434-212-Sm A AS AGRICULTURAL EXPERIMENT STATIONS A LETIN No. 145 JANUARY, 1912 Division of Chemistry TECHNICAL BULLETIN e Active Potash of the Soil and its Relation to Pot Experiments BY G. S. FRAPS, Chemist POSTOFFICE College Station, Brazos County, Texas AUSTIN PRINTING COMPANY TTTTTTTTTT AS TEXAS AGRICULTURAL EXPERIMENT STATIC _ GOVERNING BOARD. (Board of Directors A. & M. College.) WALTON PETEET, President . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..F JOHN I. GUION, Vice-President . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 CHAs. DAVIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..St L. J. HART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . “San J. ALLEN KYLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. R. L. BENNETT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. W. KEMPNEB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . f,‘ ED. R. KONE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PRESIDENT OF COLLEGE. R. T. MILNER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..College STATION STAFF. E B. YOUNGBLOOD, M. S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. FRANoIs, D. V. S.. . . ., . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..Vet G. S. FRAPs, PH. D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. NEss, M. S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..H0rti J. C. BURNS, B. S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Animal H WILMON NEWELL, M. S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Ent A. B. CONNER, B. S . . . . . . . .‘ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..A ‘ F. H. BLODGETT, PH. D . . . . . . . .’ . . . . . . . . . . . . .Plant Pathologist and Phy H. L. MCKNIGHT . . . . . . . . . . . . . . . . . . . . . . . . . . . ..Superintendent Statiof W. L. BOYETT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .State Feed Q HARPER DEAN, B. S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Assistant Ento J. B. RATHER, M. S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Assistant i J. B. KELLY. A. B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Assistant L. C. LUDLUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..Assistant r F. B. PADDOCK, B. S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Assistant Entot H. H. JoRsoN, B. S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Assistant Ag: g CHAs. A. FELKER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..Chi A. S. WARE. . ., . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . ..Sten E J. M. SCHAEDEL . . . . . . . . . . . . . . . . . .: . . . . . . . . . . . . . . . . . . . . . . . . . ..Steno __ ( STATE AGRICULTURAL EXPERIMENT‘ STATION N - l ‘GOVERNING BOARD. - -. HIs EXCELLENCY GOVERNOR OQB. COLQUITT . . . . . . . . . . . . . . . . . . . . . . . . ..1 LIEUTENANT GovERNoR A. B. DAvInsoN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . COMMISSIONER or AGTIOULTURE HON. E. R. KONE . . . . . . . . . . . . . . . . .. I_AL-AIP\ DIRECTOR OF STATIONS. B. YOUNGBLOOD, M. s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .College SUPERINTENDENTS OF SUB-STATIONS. E. E. BINFORD, Beeville Sub-Station . . . . . . . . . . . . . . . . . . ..Beeville, Bee W. S. HoToHK1ss, Troup Sub-Station . . . . . . . . . . . . . . . . . . .Troup, Smith E. M. JOHNSTON, Cooperation Rice Station. . . . . . .Beaumont, Jefferson _ I. S. YORK, Spur Sub-Station . . . . . . . . . . . . . . . . . . . . . . .Spur, Dickens T. W. BUELL, Denton Sub-Station . . . . . . . . . . . . . . . . . ..Denton, Denton ‘ ' A. K. SHORT, Temple Sub-station . . . . . . . . . . . . . . . . . . . . ..Temp1e, Bell ' A. L. PAsoHALL, Lubbock Sub-Station . . . . . . . . . . . ..Lubbock, Lubbock P. D. PERKINS, Angleton Sub-Station . . . . . . . . . . . . .Anglet0n, Brazoria H. C. STEWART, Pecos Sub-Station . . . . . . . . . . . . . . . . . . . ..Pecos, Reeves . G. T. MoNEss, Nacogdoches Sub-Station. . .Nacogdoches, Nacogdoches I Note.—-The main station is located on the grounds of the Agricultura Mechanical College," in Brazos County. The postoflice address is g Station, Texas. Reports and bulletins are sent upon application to,‘ Director. A postal card will bring these publications. ’ A TABLE OF CONTENTS. v Page ical . . . . . . ._ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 i s of Availability of Plant Food. . . . i . . . . . . . . . . . . . . . . . . . . . t; ids for Estimation o5 Potash . . . . . . . . . . . . . . . . . . . . . . . . . .‘ . . 7 i’ 0f Influence 0n the Composition of the Soil Extract . . . . . . 8 Minerals of the Soil . . . . . . . . . . . . . . . . .' . . . . . . . . . . . . . . . .. 9 i_ Dissolved by Strong Acids . . . . . . . . . . . . . . . . . . . . . , . . . . .. 9 a A Dissolved by Weak Acids . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 9 ity of Potash Absorbed by Minerals . . . . . . . . . . . . . . . . . . . . . 10 ion of Dissolved Potash . . . . . . ." . . . . . . . . . . . . . . . . . . . .3 . . . . . . 11 on of Potash from Aqueous Solutions . . . . . . . . . . . . . . . . . . . . 12 Seance of the Dissolved Potash . . . . . . . . . . . . . . . . . . . . . . . . 14 ‘n of Pot Experiments to the Active Potash . . . . . . . . . . . . . . 15 ions Which Affect Production in Potash . . . . . . . . . . . . . . . . . 16 i» of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ._ 17 ~= Results . . . . . . . . . . . .7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18 All to Potash Content of Crops . . . . . . .1 . . . . . . . . . . . . . . . . . . . 33 to Quantity of Potash Removed from the Soil . . . . . . . . . . 35 1 ncy a Relative Term . . . . . . . . . . . . . .- . . . . . . . . . . . . . . '. . . . ~ 36 i Active Potash by the Soil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 "ry and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 [Blank Page in Original Bulletin] ACTIVE POTASH OF THE SOIL AND ITS RELATION TO POT EXPERIMENTS. BY G. S. FRAPs, CHEMIST. I This is a technical bulletin intended for scientific readers only. [he application of the information secured in this work t0 Texas oils will be made in later publications. By “active potash” we mean the potash soluble in fifth-normal nitric acid. It is the object of our Work t0 ascertain the origin of he potash dissolved by this solvent, and its significance to soil chem- stry. HISTORICAL. Active potash and phosphoric acid were usually studied together. Gerlach (1) states that from several hundred experiments on dilute olvents for two years with 16 soils, a 1 per cent citric acid best erves to indicate the needs for phosphoric acid. There are, however, xceptions not yet explained. I Dyer (2) found the root acidity _of 100 plants to vary from 0.34 with lolanaceae to 3.4 with Rosaceae and averaged 0.91 per cent. He ap- »lied 1 per cent citric acid to soils of known character of the Rotham- ted Experiment Station and found the results with potash and phos- ihoric acid in accordance with the history and properties of the amples. He concludes that a soil containing less than .01 per cent ota-sh or phosphoric acid soluble in this solvent is usually in need f a. corresponding fertilizer. The American Association of Oificial Agricultural Chemists (3), ilrough various Referees, undertook studies of citric acid and other >vents. The Experiment Station at Halle (5), Germany, uses weak citric aid. Liebscher (6) obtained results in accordance