 1087. 1088. 1089. 1090. 1091. 1092. 1093. McNesby J.R., Davis T.W., Gordon A.S. 76, 823 (1954). J .Am. Chem. Soc . McNesby J.R., Gordon A.S. McNesby J.R., Gordon A.S. McNesby J.R., Gordon A.S. McNesby J.R., Gordon A.S. McNesby J.R., Gordon A.S. McNesby J.R., Gordon A.S. McNesby J.R., Gordon A.S. _78, 1287 (1956). J. Am. Chem. Soc. , 76, 1416 (1954). J. Am. Chem. Soc. , 76, 4196 (1954). J. Am. Chem. Soc, 77, 4719 (1955). J. Am. Chem. Soc. , 78, 3570 (1956). J. Am. Chem. Soc. , _79> 825 (1957). J. Am. Chem. Soc. , 80, 261 (1958). Smith S.R., J. Am. Chem. Soc. , McNesby J.R., Jackson W.M., 18th International IUPAC Congress, Abstracts of Papers, Toronto University Press, 1961, p. 37. 1094. McNesby J.R. , Scheer M.D., Klein R. , J. Chem. Phys . , 3_2 1814 (1960). 1095. 1096. 1097. 1098. 1099. 1100. 1101. 1102. 1103. 1104. 1105. 1106. 1107. 1108. 1109. 1110. 1111. 1112. 1113. 1114. 1115. 1116. Meaburn G.M., Gordon S., J.Phys .Chem. , 72, 1592 (1968). Meaburn G.M. , Perner D., Le Calve J., Bourene M. , J. Phys. Chem., 72, 3920 (1968). Melville H.W. , Proc .Roy .Soc . , A 142 , 524 (1933). Melville H.W., Walls H.J., Trans .Faraday Soc, 29, 1255 (1933). Melville H.W. , J. Chem. Soc, 1243 (1934). Melville H.W. , Science Progress, 3J_, 499 (1937). Proc. Roy. Soc, A 138 , 374 (1932). Bolland J.L., Proc.Roy.Soc, A 160 , Melville H.W. Melville H.W. 384 (1937). Melville H.W. (1947). Melville H.W. (1949). Melville H.W. (1949). Melville H.W. Robb J.C., Disc.Faraday Soc, No. 2, 132 Robb J.C., Proc.Roy.Soc, A 196 , 445 Robb J.C., Proc.Roy.Soc, A 196 , 494 Robb J.C., Proc.Roy.Soc, A 202 , 181 (1950). Disc.Faraday Soc, Melville H.W. , Robb J.C., Tutton R.C. No. 10, 154 (1951); No. 14, 150 (1953). Melville H.W., Roxburgh H.L. , J. Chem. Phys . , 2, 739 (1934). Pritchard H.O., J.Phys .Chem. , 6_3, 1468 Mercer P.D. (1959). Metcalfe E.L. J. Chem. Soc , 3560 (1963) . J. Chem. Soc, 5072 Metcalfe E.L., Trotman-Dickenson A.F. (1960). Metcalfe E.L., Trotman-Dickenson A.F., J. Chem. Soc, 4620 (1962). Meyer E., Olschewski H.A. , Troe J., Wagner H.Gg., Twelfth Symposium on Combustion, 1968, The Combustion Institute, Pittsburgh, Proc. p. 345. Meyer R.T., J. Chem.Phys . , 46, 4146 (1967). Michael J.V., Niki H. , J .Chem.Phys . , 46, 4969 (1967). Michael J.V., Weston R.E.,Jr., J .Chem.Phys . , 45, 3632 (1966). 1117. Michel K.W., Olshewski H.A. , Richtering H., Wagner H.Gg., Zs. Phys. Chem. , N.F., 39, 129 (1964); 44 160 (1965). 1118. Michel K.W., Wagner H.Gg., The Pyrolysis and Oxidation of Hydrazine in Shock Waves, Techn.Summ. Report , No. 3, Contract No. AF61 (514) -1142 , Inst .Phys .Chem. Univers. Gottingen, 1962. 1119. Michel K.W. , Wagner H.Gg., Tenth Symposium on Combustion, 1964, The Combustion Institute, Pittsburgh, Pa., 1965, p. 353. 1120. Mikusch-Buchberg von, D. , Dissertation, Berlin, 1936. Cited in [1382, pp. 257, 301]. 1121. Miller A. A., Willard J.E., J. Chem. Phys . , 17, 168 (1949). 1122. Miller D.M., Steacie E.W.R., J. Chem. Phys . , JL9, 73 (1951). 1123. Miller G.H., Steacie E.W.R., J. Am. Chem. Soc. , 80, 6486 (1958). 1124. Milton E.R.V., Dunford H.B., J. Chem. Phys . , 34, 51 (1961). 1125. Mitchell J.W. , Hinshelwood C.N., Proc.Roy.Soc, A 159 , 32 (1937). 396 1126. Miyama H. , Takeyama T., J. Chem.Phys . , 41, 2287 (1964). 1127. Miyoshl M. , Brinton R.K., J. Chem.Phys . , 36, 3019 (1962). 1128. Modica A. P., J. Chem.Phys . , 44, 1585 (1966). 1129. Modica A. P., J. Chem.Phys . , 46, 3663 (1967). 1130. Modica A. P., Hornig D.F., J. Chem.Phys . , 43, 2739 (1965). 1131. Modica A. P. , Hornig D.F., J. Chem.Phys . , 45, 760 (1966). 1132. Modica A. P., LaGraff J.E., J. Chem.Phys . , 43, 3383 (1965). 1133. Modica A. P., Sillers S.J., J. Chem.Phys . , 48, 3283 (1968). 1134. Momtchiloff I.N. , Taback E.D., Buswell R.F., Ninth Symposium on Combustion, 1962, Academic Press, N.Y.-Ldn, 1963, p. 220. 1135. Moore W.J., J. Chem.Phys . , _16, 916 (1948). 1136. Moore W.J., Taylor H.S., J. Chem.Phys . , 8, 396 (1940). 1137. Moore W.J., Wall L.A., J. Chem.Phys . , J_7, 1325 (1949). 1138. Morecroft M.J.", Thomas J.H., J.Phys .Chem. , 71, 1543 (1967). 1139. Morgan J.E., Elias L. , Schiff H.I. , J. Chem.Phys . , 33, 930 (1960). 1140. Morgan J.E., Schiff H.I., J. Chem.Phys . , 38, 1495 (1963). 1141. Morgenroth W.E., Calvert J.G. , J. Am.Chem.Soc . , 88, 5387 (1966). 1142. Morikawa K. , Benedict W.S., Taylor H.S., J .Chem.Phys . , 5, 212 (1937). 1143. Morris E.R., Thynne J.C.J. , Trans . Faraday Soc, 63, 2470 (1967). 1144. Morris E.R., Thynne J.C.J. , Trans .Faraday Soc, 64, 414 (1968). 1145. Morris E.R., Thynne J.C.J. , Trans .Faraday Soc, 64, 2124 (1968) . 1146. Morris E.R., Thynne J.C.J. , Trans .Faraday Soc, 64, 3021 (1968). 1147. Morris E.R. , Thynne J.C.J. , Trans .Faraday Soc, 64, 3027 (1968). 1148. Morris J.C., Pease R.N., J. Chem.Phys . , 3, 796 (1935). 1149. Moriya K. , Rev. Phys .Chem. Japan, Horiba Volume, 143 (1946), cited in [715J. 1150. Morrow T., McGrath W.D., Trans . Faraday Soc, 62., 642 (1966). 1151. Moseley F. , Robb J.C., Proc.Roy Soc, A 243 , 130 (1957). 1152. Moss S.J., Jennings K.R., Twelfth Symposium on Combustion, 1968, The Combustion Institute, Pittsburgh, Proc p. 50. 1153. Moss S.J., Jennings K.R., Trans .Faraday Soc, 64, 686 (1968). 1154. Mulcahy M.F.R., Steven J.R., Ward J.C., J.Phys .Chem. , 71, 2124 (1967). 1155. Mulcahy M.F.R., Steven J.R., Ward J.C., Williams D.J., Twelfth Symposium on Combustion, 1968, The Combustion Institute, Pittsburgh, Proc p. 323. 1156. Mulcahy M.F.R. , Tucker B.G., Williams D.J., Wilmshurst J.R. Chem. Coram., 609 (1965). 1157. Mulcahy M.F.R. , Tucker B.G., Williams D.J., Wilmshurst J.R. Australian J. Chem., 20, 1155 (1967). 1158. Mulcahy M.F.R., Williams D.J., Australian J. Chem., 17 , 1291 (1964). 1159. Mulcahy M.F.R., Williams D.J., Australian J. Chem., 1_8, 20 (1965). 1160. Mulcahy M.F.R., Williams D.J., Trans .Faraday Soc, 64, 59 (1968). 1161. Mulcahy M.F.R., Williams D.J., Wilmshurst J.R., Australian J. Chem. , J_7, 1329 (1964). 1162. Muller K.L. , Schumacher H.J., Zs .Phys .Chem. , B 35 , 285 (1937). 1163. Muller K.L., Schumacher H.J., Zs .Phys .Chem. , B 35 , 455 (1937). 1164. Muller K.L., Schumacher H.J. , Zs .Phys .Chem. , B 39 , 352 (1938). 1165. 1166. 1167. 1168. 1169. 1170. 1171. 1172. 1172a 1172b 1173. 1174. 1175. 1176. 1177. 1178. 1179. 1180. 1181. 1182. 1183. 1184. 1185. 1186. 1187. 1188. 1189. 1190. 1191. 1192. 1193. 1194. 1195. 1196. 1197. 1198. 1199. 1200. 1201. 1202. 1203. Muller K.L., Schumacher H.J. , Zs .Phys .Chem. , B 40 , 318 (1938). Muller K.L., Schumacher H.J., Zs .Phys . Chem. , B 42 , 327 (1939) . Murad E. , Noyes W.A.,Jr., J. Am. Chem. Soc. , 81_, 6405 (1959). Murawski J., Roberts J.S., Szwarc M. , J. Chem.Phys . , 19 , 698 (1951). Murphy D.B., Palmer H.B., Kinney C.R., Industrial Carbon and Graphite, Papers Conf., London, 1957, p. 77. Musgrave F.F., Hinshelwood C.N., Proc.Roy .Soc . , A 135 , 23 (1932). Myers B.F., Bartle E.R., J .Chem.Phys . , 47, 1783 (1967). Myers B.F., Bartle E.R., J. Chem. Phys . , 48, 3935 (1968). .Myers G.H., Silver D.M., Kaufman F. , J. Chem. Phys . , 44, 718 (1966). .Myers B.F., Sulzmann K.G.P., Bartle E.R., J. Chem. Phys . , 43, 1220 (1965). Myerson A.L. , Watt W.S., J .Chem.Phys . , 49, 425 (1968). Myron J.J., Freeman G.R., Canad . J.Chem. , 43, 1484 (1965). Nangia P.S., Benson S.W., J. Chem. Phys . , 41, 530 (1964). Nemeth E.M., Reed J.F., J.Phys .Chem. , _70, 3096 (1966). Nettleton M.A., Stirling R. , Twelfth Symposium on Combustion, 1968, The Combustion Institute, Pittsburgh, Proc. p. 635. Newton, Th.W., J . Chem.Phys . , 1_8, 797 (1950). Newton T.W., Rollefson G.K., J. Chem. Phys . , 1_7, 718 (1949), Nicholson A.J.C., J. Am.Chem.Soc. , 73, 3981 (1951). Nicolas J.E., Norrish R.G.W., Proc.Roy. Soc, A 307 , 391 (1968). Nlki H. , J. Chem. Phys., 45, 2330, 3468 (1966). Niki H., J. Chem. Phys. , 47, 3102 (1967). Niki H., Daby E.E., Weinstock B., Twelfth Symposium on Combustion, 1968, The Combustion Institute, Pittsburgh, Proc, p. 277. J. Chem. Phys. , 48, Niki H., Daby E.E., Weinstock B. 5729 (1968). Niki H., Weinstock B., J. Chem. Phys . , 45_, 3468 (1966). Niki H., Weinstock B., J. Chem. Phys . , 47, 3249 (1967). Norrish R.G.W., Oldershaw G.A., Proc.Roy. Soc, A 262 , 10 (1961). Nosova V.V., Lovachev L.A., Vedeneev V.I., Comb. Flame, 8, 163 (1964). Noyes R.M. , J. Chem. Phys . , 48, 323 (1968). Noyes W.A. , Leighton Ph. A., The Photochemistry of Gases, Reinhold, N.Y., 1941. Ogg R.A., J. Am. Chem. Soc. , 56, 526 (1934). Ogg R.A., Polanyi M., Trans . Faraday Soc, 31_, 482 (1935). Ogg R.A.,Jr., Priest W.J., J. Chem. Phys . , 7_> 736 (1939). Ogryzlo E.A. , Schiff H.I., Canad . J.Chem. , 37, 1690 (1959). Oldenberg 0., Rieke F.F., J. Chem. Phys . , 7, 485 (1939). Olschewski H.A. , Troe J., Wagner H.Gg., Zs .Phys .Chem. N.F., 44, 173 (1965). Wagner H.Gg., Zs .Phys .Chem. , Wagner H. Gg., Zs .Phys .Chem. Olschewski H.A. , Troe J., Wagner H.Gg., Zs .Phys .Chem. , N.F. 45, 329 (1965). Olschewski H.A. , Troe J. N.F. , 47, 383 (1965). Olschewski H.A. , Troe J., Wagner H.Gg., Berichte der Bunsengesell. fur Phys. Chem., 7_0, 1060 (1966). Olschewski H.A., Troe J., Wagner H.Gg., Eleventh Symposium on Combustion, 1966, The Combustion Institute, Pittsburgh, Pa., 1967, p. 155. O'Neal E., Benson S.W., J. Chem.Phys . , 3_6, 2196 (1962). O'Neal H.E., Benson S.W., J. Chem. Phys . , 37, 540 (1962). 397 1204. O'Neal E., Benson S.W., J .Chem.Phys . , 40, 302 (1964). 1205. Onyszchuk M. , Breitman L., Winkler C.A. , Canad . J.Chem. , 32., 351 (1954). 1206. Ootuka H. , Zs .Phys .Chem. , B_7, 407 (1930). 1207. Ootuka H., Schay G. , Zs . Phys .Chem. , B_l, 62 (1928). 1208. Ootuka H., Schay G. , Zs .Phys .Chem. , B_l, 68 (1928). 1209. Otozai K. , Bull .Chem. Soc Japan, 24, 218 (1951). 1210. Owen G.E. , Pearson J.M., Szware M. , Trans .Faraday Soc, 61, 1722 (1965). 1211. Padley P.J., Sugden T.M., Proc . Roy . Soc . , A 248 , 248 (1958). 1212. Padley P.J., Sugden T.M., Eighth Symposium on Combustion, 1960, Williams and Wilkins, Baltimore, 1962, p. 164. 1213. Padoa M. , Butirone C. , R.C.Acad .Lincei, 25, 215 (1916); Gazz.Chim.Ital. , 4_7, 6 (1917). 1214. Palmer H.B., J. Chem. Phys . , 23, 2449 (1955); 26, 648 (1957). 1215. Palmer H.B., J. Chem. Phys . , 47, 2116 (1967). 1216. Palmer H.B., Carabetta R.A., J. Chem. Phys . , 49, 2466 (1968). 1217. Palmer H.B., Hirt T.J., J. Phys .Chem. , 6_7, 709 (1963). 1218. Palmer H.B. , Hornig D.F., J. Chem. Phys . , 26, 98 (1957). 1219. Paraskevopoulos G., Winkler C.A., J. Phys .Chem. , 71, 947 (1967). 1220. Patch R.W., J . Chem. Phys . , 36., 1919 (1962). 1221. Patrick C.R., Robb J.C., Disc. Faraday Soc, No. 17, 98 (1954). 1222. Patterson W.L. , Greene E.F., J. Chem.Phys . , 36, 1146 (1962). 1223. Paul D.E., Dalby F.W., J. Chem.Phys . , 37, 592 (1962). 