with those of Dyer. The Hatch Experiment Station (7) obtained results which ‘did not >rrespond with the yield. Sap acidity of wheat (8) was found to be equal to 0.48 per cent tric acid, of clover 1.02 per cent. Hall and Plymen (9) tested per cent citric acid, equivalent hydrochloric acid, acetic and water iturated with carbon dioxide, on 19 soils. The 1 per cent citric aid gives results most nearly in agreement with the recorded history Ethe soil, though there is evidence that the same interpretation can- )1? be placed on results obtained from all types of soils. Cousins and Hammond (10) found Dyer’s method unsatisfactory 1 the highly calcareous soils of Jamaica, unless first neutralized; ien they agreed with the known productiveness. Kudashey (11) recommends 1/2 per cent oxalic acid and reports isults on 62 samples of soils. importance in the case of phosphoric acid and potash is appar 6 TEXAS AGRICULTURAL EXPERIMENT STATIONS The Dyer method agreed with field tests 0n clay soils but -, other types of soils (12). p f. Moore (4) compares the quantity of potash and phosph extracted from the soil by dilute acids, With the quantity A by crops from the soil, regardless of the deficiencies of the j, any particular plant food. On the basis of this Work he the use of one-two hundredth normal hydrochloric acid. ‘j Buler (13) states that Water containing carbon dioxide ter results than dilute acids. A soil containing less than 0. cent potash soluble in carbonated water is deficient. _ Ingle (14) found that extraction with 1 per cent citric aci, the soil less productive at first, but the active plant food is g i restored. ' REFERENCES. (1) Gerlach, Experiment Station Record 3, 208. .(2) Dyer, Experiment Station Record 5, 1013, from Chem. Soc., 1894, 115. A (3) Report of Referee on Soils, Bulletins 47, 49, 51, 56, i, Division of Chemistry, U. S." Dept. of Agriculture. (4) Moore, Jour. Am. Chem. Soc., 1902, page 109. (5) Experiment State Record 5, 471. - (6) Experiment Station Record 7, 664. (7) Experiment Station Record 11, 508. (8) Experiment Station Record 11, 1018. (9) Experiment Station Record 13, 914. (10) Experiment Station Record 15, 335. (11) Experiment Station Record 17, 527. (12) Wannes, Experiment Station Record 18, 208. (13) Ann, Agric. de la Suisse, 1909, 161. ’ (14) Chemisches Centralblatt, 1905, 1, 285. FACTORS OF AVAILABILITY OF PLANT FOOD. The amount of any given plant food which is withdrawn fro soil by the plant does not depend upon one condition only, r5’ dependent upon and conditioned by a number of factors. Amer. Chem. Jour., 32, 1904.) These factors may be Q follows : i (1) The quantity of the element present at the beginning n‘, growing season in forms of combination which can be partly or? pletely absorbed by the plant. This may be called chemically able plant food. (2) The condition of the soil particles. Compounds chemi available may be enclosed in the soil particles so as not to n: posed to the action of plant roots. Such compounds are phy unavailable. If the incrusting substance is removed, such bodi come chemically available. (3) The amount of the plant food transformed during the ing season into forms of combination which can be absorbed by pl, The factor is certainly of importance with respect to nitrogen‘; THE ACTIVE POTASH OF THE Son. 7 i; so great; but the matter requires study. This factor may be ed weathering availwblllty. § (4) The nature of the plant. Plants differ in both their capacity . H such differences, there is no doubt but that they exist. We call "s factor physiological availability. ., .;The character of the soil, its chemical composition, the conditions -'ch prevail during the growth of the plant, and perhaps other lctors influence the amount of plant food taken up. METHODS FOR ESTIMATION OF POTASH_ The potash of the soil is estimated by three groups of methods: (l) By complete decomposition of the soil, and the estimation of the potash contained therein. This method gives the total quan- -» of potash in the soil, but what the particular significance of the jtash is with respect to soil fertility has not yet been made clear. i large portion of such potash is in highly insoluble form. I, (2) By partial decomposition of the soil with strong hydrochloric id. This method indicates the wearing qualities of the soil. _ (3) By extraction with dilute acids. This method is proposed to imate potash in such forms as are easily taken up by plants, and g. estimated by N/5 nitric acid is termed “active potash” in is bulletin. METHOD OF ANALYSIS. o. The following are the methods used by us for active phosphoric id, active potash, and acid consumed: ' I Weigh 200 gm. soil into a 21/; liter glass stoppered bottle. Add hactly 2000 cc. N/5 nitric acid, measured with a flask. Place in a ater bath previously heated to 40° C. Digest five hours, shaking half hour. Filter on a large double fluted filter. When cold, *2. 1600 cc. for the estimation of phosphoric acid and potash, and the remainder of the filtrate for “acid consumed.” Evaporate the 160000. at first in a large dish on the steam biatli, en in small dish on the steam bath, add about 10 cc. hydro- '11 oric acid when nearly dry, evaporate to complete "dryness on Water path, and heat in air bath to render silica insoluble. Take up resi- ‘u in water, add a few drops of hydrochloric acid, and filter into : 100 cc. flask. Make up to volume. When the soil contains consid- .5 able lime, the liquid cannot be evaporated completely in a water ‘th, but should be covered and placed in a drying oven, and the ‘mperature raised slowly until the mass is sufficiently dried. i. Phosphoric Aclcl.—T‘ia-ke 50 cc. for phosphoric acid (do not wash nt pipette with liquid, as exactly 50 cc. must be left). Add 10 cc. itric acid, make alkaline with ammonia, then very slightly acid. dd 10 to 20 cc. molybdate solution, and digest at a temperature be- ‘,- 50° C., for three hours. Filter and titrate as usual for phos- 3 oric acid. Use the 50 cc. remaining for the estimation of potash. ‘ The volumetric method is, in our opinion, more accurate for soils an the gravimetric method. Potash-Wash the 50 cc. reserved above into a porcelain evaporat- r absorbing food and their need of it. Whatever the cause, temperature, and the’ proportion of soil to solvent, all affect t_ 8 TEXAS AGRICULTURAL EXPERIMENT STATIONS ing dish and evaporate once with a large excess of hydrochlori, Dissolve in water and acidify with hydrochloric acid suffid take up the basic salts formed by evaporation, and then ev“ with platinum solution after acidifying. Complete as in u_ method. Protect from ammonia fumes at all times. It is tant that the nitric acid should be completely removed. ' Acid Consuvmed.-—Heat 10 cc. of the filtrate to boiling, boil; minutes, titrate with N/10 NaOH and phenolphthalein. M blank on the original nitric acid solution, and calculate th centage of the- acid which was consumed by the soil. The qu of “acid consumed” is a measure of the lime and magnesia ., neutralizes the solvent. 3‘ Correction for N eutralization.—The above method "does not‘ vide that the strength of the solvent should be increased to ’ for the acid neutralized by the lime (see Bulletin 126, this Sta t) We do not believe such a correction should be made, excepting sibly with calcareous soils which neutralize 80 per cent or mo’ , the acid. Even with such soils, however, further experiments decide which procedure will give the more satisfactory v1‘ Analyses of soils of such character are exceedingly difficult to ' pret, because the dissolved carbonate of lime may contain plant a which is not exposed to the roots of the plant. i FACTORS OF INFLUENCE ON THE COMPOSITION OF THE SOIL EXTRA The amount of potash extracted from the soil by a given sol l‘ is the difference between that dissolved from the potash =5 and that absorbed by the fixing particles of the soil. That 'y say, the soil extract does not necessarily represent the solubilit the potash minerals exposed to the action of the solvent, but is _, resultant of the, solvent and fixative forces. Furthermore, the q’ tity of potash minerals exposed to the action of the solvent dep upon their condition in the soil and the solubility of the protec material in the solvent used. If the mineral is enclosed Wi quartz, it is quite effectually protected from any solvent. If f‘ contained within zeolites, it may be affected by some solvents and by others. If it is contained in carbonate of lime, the latter will dissolved by any acid solvent,_with consequent exposure of the eluded potash mineral to the action of the solvent.‘ The quantity of potash contained in the soil extract may ‘dep upon three factors: ( 1) The quantity of potash minerals exposed to the solvent, A‘ its solubility under the conditions of the extraction. i“ (2) The solubility of the soil materials which protect or encl potash minerals. I (3) The power of the soil to fix potash under the conditions if the extraction. The strength of the solvent, its nature, the period of digestion, V, 1: quantity of potash contained in the soil extract, but they have the effect through action on the three factors mentioned above. * THE ACTIVE Pomsrr OF THE SoIL 9 POTASH MINERALS OF THE SOIL. A large number of minerals are knovm to contain potash, but we iave little information concerning their occurrence in the soil, or heir relative values as sources of potash to plants. Potash min- erals may, in general, be said to belong to three groups: (1) Unchanged particles of minerals from igneous rocks, such as ?elspar, or microcline. These are Well known to be present in soils. (2) Secondary minerals, formed by the Weathering agencies upon "he primary minerals, and, in general, more easily acted upon by aolvents. (3) Absorbed potash held by minerals, being) the potash liberated ay Weathering, or added in manures or fertilizers, and held by min- >rals in a loose form of combination. POTASH DISSOLVED BY STRONG ACIDS. Minerals containing‘ potash were brought in contact with strong iydro-chloric acid, as used for soils by the (American) Association of Jfticial Agricultural Chemists. The quantity of mineral containing ).l gm. potash was heated with 100 cc. hydrochloric acid, sp. gr. L115. The results are as follows (see Table 1): The potash of nephelite, leucite, glauconite, and biotite was com- aletely removed. Thirty-seven per cent of the P0tash of muscovite (one sample) was dissolved. Two samples of microcline.‘ and four samples of orthoclase gave up 0 to 4 per cent of their potash. We ronclude that the potash dissolved from the soil by strong acid does iot come from orthoclase or microcline. except to a slight extent. It may come from biotite, or hydrated silicates, or partly from nuscovite. The potash undissolved by strong hydrochloric acid is "hus largely in the form of feldspar. 4 POTASH SOLUBLE IN WEAK ACIDS. The potash soluble in Weak acids was studied in order to ascer- tain the source of the potash removed when the active potash is estimated in soils. The solvent chiefly studied was fifth-normal iitric acid, though other solvents are being considered. The ratio of soil to solvent was 0.5 gm. potash to 1000 cc. acid. The min- erals were ground to pass a 100 mesh sieve and the methods were the ;ame as for soils. This would correspond to a soil containing 0.5 per cent potash, since in soil analysis 100 grams are treated with 1000 cc. solvent. (See Table 1.) The minerals may be divided into three groups according to their Jehavior to N/5 nitric acid. (1) Practically no potash removed.—Microcline and orthoclase. (2) Less than 10 per cent potash remo"ved—Glauconite and biotite. (3) From 15 to 60 per cent potash remo~ved.——Muscovite, nephe- lite, leucite, apophyllite, phillipsite. When the mineral is in a coarser state of division, a smaller per- rentage is dissolved. Solubility in 0.5 and 2 N. Acidv.—Tests of the solubility of min- erals in 0.5 and 2 N nitric acid also were made as previously ‘de- ;..loosely-held potash was thus washed out. pfhe. original mineral and in the treated mineral, and the difi “A lyvas assumed to represent absorbed potash. '0 iukquantity of the treated mineral containing 0.25 gm. of . tiwasdigested for five hours at 40° with 500 cc. of N/5 nitric ; ‘ffilxtered, and potash determined in an aliquot of the filtratef“ 10 TEXAS AGRICULTURAL EXPERIMENT STATIONS scribed. Increasing the strength of the aacid had practi effect upon the potash dissolved-from microline, orthoclase, glauconite and muscovite. Only with nephelite, leucite, phyllite, were there marked changes in the quantity of p0 ‘ solved as the acid was stronger. 1 There was thus no one mineral from which the N/5 nitric _ solved all the potash. The potash dissolved by this acid, the, represents a part of the potash in the form of the more e 1' composed minerals, and not all of such potash. ' TABLE 1—POTASH EXTRACTED BY SOL-VENTS FROM MINERALS.‘ Percentage oi Potash Dissolved by— Labora Strong 1 tory N0 Hydro- N/5 Nitric N/2 Nitric 2 N Nitric chloric Acid. Acid. Acid. Acid 1177 Microcline _________________ __ 4.00 0.90 1.00 i 1.30 1180 Microcline _________________ __ 4.00 1.30 1.30 | 1.50 224 Microcline _________________ _- 3 . 00 1.60 1 .20 j 0.80 720 Microcline ................. -- 0.50 0.80 2.20 ‘ .......... _- 725 Microcline _________________ -_ 3.00 0.80 2.00 __________ -- 1178 Orthoclase ________________ -_ 0.00 1.10 1.20 1.40 718 Orthoclase ________________ -- 4.00 0.70 1.90 .......... __ 730 Orthociase ____________________________ _- 1.30 0.40 .......... __ 1176 Biotite ____________________ _._ 100.00 26.40 29.00 __________ _._ 2563 Biotite ________________________________ __ 26.70 ______________________ __ 261 Biotite ____________________ __ 100.00 ______________________ __ _ 1175 Glauconite _-_, ____________ _- 100.00 5.40 5.80 g 12.00 1174 Glauconite ____________________________ -_ 5.00 5.40 l 6.30 1179 Muscovite _________________ __ 37.00 17.10 16.40 16.60 734 Muscovite _________________ __ 52.00 18.00 18.00 l 21.30 . 2397 Muscovite _____________________________ ._ 26.00 __________ __‘ __________ __ f 253 Nephelite __________________ __ 100.00 49.30 65.60 96.70 i.’ 711 Leucitc ____________________ _ - 100. O0 56 .60 86 . 20 l 100.00 f‘ 717 Apophyliite _______________ __‘____ _ 67.50 89.00 __________ -- r 1388 Apophyllite _______________ __ 58.10 ______________________ __ “‘ 1405 Phillipsite _________________ __ ‘ 58.50 ______________________ __ 1393 Pinite ______________________________ _. 