1224. Pearson J.M. , Szware M. , Trans .Faraday Soc, 60, 553 (1964). 1225. Pease R.N., J. Am. Chem. Soc . , 52, 1158 (1930); 53, 613 (1931). 1226. Pease R.N. , J. Am. Chem. Soc , 54, 1876 (1932). 1227. Pease R.N. , Equilibrium and Kinetics of Gas Reactions, Princeton, 1942. 1228. Penner S.S., J.Frankl . Inst . , 249, 441 (1950). 1229. Penzhorn R.D., Darwent B. de B., J. Phys .Chem. , 72, 1639 (1968). 1230. Pergament H.S., Calcote H.F., Eleventh Symposium on Combustion, 1966, The Combustion Institute, Pittsburgh, Pa., 1967, p. 597. 1231. Perrine R.L. , Johnston H.S., J. Chem. Phys . , 21., 2202 (1953). 1232. Persky A., Klein F.S., J. Chem.Phys . , 44, 3617 (1966). 1233. Phelps A.V., Phys. Rev., 99, 1307 (1955). 1234. Phelps A.V., Molnar J. P., Phys. Rev., 89, 1202 (1953). 1235. Phibbs M.K., Darwent B. de B. , Trans .Faraday Soc, 45, 541 (1949). 1236. Phibbs M.K., Darwent B. de B., J. Chem.Phys . , 18, 495 (1950). 1237. Phibbs M.K., Darwent B. de B., Canad .J. Res . , 28 B , 395 (1950). 1238. Phillips L. , cited in [669]. 1239. Phillips L., J. Chem. Soc, 3082 (1961). 1240. Phillips L.F., Canad .J .Chem. , 43, 369 (1965). 1241. Phillips L.F., Schiff H.I., J. Chem. Phys . , 36, 1509 (1962). 1242. Phillips L.F., Schiff H.I. , J. Chem.Phys . , 37. 924 (1962). 1243. Phillips L.F., Schiff H.I., J. Chem. Phys . , 37, 1233 (1962). 1244. Phillips L.F., Schiff H.I., J. Chem. Phys . , 42, 3171 (1965). 1245. Phillips L., Shaw R. , Tenth Symposium on Combustion, 1964, The Combustion Institute, Pittsburgh, Pa., 1965, p. 453. 1246. Phillips L.F., Sugden T.M., Trans .Faraday Soc, 5_7, 2188 (1961). Pinder J. A. , LeRoy D.J., Canad .J.Chem. , 35, 588 (1957). Polanyi M. , Trans . Faraday Soc, 24, 606 (1928). 1247. 1248. 1249. Polanyi M., Atomic Reactions, Williams and Norgate, London, 1932. 1250. Polanyi M. , Schay G. , Zs .Phys .Chem. , B_l, 30 (1928). 1251. 1252. 1253. 1254. 1255. 1256. 1257. 1258. 1259. 1260. 1261. 1262. 1263. 1264. 1265. 1266. 1267. 1268. 1269. 1270. 1271. 1272. 1273. 1274. 1275. 1276. 1277. 1278. 1279. 1280. 1281. 1282. 1283. 1284. 1285. 1286. 1287. 1288. 1289. 1290. Pollard F.H., Wyatt R.M.H. , Trans .Faraday Soc, 4_5, 760 (1949). Porter G., Disc. Faraday Soc, No. 33, 198 (1962). Porter G. , Smith J. A., Nature, 184 , 446 (1959); Proc. Roy. Soc, A 261 , 28 (1961). Porter G. , Szabo Z.G., Townsend M.G., Proc.Roy.Soc, A 270 , 493 (1962). Porter G. , Wright F.J., Disc. Faraday Soc, No. 14, 23 (1953). Porter R.P., Clark A.H., Kaskan W.E., Browne W.E., Eleventh Symposium on Combustion, 1966, The Combustion Institute, Pittsburgh, Pa., 1967, p. 907. Potts J.C., Rollefson G.K., J. Am. Chem. Soc. , 5_7, 1027 (1935). Pratt G.L., Purnell J.H., Trans .Faraday Soc, 60, 371 (1964). Price S.J.W., Kutschke K.O., Canad .J.Chem. , 38, 2128 (1960). Bryant J.T., J. Phys .Chem. , 70, 1441 (1966). Bryant J.T. , J. Phys .Chem. , 72, 1603 (1968). Thommarson R.L., J. Phys. Chem., Pritchard G.O. , Pritchard G.O. , Pritchard G.O. , 69, 664 (1965). Pritchard G.O. , 69, 2804 (1965) Pritchard G.O. , 3ryant J.T.. iryant J.T. , Thommarson R.L., J. Phys .Chem. , Dacey J.R., Canad .J.Chem. , 38, 182 (1960), Pritchard G.O., Dacey J.R., Kent W.C., Simonds C.R., Canad. J. Chem. , 44, 171 (1966). Pritchard G.O., Foote J.K., J. Phys .Chem. , 68, 1016 (1964). Hsia Y.P., Miller G.H., J. Am. Chem. Soc . , Pritchard G.O. 85, 1568 (1963). Pritchard G.O. , Pritchard G.O. , Pritchard G.O. , 39, 1968 (1961) Pritchard G.O. , 40, 1830 (1962) Pritchard G.O. , Dickenson A.F. , Miller G.H., J. Phys .Chem. , 63, 2074 (1959). Miller G.H., J. Chem. Phys . , 35, 1135 (1961). Miller G.H. , Dacey J.R., Canad .J.Chem. , Miller G.H., Foote J.K. , Canad .J.Chem. , Pritchard H.O., Schiff H.I., Trotman- Trans. Faraday Soc, 52, 849 (1956). Pritchard G.O., Pritchard H.O., Trotman-Dickenson A.F. J. Chem. Soc, 1425 (1954). Pritchard G.O. , Pritchard H.O., Trotman-Dickenson A.F. Chem.A.Ind. , 564 (1955). Pritchard G.O., Pyke J.B., Trotman-Dickenson A.F., J. Am. Chem. Soc. , 76, 1201 (1954). Pritchard H.O., Pyke J.B., Trotman-Dickenson A.F., J./ Chem. Soc, 77, 2629 (1955). Steacie E.W.R., Canad. J.Chem. Thommarson R.L., J. Phys. Chem. Thommarson R.L., J. Phys. Chem. Thommarson R.L., J. Phys. Chem. Pritchard G.O. (1957). Pritchard G.O. (1964). Pritchard G.O. (1965). Pritchard G.O. (1966). Pritchard G.O., Thommarson R.L., J. Phys. Chem. (1967). Pritchard G.O., Venugopalan M. , Graham T.F., 68, 1786 (1964). Pyrodynamics, 2, 198 (1965). Pyrodynamics, 2, 316 (1965). Pyrodynamics, 2, 317 (1965). Pyrodynamics, 4, 63 (1966). Pyrodynamics, 4, 371 (1966). Pyrodynamics, 5_, 375 (1967). Pyrodynamics, 6, 101 (1968). Pyrodynamics, 6, 187 (1968). , 35, 1216 , 68, 568 , 69, 1001 , 70, 3339 , 21> 1674 J.Phy 5 .Chem 398 1291. Quinn C.P., Proc . Roy . Soc . , A 275 , 190 (1963). 1292. Raal F.A., Steacie E.W.R., J .Chem.Phys . , 20, 578 (1952). 1293. Rabinovitch B.S., Diesen R.W. , J. Chem.Phys . , 30, 735 (1959). 1294. Rabinovitch B.S., Dills D.H., McLain W.H., Current J.H. , J. Chem.Phys. , 32, 493 (1960). Schlag E.W. , J.Am. 1295. Rabinovitch B.S., Tschuikow-Roux E Chem.Soc, 81, 1081 (1959). 1296. 1297. 1298. 1299. 1300. 1301. 1302. 1303. 1304. 1305. 1306. 1307. 1308. 1309. 1310. 1311. 1312. 1313. 1314. 1315. 1316. 1317. Rabinowitsch E., Zs .Phys . Chem. , B 33 , 275 (1936). Rabinowitsch E., Trans .Faraday Soc, 33, 283 (1937). Rabinowitsch E., Lehmann H.L. , Trans .Faraday Soc., 31 , 689 (1935). Rabinowitch E., Wood W.C. Rabinowitsch E. , Wood W.C. (1936). J. Chem. Phys. , 4, 497 (1936). , Trans. Faraday Soc, 32, 540 Wood W.C, Trans. Faraday Soc, 32,, 907 J. Am. Chem. Soc . , 70 , Rabinowitsch E. (1936). Raley J.H., Rust F.R. , Vaughan W.E. 88 (1948). Rapp D., Johnston H.S., J. Chem. Phys . , 33, 695 (1960). Ray J.D., Ogg R.A.,Jr., J . Chem. Phys . , 26, 984 (1957). Raxworthy K.S., Phillips L.F., Canad . J. Chem. , 42, 2928 (1964). Laidler K.J., J. Chem.Phys . , 20, 574 (1952). Steacie E.W.R., J. Chem. Phys . , 21_, 1723 (1953). Steacie E.W.R., Canad .J .Chem. , 31_, 631 (1953). Steacie E.W.R., Canad . J. Chem. , 32^ 40 (1954). Steacie E.W.R., Canad .J. Chem. , 32, 113 (1954). Mannella G. , Harteck P., J. Chem.Phys . , 32, Rebbert R.E. Rebbert R.E. Rebbert R.E. Rebbert R.E. Rebbert R.E. Reeves R.R. , 632 (1960). Reid L.E., LeRoy D.J., Canad .J. Chem. , 46, 3275 (1968). Reid R, , Wheeler R. , J .Phys .Chem. , 65_, 527 (1961). Rennert A.M., Wijnen M.H.J. , Ber . Bunsenges .Phys .Chem. , 72 , 222 (1968). Rice'F.O., Varnerin R.E., J. Am. Chem. Soc , 77, 221 (1955). Steiner H. , Rideal E., Proc . Roy . Soc , A 173 , 531 (1939). Riding F., Scanlan J., Warhurst E., Trans .Faraday Soc. 1328. Robertson A.J.B., Disc. Faraday Soc, No. 17, 98 (1954). 1329. Robertson N.C., Pease R.N. , J. Chem. Phys . , 1_0, 490 (1942). 1330. Rodebush W.H., Klingelhoefer W.C, J .Am. Chem. Soc , 5_5, 130 (1933). 1331. Rodgers A.S., Golden D.M., Benson S.W., Ber . Bunsenges . , Phys. Chem., 72, 253 (1968). 1332. Rolfes Th.R., Reeves R.R. , Jr., Harteck P., J. Phys .Chem. , 69, 849 (1965). 1333. Rollefson G.K., J. Am. Chem. Soc. , 55, 148 (1933). 1334. Rollefson G.K., J. Chem. Phys . , 2, 144 (1934). 1335. Rollefson G.K., Montgomery C.W., J. Am. Chem. Soc . , 5_5, 142 (1933). 1336. 1337. 1338. 1339. 1340. 1341. 1342. 1343. 1344. 1345. 1346. 1347. 1348. 1349. 1350. 1351. 1352. 1353. 1354. 1355. 1356. 1357. 1358. 1359. 1360. 1361. 1362. Roquitte B.C., Wijnen M.H.J. , J. Chem. Phys . , 38, 4 (1963). Roquitte B.C., Wijnen M.H.J. , J. Am. Chem. Soc. , 85, 2053 (1963). Rosenbaum E.J., Hogness T.R., J. Chem. Phys . . 267 (1934). 52, 1354 (1956). 1363. 1318. Ridley B.A 3344 (1966 , Schulz W.R., Le Roy D.J., J . Chem.Phys . , 44, 1364. 1365. 1319. Riem R.H. , Kutschke K.O. , Canad .J . Chem. , 38, 2332 (1960). 1366. 1320. 1321. 1322. 1323. Riesenfeld (1929). Ring D.F. , Rink J.P., Rink J.P. , E.H. , Wassmuth E., Zs . Phys . Chem. , A 143, 397 Rabinovitch B.S., Canad .J. Chem. , 46, 2435 (1968). J. Chem. Phys. , 36, 262 (1962). J. Chem. Phys. , 36, 572 (1962). 1367. 1368. 1369. 1370. 1324. Rink J.P., J. Chem. Phys. , 36, 1398 (1962). 1371. 1325. Rink J.P. , (1961). Knight H.T., Duff R.E., J . Chem . Phys . , 34, 1942 1372. 1326. Ripley D.L (1966) . , Gardiner W.C, Jr., J .Chem.Phys . , 44, 2285 1372a 1327. Ritchie M. Proc. Roy. Soc. , A 146, 828 (1934). 1373. 1374. 1375. 1376. 1377. 1378. 1379. 1380. 1381. 1382. Rosenfeld J.L.J. , Sugden T.M., Combust. and Flame, 8, 44 (1964). Rosser W.A.,Jr., Wise H. , J. Chem. Phys . , 24, 493 (1956). Rosser W.A.,Jr., Wise H. , J. Chem. Phys . , 25, 1078 (1956). Rosser W.A., Wise H., J. Phys .Chem. , 63, 1753 (1959). Rosser W.A.,Jr., Wise H., J. Phys .Chem. , 64, 602 (1960). Rosser W.A. ,Jr., Wise H. , J. Phys .Chem. , 65_, 532 (1961). Roth W. , Bauer W.H. , Fifth Symposium on Combustion, 1954, Reinhold Publ.Corp., New York, 1955, p. 710. Russell K.E., Simons J., Proc Roy . Soc . , A 217 , 271 (1953). Safrany D.R., Jaster W. , J. Phys .Chem. , 72_, 3305 (1968). Safrany D.R., Reeves R.R., Harteck P., J. Am. Chem. Soc. , 86, 3160 (1964). Salzmann J.D., Bair E.J., J. Chem.Phys . , 4J_, 3654 (1964). Sanders W.A., Rebbert R.E., J. Phys .Chem. , 67, 170 (1963). Sauer M.C, Jr., J. Phys .Chem. , 71, 3311 (1967). Sato S., J. Chem. Phys. , 23, 592, 2465 (1955); Bull. Chem. Soc. Japan, 28, 450 (1955). Sato S., Cvetanovic R.J. , Canad .J .Chem. , 36, 970 (1958). Satterfield C.N., Stein Th.W., J. Phys . Chem. , 61_, 537 (1957). Sauer M.C, Dorfman L.M. , J. Am. Chem. Soc. , 87^ 3801 (1965). Sauer M.C, Jr., Ward B. , J. Phys .Chem. , 71, 3971 (1967). Saunders D., Heicklen J., J. Am. Chem. Soc. , 87, 2088 (1965). Saunders D., Heicklen J., J. Am. Chem. Soc. , 87_, 4062 (1965). Saunders D., Heicklen J., J. Phys .Chem. , 70, 1950 (1966). Saunders K.W. , Taylor H.A., J. Chem.Phys . , 9, 616 (1941). Sauter G.F., Oskam H.J., cited in [1030]. Sawyer R.F., Glassman I., Eleventh Symposium on Combustion, 1966, The Combustion Institute, Pittsburgh, Pa., 1967, p. 861. Schay G. , Zs .Phys .Chem. , B 11 , 291 (1930). Schiavello M. , Volpi CC, J. Chem. Phys . , 37, 1510 (1962). Schiff H.I., Disc. Faraday Soc, No. 37, 216 (1964). Schiff H.I., Ann.Geophys. , 20, 115 (1964). Schiff H.I., Steacie E.W.R., Canad .J. Chem. , 29, 1 (1951). Schlochauer M. , Gunning H.E., J. Chem. Phys . , 1_9, 474 (1951). Schmitz H., Schumacher H.J., Zs .Phys . Chem. , B 52 , 72 (1942). Schofield D., Tsang Wing, Bauer S.H., J. Chem. Phys . , 42, 2132 (1965). Schofield K. , Eleventh Symposium on Combustion, 1966, The Combustion Institute, Pittsburgh, Pa., 1967, p. 917. Schofield K. , Planet. Space Science, cited in [1371J. .Schofield K., Planet. Space Science, _1_5, 643 (1967), cited in [1655a] . Schott C, Schumacher H.J., Zs .Phys .Chem. , B 49 , 107 (1941). Schott G.L., J. Chem. Phys. , 32, 710 (1960). Schott G.L., Tenth Symposium on Combustion, 1964, The Combustion Institute, Pittsburgh, Pa., 1965, p. 401. Schott G.L., Bird P.F., J. Chem. Phys . , 41, 2869 (1964). Schott C, Davidson N., J. Am. Chem. Soc. , 80, 1841 (1958). Schott G.L., Kinsey J.L., J. Chem. Phys . , 29, 1177 (1958). Schultz R.D., Taylor H.A. , J. Chem. Phys . , 18, 194 (1950). Schulz W.R., Le Roy D.J., Canad .J. Chem. , 42, 2480 (1964). Schulz W.R., Le Roy D.J., J. Chem.Phys . , 42, 3869 (1965). Schumacher H.J. , Chemische Gasreakt ionen , Steinkopf, Dresden, 1938. 