5.40 ______________________ __ SOLUBILITY OF POTASH ABSOR-BED BY MINERALS. The finely-ground minerals selected for this work were treated a strong solution of sulphate of potash; and after remaining in‘, tact twenty-four hours they were washed thoroughly and dried. Potash was estimat" i equal weight of the original mineral was treated with acid in’ same way and at the same time, and potash estimated. The '0 ence in the two was assumed to represent absorbed potash diss by the solvent. » '; V The results of this work are represented in Table 2. They; expressed in percentages of the potash present. From 3 to 100i per cent of the original mineral potash were dissolved by the solvi These figures, however, are not at all accurate, on account of‘ small amount of potash used. . 5 From 36 to 100 per cent of the absorbed potash was extracted; 3 THE ACTIVE POTASH OF THE S011. 11 the solvent N/5 nitric acid. The average recovery is 79 per cent. It is evident that the bulk of the absorbed potash dissolves in this reagent. ‘ - Solubility in 2% Amm0n-ia.—As ammonia has been proposed as a solvent for soil potash, we tested its effect upon the potash ab- sorbed. The mineral described above containing 0.25 gm. potash absorbed Was digested twenty-four hours at room temperature with 1000 cc. of 2% ammonia. Two hundred cubic centimeters were evap- orated to dryness, transferred to a platinum dish, ignited with 1 cc. sulphuric acid, taken up With acid and water and evaporated with platinum as usual. TABLE 2—POTASH FIXED BY MINERALS AND DISSOLVED BY 1W5 NITRIC ACID AND BY AMMONIA. Percentage of Potash Percentage of Potash Per Cent of Potash Dissolved by N/5 Dissolved by 2% In— Nitric Acid From—- Ammonia From— Labora- tory No. Mineral After ' Mineral. Treated Mineral Fixed Mineral Fixed with Pot- Potash Potash. Potash. i Potash ash Salts. l 1387 Stilbite _______ __ 0.28 3.95 27.00 80.00 18.00 . 11.00 1389 Stilbite _______ __ 0.64 2.85 13.00 84.00 11.00 9.00 2392 Stilbite _______ __ 0.17 4.09 18.00 63.00 __________ __‘, __________ __ 2552 Stilbite _______ -- 0.28 4 . 40 34 .00 68.00 __________ - _‘ __________ _ _ 1304 Thonlasonite - 3.62 4.01 3.00 ‘ 100.00 4.00 1 10.00 1401 Thomasonite -_ 0.29 1.00 __________ __1 ______________________ “l __________ __ 1205 Natrolite _____ __ 0.51 1.20 __________ -1; __________________________________ __ 1396 Natrolite _____ __ 1.24 1.59 10.00 100.00 4.00 45.00 2996 Natrolite _____ -- 0.34 1.37 8.00 93.00 ______________________ -_ 1400 Analcite ______ __ 0.47 1.54 6.00 54.00 6.00 13.00 1402 Ohabazite ____ __ 0.90 4.82 48.00 83.00 16.00 14.00 2551 Ohabazite ____ __ 1.00 5.96 100.00 89.00 __________ __|. __________ __ 3555 Heulandite _____ 0.35 1.70 13.00 36.00 ______________________ __ 3556 Pectolite _____.- 0.54 9.89 3.00 100.00 ______________________ -_ Average ________________________________________ __' 79.00 __________ __ 18.00 The results of this experiment are also 1n Table 2. On an aver- age, only 18 per cent of the absorbed potash was dissolved. We do not consider ammonia to be a good solvent for soil potash. FIXATION OF DISSOLVED POTASH. In our study of the phosphoric acid of the soil (Bulletin 126, this Station), we found that some soils have a very high power for with- drawing phosphoric acid fro_m solution, so that it is not possible to tell with them whether much phosphoric acid is present in active forms or not. A similar study has been made of the potash of the soil. Method 0f Work-The method used is as follows: Weigh out two portions of 100 grams each. Add to one portion 1000 cc. of N/5 nitric acid. Add'to the other 1000 cc. N/5 nitric acid containing about 20 mg. potash. Digest five hours at 40° as for active potash in soils, and finish as for active potash in soils using 800 cc. of the solution for the estimation. Results.—Table 3 shows the results of a single experiment of this kind. Table 4 shows tests upon ten soils. Soils were selected for 12 TEXAS AGRICULTURAL EXPERIMENT STATIONS this work which had a comparatively high absorptive pow potash in preliminary tests in aqueous solutions. The analys made in duplicate. , ~ We find that, although the soil has the power to withdraw w from acid solution, yet this power is not great, and the absoj power of the soil for potash is not by any means as great a fac the estimation of active potash, as the absorption of phosphori may be in the estimation of active phosphoric acid. In Table _ Bulletin 126, we find seven of the thirty-nine soils to fix ov per cent of the added phosphoric acid. The maximum fixatil potash we have is 42 per cent. TABLE 3——POTASH ABSORBED BY‘ A SOIL FROM ACID SOLUTION. Labora- tory No . 1138 Parts per million potash in original soil .................................... __ Added potash ________________________________________________________________ -- Total which should be extracted _______________________________________ _- _-_ Actually extracted _____________________________________________________ -_ _-_ Loss (absorbed) __________________________________ _._ ______________________ __ Percentage absorbed ______________________________________________________ _- TABLE 4——PERO‘ENTAGE OF ADDED POTASH ABSORBED BY SOILS. ‘Absoi Labora- Percentage Pow tory No. Absorbed. 240 parts per million of potash added: 929 42 ..... -- 11.28 23 1138 26 1204 30 1265 25 1935 28 > Average ____________________________________________ __ 29 l 198 parts per million of potash added: 1127 __________________________________________________________________ __ 13 1140 __________________________________________________________________ __ 9 1131 __________________________________________________________________ __ 13 1100 __________________________________________________________________ __l 7 Soils with an average fixing power of 73.6 per cent (see n section for method) for potash from water, fix only on an aver 29 per cent from N/5 nitric acid. Although this fixation will 1;» an effect upon the quantity of potash secured from the soil, .-_. should not be entirely disregarded, yet the fact ‘that the potash p‘ solved does_not represent all of any one class of potash compoun’ but only a percentage thereof, renders the matter of this fixation ’ - much less importance than with phosphoric acid. .~ FIXATION OF POTASH FROM AQUEOUS SOLUTION. It is of some importance to know the relative fixing power of so, in connection with the foregoing statements. Table 5 contains summary of the fixing power of such Texas soils as wehave studiq at the date of this Bulletin. ' The estimation of fixing power was made as follows: i‘ THE ACTIVE PoTAsH OF THE SOIL 18 i taxation 0f Potash by Soils.—Strong Potash Solution. Secure a ple of sulphate of potash which has been subjected to analysis. ertilizer.) Dissolve the quantity containing a little over 4 grams tash (K20) and make up to 4000 cc. Determine the strength of ' solution, using 10 cc. and treating directly with platinum. Dilute that 10 .cc.=.010 gram K20. Weak Potash Solut1l0n.—Place 200 cc. strong potash solution in aduated flask and make up to 2000 cc. -llace 50 grams soil in a glass stoppered bottle and add 200 cc. a: potash‘ solution. Let stand twenty-four hours, shaking every hour during the working hours. Filter, acidify 100 cc. of the ate with hydrochloric acid and evaporate to dryness in a room Te from ammonia. Ignite gently, ifnecessary, to remove organic tter. Heat in drying oven to dehydrate silica, take up with hot {iter and a little acid, filter, acidify filtrate, and evaporate with 2 cc. tinum chloride. Complete as in Moore’s method. Subtract the intity of potash found from that "which should be present in 100 ' (.0100 gm.) and express results as percentage of potash fixed. able 5 shows the fixing powers for potash of 107 Texas soils. se with over 70 per cent fixation power are 21.5 per cent of the _.