399 1383. Schwarz H.A., Williams R.R.,Jr., Hamill W.H., J. Am. Chem. Soc. , 74, 6007 (1952) . 1384. Schweitzer F.E., van Artsdalen E.R., J.Chem.Phys . , 22, 1028 (1951). 1385. Seery D.J., Bowman C.T. , J.Chem.Phys., 48, 4314 (1968). 1386. Seery D.J., Britton D., J.Phys .Chem. , 70, 4074 (1966). 1386a. Seery D.J., Britton D., Shock Waves in Chemical Kinetics, Rep. No. 2062.11, Univ. of Minnesota, cited in [ 1439a] . 1387. Semenov N. , Acta Physicochim.URSS , 20, 291 (1945). 1388. Setser D.W., Lettrell R. , Hassler J.C., J. Am. Chem. Soc . , 82, 2062 (1965). 1389. Setzer D.W., Thrush B.A., Proc .Roy . Soc . , A 288 , 256 (1965). 1390. Setzer D.W., Thrush B.A., Proc .Roy . Soc . , A 288 , 275 (1965). 1391. Shannon T.W. , Harrison A.G., Canad . J.Chem. , 41, 2455 (1963). 1392. Sharma A., Padur J. P., Warneck P., J.Phys .Chem. , 21, 1602 (1967). 1393. Sharp T.E., Johnston H.S., J.Chem.Phys., 22> 1541 (1962). 1394. Shavitt I., J.Chem.Phys., 2i. 1359 (1959). 1394a. Shavitt I., J.Chem.Phys., 49, 4048 (1968). 1395. Shaw D.H., Pritchard H.O., Canad . J .Chem. , 45, 2749 (1967). 1396. Shaw H. , Toby S., J.Phys . Chem. , 22., 2337 (1968). 1397. Shaw R. , Cruickshank F.R., Benson S.W., J.Phys .Chem. , 2i> 4538 (1967). 1398. Shaw R. , Thynne J.C.J. , Trans . Faraday Soc, 62, 104 (1966). 1399. Shaw R. , Trotman-Dickenson A.F., J. Chem. Soc, 3210 (1960). 1400. Scheer M.D. , Klein R. , J.Phys . Chem. , 65, 375 (1961). 1401. Shepp A., J.Chem.Phys., 24, 939 (1956). 1402. Shepp A., Bauer S.H., cited in [1524, p. 125]. 1403. Shepp A., Kutschke K.O., J.Chem.Phys., 2J3> 1020 (1957). 1404. Shida S., Proc. Imp. Acad .Tokyo, 22, 495 (1941), cited in Chem.Abstr. 43, 8819 (1949); Rev. Phys .Chem. Japan, 121 (1946), cited in Chem.Abstr., 44, 1310 (1950). 1405. Sieger R.A., Calvert J.G., J. Am. Chem. Soc. , Jb_, 5197 (1954). 1406. Simonaitis R. , J.Phys .Chem. , 62, 2227 (1963). 1407. Simons J.W. , Rabinovitch B.S., J.Phys .Chem. , 68, 1322 (1964). 1408. Skinner G.B. , Ringrose G.H., J.Chem.Phys., 42' 2190 (1965). 1409. Skinner G.B., Ringrose G.H., J.Chem.Phys., 43, 4129 (1965). 1410. Skinner G.B., Ruehrwein R.A. , J.Phys .Chem. , 63, 1736 (1959). 1411. Slater D.H., Collier S.S., Calvert J.G., J .Am. Chem. Soc. , 90, 268 (1968). 1412. Sleppy W.C., Calvert J.G., J. Am. Chem. Soc . , jH, 769 (1959). 1413. Smallwood H.M., J. Am. Chem. Soc . , 56, 1542 (1934). 1414. Smith J.H. , J .Am. Chem. Soc. , 65, 74 (1943). 1415. Smith J.O., Jr., Taylor H.S., J.Chem.Phys., 7, 390 (1939). 1416. Smith I.W.M., Trans .Faraday Soc, 64, 378 (1968). 1416a. Smith R.M. , Calvert J.G., J. Am. Chem. Soc. , 2!, 2345 (1956). 1417. Snelling D.R., Baiamonte V.D. , Bair E.J., J.Chem.Phys., 44, 4137 (1966). 1418. Snelling D.R., Bair E.J., J.Chem.Phys., 4_2, 228 (1967). 1419. Sole M.J., Gartaganis P. A., Canad .J .Chem. , 41, 1097 (1963). 1420. Soloukhin R.I., Tenth Symposium on Combustion, 1964, The Combustion Institute, Pittsburgh, Pa., 1965, p. 521. 1421. Soloukhin R.I., Combust. and Flame, 1_1, 489 (1967); Com- bustion, Explosion and Shock Waves, 2, 246 (1967). 1422. Staveley L.A.K., Hinshelwood C.N., Proc .Roy .Soc . , A 159 , 192 (1937). 1423. Steacie E.W.R., J.Chem.Phys., 6, 37 (1938). 1424. Steacie E.W.R., Atomic and Free Radical Reactions, New York, Reinhold, 1954, p. 448-456 and 527-538. 1425. Steacie E.W.R., Brown E.A., J.Chem.Phys., 8, 734 (1940). 1426. Steacie E.W.R., Darwent B. de B. , Trost W.R. , Disc. Faraday Soc, No. 2, 80 (1947). 1427. Steacie E.W.R., Parlee N.A.D. , Canad .J. Res . , B 16 , 203 (1938). 1428. Steacie E.W.R., Parlee N.A.D. , Trans .Faraday Soc, 35. 854 (1939). 1429. Steacie E.W.R., Phillips N.W.F., J.Chem.Phys., 4, 461 (1936). 1430. Steacie E.W.R., Phillips N.W.F., J.Chem.Phys., 6, 179 (1938). 1431. Steel C, Laidler K.J., J.Chem.Phys., 34, I 827 (1961). 1432. Steer R.P., Knight A.R., J.Phys .Chem. , 72, 2145 (1968). 1433. Steer R.P., Knight A.R., Canad .J.Chem. , 46, 2878 (1968). 1434. Steiner H., Proc.Roy .Soc . , A 173 , 531 (1939). 1435. Steiner H. , Trans .Faraday Soc, 36. im (1940). 1436. Steiner H., Rideal E.K., Proc.Roy. Soc, A 173 , 503 (1939). 1437. Steiner W., Trans .Faraday Soc, 31, 623 (1935). 1438. Steiner W. , Trans . Faraday Soc, 31, 962 (1935). 1438a. Stevenson T.M., Tipper C.F.H., Combust. and Flame, 11, 35 (1967). 1439. Stock R.L., Gunning H.E., 18th International IUPAC Congress, Abstracts of papers, Toronto Univ. Press, 1961, p. 46. 1439a. Strehlow R.A., Progress in High-Temperature Physics and Chemistry, Vol. 2, C.A. Rouse, Editor, p. 127, Pergamon (1968). 1440. 1441. 1442. Strehlow R.A., Cohen A., Phys. Fluids, 5, 97 (1962). Streng A.G., Combust. and Flame, 6_, 89 (1962). Strong R.L., Chien J.C.W., Graf P.E., Willard J.E., J.Chem.Phys., 26, 1287 (1957). 1443. Strong R.L. , Willard J.E., Abstracts of the N.Y. Meeting of the Am. Chem. Soc, 1954, p. 26. Stuckey W.K., Heicklen J., J.Chem.Phys., 46, 4843 (1967). Style D.W.G., Trans .Faraday Soc, 35, 89 9 (1939). Sullivan J.H., J.Chem.Phys., 30, 1292 (1959). Sullivan J.H., J.Chem.Phys., 30, 1577 (1959). Sullivan J.H. , J.Phys .Chem. , 65, 722 (1961). Sullivan J.H., J.Chem.Phys., 3_6_, 1925 (1962). Sullivan J.H., J.Chem.Phys., 22. 300L (1963). Sullivan J.H., J.Chem.Phys., 46, 73 (1967). Sullivan J.H. , J.Chem.Phys., 49, 1155 (1968). Sullivan J.H., Davidson N. , J.Chem.Phys., 1_9, 143 (1951). Sullivan J.O., Warneck P., J. Phys. Chem. , 69, 1749 (1965). Sullivan J.O., Warneck P., Ber .Bunsenges .Phys .Chem. , 69, 7 (1965). Sullivan J.O., Warneck P., J.Chem.Phys., 46, 953 (1967). Sulzmann K.G.P., Myers B.F., Bartle E.R., J.Chem.Phys., 42, 3969 (1965). .Suplinskas R.J., J.Chem.Phys., 49, 5046 (1968). Sutton E.A. , Thesis, Cornell Univ., 1961. Sutton E.A., J.Chem.Phys., 36., 2923 (1962). Szabo Z.G., Huhn P., Marta F., Trans .Faraday Soc, 55, 1131 (1959). Szwarc M. , Proc.Roy. Soc, A 198 , 267 (1949). .Szwarc M. , Roberts J.S., Trans .Faraday Soc, 46^, 625 (1950). 1462. Takezaki Y. , Kawasaki H., Mori S., International Conference on Photochemistry, Tokyo, 1965. 1463. Takezaki Y., Miyazaki T., Nakahara N. , J.Chem.Phys., 25_> 536 (1956). 1464. Takezaki Y., Mori S., Berichte Bunsenges .Phys .Chem. , 22, 157 (1968). 1465. Takezaki Y., Takeuchi Ch., J.Chem.Phys., 22. 152 ? (1954), 1466. Tarr A.M., Coomber J.W. , Whittle E., Trans .Faraday Soc, 61, 1182 (1965). 1444. 1445. 1446. 1447. 1448. 1449. 1450. 1451. 1452. 1453. 1454. 1455. 1456. 1457. 1457a 1458. 1459. 1460. 1461. 1461a 400 1467. 1468. 1469. 1470. 1471. 1472. 1473. 1474. 1475. 1476. 1477. 1478. 1479. 1480. 1481. 1482. 1483. 1484. 1485. 1486. 1487. 1488. 1489. 1490. 1491. 1492. 1493. 1494. 1495. 1496. 1497. 1498. 1499. 1500. 1501. 1502. 1503. 1504. 1505. 1506. 1507. 1508. 1509. Tarr A.M., Strausz O.P., Gunning H.E., Trans .Faraday Soc, 6_1, 1946 (1965). Tarr A.M., Whittle E., Trans .Faraday Soc, 60, 2039 (1964). Crist R.H., J.Am.Chem.Soc. , 63, 1377 Taylor A.H. , Jr . (1941). Taylor H.A. , Dienslow R.R., J.Phys .Chem. , 31, 374 (1927). Taylor H.A. , van Hook A., J.Phys .Chem. , 39, 811 (1935). Taylor H.A. , Mei Chio Chen, 1960, cited in[728.] Taylor H.S., Rosenblura Ch. , J.Chem.Phys., 6, 119 (1938). Taylor H.S., Smith J.0.,Jr., J.Chera.Phys., 8, 543 (1940). Tedder J.M. , Walton J.C., Trans .Faraday Soc, 60, 1769 (1964) . Tedder J.M. , Walton J.C., Chem.Comm., 140 (1966). Tedder J.M. , Walton J.C., Trans .Faraday Soc, 62, 1859 (1966) . Tedder J.M. , Walton J.C. Pergaraon Press, vol. 4, , in: Progress in Reaction Kinetics, 37 (1967). Tedder J.M. (1967). Tedder J.M. , Walton J.C (1967). Tedder J.M. (1966). Tedder J.M. (1968). Walton J.C, Trans. Faraday Soc, 63, 2464 Trans. Faraday Soc, 63_, 2678 Trans .Faraday Soc, 62, 1215 Watson R.A Watson R.A Trans .Faraday Soc, 64, 1304 Terry J.O. , Futrell J.H. Terry J.O. , Futrell J.H. Canad.J.Chem. , 45, 2327 (1967). Canad.J.Chem. , 46, 664 (1968). Thiel M. , Britton D., 18th International IUPAC Congress, Abstracts of papers, Toronto Univ. Press, 1961, p. 93. Thomas J.H. , Trans .Faraday Soc, 48, 1142 (1952). Thomas J.H., Trans .Faraday Soc, 49, 630 (1953). Thomas J.H. , Woodman G.R., Trans .Faraday Soc, 63_, 2728 (1967). J.Phys. Chem., 70, 1579 Thomkinson D.M. , Pritchard H.O. (1966). Thrush B.A. , Tenth Symposium on Combustion, 1964, The Combustion Institute, Pittsburgh, Pa., 1965, p. 470. Thrush B.A., in: Progress in Reaction Kinetics, vol. 3, 63, Pergamon Press, 1965. Thrush B.A., Chemistry in Britain, 2(7), 287, July, 1966. Thrush B.A. , cited in [240,p.20j. Thynne J.C.J. , Proc.Chem. Soc. , 68 (1961). Thynne J.C.J. , Trans .Faraday Soc, 58, 676 (1962). Thynne J.C.J. , Trans . Faraday Soc, 58, 1394 (1962). Thynne J.C.J. , Trans .Faraday Soc, 58, 1533 (1962). Thynne J.C.J. , Trans .Faraday Soc, 60, 22C7 (1964). Thynne J.C.J. , Tenth Symposium on Combustion, 1964, The Combustion Institute, Pittsburgh, Pa., 1965, p. 442. Thynne J.C.J. , Gray P., Proc.Chem. Soc . , 295 (1962). Thynne J.C.J. , Gray P., Trans . Faraday Soc, 58, 2403 (1962). Trans. Faraday Soc, 5_9, 1149 Thynne J.C.J. , Gray P. (1963). Ticktin S., Spindler G. , Schiff H.I., Disc.Faraday Soc, No. 44, 218 (1967). Timmons R.B. , de Guzman S., Varnerin R.E., J.Am.Chem.Soc. 90, 5996 (1968). Tingey G.L. , J.Phys .Chem. , 70, 1406 (1966). Tipper C.F.H., Williams R.K. , Trans . Faraday Soc, _57, 79 (1961). Toby S., J.Am.Chem.Soc, 82, 3822 (1960). Toby S., Kutschke K.O. , Canad.J.Chem., 3_7, 672 (1959). Toby S., Nimoy J., J.Phys .Chem. , 70, 867 (1966). 1510. 1511. 1512. 1513. 1514. 1515. 1516. 1517. 1518. 1519. 1520. 1521. 1522. 1523. 1524. 1525. 1526. 1527. 1528. 1529. 1530. 1531. 1532. 1533. 1534. 1535. 1536. 1537. 1538. 1539. 1540. 1541. 1542. 1543. 1544. 1545. 1546. 1547. 1548. 1549. 1550. 