= It might be necessary to consider the fixation of these soils in ection with the estimation of active potash, EFFECT OF SUCCESSIVE DIGESTIONS. '- number of soils were subjected to successive extractions with ,5 nitric acid. The soils‘ Were digested with [acid as usual in the 'mation of active potash, allowed to drain after filtering, and w back into the bottle with N/5 nitric acid. The filtrate was ured. Five or more successive extractions were made. The re- are presented in Table 6. 11 TABLE 5>FIXING POWER OF TEXAS SOILS FOR POTASH. ~ Number of Per Gent 11g Power from Water. Samples. of Total. i 1111131330992 ______________________________________________________________ -- u 1 ' _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ .- .. vosoi ______________________________________________________________ __ 10 9.30 “in ____________ __'_ __________________________________________________ __ 9 8.40 ~- 40-50% ....... __ _--_ ____ -- ----- 1g 1 97017;IIIIIIIIIIIIIIIIII____-.__________-_--___--____--__-_--IIIIIII is; igigsg n 30907: IIIIIIIIIIIIIIIIIIIIIIIIII'"'""""_m“"mmmmIIIII 5 4170 ~. 9o1oo% ............................................................ -_ 1 0.90 i m1 __________________________________________________________________ _- 107 (100.00) he extracted potash decreases with each extraction to about 25 100 parts per million in the fifth extraction. That is to say, the ' y soluble potash is removed by the first several extractions, and ,1 the dissolved potash represents only a small fraction of the 41y insoluble potash minerals. The first extraction does not re- F all the easily soluble potash, and We have seen that it does "extract all the potash from‘ the minerals we tested on the first 14 TEXAS AGRICULTURAL EXPERIMENT STATIONS extraction, but leaves a portion to be removed by subsequen tractions. TABLE (‘r-POTASH REMOVED BY SUOGESSIVE EXTRACTIONS, IN Pains, PERI MILLION. _= Labora- 4 p ' tory No. 830 818 1122 v 2303 2.501 Extraction N0. 1 lost 248 167 1066 94 Extraction No. 2 1030 76 75 1060 57 Extraction No. 3 299 47 45 35 30 Extraction No. 4 119 50 59 102 45 Extraction N0. 5 86 46 92 136 66 Varying Amounts 0f Sol/venti-In this experiment, mineral con I ing 0.5 gm. potash was tested with 500, 1000 and 2000 cc. respectively. The results are presented in Table 7. Increase in 7 ume of the solvent caused a slight increase in the percentag potash dissolved. l TABLE 7—POTASH REMOVED FROM MINERALS BY DIGESTION WITH DIFFE AMOUNTS OF N/5 NITRIC ACID. 1 In Grams- i In Percentages- Labora- ~ tory No. 500 cc. 1000 cc.‘ 2000 cc. 500 cc. » 1000 cc. 2000 224 Microcline ____ -_ .0017 0029 .0040 l 0.4 0.7 1175 Glauconite _-_--l .0144 0153 .0188 i 3.0 as 1177 ‘Microcline ____ -_ .0033 i 0045 .006 0.8 1.1 1178 Orthoclase _____I 0032 '1 0050 0065 L 0.8 1.2 Varying Amounts of ZVIOneral.—A fixed amount of solvent p treated with increasing quantities of minerals. The larger quan, of mineral caused a somewhat larger amount of potash to go “' solution except in one instance. Expressed in percentages, the centage decreases with increase in quantity of mineral. ( Table 8.) With a soil containing 1 per cent potash in orthoclase or mi cline, about 1 per cent of this potash would be dissolved—about A parts per million. If the soil contained 0.5 per cent of such y» about 60 parts per million would be dissolved. The fineness of 5 mineral in the soil would of course affect the potash dissolved. TABLE 8—VARYING QUANTITIES OF MINERAL POTASH TO 1000 cc. SOLVENT, i 0.1 Gm. 1 0.2 Gm. 5Gm. i 1.0 ‘A 4 0. ‘ Potash. p Potash. ; Potash. 1 Pota. MicroclinwGrams potash dissolved _____________ _-; .0035 . .0043 .0060 I H5 l Orthoclase—Grams potash dissolved; ____________ J‘ .0031 .0049 I .0072 .01 _ ~ Microcline—Pc-rcentage potash dissolved ________ ._i 3.5 2.2 p 1.2 I 1.0 ; Orth0clase—~Percentage potash dissolved _______ -_ 3.1 3.5 g 1.4 1 1,2 SIGNIFICANCE OF THE DISSOLVED POTASH. We consider that our experiments show the potash dissolved fro the soil by N/5 nitricacid up to approximately 100 parts per 0 ’ lion, represents a small percentage—1 or 2 per cent—of a compa tively large amount of potash-bearing silicates,“ such as MY. THE ACTIVE POTASH OF THE S011. 15 liThe exact quantity of potash originating in this way will depend .»upon the character of the mineral potash, its degree of-fineness, quantity and distribution in the soil. The quantity of such potash ETdiSSOlVGd will of course remain nearly constant when the soil is ex- ttracted successively a number of times with the same weak solvent. gFurthermore, it will supply some potash to plants, in quantity de- iipending upon soil and weather conditions, as well as on the factors §referred to above. The quantity of potash extracted in excess of approximately 5O gparts per million represents a comparatively large percentage of a §small quantity of soluble potash. The quantity of this potash will, Egtherefore, decrease when the soil is extracted several times with the §same weak solvent. This potash is not all of the same value to ?plants, but can very easily vary in the readiness with which it is ftaken up. In other words, plants do not necessarily Withdraw the same quantity of potash from soils which contain the same amounts of active potash. Relation to Acid Consuimedrlfhe acid neutralized by the lime and magnesia dissolved from the soil is expressed in percentage of the acid used, as “acid consumed.” The quantity of lime and magnesia dissolved of course increase as the acid is used up. The more lime gand magnesia dissolved, the greater the possibility of these substances tcontaining potash compounds, which may be thus exposed to the gsolvent, but are, nevertheless, protected from the action of the roots 50f plants. This introduces another element of uncertainty for which git is very difficult to correct. The lime and magnesia going into solution of course decreases the fstrength of the acid. It has been proposed to correct for this de- crease by making a preliminary test and using sufficient acid in "addition to compensate for that neutralized by the bases. We do §n0t believe such correction should be made, excepting with soils which ‘very nearly neutralize the solvent (80 per cent acid consumed or fmore)- The lime and magnesia come from silicates as well as from carbonates, and an increase in the strength of the acid is accom- panied by a greater solvent action upon such silicates. Also by the method of correction used, after the digestion, the acid would not have the N/5 strength it was corrected to have. RELATION OF POT EXPERIMENTS TO THE ACTIVE POTASH. For about seven years we have been making pot experiments with representative Texas soils from different parts of the State. These experiments were carried on under varied conditions. With some of them the conditions were very favorable, while with other groups the conditions were not so suitable. The results are, therefore, not com- parable one with another. We can, however, compare the crop pro- duced on the pots receiving potash with those without potash. I From the work presented on the previous pages, it appears that {the potash ‘dissolved by fifth-normal nitric acid from a natural soil, jin excess of 5O to 100 parts per million, as a rule, comes from the easily soluble potash compounds. It does not follow that soils con- frtaining the same quantity