1551. Toby S., Weiss B.H. , J.Phys .Chem. , 68, 2492 (1964). Tollefson E.L., Le Roy D.J., J.Chera.Phys., ^6, 1057 (1948). Torakinson D.M., Galvin J. P., Pritchard H.O., J.Phys .Chem. , 68, 541 (1964). Trautz M. , Zs . Anorg.Chem. , 88, 285 (1914). Trautz M. , Dalai V.P., Zs . Anorg .Chem. , 102 , 149 (1918). Trautz M., Henglein F.A., Zs .Anorg.Chem. , 1_10, 237 (1920). Trautz M. , Wachenheim L. , Zs .Anorg.Chem. , 97, 241 (1916). Treacy J.C, Daniels F., J.Am.Chem.Soc, 77, 2033 (1955). Trenner N.R., Morikawa K., Taylor H.S., J.Chem.Phys . , 5, 203 (1937). Trenwith A.B., J. Chem. Soc, 4426 (1963). Troe J., Wagner H.Gg., Zs .Phys .Chem. N.F., 55, 326 (1967). Trost W.R., Darwent B. de B. , Steacie E.W.R., J.Chera.Phys. 16, 353 (1948). Trost W.R., Steacie E.W.R., J.Chem.Phys., 16, 361 (1948). Trotman-Dickenson A.F., Quart. Rev., ]_, 198 (1953). Trotman-Dickenson A.F. , Gas Kinetics, Butterworth, London, 1955. (a) p. 177 and 199; (b) p. 202. Trotman-Dickenson A.F., Birchard J.R., Steacie E.W.R. , J.Chem.Phys., 1_9, 163 (1951). Trotman-Dickenson A.F., Steacie E.W.R. , J.Am.Chem.Soc., 72, 2310 (1950). Trotman-Dickenson A.F., Steacie E.W.R., J.Chem.Phys., 18, 1097 (1950). Trotman-Dickenson A.F., Steacie E.W.R., J.Chem.Phys., 19, 169 (1951). Trotman-Dickenson A.F., Steacie E.W.R., J.Chem.Phys., 1_9, 329 (1951). Trotman-Dickenson A.F., Steacie E.W.R., J. Phys. Coll .Chem. , 55, 908 (1951). Tuck J.L., Warhurst E., Trans .Faraday Soc, 3_2, 1501 (1936). Tucker B.G., Whittle E., Trans .Faraday Soc, 61_, 484 (1965). Tucker B.C, Whittle E., Trans .Faraday Soc, 61_, 866 (1965). .J., Trans. Faraday Soc, 5_8, 1108 Ashmore P.G. , Tyler (1962). Ung A.Y.M. , Back R.A. , Canad.J.Chem., 42, 753 (1964). Ung A.Y.M. , Schiff H.I., 18th International IUPAC Congress, Abstracts of Papers, Toronto University Press, 1961, p. 29. Ung A.Y.M., Schiff H.I., Canad.J.Chem., 40, 486 (1962). Urbach H.B., Wnuk R.J., Wojtowicz J. A., Zaslowsky J. A. , Abstracts of Papers, 136th Meeting, Am. Chem. Soc . , p.47-S. Vance J.E., Bauman W.C, J.Chem.Phys., 6, 811 (1938). Van Meersche M. , Bull.Soc.Chim. Belg. , 60, 99 (1951). Van Thiel M. , Britton D. , 18th International IUPAC Congress, Abstracts of Papers, Toronto University Press, 1961, p. 93. Van Thiel M., Seery D.J., Britton D., J.Phys .Chem. , 69_, 834 (1965). Van Tiggelen A., Ann. Mines .Belg. , 43, 117 (1942). VaughanW.E., J.Am.Chem.Soc, 54, 3863 (1932). Vaughan W.E., J.Am.Chem.Soc, 55, 4109 (1933). Verbeke G.J., Winkler C.A. , J.Phys .Chem. , 64, 319 (1960). Verdurmen E.A.Th., J.Phys .Chem. , 71, 678 (1967). Verhoek F.H., Trans .Faraday Soc, 31_, 1521 (1935). Verhoek F.H., Hinshelwood C.N. , Proc .Roy .Soc . , A 146 , 334 (1934). Vetter K. , Zs .Elektrochem. , 53_, 369,376 (1949). Vincenti W.C, Stanford Univ.Dept.of Aeronaut .Eng. Report No. 101, 1961. 401 1552. 1553. 1554. 1554a 1555. 1556. 1557. 1558. 1559. 1560. 1561. 1562. 1562a 1563. 1564. 1565. 1566. 1567. 1568. 1569. 1570. 1571. 1572. 1573. 1574. 1575. 1576. 1577. Vlastaras A.S. , Winkler C.A. , Canad . J.Chem. , 45, 2837 (1967). Voevodskiy V.V., Seventh Symposium on Combustion, 1958, Butterworth, London, 1959, p. 34. Voevodskii V.V., Kondratiev V.N. , in: Progress in Reaction Kinetics, G. Porter, editor, Vol. 1, Pergamon Press, 1961, p. 41. .Volcnan D.H., J .Chem.Phys . , 19, 668 (1951). Brinton R.K., Volman D.H., J. Chem.Phys . , 20, 1053, 1764 (1952). Volman D.H., Brinton R.K., J. Chem.Phys . , 2_2, 929 (1954). Volman D.H., Graven W.M. , J. Chem.Phys . , 20, 919 (1952). Volman D.H. , Graven W.M. , J. Am.Chem. Soc . , 75_, 3111 (1953). Volmer M. , Bogdan M. , Zs .Phys .Chem. , B 21 , 257 (1933). Volpi G.G., Zocchi F., J . Chem. Phys . , 44, 4010 (1966). Waddington G. , Tolman R.C., J. Am.Chem. Soc . , 57, 689 (1935). Wadlinger R. , Darwent B. de B., cited in [224aj. Wadlinger R.L. , Darwent B de B., J. Phys . Chem. , 71, 2057 (1967). Fuel, 33, 247 (1954). J. Am. Chem. Soc. , 88, 3480 (1966). J. Am. Chem. Soc. , 88, 4570 (1966). Benson S.W., J. Am.Chem. Soc . , J38, Walsh A.D Walsh R. , Benson S.W. Walsh R. , Benson S.W. Walsh R. , Golden D.M. 650 (1966). Wayne L.G., Yost D.M., J. Chem.Phys . , 1_9, 41 (1951). Warhurst E., Trans . Faraday Soc, 35, 674 (1939). Warhurst E., Quart. Rev., 5_, 44 (1951). Waring C.E., Pellin R. , J .Phys .Chem. , 71, 2044 (1967), Warneck P., Disc. Faraday Soc, No. 37, 57 (1964). WarneckP., J. Chem.Phys . , 41_, 3435 (1964). Warren D.R., Proc.Roy.Soc, A 211 , 86 (1952). Warshay M. , Shock Tube Investigation of Bromine Dissociation Rates in Presence of Ar, Ne and Kr , NASA TN D-3502 (1966), cited in [ 1439a]. Watt W.S., Borrell P., Lewis D., Bauer S.H., J. Chem. Phys. 45, 444 (1966) . Wayne L.G., Yost D.M., J . Chem. Phys . , _18, 767 (1950). Webster P., Walsh A.D., Tenth Symposium on Combustion, 1964, The Combustion Institute, Pittsburgh, Pa., 1965, p. 463. 1578. Wecker M. , Baurer T , Pyrodynamics , 4, 57 (1966). 1579. Welinsky I , Ta ylor H.A. , J. Chem. Phys. , 6, 466 (1938). 1580. Wentink T. 231 (1958) Jr. , Sullivan J.O., Wray K.L. , J. Chem. Phys. , 29 1581. Westenberg A. A. , Disc. Faraday Soc., No. 44 , 169 (1967). 1582. Westenberg (1964). A. A. , de Haas N. , J. Chem. Phys . , 40, 3087 1583. Westenberg A. A. , de Haas N. , J. Chem. Phys . , 43, 1550 (1965) 1584. Westenberg A. A. , de Haas N. , J. Chem. Phys . , 46, 490 (1967). 1585. Westenberg (1967). A. A. , de Haas N. , J. Chem. Phys . , 47, 1393 1586. Westenberg (1967). A. A. , de Haas N., J. Chem. Phys . , 47, 4241 1587. 1588. 1589. 1590. Westenberg A. A. , de Haas N. , Twelfth Symposium on Combustion, 1968, The Combustion Institute, Pittsburgh, Proc p. 289. Westenberg A. A. (1968). Westenberg A. A. (1961). de Haas N. , J. Chem. Phys . , 48, 4405 Fristrom R.M. , J. Phys .Chem. , 65, 591 Westenberg A. A. , Fristrom R.M. , Tenth Symposium on Combustion, 1964, The Combustion Institute, Pittsburgh, Pa., 1965, p. 473. 1591. Westenberg A. A. , Wilson W.E., J. Chem.Phys . , 45, 338 (1966). 1592. 1593. 1594. 1595. 1596. 1597. 1598. 1599. 1600. 1601. 1602. 1603. 1604. 1605. 1606. 1607. 1608. 1609. 1610. 1611. 1612. 1613. 1614. 1615. 1616. 1617. 1618. 1619. 1620. 1621. 1622. 1623. 1624. 1625. 1626. 1627. 1628. 1629. 1630. 1631. 1632. 1633. 1634. 1635. 1636. Weston R.E., J. Chem. Phys . , 3J_, 892 (1959). Wheeler R. , J. Phys .Chem. , 72_, 3359 (1968). Wheeler A., Pease R.N., J. Am. Chem. Soc . , 58, 1665 (1936). White W.H., Winkler C.A., Kenalty B.J., Canad .J. Res . , B 20 , 255 (1942). Whiteway S.G., Masson C.R., J. Chem. Phys . , 25, 233 (1956). Whittle E., Steacie E.W.R., J. Chem. Phys . , 2J., 993 (1953), Wiberg K.B., Chem. Rev., 55, 713 (1955). Wijnen M.H.J. , J. Chem.Phys . , 22.. 1074 (1954). Wijnen M.H.J. , J. Chem. Phys . , 23_, 1357 (1955). Wijnen M.H.J. , J . Chem.Phys . , 22, 710 (1957). Wijnen M.H.J. , J. Chem. Phys . , 28, 271 (1958). Wijnen M.H.J. , J. Chem. Phys . , 28. 939 (1958). Wijnen M.H.J. , Canad .J.Chem. , 36_, 691 (1958). Wijnen M.H.J. , J. Am.Chem. Soc . , 80, 2394 (1958). Wijnen M.H.J. , J, Am. Chem. Soc. , 82, 1847 (1960). Wijnen M.H.J. , J. Am. Chem. Soc. , 82, 3034 (1960). Steacie E.W.R., Canad .J.Chem. , 29, 1092 Wijnen M.H.J. (1951). Wijnen M.H.J. , Steacie E.W.R., J. Chem. Phys . , 20, 205 (1952). Steacie E.W.R., Disc. Faraday Soc, No. 14, Wijnen M.H.J. 118 (1953). Wilde K.A., J. Phys .Chem. , 61_, 385 (1957). Wiles D.M., Winkler C.A., Canad .J.Chem. , 35, 1298 (1957). Wilkins R.L., J. Chem. Phys . , 42, 806 (1965). Willbourn A.H., Hinshelwood C.N., Proc.Roy.Soc, A 185 , 353 (1946). Williams D.J., Comb, and Flame, 1_2, 165 (1968). Williams R.R.,Jr., Ogg R.A.,Jr., J. Chem .Phys . , Jj>, 691 (1947). Williams R.R.,Jr., Ogg R.A.,Jr., J .Chem.Phys . , L5, 696 (1947). Williamson D.G., Bayes K.D., J. Am.Chem. Soc. , 89, 3390 (1967). Willis C, Bayes K.D. , J. Am. Chem. Soc. , 88, 3203 (1966). Wilson J., in: High Temperature Aspects of Hypersonic Flow, p. 471, cited in [1439a]. Wilson W.E., Tenth Symposium on Combustion, 1964, The Combustion Institute, Pittsburgh, Pa., 1965, p. 47. Wilson W.E., J. Chem. Phys. , 46, 2017 (1967). Wilson Wm.E.,Jr., O'Donovan J.T., J. Chem.Phys . , 4_7, 5455 (1967). Wilson Wm.E., O'Donovan J.T., J.Chem. Phys . , 48, 2829 (1968). Wilson W.E., Westenberg A. A., Eleventh Symposium on Combustion, 1966, The Combustion Institute, Pittsburgh Pa., 1967, p. 1143. Winkler C.A., Schiff H.I., Disc.Faraday Soc, No. 14, 63 (1953). Wise H., Ablow CM., J. Chem. Phys . , 35, 10 (1961). Wise H., Ablow CM., Sancier K.M. , Wood B.J., cited in [471]. Wise H., Freeh M.F., J. Chem. Phys . , 2^0, 1724 (1952). Wise H., Freeh M.F., J. Chem. Phys . , 22, 1463 (1954); 23., 1374 (1955). Wong E.L., Potter A.E.,Jr., J. Chem. Phys . , 32, 2211 (1963). Wong E.L., Potter A.E., J. Chem. Phys . , 43, 3371 (1965). Wong E.L., Potter A.E., Canad .J.Chem. , 45, 367 (1967). Wray K.L. , in: Hypersonic Flow Research (Progress in Aeronautics and Rocketry), Vol. 7, 181, Acad. Press, Wray K.L., J . Chem.Phys . , 37, 1254 (1962). Wray K.L. , J. Chem. Phys . , 38, 1518 (1963). 1962. 402 1637. Wray, K.L. , Tenth Symposium on Combustion, 1964, The Combustion Institute, Pittsburgh, Pa., 1965, p. 523. 1638. Wray K.L. , Teare J.D., J.Chem.Phys . , 36, 2582 (1962). 1639. Wray K.L. , Teare J.D., Kivel B., Hammerling P., Eighth Symposium on Combustion, 1960, Williams and Wilkins, 1962, p. 328. 1640. Wright A.N., Winkler C.A. , Canad . J.Chem. , 40, 5 (1962). 1641. Wright F.J., Tenth Symposium on Combustion, 1964, The Combustion Institute, Pittsburgh, Pa., 1965, p. 387. 1642. Wunderlich F.J., Rebbert R.E. , J.Phys .Chem. , 6_7, 1382 (1963). 1643. Yamazaki H. , Cvetanovic R.J., J.Chem.Phys., 41_, 3703 (1964). 1644. Yang K. , J. Am.Chem. Soc . , 84, 719 (1962). 1645. Yang K. , J. Am.Chem. Soc . , 84, 3795 (1962). 1646. Yang K. , J . Phys .Chem. , 67, 562 (1963). 1647. Yarwood A.J., Strausz O.P., Gunning H.E., J.Chem.Phys., 41, 1705 (1964). 1648. Yeddanapalli L.M. , Schubert C.C., J.Chem.Phys., 14, 1 (1946). 1649. Yee Quee M.J., Thynne J.C.J. , Trans. Faraday Soc, 62_, 3154 (1966). 1650. Yee Quee M.J., Thynne J.C.J. , Trans .Faraday Soc, 6_3, 1656 (1967). 1651. Yee Quee M.J., Thynne J.C.J. , Trans .Faraday Soc, 63_, 2970 (1967). 1652. Yee Quee M.J., Thynne J.C.J. , Trans . Faraday Soc, 64, 1296 (1968). 1653. Yee Quee M.J., Thynne J.C.J. , Berichte Bunsenges .Phys . Chem. , 72, 211 (1968). 1654. Yee Quee M.J., Thynne J.C.J. , J.Phys .Chem. , 72, 2824 (1968). 1655. Young R.A. , Black G., J.Chem.Phys., 44, 3741 (1966). 1655a. Young R.A. , Black G. , Slanger T.G. , J.Chem.Phys., 49, 4758 (1968). 1656. Young R.A. , Sharpless R.L. , Disc. Faraday Soc, No. 33, 228 (1962). 1657. Young R.A. , Sharpless R.L. , J.Chem.Phys., 39, 1071 (1963). 1658. Young R.A. , Sharpless R.L., Stringham R. , J.Chem.Phys., 41, 1497 (1964). 1659. Yuan E.L., Slaughter J.I. , Koerner W.E., Daniels F., J. Phys. Chem. , 6_3, 952 (1959). 1660. Zaslowsky J. A. , Urbach H.B., Leighton F. , Wnuk R.J., Wojtowlcz J. A., J. Am. Chem. Soc. , 82, 2682 (1960). 1661. Zeegers P.J.Th., Alkemade C.Th.J., Tenth Symposium on Combustion, 1964, The Combustion Institute, Pittsburgh, Pa., 1965, p. 33. 1662. ZinmanW.G., J.Phys . Chem. , 64, 1343 (1960). 1663. Avramenko L.I. , Kolesnikova R.V., Academy of Sciences of the USSR, Bulletin, Division of Chemical Sciences, No. 6, 924 (1960). 