of easily soluble potash compounds should 16 TEXAS AGRICULTURAL EXPERIMENT STATIONS react in the same manner towards potash fertilizers. The _, compounds may be different in value in different soils. " The potash compounds which are dissolved by a solvent may _ the outside of soil particles, and exposed to plant roots, or g the soil particles, as already pointed out. » _ Reducing it to its lowest terms, the analysis of a soil witii nitric acid amounts to this: Knowing the quantity of potash extracted by the solvent, estimate how much easily soluble potash is present in the soil. V . knowing the amount of acid consumed, we must judge to I: tent this potash is distributed within the mass of the dissolv terial, and to what extent it is exposed to the roots of the_ F‘ Having estimated the amount of exposed potash compounds, we next to inquire how much is necessary to make a soil fertile. _ conditions affect the rate and the quantity of potash which compounds give up? Then we have to consider the probable i of the highly insoluble compounds of potash, which are present. CONDITIONS WHICH AFFECT PRODUCTION IN POTS. In pot experiments, the attempt is made to keep all cond' constant except the one to be tested, maintaining the other as f able as possible. It is, however, impossible to maintain only; variable. The main variable may be predominant, but there i others to be considered. Suppose, for example, we are studying; efiect of potash on the soil, as is the case with much of the here presented. We apply a complete fertilizer containing i»? phoric acid, and nitrogen and potash, and compare its effect a sample topwhich phosphoric acid and nitrogen only are u; The variable is thus potash. But in addition the potash may n the bacterial life in the soil, and this effect may conceivably be -_ favorable or unfavorable to the development of the plant. effect upon the bacterial life may vary in different soils. The p0, may also have some effect upon the reaction of the soil, accor to the kind of material used, and this may vary from soil to If The potash may affect the physical structure of the soil, etc. quite possible that these secondary reactions may on some soils greater effect than the primary one, namely, the presence or abs“ of the potash. ; It is obvious, however, that some controlling condition must ' i, the size of the crop in pot experiments, either the season and cli conditions, the soil, or soil conditions. Suppose the conditions so favorable that the potash in the soil and in the fertilizer, toge ~j A becomes the controlling condition. It is obvious that the potash- v the soil cannot alone force as large a production as potash in _ soil and in the fertilizer together so that the addition of potash _ increase the yield‘, and the soil will appear to be deficient in pot: The soil may be an excellent one, and able to yield good crops wi out fertilizers, but if in our pot experiments other conditions are: favorable that the total and largest amount of potash becomes f limiting condition, the soil must appear as deficient, no matter good it is. The crop from the unfertilized soil will be large, h, \ THE ACTIVE POTASH OF THE SoiL 17 . ' ' l ' at from the fertilized one will be larger. This is, of course, an treme case. Seasonal conditions and the seed will often limit the jop. Yet it is possible in pot experiments to "demand of the soil in l "e pot more than very fertile soils can accomplish in the field. We T all come back to this subject later, and in studying the quantity of pltash removed in pot experiments, We shall find, at times, enormous » antities. JThe conditions under which pot experiments are made are un- ubtedly, in some respects, more favorable to the soil than field ‘nditions. Some of the conditions may also be less favorable. In a Work, the soil is Well pulverized, and thus in a good mechanical ndition. It is usually air-dry, and it has been shown that air- -- i 'ed soils are perhaps more productive than the same soil not dried. e soil'is sub-ventilated, and this is a distinct advantage, espe- lly for heavy clayey soils. The temperature in the pots is higher 2| the temperature of the soil in the field. The application of ults of pot experiments to field conditions is being made a sub- t of study by us. METHOD OF WORK_ These pot experiments were not all conducted in exactly the same ;er, but the general procedure is as follows: QWashed gravel was added in sulficient amounts to an 8-inch Wag- pot to make the total weight 2 kilograms. Five kilograms of 1'1 was then added. The soil had been previously pulverized in a “oden box with a Wooden mallet until it would p-ass a 3 mm. sieve, avel being removed. . The addition of fertilizer consists of 2%; grams of acid phosphate, ~gram nitrate of soda, and 1 gram sulphate of potash. In later eriments 1 gram of ammonium nitrate was used in place of nitrate ‘f soda. If the size of the crop appeared to render it necessary, nitrate of soda or sulphate of potash was added to the pot. vey were added in solution, 10 cc. equals 1 gram, but, if added after ‘ nting, the solution was diluted with about 200 cc. of water. .§The seed were weighed out so that each pot received the same ount of seed within 0.1 of a gram. Water was added‘ to one- f the saturation capacity of the soil. If this quantity was. found Qbe too great, it was afterwards reduced, but this was the case in filly afew instances. The pots were weighed, placed on scales three fines a week, and water added to restore the loss in weight. If the §ants needed Water between these Weighings, such quantity was fided as appeared necessary. The object of the weighing was to Qaintain as closely as possible a constant amount of water in the few of these experiments were conducted in a greenhouse be- iiiging to the Horticultural Department, and a number were made Q trucks covered with wire rhosquito netting. The trucks were filled into the house when a storm threatened. Later experiments flare made in houses covered with canvas. These houses appear to, be fiy well suited to pot experiments under Texas climatic conditions. ‘key are very much better for this purpose than glass houses for the rbison that the circulation of the air is considerably better and the s 18 TEXAS AGRICULTURAL EXPERIMENT STATIONS house does not become so heated. Many of the latter exper' were carried on in houses with glass roof and canvas sides. appears to be the best form of houses for our climatic condition‘ spring, summer and fall work. a In the following discussion we will consider all the crops are shown in the table. There are some crops which should pro be excluded. We must also remember, in this connection, that on soils, five or more crops were grown and on others only one. B are dealing here with individual crops, and not with the soil. ’ GENERAL RESULTS. Table 9 contains the results of 403 pot experiments on 172 _ arranged in groups according to the active potash contained soil. The table shows the “deficiency” based on the relation? tween crop in the completely fertilized crop, and the ,()ne Wi i’ potash, the active potash in the soil, the weight of the crops 1 and Without potash, the kind of growth, the year of the experh the percentage of potash in the crop, and the potash removed n; the soil by the crop in parts per million. F Deficiency Based on Weight 0f Or0p.