1664. Avramenko L.I., Evlashkina L.M. , Kolesnikova R.V. , Ibid., No. 8, 1306 (1965). 1665. Avramenko L.I., Kolesnikova R.V., Ibid., No. 5, 965 (1967). 1666. Avramenko L.I., Zh.Fiz .Khim. , 23, 790 (1949). 1667. Avramenko L.I., Doctoral Dissertation, Moscow. Phys. -Chem. Inst., Acad. Sci. USSR, 1952. 1668. Avramenko L.I., Kolesnikova(Lorentso) R.V., Akademiya Nauk SSSR, Doklady, 69, 205 (1949). 1669. Avramenko L.I., Kolesnikova R.V. , Academy of Sciences of the USSR, Bulletin, Division of Chemical Sciences, No. 9, 1506 (1959). 1670. Avramenko L.I., Kolesnikova R.V., Ibid., No. 3, 533 (1960). 1671. Avramenko L.I., Kolesnikova R.V., Ibid., No. 5, 755, No. 6, 924 (1960). 1672. Avramenko L.I., Kolesnikova R.V., Ibid., No. 4, 545 (1961). 1673. Avramenko L.I., Kolesnikova R.V., Ibid., No. 11, 1839 (1961). 1674. 1675. 1676. 1677. 1678. 1679. 1680. 1681. 1682. 1683. 1684. 1685. 1686. 1687. 1688. 1689. 1690. 1691. 1692. 1693. 1694. 1695. 1696. 1697. 1698. 1699. 1700. 1701. 1702. 1703. 1704. 1705. 1706. 1707. Avramenko L.I., Evlashkina L.M. , Kolesnikova R.V., Ibid., No. 2, 252 (1967). Avramenko L.I., Kolesnikova R.V., Kuznetsova N.L. , Ibid., No. 4, 552 (1961). Avramenko L.I., Kolesnikova R.V., Kuznetsova N.L., Ibid., No. 9, 1462 (1961). Avramenko L.I., Kolesnikova R.V., Kuznetsova N.L. , Ibid., No. 6, 918 (1962). Avramenko L.I., Kolesnikova R.V., Kuznetsova N.L., Ibid., No. 4, 557 (1963). Avramenko L.I., Kolesnikova R.V., Savinova G.I., Ibid., No. 1, 30 (1963) . Avramenko L.I., Kolesnikova R.V., Savinova G.I., Ibid., No. 6, 890 (1963). Avramenko L.I., Kolesnikova R.V., Savinova G.I., Ibid., No. 1, 24 (1965). Avramenko L.I., Kolesnikova R.V., Savinova G.I., Ibid., No. 3, 396 (1965). Avramenko L.I., Kolesnikova R.V., Savinova G.I., Ibid., No. 1, 19 (1967). Avramenko L.I., Kolesnikova R.V. , Savinova G.I. No. 2, 247 (1967). Avramenko L.I., Kolesnikova R.V., Sorokina M.F. No. 6, 930 (1961). Krasnen'kov V.M Avramenko L.I. (1963). Avramenko L.I. (1964). Avramenko L.I. Avramenko L.I. Krasnen'kov V.M. Krasnen'kov V.M. Krasnen'kov V.M. Ibid. Ibid. No. 7, No. 5, , Ibid. , Ibid. 1095 770 Avramenko L.I., Krasnen'kov V.M. Ibid., No. 3, 501 (1967). Ibid., No. 4, 563 (1964). Ibid., No. 3, 394 (1966), Avramenko L.I., Lorentso R.V., Zhurnal fizicheskoi khimii, 2A, 1135 (1947). [Translation available as R-2988 from Special Libraries Assoc]. Avramenko L.I., Lorentso R.V., Dokl. AN SSSR, 67^, 867 (1949). Avramenko L.I., Lorentso (Kolesnikova) R.V., Zhurnal fizicheskoi khimii, 24, 207 (1950) . [Translation available as NCH-201 995 from the National Technical Information Services] Avramenko L.I., Postnikov L.M. , Academy of Sciences of the USSR, Bulletin, Division of Chemical Sciences, No. 11, 1796 (1960). Azatyan V.V., Filippov S.B., Ibid., No. 5, 1093 (1969). Azatyan V.V., Candidate's Dissertation, Chemical Physics Inst., Acad. Sci. USSR, 1968. Azatyan V.V., Filippov S.B., Doklady Physical Chemistry, 184 , 49 (1969) . Azatyan V.V., Armyanskii khimicheskii zhurnal, 20, 577 (1967) . [Translation available from Nat .Technical Inf.Serv. as APL-CLB-3-T-562] . Azatyan V.V., Voevodskii V.V., Nalbandyan A.B., Academy of Sciences of the USSR, Proc , Physical Chemistry Section, 132 , No. 4, 453 (1960). Azatyan V.V., Voevodskii V.V., Nalbandyan A.B., Kinetics and Catalysis, 2, 315 (1961). Azatyan V.V., Nalbandyan A.B., Tsui Meng-yuan, Acad. Sci. USSR, Proc, Phys. Chem. Sect. , 149, 312 (1963). Azatyan V.V., Nalbandyan A.B., Tsui Meng-yuan, Acad. Sci. USSR, Proc, Chemistry, \h]_, No. 2, 973 (1962). Azatyan V.V., Nalbandyan A.B., Tsui Meng-yuan, Akademiya Nauk Armyanskoi SSR, Doklady, 36, 23 (1963). Azatyan V.V. , Nalbandyan A.B., Tsui Meng-yuan, Kinetics and Catalysis, _5> 177 (1964). Azatyan V.V., Romanovich L.B., Sysoeva S.G., Combustion, Explosion and Shock Waves, 3, 46 (1967). Azatyan V.V., Romanovich L.B., Filippov S.B., Kinetics and Catalysis, 9, 986 (1968). Balakhnin V.P., Candidate's Dissertation, Chemical Physics Inst., Acad. Sci. USSR, 1966. 403 1708. Basevich V.Ya., Kogarko S.M. , Kinetics and Catalysis, 6, 17 (1965). 1709. Basevich V.Ya., Kogarko S.M., Kinetics and Catalysis, ]_, 348 (1966). 1710. Basevich V.Ya., Kogarko S.M. , Kinetics and Catalysis, ]_, 912 (1966). 1711. Basevich V.Ya., Kogarko S.M., Academy of Sciences of the USSR, Proceedings, Physical Chemistry Section, 167 , 219 (1966). 1712. Benson S., Osnovy khimecheskoi kinetiki, Moscow, "Mir" (1964) .[Russian translation of The Foundations of Chemical Kinetics, N.Y., McGraw-Hill (I960)]. 1713. Boreskov G.K., Illarionov V.V., Zhurnal Fizicheskoi Khimii, 14, 1428 (1940). 1714. Borisov A. A. , Kogarko S.M., Skachkov G.A. , Combustion, Explosion and Shock Waves, _1, 10 (1965). 1715. Voevodskii V.V., Tal'roze V.L. , Zhurnal Fizicheskoi Khimii, 22, 1192 (1948). 1716. Generalov N.A. , Candidate's Dissertation, Moscow State Univ. (1963). 1717. Glesston G. , Laidler K.Dzh., Eiring Kh., Teoriya absolyut- nykh skorostei reaktsii, Moscow, Izd-vo AN SSSR (1948). [Russian translation of Glasstone S., Laidler K.J., Eyring H., Theory of Rate Processes, N.Y., McGraw-Hill (1941)]. 1718. Gorban N.I., Nalbandyan A.B., Academy of Sciences of the USSR, Proceedings, Physical Chemistry Section, 132 , No. 6, 525 (1960). 1719. Dzantiev B.G. , Shvedchidov A. P. , Academy of Sciences of the USSR, Proceedings, Physical Chemistry Section, 175 , 534 (1967). 1720. Dzotsenidze Z.G., Oganesyan K.T. , Nalbandyan A.B., Armyanskii Khimicheskii Zhurnal, 21, 370 (1968). 1721. Dzotsenidze Z.G., Oganesyan K.T., Sachyan G.A., Nalbandyan A.B., Armyanskii Khimicheskii Zhurnal, 20, 983 (1967). 1722. Dzotsenidze Z.G., Oganesyan K.T. , Sachyan G.A., Nalbandyan A.B., Armyanskii Khimicheskii Zhurnal, 2_1, 68 (1968). 1723. Dodonov A.F., Dissertation, Moscow, Moscow Physical- Technical Inst. (1968). 1724. Dodonov A.F., Lavrovskaya G.K. , Morozov N.I., Albright R.G., Tal'roze V.L. , Lyubimova A.K., Kinetics and Catalysis, 1_1, No. 4 (1970). 1725. Dodonov A.F., Lavrovskaya G.K. , Tal'roze V.L., Lecture at the Symposium on Free Radicals, Novosibirsk (1967). 1726. Dodonov A.F., Lavrovskaya G.K. , Tal'roze V.L., Kinetics and Catalysis, K), 573 (1969). 1727. Dodonov A.F., Lavrovskaya G.K., Tal'roze V.L. , Kinetics and Catalysis, 10, 391 (1969). 1728. Dodonov A.F., Lavrovskaya G.K., Tal'roze V.L., Kinetics and Catalysis, H), 14 (1969). 1729. Dodonov A.F., Lavrovskaya G.K. , Strunin V.P., Tal'roze V.L., Kinetics and Catalysis, ]_, 341 (1966). 1730. D'yachkovskii F.S., Bubnov N.N. , Shilov A.E., Academy of Sciences of the USSR, Proceedings, Physical Chemistry Section, 122 , No. 4, 691 (1958). 1731. Intezarova E.I., Kondrat'ev V.N., Academy of Sciences of the, USSR, Bulletin, Division of Chemical Sciences, No. 11, 2326 (1967). 1732. lost V., Vagner G.G., in: Khimicheskaya Kinetika i Tsepnye Reaktsii, Moscow, "Nauka" (1966), p. 153 [Russian translation of Jost W. , and Wagner H.G., Reaction Mechanism in Detona- tions and Flames, Chem.Soc . (London)Spec .Publ . , No. 9, 197 (1957). 1733. Kapralova G.A., Candidate's Dissertation, Moscow, Chemical Physics Inst., Acad .Sci. USSR (1966). 1734. Kaprolova G.A. , Chaikin A.M., Shilov A.E., Kinetics and Catalysis, 8, 421 (1967). 1735. Karmilova L.V., Nalbandyan A.B., Sememov N.N., Zhurnal Fizicheskoi Khimii, 32_, 1193 (1958) .[Available from National Lending Library, London as RTS-4007] . 1736. Kondrat'ev V.N., Kinetika Khimicheskikh Gazovykh Reaktsii, Moscow, Izd-vo AN SSSR (1958), p. 287. [English translation: Chemical Kinetics of Gas Reactions, Addison-Wesley , Reading, Mass. (1964)]. 1737. Kondrat'ev V.N., Kinetics and Catalysis, 8, 831 (1967). 1738. Intezarova E.I., Kondrat'ev V.N., Kinetics and Catalysis, 9, 395 (1968); Kondrat'ev V.N., Intezarova E.I., Inter- national J. Chemical Kinetics, 1_, 105 (1969). 1739. Kondrat'ev V.N. , Ptichkin I.I., Kinetics and Catalysis, 2, 449 (1961). 1740. Kochubei V.F., Moin F.B. , Kinetics and Catalysis, 1_0, 405 (1969). 1741. Losev S.A., Academy of Sciences of the USSR, Proceedings, Physical Chemistry Section, 1_20, No. 6, 467 (1958). 1742. Losev S.A. , Ibid., 141, 909 (1961). 1743. Losev S.A., Generalov N.A. , Maksimenko V.A., Ibid., 150 , 479 (1963). 1744. Nalbandyan A.B., Zhurnal Fizicheskoi Khimii, _19, 210 (1945) .[Translation available from Special Libraries Association as Translation No. 62-10841]. 1745. Nalbandyan A.B., Voevodskii V.V., Mekhanizm Okisleniya i Goreniya Vodoroda [Hydrogen Oxidation and Combustion Mechanism], Moscow-Leningrad, Izd-vo AN SSSR (1949). 1746. Nalbandyan A.B., Gorban' N.I., Akademiya Nauk Armyanskoi SSR, Doklady, 33, 49 (1961) .[Translation available from Special Libraries Association as No. 63-15456]. 1747. Neiman M.B., Serdyuk N.K., Vsesoyuznaya Nauchno- tekhnicheskaya Konferentsiya po primeneniyu Radioaktiv- nykh i Stabil'nykh Izotopov i Izlucheniya v Narodnom Khozyaistve i Nauke, Izotopy i Izlucheniya v Khimii, 1957, Trudy. [Trans, of the Ail-Union Sci. and Tech. Conf. on the Uses of Radioactive and Stable Isotopes and Radia- tion in the National Economy and Science, 1957], Moscow, Izd-vo AN SSSR, p. 35 (1958). Oganesyan K.T., Dissertation, Erevan State Univ. (1967). Oganesyan K.T., Mkryan T.G., Sachyan G.A. , Nalbandyan A.B., Armyanskii Khimicheskii Zhurnal, 21 , 737 (1968) . [Trans .avail . Nat. Tech. Inf. Serv. as FTD-HT-23-304-69] . Oganesyan K.T., Mkryan T.G., Nalbandyan A.B., Armyanskii Khimicheskii Zhurnal, 22, 544 (1969). Oganesyan K.T., Mkryan T.G., Nalbandyan A.B., Armyanskii Khimicheskii Zhurnal [in press]. Oganesyan [Aganesyan] K.T. , Nalbandyan A.B., Academy of Sciences of the USSR, Proceedings, Physical Chemistry Section, 160, 181 (1965). Oganesyan K.T., Nalbandyan A.B., Akademiya Nauk Armyanskoi SSR, Izvestiya, 18, 237 (1965). Oganesyan K.T., Nalbandyan A.B., Armyanskii Khimicheskii Zhurnal, _19, 150 (1966). Oganesyan K.T., Nalbandyan A.B., Parsamyan N.I., Akademiya Nauk Armyanskoi SSR, Doklady, 40, 159 (1965). Same as [1752]. Panfilov V.N. , Author's Summary of Dissertation, Siberian Section, Acad. Sci. USSR, Novosibirsk (1964). Parsamyan N.I., Azatyan V.V. , Nalbandyan A. B. , Armyanskii Khimicheskii Zhurnal, 20, 950 (1967). Zhurnal Fizicheskoi Khimii, 1748. 1749. 1750. 1751. 1752. 1753. 1754. 1755. 1756. 1757. 1758. 1759. 1760. 1761. 1762. 1763. Poltorak V.A., Voevodskii V.V. 24, 299 (1950). Poroikova A.I., Author's Summary of Dissertation, Moscow, Chem.Phys.Inst.Acad.Sci.USSR (1966). Pshezhetskii S.Ya., Morozov N.M. , Kamenetskaya S.A. , Siryatskaya V.N., Gribova E.I., Russian Journal of Physical Chemistry, 33, 402 (1959). Rusin L.Yu. , Candidate's Dissertation, Moscow, Chem.Phys. Inst. Acad. Sci. USSR (1966). Semenov N.N., nekotorykh Problemakh Khimicheskoi Kinetiki i Reaktsionnoi Sposobnosti, Moscow, Izd-vo AN SSSR (1958), p. 494. [English translation: Some Problems of Chemical Kinetics and Reactivity, Pergamon Press, N.Y. (1958)]. 1764. Soloukhin R.I., Udarnye Truby Dlya Fiziko-Khimicheskikh Issledovanii [shock Tubes for Physico-chemical Research], Novosibirsk, Izd-vo AN SSSR (1966). 1765. Thermodynamic Properties of Individual Substances, Gurvich A. V., Khachkuruzov G.A., Medvedev V.A., Veits I.V., Bergman G.A., Moscow (1962) . [Trans .avail . from National Tech. Infor. Serv. in three parts as FTD-HT-66-251] . 404 1766. Tikhomirova N.N., Dissertation, Moscow State Univ. (1951). 1767. Tikhomirova N.N., Voevodskii V.V., in: Tsepnye Reaktsii Okisleniya Uglevodorodov v gazovoi faze [Chain Reactions of Hydrocarbon oxidation in the gas phase], Moscow, Izd-vo AN SSSR (1955). 1768. Fedorova T.V., Candidate's Dissertation, Moscow, Institute of Chemical Synthesis of Petroleum, Acad .Sci. USSR (1962). 1769. Shlapintokh V.Y., Karpukhin O.N., Postnikov L.M. , Zakharov I.V.i Vichutinskii A. A., Tsepalov V.F., Chemiluminescence Methods of Research on Slow Chemical Processes, Consultants Bur., N.Y. (1968). 1770. Shlyapintokh V.Ya. , Kononova V.V., Patsevich I.V., Ballod A. P., Shtern V.Ya., Armyanskii Khimicheskii Zhurnal, 20 , 972 (1967). 405 EQUILIBRIUM CONSTANTS This section provides a tabulation of equilibrium constants for a number of reactions. These constants can be used to derive reverse reaction rates from a measurement of a forward rate and the definition of the equili- brium constant as the ratio of the forward to reverse rates. •k The JANNAF (Joint Army, Navy, NASA, Air Force) Thermochemical Tables provided the basic data from which the equilibrium constants were calculated. These tables provide critically chosen values of heat capacity, entropy, enthalpy and free energy for most common species tabulated at 100°K increments over a 6000°K range. We have calculated equilibrium constants for reactions covered by the present compilation wherever JANNAF data were available. The first column lists the page on which the rate information can be found. The second column gives the reaction as written. Columns three through seven provide equilibrium constants calculated from the JANNAF data. Columns eight and nine give a least squares fit of the calculations to the Arhennius form. This form pro- vides a convenient approximation for many purposes, but it is not a perfect representation. Where the fit of K deviated more than 5% from the tabular data the entry was starred to caution the user. Where the fit deviated more than 507 o a double star warning is posted. JANNAF Thermochemical Tables Available through the National Technical Information Service, U.S. Depart- ment of Commerce, Springfield, Va. 22151. (Report PB-168-370 with addenda PB-168-370-1 and PB-168-370-2) (A revised edition incorporating the addenda and revised through 1970 is scheduled for publication during 1971). The data used in constructing these tables utilized the revised tables through supplement 34 (Dec. 1970) and should be consistent with values in ** the new edition. K = A exp(1000 E/RT) In this equation A is the frequency factor ratio (dimensionless) ; E is the enthalpy change (kilocalories per mole); R is the universal gas con- stant (calories per mole-degree) and T is temperature (degrees Kelvin) . 406 H « X W W ft o o o r- *-^ a, X w ec * — ' «£ o r- CD El, O O hJ r- m o m [■»■ IB 3 CN tN 3 I- IT) 3 r- r- O I O o o en oi vo o> t"« o ID r- co CN 3 f— CN m O o CN ID X) o 01 » H 05 03 M i-J O H O o in en w o rt CN ID m 3 in CO CN r- in o cr\ ID en o ID i l-~ 3- CN >D ID 00 <— m r- en ID in ro «— ro 3 co CN 1 CN 3 ro r- I en CN r~ ro en 3 3 r- ro en t» in r^ *" =r O CN r~ ,- o Cn r- in r- CN 3- in 3 O o a. in CN ID CN T— r~ m o CN 3" in r- CTl in co i- 3 1 i i< CN r~ CN ro ro IN I O 1— ro CN CM 33 u o o rH ih c a: as as to ■o CO H CM rH U rH O + o o 33 CN o O O + as (J U P3 u U 33 SS O O O + + + + °CN + CM + + M + + fe + + H + + 33 O + U + + + + as™ + H M + rH + + rH t-t + OS as CN L) 03. Cm U CN CN 33 U U as c PS as CN 33 o as as Cm as as H as as as 33 O as o o 33 o o as ii ii 33 as as as II ii II ii ii ii ii ii ii ii II II ii H II II BS II ii II _ . CM II ii ii II o o o o o V) CN CN Cm Cm iH U o o CN CM CN H CM co as CN o o CN CN CN CN i-H u CN -h ■H cm U CQ H r4 iH H O o 33 E-l O <* W O o o as as as as as as Cm CJ pa M u U 33 as 33 as L) U U o (J S5 + + + + + + + + + + + + + + + + + + + + + + + + + 33 33 a: as as a: as as as as as an an as as 33 33 as as 33 as as 33 EC 33 cq Cm CD H «: P3 Ol 407 •tt * * * •» ■tt * •tt * * * * # * ■tt ■tt ■tt # » # •tt ■tt (M in in ITI IT) 3 r- no oo o 10 3 rM in r- (M ff" in 00 O r» CN Ov 00 f— H c^ .D o\ O. a. rsi iD o ID 3 ID r" t» lO 00 3 CO iD in rsi cr. ro CT. r~ o OS CD CO rsi CM no 3 r» o no o ao 3 r— no 00 3 o ro r" rsi r~ o r- t-^ in V W p-1 ID rsi o CT. 3 st in r- r~ a. ro VO rsi r> CO oo p> no o cr. m m r» 3 00 * 3 VD no rsi in r- ■D 1 1 oo «— rsi i T— no ro no t— o CO ro O ao o I l i— r- T— Oj X , — , w » CO rsi r- no r- in i— cr. T— vO 3 3 in in CTi ID rsi h- ID en © r~ cr. in r- T- e'- in en ID r- i- in ID cr. 3 r- t~ kO CN Cr. in o in ID P» «— a. m ro in i in i in i in i in I t- r- r- CN r- © r- O f f" o in 3 no 3 T— ID y3 o CT> cr. in T- P" 3 •~o in >D rsi ao o rsi r- P- 00 00 00 .D CT. r^ no rsi ro O r- 3 ao 00 lO 00 o rsi o 3 r^ cr. r- «- VD no o O r~ 3 cr. 3 in r- 3 CO cr. mD CO o i 3 iD o 1 r- t— o cr. rsi 3 o no no r 1 m in 3 a. 10 no oo rsi m O cr. o en r- i— rsi 00 .D 00 r- r~ iD 3 in 00 «— r^ cr. >D 00 T— o in in 00 r- rsi r- ID 00 00 f» r- rsi ID r" no r— no rsi 3 r~ o 1 ID 00 o i © f— r** O 1 rsi no in o in rsi 00 r^ r- 3 «— cr. o no I— cr. r* rsi r» CO r* rsi r~ m a> r- rsi o in m r~ 3 CT. P- ts o ID r^ cr. 3 vD vD ro ro in 3 rsi ID CO o 3 r~ no CO O O r^ in cr. rsi cr. in in i— 00 in o 3 no c- in cr. in CO CO CM OO ro CO CN EC rH H ^H ^-1 [IH S2 EC o CO EC O no U U U U U U BE 2 CM EC EC Ph u U o U S E E + o o o BC EC U O (J w u (t, + ■f + 5S !Z z e. •z. + U + U + + + U f-H + + + + u + + + E no + + + + + ^H + CSI + CM CN + U CM rH nH (^ 03 EC fc EC + S u F^i EC EC U u EC EC EC Z EC z tn 3= IE X IE CSI EC CM EC EC EC (^ EC EC II U o as O EC o EC EC EC II II II II II II II CO II II II II II II II II E EC II ii II II II II II II rH P-. E E E 5= -3- _ O CSI O (±4 CO U -1 CO O u U U U CJ U O EC SS P-. CJ 04 + + ■► + •♦• + + + + + + + + + + •♦■ ■♦• + + + + + + + + CC EC tE tE EC a= tc tE EC EC EC tE EC EC EC EC EC EC EC EC EC EC EC EC EC w 6- IS t— ^- r- ^ fsi (N CSJ CM CN CSI CSI CN >D CM CN CN 1+08 ~- o H as w * o o o r- cn a- m o IT) i- 00 3 O o o in p» CN r- a. m lO I"- in CN 3 O CN CM t»» lO in ID m p>. l£> «— c- 1 t— (N CM 1 1 cm r- o >£> o in o r- in ro cn CO I a, x r- # w «* O f— ID fr, O O t-1 ID 3 cn cr> 3- vo i- © r- CN 3 r- cn ["« CO a, o ID I- r- oo ai in o rsi v£> r» o-i r» ST a 00 in in co r- 0> 3 en <— CO cn PO r» ro o ir> co 00 r- T" in 3 r~ f«. P~ I in I i io r- i o en Cn t— r- o cn O i— m r- o ro cn in m T— o 3 oo r- r- 00 p* in 3 o CO in o t^ en r» 00 00 ro en in en r- CTi 00 CN 3- ro en vC t- T— VO lO en o CN in ST \£> tN i— ID 3- ro o 3 ^D vJ3 in 00 3- r* cn en CN «~ ^O in sr en CN i£> no I o 1 O 1 3 3 in in o o CM r- ro in o 1 i— r- - vO in c- r*. ro - CN o VD t— T— co r» f— r- in CN o cr> m m r- «- CN t— r- oo PO in lO, CN en 3 CN cr- CN in CN r- 00 r« cn no 00 3 t— o en m r» T~ O in r- m «- ro lO CN o r» 3- t— p> (N O-i o I 13 O O O ►H O 1— E D 00 ID cn CN in 3 cn in 3 r" in o «— O 3 in CO 00 P- (N ID en cn o o r- 1 o in o m 00 a- \D in 3 O CO en p» r CO CN m 3 r- r- 00 O r- in ro co o 05 CO M ►J O t-l O p in oi w lO CO rn o o r~ 3 cn r>- oo lO CN o in cn o i— m 3 in f— oo o r~- CN x> T— <~ 3- 00 m o 3 CN ro 1 rr, 3 CT. en O I C»l r~ o o vo m o CN 3- 3- m cn l»» in in r- © in lO no r- P- cn o ro © CN in 00 in cn r- (N VO 3 CN © r- 00 r* lO © cn cn r- O © ro © in r~ r* 00 m CN lO P~ no ro 1 1 i f— in r- 00 in <£> cn CN CN lO IT) Cn ro in vo r» CN CN VO CTi cn ro CO ro CN Id CN in © rr. CN ro CN CN CN 1 in r~ 1 o Cn co CO ^H Et CM C SE CO EC Z. s= rH SE o C" rH U f-i (J IH CQ £ sc £ + u CQ EC EC EC U CO + O o u U a + CM o EC + CQ CQ ♦ + + + + + + ♦ u i-l + + + + + H SE SE + rH + + O o CM EC + u H e. <-\ 5S cd U + + iH o i-H cd CM s O O H U H l-l cd cd U u u U SE cd O cd (_> 5= as u EC U CQ U m !Z cd S3 cd cd cd cd M SE o o cd 5= cd U EC II cfl CO cd cd P-. ss SE 53 ss ss CQ cd cd SE z. ca ii II o •z- II U E SB SS ss » II PH II II II II ll ll II SE SE II II ii ii B E EC sc A II II II ii ii •H o ii II Cn 1 + *+1 -* u -i- CM S5 ss SE CM C" EC co c KS + + II + rH U CO -4 SE H iH u r4 o CM EC CM i-H H O CO CO i-l M O CO EC (u EC u CM U U (D o CM O H H O CQ H EC o o CM EC (>h U CQ EC EC U O U u () I) (_> u u SB S3 {) (J CQ CQ H O u 2 O O u U + + + + + + + + + + + + + + + + + + + ■oi + + ■f + + + w cd cd cd cd id cd cd cd £> 00 CO 00 CO IT) CN r" in 3 3 o in 3 C"i «~ in i— ,- r» !"■ r» T-- 3 r- r\l O r- r- Ct, O r- CN O r- ro r rn o co o «r f- o 3 o o fN CN r- m 5— 01 C) CM U1 10 t— r~ in t— Oa CO r- o rn m CN CN rn VD m 3- CN ^0 3 10 3 O 3 cr> CO 10 in m m in CN CTi o 3 •"■ 3 CN 3 O r- t— CN en r- O © O © i-l O in o in o LD m r- r^ CO m m !•» 10 o CN Ol CO CM in i-l o m I— m H o 3 r- CO B a w in cm r- CN l£> CO O 1 in m ID 00 m o CN o CTi o *~ 3 CO m r^ 10 in in CN r~ CTi T— O m CO I— CM IT) 3 m W Dl, 15 OS G. CN I g •H ■H b 1 ' lei F- £ . ro cn i-l .-I u u O B3 + + M + + c iH .H PC S3 CO I-l U rH CM CM o O CM BQ O O CM X pn U u P3 u o 55 2= O o Z o 10 n) + + K tr. o + + cc O + + o + + Z Z + + + + + + + + + ^ ^ + + + S3 2". + + O O + z z II II H U u M Hi o K O CM o CM CM CN EC o an a^ O CD t^ rc o CO m 2". 2-. o 2-, CM z Z Z ss 2= z S5 z o c_> u •H •H M z is Z Z z I/} E-i II II II ii II II II II II II n II II II II II II S3 ■* zl- r- CO CO ^o *— CM in CM c~ «- co r- m lo «- •- o i CN IT) IT) 3 O ro en io 00 tN kD m =r cr> m O m r- r- O o O o hJ o CO H J o M O o in a w [»■ lO no CN CO CO r» o c— CN o I CO in I- CM no CN r-~ «- CN I CO in g £ O (J CI E E + o EC CM CM L> E E + + O o t_> EC m S3 o u o to o o s S3 33 o + + + CM CM 2= 33 33 o O S3 + (j + + o (J pz. Er. is S3 S3 + + SB SB SB O SS u + + + + CM + + + + + + + 33 Z z + + 03 o O + + o°^ rvl u II II EC ts EC O CM u ao ro VO CN CM t- m O", 3 o cm r" ro ao ro CN ao VO 1X9 r~ in ro in O o m r- en i£> 10 o r" r^ o O ro ^ o CO o o a^ CO o ao CM CN in IN T— (XI l£> a- r— in =t r~ CM o m 10 00 r~ t— o 3 a, rn 1 r— IC 1 CN CM [-■ r» r- i CN cj ao r- a* 10 o, w «: r- vo o vo r- r- cr> cn t- CN o CTv CTi CTt oo cn cn in <— cn Cn, O O -1 in t- i r- co i- F-i H or. CD 3 o o o o o P» iO 00 o r- r- o VO r> r- f— r» c— m 10 ao ^0 ro o r- oo o cr> io f— f— CM tD 00 in r— o T— m O ro p". o r~ co o> ao oo o r~ r- a, m m r- O r- ro w o O O r-i o r- uo oo CM CM cn VX> 00 cn r- =r i- ►h o M O s in oi pq in m o I cn CN iT) o «— t— in o i in o cc o u &H co o rH X CM o CN {_) o l/J H rH O CM CC o + X CJ X X + rH Z-. CM U rH u i-i cc ■83 rS :z 33 c_> O u O + O^ o o + u ss E5 cc cc + O + u o + + + Er. X + SB + + CN + o + + o + + + + + o + CO + .H c x + o CN H + + O , + CN X o X O o k, o CM H CM o U 83 cc X O CC X U u X o U (J u o^ o O o o x o o o 33 33 O (J U o o II II II O •z. u ll II II II II II II II II ii II ii II II II II II II o ro O II (J o o u O + + + + + + + + + + + + + + + + + + + + + + + + + O o o o o o o o O o o O o O o o o o o o o o o o o H or, Dj CO CM Ul2 EH OB W * o o o r- co ro IT> a 00 en r** vO IT) en oo ID (M O r- O ro in CN CN en ro en a ID r^ CM o O O vO r- O ro cn en vO ro 3 O ro m s» vO CN ro vo o o CT r" CO «- a ro ro «— ro 00 1 ro a 1 CTi 1 m 1 w «; * w «c o r- cj Cn O o i-l r- (N r- in VO VO ro o ro in CTl CN CM i VO 1 00 1 r» VO OO a r» VO CN ro r~ m in O T— T— r~ i «- vO 1 O 1 o CT t- vO VO oo a CN rM in o vO VO CN in 00 o IN CN en 00 VO r~ o o in r~ vO CN o 00 r- ro 00 r- r» CN 00 o ro ro o r~ t— CTl ro r~ T— o ro cn r- CN VO o vO o a 1 O CN r ^ a m ro a 3- VO CM CO m CN in in ro ro VO VO ro o 00 cm 00 O ro cn o a a I r~ i T- a I- a p» a m cn oo VO r- o CN VO cn a a r*» 00 cn 00 in 00 ro VO a m CO CL- ^1 o I VO I O O O O 00 cn I— VO in =r CN vo in VO r» r^ o 00 CN o i— o m oo oo oo cn o CN oo cn O r- i- cn o cc CO hJ o M O a in a w m a a. a- CN CT. a CN vo r— ro t— VO vo m © a r» m i^ VO m CN in VO in O CN OO VO CN T— N ro vO 00 in o CN in cn O a ro rvi r^ «- ** 00 o CTl ro a 00 cn o CTl ■" cn CO r~ in st- 00 =T CT. a CTl ro CN CO in a r- o St r~ o a o a CN CN *" CN *~ ro *~ CN *~ T— r— T— ro t— cn I o I vo in r" O a f~ a CN CN ro in CTi m o o CN CN VO CTl (N CTi 00 © r~ ro 00 CN r~ cn C" a 00 ro VO m r^ o CN cn a ro a in T— a a CN i— ro ro O ro in a f— o ro CN CN f- (N VO 1 CM ro VO (N 1 o a in oo VO a CN m en CN a m CN CN CT< vo M E E E E E + + E CO CM to S3 CN + + + V) CO o o + te aT 1 S3 (J iH O o S3 Cn Cn E 33 + o CM o CM o co CO O O is u CM S3 SS !S IB O o + U !Z Cn (J O (J + + + u as O + tn + + + + + + + + + O II II o ■f + ♦ &-. In p» in CN «- fN fN in r- P- St CN CN VD P» CN p» CM 1 I— 1 CN i «s o (J [li o O i-J oo o o o I o CN 3 3 00 m o» m I— f» CN O r- rn cn CN O ON in c- r" O m in CN m ^~. o I fN I o o un O ct !— in o rv. a O o in 3 K— e— o CN r" Oj .-H o a^ CO rr, CO St r- m r- m o P» o 01 o cn o m t— 3 m CD St m i£> m in cn in r~ CT. ro i— O ro r» Hi 1 I >A O H O 3 in Ol w r-~ in o vo 3- r- vo cr> 3T in in r- in CN CO cn o CO CO St (N CT\ in o CO CN O CN I O I 3" (— r" 3- O CN V - r- o CO ^D a. vo r~ (N =t p» in P- r 3" CO p« \D m m P» T" cn cr> st in CO 1 T— t-" CO «— o rsi VD ID 3" ro 00 CN 00 CN CN cn co 3" O o CN 1 1 00 VO H °° o o u CO EC CJ rH fr. E id M i-i CN CM o rH CN ^ o CJ &H tJ CJ CJ u S5 m pj ts EC o Si u o u <_) EC CJ CJ + l-l B3 EZ sa Ss gs + u + + + + o fe -t- + + + s= + + + + + + + + + CN + + CN rH + CN rH' H + + CN h + CN o CN rH •~\ r-\ u CN ,-i u U D ro 1 O O 1 3 1 r- r- 1 o o in o ro r- r~ o ID r- CM o ro ro O rsi I en O 1 1 >D T" in r- ro 3 ID r— r- en 3 CN in cn o in co o 3 in VO co en Ol CN 1 o ro 1 u o o o i-l o «— E D HI CO o en v— in m m in in en 3 r- IT) r\i in vO 00 00 en o CN r- ID r- r- 3 O 00 en ro ro o in ro l ro <— 1 CO 1 ro in i r\i i CO H ►J O M O » in Oi W en CN vo ro CN «■" ro cn cn f» ro cn 3 r- en o O co o r» CO CO CT. CN ro 10 CN r- co cn ID 00 \£> ro 3 m id r^ 3 CN CN in r- O in cn r\i O CO rsi o 00 r- m CO u-> rsi VO in ao »D co en ro CO in 3 O ro ID CN CN 00 00 in MD CN 3 ID ro CN CN ID r~ CN VO 1 ro CN 1 CN 1 1 1 1 i ' 1 r " CM 1 r- 1 t— 1 T— t 3 O 3 00 00 ID r~- CO o CN CN ao id 3 o CN CN 3 CO CN «"" r~ VO cn ro en «~ ID r- en ro 3 o in o CN 3 co 3 I 1 ro l 1 r- 1 f— 1 1 CN O 3 in 3 rsi co ro cn O rsi cn VO © 00 ro m ID t— CN CN ro rsi i rsi l "* CN 1 r- 1 CN 1 P ro E E E ro 03 + + + cd u CN 3d ro Ch (J U + HI 33 o Cn o CN a: u o + U rH 33 Cn 93 55 O a: + + + + E CO + U o 33 u u i-H rH .H H ro o cr in 3 *-- «*■ CO «— >£> CO c CO in ro o ro CM in 3- cn in CO vO a oo o ro id CO o co ro CO o (N PO in CO 19 o o o *1 o ^D 3 fN in D rsi i (N o f— in o cr. (N en \o ID on r- ro i- ro o o en ro O ON r- to OO (N 00 00 CO 3- VC r- CN in in o r- oo o co I 3 r- I O l— I— t- I I I VD r— CO cn CM ro in r- T— in f— IN r" o 1 cn I o 1 o CO o Oft o cr> ro co t— ro co ^ o r* o in cr. m o cr. i— IN en m CT. 3 ro 3 ro ro ro ro VD ro r- ^D I o CO (N 3- r- o ro r~ iD cr. m cr> i— 00 ID o 1 o 1 CO 3 CM ro (N m cr. CO t— ro VD r- ID CO 3 r~ CN CM I— 1 i£> ro CO 3" m 1" 3- «- O in 3- r- «- I in ID on m i— iJ3 ro ro CN r- «~ rsi O ro ID 3- 3 v- ro ID (N rsi 1 fN ro o I CT% r-M O CO m ro ro >x> cr> CO O cr. o> ro IN CO r~ 3 r~ r^ r~ .D 3 cm CO f— r> o CO o CO o in 3 ro i ro v£> T— I CO On ID ID 3 T— m m 3 co o 3 en rN fN «D rN CN *D I— 3 3 O no 3 3 CO ID CO 3 cr. (Nl in C" co rsi ON CO f» CO CO 3 cr. 3 «~ o o 1 o r o (N 3 «— ro 1 ID t— 00 CT. CN cr. in t~ oo a o cr. fN ID cr, r- in r- r~ ro in r- CO T— CO in in r» 3 3 3 fN in o CO rr, rN rN in og co rN CO CO r- l 3- o ro v£> ro p» ro r- ro 1 o CM EC .H o U u co + + EC O u ^ u EC (/; af o EC U u + + EC C.J U-, co EC CN O CN + u CO O EC Bs o + + fe z: EC EC EC r-l + <-\ + + CO CO co .co co CO CO CO CO co co co CO CO co EC CM CM < w X EC EC EC EC EC EC EC VC EC EC EC EC EC EC EC EC EC EC CM El. En In cc n H o a U U U O O O u O O U t ) CJ U O U U U CJ u O U w Cn U W «i DC Cl. CN CN T- CN CM CN in m in VO iD CN CN CN CN CM r~ CN ch en ro ro CO ro CO ki6 E-! « W # o o o If) If) o o If) CM o CM cn VO CD * # « * * * CT> if) CD CN o no ITp 3 r- cn 00 ro cn cn VO r- VO r" in CN vO If) o r- vO VD r- o <~ vO CTi a- CN a no CN CO cr> o cn CO ld r" O a- Lf) CN P- no CO CO r- o Cn 00 if) r- c - cn *" 1 m i VD VO r- 1 a VD ro i— r- no t— CN CN r- r- Lf I 3 00 f— t— cn CD 3 VO a o CO «- PO ro 3 O e— 1 CN 1 1 1 CN 1 cn i— a- in t- o r~ t- r- r- a- i- ro cn =t o i E-i HI Cm O O O CN If! CN O CN cn ro O o cn ro oo oo a- ro Ul 00 CN ro r- a vO cn r^ O o o vo r- o VO O o «— a- a- VO VO VO r- CO a- cn 00 a- r*» vO ro co ro If) vO r- o o i 1 If) 1 o i 1 if) o 1 in vo rN CO if) ro I O © If) cn o CN ro O 00 if) in ro cn a o CN r* f— o 1 CN 1 l o l o 00 ro If) in 00 if) in rsi r- vo CO 00 if) r^ o I T- O f o o O O .-} O c E a. VO If) o If) a- vo in cr. If) C" in cn r- Lf) CD P» r- o r- if) 00 ro a CN r- r- a CN cn a in © in O r~ m CN o i CN VO 1 Ul CN o CN ro o 00 o CN CD ro O in a- i— 00 00 a CN CTv I i- r- *J o VO CN M O a- r- o in Ol w VO o r~ o ro CN a- vo VO i-~ in in cn r- cn o in CN CD CN in ro VO T— a- en CN CN a- vO CN CD CN T— in no CN oo a- a- a. 1 CN CN ?* ro T— o I o I o CN o o a- ro i- 00 Cn 00 cn in r~ CN CN CN ar no vD Cn r~ a- ro a- in r- en m in CN VO vO 00 a- vo CN 1 ro a- CN in no ro r- i— in f— I VO CN I U U rH u u CO o u rH u CO rH pa H M a: If) X (J IS (J + H U oa + H a: u + + + + co + + CO VD i-H 03 CM O CM + + + + + U CM SB CM z z co + CO + Cm Cm VD ■* rH -J H a: IZ + ro Ph CO co bn co CO a: i-H Cm rH O rH o u a: + o 03 + + t«H M •-L. (^ P-. M co Ph Cm u U CM O 33 U a: + H tn Cm Cm Cm Cm Cm o U u U u 03 a: te a: 03 03 X tt. r > O u CJ u t j u U O O CJ L> O U o u U O a z Si 2 5= z z Cm Cm IB OC CVi a- 00 a- oo cn oo no oo cn cn cn vO o CN VO o CM VO o CN vO © CN VO o CN VO © CN VD O CN vD © CN 417 Eh cm ed m W o o CO 00 CT' p- vo t- O O CTi CM CM o o. m H) r- O in 00 m no 1£> I- I 00 CM r- r- cn io CM T- 0j ID Dl, O O ^1 o p- \£> r- r- p- 00 y~J CT o CO CM O fM 00 cm CM o on r^ 3 CM in o I CM CM 1 t— i— CJ1 o CM to o i r- O r- o r» o r- p- 3" n ro CO 00 CM en (M O 3" Oi VC o r— in m o uo o o LD O ro 10 3" o^ 3 U0 CM CM LO CO r~ 3 CO co en 3 ro MD CO *" en kO N a- O i CO 1 o 1— 3 1 o o CO p- in 3 CO CM v£> CO lO CO O 3 ro en 3- 3- CT\ r- no «— ro I O O CO CO en in O O in p« o o l-l O in r* in =t 3- o> a- U0 in Cn r~ m p- r~ O ro CM iD p» CM ro CO CM CM cm i KO m CM P- CTi ro i£> KO o en CO 3- «— p> 3 P« 3 o c— r- o> 00 no LT. ob m r- v r- I co ►J o M O o in oi w CM 3- r- en ro P» 3- O o oo 00 co ro kO r- in in CO CM PO r~ o m in p- 3 en o in 3" m 3- o •" in 3- P- sr no *" 3- 1 1 U3 1 CM r- «— rn 03 03 o fc E O o an SB SB CM a^ o o H U 03 z S3 + + + r» o cr. o 00 LTl 1— r^ CM OS VO in VO in O in vo r~ CM 0C> ro r> 3 00 o in in no 00 a co m 1— p» o r» fNI CN 3 o 00 i~ <— CN os r- S 1 m rsi OS 3 cn in ro r~ t— t~ ro 00 r» Ol 3 as O VO en o 3 r» © 00 in l— o i O 1 o 3 in o I HI r* o P» (— OS Ol as co 3 a. >X> T— o VO 00 ID OS CT> O VO T— OS CO ro VO as St m 1— CN O T~ f— OS ro in ro o r- VO CM ro CO OS r- cn r- r- ro «— i rsi p - ro I rN 1 O 1 o 1 T— 1 ro 1 O m m in as co as O ro CN ro VO o OS m 00 no OS as CN CO 3 3 3 O 1 CN 1 no 3 o rsi no 3 o o as no in oo r- o in o rsi ro CN CN 3 CN in CN no CO 3 no id o in 3 CN o o o 1 1 CN 'i in i o 3 in in in 3 VO OS 3 ID in a> ID 3 <— VO CN O 3 ID r- r CO 00 O 1 3 1 in m o in fN in 15 O o o fl o CN CO oo r~ c- r- os o ID CO no CN no o 3 r» ID O 3 ID «— 3 no Os CO 3 VO CN OS 3- m I— ID 3 m ID 3 in no «— M cc CQ H ►J O M O o in a w CO VO ID T— no CN OS no ao T— 3 CN VO f— T— r- © P» no 3 (Ti oo vo CT> o ^ no m no 3 in VO r» VO t— i— *~ 1 i 1 i CN no no vo r- OS r~ CN n~ 1 *~ ro o co ID 00 ao f— 3- no r\i o r^ O ID CM ID no 1 r» o no O I in no OS 3 o CO CN r- rsi no f~ lD in o oo T— CN p» OS m OS 3 ^ cr> o i^ 3 ID ao t— KD 3 in r- VD o r^ i— iD in 3 T" o 00 O l»- VD r- o* ro CN in 1 (N oo CN I O EC (J o u CN csl o CO O CO "kl o EC + CO ro It, Csl EC O Csl O o z + B EC o Csl Es ES EC u u EC U EC O EC EC CN + o EC S5 ^ EC + + o u + + CS| O O + + Z O O o + + + CSI u + o + + + + + + + + + + CM O + O + O O o o EC v h\ O d- g 0-' J nf u o o CM CN CN EC II II ST. EC EC II EC EC u E3 EC II II II ii II EC EC II II II CN CO II II Csl o + A 1 II co II II II II II O CN o o CS| O II II ES CO o O o o CO S5 z EC EC EC U U E EC H S3 EC EC EC EC U (J U U O EZ O u E-i + + + + + + ♦ + + + + ■1- U + + + + + + + + + + + + + •a! csl CN csl CN Csl Csl Csl CN CN o O O w tn EC EC EC EC EC EC EC EC EC EC v> 10 O O O O o © O O o EC EC •H OS o o o O O O O O O O o EC EC EC EC EC EC EC EC EC EC EC O u U w os cu o CN o CN T- «- CM CM (N CN CN CN no CM 3- CM 3- CM 3- CM 3- CM I- CM 5T CM (N CN CM CM CM 419 \ w w «■ l_; o o f— •*-~ Cu :>< ^ w < # ^*- «; o r- ID [lH O O .-1 0> o ^D ■" o ^d 0. oo OO vD P» 00 cn ^O 00 CM o iTl r~ co PO cr. 3 r~ ro o cn CN m r- CM CN O 00 in o tO 3 oo 00 r~ cr. r- CN 3 1 CN «— in CN 1 r- U") o [•» in r~ CN p* cn cn CTv ID no r- r- no 3 PO r- ro f in I a r\l i- r- ^O v£) 3 r~ in lO PO a oo l i o 1 cn t- r- r- ID r- 00 CN ro PO o 1 1 00 PO oo Cn CN r" ffl CN m o CN oo i— 1 o i O o in cr. in iD r~ r- ?— PO CN 00 00 «- o 1 T— 1 o t o 3 00 vO ro «— i— 00 f— o t— o 3 in in f* «— o o CN 3- en o PO o PO co a- PO ro CN 1 r- r- 3 o I r- r~ PO CN m OO 3 «— ro CM ro 00 CN co CN OO in 00 r» 3- CN PO LU 3 3 in co m co PO o r- cr. CN cr. ro ro r- 3 o o o in 3 Cn CN co cr. O ID CN ID CN 1 CN r* cn cn C^ I- m 3- o in .D VO 00 CN PO m vO CO 3 00 O o in CN i— in PO 3 PO «— 3 CN ID r~ I— CN o !*• CN CN in O CN CN cr. f— PO ro CN 00 1 3 i -^ 3- On O I o o ro O o oo -JO o r» CN in cr. P» in r~ 3 m vO © o ID 00 a. 00 00 cr. vo 3- r- cn cn 00 P" r- in oo 0^ VO D M CC CO M i-l O CM MO 00 t=> in no O) . W 3" ro co in CN o 00 in o «- 3- 00 cr. m t- cn ro r~ r- vo in T— r— 3 in CN r- 3 o r~ «~ O VO CN in CM r» ID 3 CN I ID VO in ro co r~ cr. CN CN «- 1- CN CN I O in 3 CN I I C> 3- M3 r~ r— ID ro CN PO CO 5* CO ID o CO PO 3 ID o vD PO in cn o r- >£> ro o cn i£> cn O ro CN cn ID 3- cn 3 3 PO in ro r- CO 3 00 r« ro 3 cn ^^. CN ro i r— ^ ro ^ i T— o i< f— in o CN r- rN 3 in r-. «— o T— O un r~ 00 3- 3 cn cn r— CN on r* 00 1— PO CN CN m 3- CO en cn O 00 3 r— i™ co ro 1 PO CN 1 IN u o CM i-H z ^H + (J H U o + iH 03 CM CM U M + o CM co CM O O + + o (J o o CM + 03 o 03 SS 03 O <_> sf o SS + + CM + + CM i-l tc CM o o O + 03 CM o CM O r-t u 03 u U + + + O + + CM CM o rH H CM V o rH + + SS SS + + o iH iH U U o u U + + + CM SS SS SS 03 SS + CM c r4 U O U II X o o 03 03 03 u CM o o o O U II II II + 03 CM CM SS o (J U u O Ss CM CM SS Ss II II II o u U Ss L> -SS II II 03 SS SS II O O CM z o II II II A II II o o CM CM iH m u II II II II II SS CM 1 II II II 2 CO ■H ^ u U U A CM z. o CM CM U CM 03 03 CM SS CM o o CM O M + + + 1 IE o Ss o O O 03 SS u o u 03 SS SS SS SS E-l + + + + + U o o o o + + + + + + + + + + + + + + + + ■c o O o o o M rH •H i-H M .H M r-t iH rH u u U u 2 s= ss SS SS SS SS S3 SS SS SS a o o O o a. u CJ u U O C_) U U o U u u U u u u o u u u SS SS SS SS ss W 3- 3- 3- 3- 3- in in in in VO VO va- ID VO VO r~ P~ &4 O CN CM CM CN CN in in in VO O o r- m oo O (N 3 3 in VO p- 3 K ao Pi p- O r" r" vo m p- IN CN O in in 00 VO p- m (N m CN p- r~ vo CN Vd; w in a ro 00 00 o St m p- 00 T— 00 3 3 r- 3 m 3 m CM no p- 3 cr in # r— in 3 r- CN r- i CM r- T- in 3 in «— (N i CN CN CN CN © i 1 i— 1 1 1 1 o i o i— •w Qj X .-» CN 3 f— CM in m 00 ro vO o P- CO 00 00 3 VO t— P~ r» o CN VO r- 00 3 w «t CTi t£> r* 00 a 00 ID 3 ro m 3 p- en cn P« 00 p~ CM ro ro vo ro in 00 00 * *-' t— 00 m f) r- © f— ro o\ CM tN v— 3 3- cn r- in 00 ro in in CT> Oi 00 00 <=s o r* r- o o o © o o VO p- vO VO t"> 00 oo in r- o o o o o P- o o o C5 1 1 i l 1 1 i 1 1 i 1 1 i 1 I i i i 1 fin O O 1-1 EH H in o o o CN r- co in oo r- ro CN cn cn CN vo CN 3 r>- ro ro in ro p- 3 in r- 1— T- ao © co cr. en 3- 3- CN cn ro VO r" 00 CN 3 p~ Oi r- cri ^~ cn CT> in cn ro p» o r- CN 1 r- VO i 3 1 3 1 3 1 vO 1 p» l l o 1 in m o no 1 o 1— in p- ro O VO VO o cn cn p- in o CN ro CO O o in cn (N CM 3 cn cn l— cn cn T~ in 3 o o CN o 00 o T- r- in cn O p~ o © 3 3 CN 00 cn in VO © 00 00 T— vo i 00 1 i 3 1 VO 1 1 p- 1 r~ VO cn 00 cn CN VO CN o r- ro O CN CN o cn cn cn p- l— 3 1 r- 1 ro I ro CD p- CN I C5 © o o ►H O 1— se 3 CN 00 r- r- o © o P~ o VO 3 O © o o ro © cn ro ro ao 3 VO vo r~- ro CN CO 3 ro o p~ 00 r- © p- p- p- o in f— »— vo cn p- CN cn VO r- p- in o r- ao CN ao in in in CN © r- CN cn VO VO 00 3- r- VO o ro 3 ro r- r™ CN ro in P- p~ p- r- r CN in CN in T- 3- «— 3 r- 1 i I 1 I i I i CN v- i— i 1 i 1 CO H ►J O M © d in Ol VO r- in ro in ro O o »— CN CN in 3- CN CO cn VO r» cn CN 00 CN CN CN © CN r- 00 l VO i 3- 00 3 3- ro CN T- 3 «— VO VO cn r~ T— ro r- in in 3 r- cn T ro 1 vo I vO O VO t o CN CN CN ro 3 00 m ro CO o o o I o 3 3 o cn T- 00 3- 3 VO o O p- r- o vo CN p~ r- VO cn vo in ao oo in © P' 3- © CN O cn CN i— i— in ro 3- © cn CN p~ r- r- in in 3 T— T - ^" l T~ i i 1 O vO CO r- I in 3 3 VO CN 3 cn CO VO r- 3- p~ r- i i- i o o o Q. SZ SZ SZ g .H l-l sr CM E o CM U DO o CM c™ 1 CM 5S o + BS O o SB S2. + + C •z. o CM + rH l-l + £C rH l-l + + o o o CO o a OQ o o SZ K + o CM O o SZ SZ SZ SZ o CM pt, SZ o CM ss O u O CM rH u EC o CM O + + SZ o + o O ft, + + SZ o l_) CO SZ + ac u + + + + S5 + a: SZ II CM CM + + c H + + o CM II II II o + + CM o o o n "Vi O o U CM sz O n II o CO o SZ SZ o co SS CM o CM o rH SZ CM CM CM CM o + o O SZ SB SB SZ ss O o SE SZ II S5 O SZ (_> CM CM rH u EC o Sz SZ SZ PH SZ »: (u II tc o U CO SZ SZ II II II II ii II II CM II II + A il II II II II O II II CM + + + + + 1 r-i M CM CM C/i c K o E: CM CM O CM CM o CM U m O o CO CN X O 55 ■H o CO CM iH iH o o o o o CM CM 6 05 L) iu SE !B SZ SZ o O Sz HI K O (J O P* C_> L) SZ SZ SZ SZ SZ o O SZ E-i + + + + + H- + + + + U + + + + + + + + + + + + + + + li CM CM CM CM CM CM CM CM CM c w O O o o o O O o o o o o o o o O O o o O O o O o O ft. fe z SZ •z. SZ SZ SZ SZ SZ SZ SZ SZ SZ SZ SZ SZ SZ SZ SZ 5= sz SZ z SZ sz fci 00 00 00 00 Oi Ct Ck u ■CM CN CN CN CM CN cm «; CN CN CN CN CN CN pr, Oi ro CM o i- r- r- CN CM CN CN ro ro no ro no ro ro ro CN CN CM CN CN CM CM CM CM ro CM 14-21 —~ XI 05 w # o o o o St a VD ro 3 vo CN oo P» o OO o r» 00 VD r- CN «— ro r~ co 00 o r— 1 *~ CN r- I r^ r- T - ID 1 00 o r- ro I r- If) P- t*» P" r~ CN cn cn Cn Cn ro in IT) in no 3 o O o a r- 1 1 1 1 Cu p.i «: ■» "-' «s o 15 fc o O kA in a I- VO a oo o >D lO p- 00 m o Cfi o o 00 1 VO 1 r- o 1 p> in a cn cn r- I o I o CN co (^ T— in m a o O r- O VO m CN P» o CN m no t— O a- P» 00 i r— 1 1 p» I a i o 1 00 CN ro co co o oo CN CN «— a K— p» p> o CT> t~ r»i cn m VD m *" ro CN CN r~ o i a m - cn CN 1 O co CM CN CN vO co en cn CTV Cn O m ro o O O r- in no 00 ao co o i 1 r— 1 1 1 o o in a ro in cn Cn a ro P- P- a ro vO 00 P> a a a vO © CN o 00 O a a m cn a a 00 oo p* 00 cn a o no CN vD CN CN r~ a VD cn m CN m CN r" m CN in a p> cn a no a a no a a ro a CO CN ST he: CN i i *— i ID I ro 1 no I r- CN o r~ l cn r- r- n i o 1 cn l cn 1 i a l vo CN 1 vo CN 1 VD CN 1 r- o CJ3 O O O >-) O f E Q (-( CG ro CO in CM a 00 cn o a cn 00 CO no cn in 00 P0 in 00 a VD CN CN in 00 in p- i— o p- m o CN in vo CO o o ro in a VO a 00 ID ro a VD CN cn CN CN o< CN CN cn CN a CN v— vO in o VD in o VD m o o O a *— 1 ro 1 m i ro ro VO in no P^ f— vo 00 cn r- CN vo CN a 1 a VD in VO a a VO t CN VO VD p» in CN O no O a- in © P> oo r- CO a a VO CN ro ro 00 o p- VO co a a in a in a in p- VD a oo p» in CO r- in CO in o VO in s CO i a- • fM r- 1 o CO ID a VO in CN CN P0 cn CN 1 in CN 1 in cn no ro CN cn r- 1 a CN o P> l © i o i © no 1 00 in r- 1 00 in r- 1 00 in t— i 00 O U + o CM z d z U CN z z O pa o + u + + ■♦• CM O o lsJ z + + u O CM 93 93 CM z ♦ CM CM U CM o o 93 93 93 + z E o o m o + O 93 Pn H u + O + u •z. !E o O vo 00 C" 1- r* VO vO o CT. CO 3 CN 3 i- in in in 3 in vo O oo in oo 00 vO vO CM 1 CM r- i r- 1 in i in l 3 1 00 1 in r* 3 a> m CO m no VO oo CO CM P» CT> vo r~ rsi ro o o o o O CO ^ in i i CT. in a, :*: ^~ fr. «; * w «c o r* CD Pn o o ■-; o r- oo oo oo r- oo m in in in r- t— vo cr> r- ST m o 3 m ID o no o m t"> VO CO CT> CO CN CO oo 10 3 in o i T- 1 o r~ r~ O 1 o I Eh HI o cr> f— O VO CM o CO CO co o vo VO CTi in r- 3 o © o o 3 3 00 oo m co T— T— f 3 vO VO CN vO vO CO 3 cr. CN vO o 3 cr. in in cr. oo m © cr. vo vO OO r» CN 3 CN CN vO in CT. <■" CN in o 00 T— 3 O 1 o i O 1 O t— co l r- 1 O 1 m i vO 1 r- r- O o r~ r~ 00 o o 3 in in in CT. o 3 r- CN CN 3 CN co VO CT. CN t— CN oo 00 o VO t"> o cr. o CM in in in VO 3 CT. 3 in in in P~ in CN r~ O <— O r~- CT. in a\ in © r- «" a. v— f— r" VO 3 00 O 3 3 © •" o CN o r m r^ 3 © V _,__ in vo VO © t~- r» ro n-i no CT> f» © T~ CN CN r~ O 3 r- o in © OO in o Cu i i f K— 1 1 1 I T— 1 1 i t— r- ^ 1 !^ I 1 1 o o o o. 3 00 3 VO in r- r- r- r~ r~ VO CT. VO VO o 3 t"- 3 3 © 00 CN in CT. O O r— no r^ f— r— CN in in in VO ro r~ 3 I *— T— CN t— f— 1 1 1 1 1 i CN 1 1 CN «— CN HI i 1 1 1 (C. CO M l-l o m r~ ro © CN o CT. ct. cr. CO ro vo CN vo vO © o CN O in CT. in VO CN in H O m 00 vo 00 CN no CN CN CN o ro CN in CN CN vO f— © r- 00 in vO CN OO vo o in r» in no on O oo 3 3 3 ro m 3 3 vO vo VO m CN r— © o or. cr. CN co Ol w r- ro r- m r~ in 3 3 3 r- © O in cr. CT. 3 o 3 CN CN r-- r- 3 VO i— i CN 1 3 1 rO CN 1 1 1 «— *" i— 1 t 1 1 1 i in i 1 t— i 3 1 CN 3 o 00 vo CO 00 O 3 3 3 3 m CN CN CO no CN r- in 00 vo o 3 CO 3 oo © CN in o vo vo i" O O O CN CN CTv in no oo CN r~ 3 oo CN 3 CT. f— CN 3 ro in 3 CN VO 00 VO cr> CT. CT. T— 3 3 CO in in r- © CT. 00 3 oo O OO OO O CT\ © cr. o VO CN r. r- r- in no f— cr. vO VO CO «— ro CN 3 co in VO r- 3 ^.^ CN 3 00 in 3 r* r* r- CN r— CN 1 oo 00 CN CN CT. 1 o\l 00 OO r- X 1 1 1 1 1 1 1 i 1 1 1 1 1 l s o iH CM o + CM CM l-l (_1 O0 o O CM CN ro pa CM e: E + z o O HI o + •-< l-l EC o + + + iH + + u CM CQ U o e: CM O + + + + P-. £1 U rH M E E CM O + •z. CM O in + + + + o EC O O o 1^ EC EC + + + o pa + + HI + o + + + IN CM CM o + CM + + + + fK o + + M PH + rH CM o o EC U + <-* tH CM u Z V) t/) re a: + CM CM CM CM (n + u u .H t-i + + o u o CM C" II O II o o O Et, O EC eeT 1 U II O O ii ii o II Ph II II HI EC II + O II ■* II II II II II II ii II o II II E: i-i «* CM II EC l-l II CO rH II II CM o CM O pa sc EC CO CM CM CM CO l-l pa O u s: E H CM H u » ro l/l H EC u U £ O u z o O EC EC S £ E EC o U O O E-i + + + + II + U + + + + + + + + + + + + + + + + + + + m; CM CM CM CM CM o w CM CM CM CM ro ro ro CO ro CM CM CM ^H ^H ^H u CM Cn M O o o CM M V) cc o O O o O O O o o Cl_ P-. &-, u U U pa HI EC EC u o u Ez O o 6-1 i- MS 3 MX CN CC Cb «- f— CM 3 CN 3 CN 3 CN 00 3 3 3 in in VO r- r- r^ 3 3 3 3 3 3 3 3 3 3 CN CN CN CN CN CN CN CN CN CM 3 CN 423 -~ ID w ■B- © o © IT) r\i <- 01 CM CO O o> 3 en CD OO O ^O 3 CO in in CO *— co f— in Cn no CO no ro r- r~ o »— CO 1 I 1 o I in i r— 1 CM 1 in i o r» t— r~ m in in cm CM cn CO t~ 3 1 l r- 1 r~ CN r- o cn i— p» 3 lO 3 ID O ro in no O in cn no o l i v— f— 0-, pi «; * «»• •* o «- CN 3- cn cn io r- r- r- CM co m Cn o t"> 3 CO 3 IX) m p» ro m m o r- CM in 3 T— ID r- O ID O O r- O r~ &-, o o h} F i HI o CM O Cn kO 3 oo 3 CT\ Cn r» CM t— ^D r- CM 3 O IN no no co m o ro ro CO o ^D o no CO ID r~ co o cn O CO Cn T— co in iD no «— o CM r- 0i CO co 3 m r» in ID r^ r~ ID CM co «~ cn m 3 !"■ CO 3 o vD 1 O 1 o 1 CM 1 no 1 «— in i T— r~ kO 3 CM CM 3 3 in in «~ O 1 ID 1 3 1 r- © r- o 3 CO o no CO o i— 3 CO «— r- CM CO cn r~ rsi 3 00 o CM CO CO no i O 1 CM 1 v- 1 O 1 o ID 1 o in ID no no en ID f— CM no r~ CM CM id © 1 3 1 T— r~ i IS o o o M o © cn 3 o cn o O © in CO CM 3" I— cn H h} O H O s in oi w r- o CO 3 m no id t*~ ID 3 3 *- cn T— in CM 3 cn o o CM CO 3 ro ID ID ID CM CM o cn ID CM ID in l 3 1 no I co l CO CM r~ CN I i in l no cn O O CO CM co in OO r- r- O *D in in r- ID no no t— 1— 3/ CO ID t— o ID CM 1 CM I CM i no 1 co I r— 1 r- 1 3- 1 I no i— 1 1 1 l 3- 1 1 no 1 m i no 1 CO © r-i 3 CM no ro o r~ 3" O 3 CM ID o in CN t- CM (M r- r-» in 3 CM 3 CM 3 in r- 00 f— f- CM in cn ID r- ID r- cn r~ m in ID 3 cn no cn CM CM m r-> O CO 3 co o cn CO CO © CO T— cn cn in CO ID I I y- nT 1 o CM 1-1 CM !S b -1 CM + CM as ss + + H 5?. tif 4 o X o + + o O + IS £S + E E i/> + E". as + CM IS 55 55 + CO + + o Si u 55 o CM O + tn O + E 55 + o + + 5?. HI u 55 -H + +