--The results of the e o? ments, as regards deficiency of the soil based on weight of the c, is presented in Table 10. ' ' l A crop is tregarded as very deficient (DD) if it is only 50 cent or less of the completely fertilized crop. If it is less than? per cent it is considered deficient (D). If more than 90 per it is considered as not deficient (S). Where the crop without p0 is 110 per cent or more of the one with potash, it is marked (T) THE ACTIVE POTASH OF THE SOIL 0d 0 Ed W 33 iiiii .... i3 0.2.0.0413 00E. 0.3 d.“ .......... i Essmhom ...... i QQ . ................ i E02 0:0 c335 0.3 3d W 003 .................. i3 25n|5 =23 0.0m 0.2 ............... i E00 2. m ................ i E02 2E 0302A 3Q ........... !.iiiiii_ 003 iiiiiiE 002602513 0000000 0A wd iiiiii 0.5023 iiii Q iiiiiiiiiii >20 5000A |||||||||| iwiiiiii 003 iiiiiiiiim 052.100 >325. 0% 0.0 iiiiiiii mmFQG iiii GD iiiiiiiiiiii >30 EMHQHZ .......... i_iii--ii 83 ziiifi 0520.52!» $080003 m...» 0.0 il----------i E00 2. a i---i-----iiii-i >20 0000A 08 0.0m _ 00.0 S3 .................. i3 >020 2E5‘ 0.3 dd ............... i E00 0w QQ ....... i E003 >053 2E 0:00.202 3w .......... iéiiliii 003 i--i-----ii-iiiiiiiiii 0.0 d.» iiiiiiii @000 iiii m iiiiiiii 00.2 2E 0000A M ........ i_ .......... i 003 iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i 0.0 N.” ........... i 0009200 iiiiii i m. ................ i 0E3 2E E235 ........ Jiiiiii 83 iiii--ii-iim 002.13 :25. 0.0 m5 iiiiiiii E00 E Q. iiiiiiii 00$ 00c 0000A 2» ...................... i 0003 -iiiii-Iiiiiiiiiii- 0Q. dd iiiiiii- 800 iiii QQ iiiiiQQmOQ >003 2E 0:00.82 H .................... i 93 .................................... i h.» 3d ........... i 000E200 ...... i Q ....... i 5&2 >053 20c 0200002 ........ iwiiiiii 83 iiiiiiiiiiw 0E€|3 E04 3.3 0.0 iiiiiiii E00 m0 Q ----------E02.>0§0 one 0200002 3» WM ...... -1. .......... i 003 .................................... i m.‘ .04 ............... i B00 iiii m ............... i 00am 00c 0:00.52 ................... i 003 i---i--------iiiiiilili- 0.0 0....» iiilii 0000800 iiii Q iiiiliii 3E0 000 0200002 ...................... i 003 iiiiiii-iiw 00s0i3 E00 23 0.0 iiiiiiii E00 S m iiiiiiii 000m 2E 0:00.82 I» ........... wiiiiii 003 iiiiiiiii-iiii-iii»- m.» 0.0 iiiiiiii 0000 iiii Q iiiii 00.0w 0:00.82 >E2~00Q .......... iniiiii 003 iiiiiiiiiiw oqswiwQ :23 0.0. m6 iiiiiiii 500 d» w iiiii 05$ 0200002 finunfim Q0 .......... ifiiiiiii 003 ifiiiiiiw Enfififiwmidm >25. 0d m.» iiiiiii 000000 00 Q. im§0> 8E0 00002200 50w 00E Q3 ...................... i 003 000E0000mI00 >80 0d i.» 000000 S. w iiiiiiiflcm 00E 200E >232 8 20.2.02 E5904 ZOQQAQE 22m 095E 83min Q0020 0.2 Ed 33 ................ i3 pmswfiélwQ 20E. 0.00 Nd» .......... i QQQBMQOW iiiiii i Q ............. i >20 200E. qouwsom 0.0m EA 33 ................... id 0000.3 =23 0.3 0.3m ............... i E00 ...... i m. ............. i >50 M003 0002003 0.3 3.3 003 ......... -500 >0QS000Q|NN 0020000 0.0 Wm .| .......... i 0000232 iiiiii i Q iiiiiiiiiiiii i >30 M003 copmsom 0.8 add 33 ............... i3 0wzws. 2mm 0.3 .......... i 525.3% iiii Q ............. i >20 2003 0326M 0.0m 3.0 003 ...... :5 000825213 000800000 Q5 md .......... i 0000.202 3 Q ............ i >20 200E 0002033 $3 0.0 00d 33 ............... i3 0wsws. ddm v.3 .......... i Eflflwuow iiiiii i Q ........... i aomnsm .0000 0000A 0.3 $3 003 . ........ 2m 00nE0>02|3 00nE0000m 0d d.» ........... i 0.50202 S. m . .......... i 2200200 .0000 0250A N03 0.5 00d S3 .................... id 0507.0 >52 0.3 0.3 ............... i E00 S. Q ................ i380 2E 0200002 0% ...................... i S3 iiiiiiiii>m >020 05¢ 23 wd iiiiiiii E00 S. Q iIIEQB >05; 2E 0000000000 00w i ................... i Q3 .................. iw 0cswl3 F54 0d wd ............... i 300 iiiiii i Q ................... i 00$ 0200002 .......... i iiiiii 003 iiiiiiiiiim 005.13 =23 0.3 0d iiiii 0.000800 iiii Q iiiiiiiiii 000m 0:00.82 0.3 do.» 003 . .................. iw 25ml3 =54 pd n6 .............. i c000 2. Q ................... i 000w 0:00.82 NS 50m M 2 m 2 Q 00w 00 Q0 00:22 .3000 c252 >820 .02 >00» 00m 00.3% 2 Q .502 20.00.00 H0 0020M .0830 .0000 00 08.02 00m dvQ 50w Q0 0502 -3323 E 0on0 E 20.30% 00m 00m nwapom 2Q UoPOQQ 0w5a030m @020 no 0530B obfiofi .02 2250M Zia . HQWQ>HO< ZOQQJHQH 33M MFQQAH 05TH AHDOQU 1 . 20 TEXAS AGRICULTURAL EXPERIMENT STATIONS k. X y . I a, 241k 3w Ad. oi. ......... I E00 0:3. ...... I Q ............... I ununoflu Hotel N.“ 8A . |I|x||||||1||||||||m win-HI." SHQQ 9mm 6.5 |||||||||||||| I. EOQ |||||| I H. |||||||||||||||| In unan Oflfl u-HOHMPT 93 wma ........ INN wwnflouwQlm Emnfimzvoz MA o.» ........... I cuaamufi mm m ............... I n52 2E Eouuoz a3» 9m.“ mmd T ............... IoA. umius023 555A N69 AAA ................ I3 umswiwlwm 25a 95 m? .......... I QQAEmQow ...... -- Q 505mm n8“. .85: 35E nwQsQ IN 2A ........ I” $p=$>Qz|¢A Hwnqsfiwm NA. 3. _ ........... -- unsmsz 8 a £023 Q$u .82.. macaw uifii 8E w S 3d ............... I3 pmmmfliimA 3E. 9mm wAA _ .......... I zEnulAom ...... -- QQ ...... I momnsm £2". .5522. mum R8 8s ................... Iw QQQfiIH ma? Ymw Q3 ............... I E00 IIIIII -- Q ...... I zomnsw :38 ouflvfi. 5m w w E... 82 _ .......... Iwm QQQAQQQQQION Qonopoo m6 ma. ........... I ufiwpwsfi IIIIII I Q IIIIII I zomnsw SEQ opflvuw mum Q3 8A 83 T ............. IA EQQoHBOIwA emsms< Ad m5 .............. I aflflvw ...... I Q ...... I zones» :33 opflomn cam Raw $6 $3 T ............... I3 umcmfialwm 25w MAN oAw .......... I EDQMHOW IIIIII -- Q ...... I momma» Q2» oafiofi. new Q w» QwA 82 T ....... QQQSQZZImA EMEEBQEw m.» Q... ........... I Q5525 8 m IIIII =omnsm 52¢ A5222. 5m $2 9cm $5 82 I ....... Im EEQESSZIEA Hwnfifimwm b5 m.» ........... I c.5252 om QQ ...................... I wuam £53 $3 m6 , 3A QSA ................ I3 pwswAJTIA 25H. N6 wé .......... I EDQMMOW IIIIII I QQ ........ I Sui >30 ofiopuq mum fix 3A oAmA .................... Iw wnswlA mQQaw oAm aAw IIIIIIIIIIIIII I F80 IIIIII I Q IIIII I.II Q82 >20 omnofia cam HHHHHUMHHHHH 83 mnnnnnmmmmwsnamémlww “B82. fin NM.“ J ......... I Aiaumsfi IIIIII I Q. IIIMI .52 hi". c2823 =5 .......... III---IIWIWQQEQIAN EQPEAZ w? W? - wwmw III: m II--- I fimm“ fim mwmwwmw mmw | | | | | | | | | | | | | | | | | | | | : | | | | | | | | 1| ADDS unouuIl nnnunuluuu . Iim- mg 82 ........ 1m SQSQEZIEA Awnifiaww >5 NAA ........... -- Eapmsfi m. Q. ........ I Si: .33 03934 5m wBA J ............... I m2: .................................... I A.» m5 ........... I wHQ-msfi IIII Q ................ I v52 26 @822 - mam £4 82 .................. Ifi 257.3 =QQ< i: 9w ............... I Eco S. Q ......... IIIII EH3 26 88:2 85 I . ................ I 22 .................................... I v.2 ma ............... I 3.5 III--- m .... -582 .653 2E MQQQQMQQQO IAGm ...... Iéw. 22H ................. IAN ewsfiélm ~23. 3A 9a .......... -- E8 2E. 8 a .... -552 .683 8w MEQSAEFAQ $8 T . . . . . I QSA .................................... I b6 Nd ............... -- 8.5 ...... -- m .... IE¢2 >223 9E ubfiounuko 93. i. A 33 ........ II ...... INN QmEmAJAIQ 2E. Y8 E3 .......... I E8 was». Aw m .... ISQS human 2G MQQQQ&QQQO Se» IIIIIIIIIIIIIIIIIIIIII I QSA I-IIIII-IIIIIIIIIIIII NA. v6 IIIIIIIII maaO III- Q IIIIIII 2:3 can MQEQMQFAO 9% R5 05A ................. Imm umsms<|m DE. mam 9mm I ......... I QQOQ 25h. S Q IIIIIIIIIII I can» vac nhfiwuneno 33 ...................... I 82 IIIIIIIIIm Qnswlww huaiddh. he 9m IIIIIIII 55w IIII Q IIIIIIIIII =52 Em QQFAZ ...................... I S3 IIIIINA EQESSZI» Ewnfimsnww N6 AA IIIIIIII- Eco mm QQ IIIIIIIII- :52 2E hEGA mg =5 E . M z m z Q 46w E Ho E252 .330 III. cozzg 538v .02 P8» Qwm mfiam Z nH Qdmw .SQ3OQU m0 UOEQAH 553$ AHOQQ MO oafiz QQAH éoQ AAOW MO OQQNZ IdHOfldH A: Q96 E nflsom pom gum Qmauom . hD UQ>OAQ wmapnofiwm QOQQ wO uflmwwg o>~uo< ém nmuuom dwaflgqovlmmfiwom W>HHO< ZOQAAQE NQM 953m ooimlw MDOQG Q§=5=o~lmazmiQmQQwm BOW QZ< mmflaom QAOm Q>QBO> 0N22 1..N22 0.N S2 ................... I22 02210 00 4 0N N.2N .............. I 000 002 w ........ I 8 0000 00 .2002 NNN 1m ................... I 002 .................................... I 0N N.N . .............. I 00000 ...... I w ....... I- 8002 020000 2E 00200.2 ................ 82 ...... 1N2 00000502222 00082000 0N 0.N .............. I 000% ...... I N ........ I $0.2m“ N00 2. .. N2 22.N S2 .................... I0 202.10 22000 N.0N 0.0N I1 .......... I 000 022 .2. ........ I 8 0 00 .2 20 ...................... I S2 II-III-IIIIIIIIIIIII 0.0 0.0 IIIIIIIII N000 IIII Q IIII- 8002 00000 0E 2200.202 N.NN 20.0 002 ............. IN 00080000012 .2202. N.N 0.N .............. I 0000 022 Q ....... I 8002 20000 2E 02200002 2N 0.222 NN.2 0002 .............. IN 0008300012 .2202. 0.N2 2.02 .............. I 0.200 02.2 .0 ..................... I .2020 00002 NNN ...................... I S2 0.0 0N2 0000 .2 --II--I--IIIII 20002 800E 2.00 00.0 002 ............. IN 00080000012 .2202. N.02 2.0 ............... I 0.200 22 Q.Q .................... I 8002 00002.2 wNN .......... 002 IIIIIIIIN 00080000012 .M02. 0.2. N0 IIIIIII 00000.0 0N2 _ m III-I-IIIImm~.mJ% momswfim 52 .......... 002 IIIIII-I2 00220000102 0N0 02.. 0.0 N0 IIIIIIII E02 IIII .2 IIIIIII =0 02 . 20 .......... 002 IIII-III-I02 000002012 0002. 0.0N 0.02 IIIIII 800N000 IIII 0 IIIIIII 220N000 .2020 020N020 ...................... -- 002 IIIIIN 000202202102 000800000 0.0 0.0. 00000020 0N2 .2. IIIIIII 220.2200 x2020 05004 0002 0002.02 2.5.2.04 20221222 M0202 0.2.2.02 002.8210 MDQMU _ . . . 1 I 1 1 -1 ....... I“ ........... I 002 W ............. I0 00080000018 N202. 2.0 0.0 ............ I 000000 02. w II ......... I 20002 20000 00002 002 0.0m 00.0 W 022 ................ INN 000000.12 0002. 2.2.2. 0.2. . .......... I 02000000 ...... I Q -I ................ I >020 00000022 0.0.0 00.0.. H 022 .................... I0 02.200012 @2000 0.02 0.02 .............. I M000 0N w ................... I >020 00000020 N000 0.2 2.0.0 . 022 ................. I2N 0N0 0410 202. 2.2 N22 ......... I 0.200 002. IIIIII I Q ..... I 220N000 .0000 000 2200.202 0N0 0.2.2 . 022 ................... I0 0002.12 0000 0.0N 2.2 . .............. I 0000 IIII Q ..... I 002200 .0000 2E 2200.202 N22 NNN . N002 ....... INN ...0002000Q1N2 0008052 0.2 0.N . ........... I 00000002 .3 .2. III- 000000 .0000 2E 2202.202 NNNN |||||||||||||||||||| 1.1.; K52. 111112 .2..0Q2220>OZ1H.H .20n22200Q0m.0.N 790 11111111: 2220C 1111 QQ 1.11111 00.00 00c Nhn-DQMQGHQ 0.0. 20.0 . S2 ..................... I0 220N|N .2022 2.00 0.0N ............... -- 0000 22. Q .......... I 0000 2E 0200000000 000 0.2. W 0N2 .. S2 .................. I22 0002.122 0000 N.2 0.02 .............. I 0.200. 0N m ............... I 0000 000 2200.202 0N0 0.0N . 0N2 .. 002 ............. IN 000800000102 22050.2 2.02 ............. I 0000 0N Q ............... -- 0000 000 02200002 2N N.0N W N00 7 022 ............... I2N 00000412 0222222. YNN N02 ......... I 0000 2.022% IIII Q ...... I 8002 »0000 2E @0525 N.N02 . 00.2 022 .................... I2. 0002.12 220 220.2. 0.0N .............. I 00 . N0 Q ...... I 8002 0000 000 08.2000 0N2 NNN 00.0 0 022 .............. I02 0000020102 2202. 2.00 0.2 .......... I 020220000 IIIIII I Q .... II8002 20000 00E 00022000000 0.00 0N.2 _ 022 ................... IN 0002.12 22000 0.00 0.NN .............. I 020.0 IIIII -1 QQ .... 11800220000 2E 0000000000 0.... 0N2 002 .......... I02 NSEQPWINN 2000002. 0N 0.N ........... I 000000022 0N w .... 18002 20202200 0E 0000000000 SNN ...................... I 002 I-IIIIIII22 000 0<1NN 0002. 2N0 N.NN IIIIII 800 80-1---- m IIIIIII 020 200E 00000022 0.02. 0N2. 002 .......... I22 0008005102 0220000 N.N 2.0 ........... I 00000022 ...... I 0 ............ I .2020 2002.2 00000002 IIIUHII. .......... I N02 ............... IN 0002.12 0000002. 0.0 0.0 .............. I 00000 IIII m --.. ......... I .2020 020020 000N002 HRH- .......... I_ S2 ........ 1N2 0000050210 0002000000 0.0 2.0 .............. I 0S0 0.00 N ............ -- .200 200B 0000002 020 ................ I. 0002 111111111m 0002.12 200002.00 N.0 IIIIIIII 00000 0.00 Q.Q IIIIIIII 0000 000 2200.202 220 0.3 0N N _ 022 ................... I0 0002.12 0004 0.02 N.02 j .............. I 0.200 N00 w IIIIII-IIIIIIIII :00 1 , -000 .2002 00000 02E 022022006025 200a TEXAS AGRICULTURAL EXPERIMENT STATIONS - .111 111111110 252.12 22.204 0.8 0.00 ||||||| 100 005020032102 292203072 0.2. 0.2 0.0 ............... 120 03025.12 02E. 0.00 0.2 0.00 ................... 10 0002.12 22002.1 0.00 0.00 0.2 ............... 12 000025.102 3E. 0.2 0.00 2.00 ................... 10 3E.12 22000 0.2 Q2 .................................. 100 002202080102 $00000 0.0 0.0 0.00 .......... -100 000200003102 20000 0.2 2.0 0.2 22.2 82 ................. 12 00212 20002 0.2 0.20 0.2 . 00.2 0002 .......... 120 03200000010 02.002. 2.2 E222 0.2 E 2.2 E 82 .................. -12 32.12 .2022 Q2 E02 ...................... 1E 002 11-111-111-110 033012 3E. 0.0 E20 .......... 1E111111E 002 11111-12 0x30000102 B00000 0.2 E02 0.02 2.0 E 002 ................. i... 000000122 >022 2...» E00 1 ........ 1E .......... 1E S2 ....... 10 0320372122 0002000000 Q0 E22 .......... 1E111--11E 82 1-111111111111110 0202.10 2.002.. 0.2 E002 .......... 1E111-111 002 11111111-11-111111111111111 0.2.2 0.2 0.2 E 2.0 E 22 ............... 12 000000100 32E. Q02. E000 0.222 E 22.2 22 ................... 10 200.12 E00 Q2 EQ2 .......... --E11111-1E 82 11-111-11-12. 00000102 3.32.. Q2 E00 .......... ||E|11||111E 002 1111111112 000000100 3E. 0.2 0.2 ...................... -1E 002 1111111112. 0000000102 20002.. 0.0 E00 ...................... 1, 22 111111111112 0000021120 3E. 0.0 E0.» ...................... 1E 002 111110 2002030212 00220200003 0.20 E200 0.0 E 2.2 E 22 ............... 12 002.002.1102 3E. 2.0 E00 0.00 2.2 E 22 .................... 10 0002.12 0200 Q2. E02 Q2 8.2 002 .......... 12 0.0808012 $000.0 0.2. Q2 0.2 02.2 E 002 ............. 12. 222000012 000022. 0.2 E02. ......... 11 111111 002 11111111112 0000022122.. 3E. 0.0 0.2 0.0.2.. 00.0 E 002 ........ 1m 205209202102 005200223 0.2.0 2x20 0.2 00.0 E 002 ................. 110 000.3012 3E. 2.0 2:0 Q0 0.0.2 022 .......... 12 0005080120 000030 0.2 Q2 0.22 00.2 E 002 ................. 12 302.12 E00 02. 0.0 0.00 2x0 . 002 ................. 10 0000022100 3E. 0.2.0 Q5 0.2 00.2 ._ 002 .......... 12 000380012 03000 Q2 2.2 2.2.2. 00.0 E 002 .................. 12 0002.12 2.002.. 0.0 2.0 .260 E _ 202E z 2 00 002202 00000 . E 1 0w2mawmww22flm 2 Z0020 E .2092 E 508000 00 002.2002 .0200.20 0 . 0. 22 0 0m E E 00m 00m 5 03.002 0u0000000QE E 00.20 00 530B -02 50000.2 . E .§H 0.3 . w 111111 2.205220 S020 022200.22 Q ......... 11 220030 .0020 022200012 Q 111111111 1 220520.. $2020 0220200022 Q 111 02002 >003 00c 00225022000 Q 111 02002 00000 3c 00225000000 w 1111111111111111111111 1 :00 00000 Q 1111111111111111111111 11 00m 00000 Q 1111111111111111111111 1 000 00000 E 11 E22222m2w0nfi ...... 1 QQ 1111111111111 11 111111 1 2.20m .»0220% .............. 1 .2 002 Q 1111111111111 220 000 E11 52:20.80 ...... 1 Q 111111111111111111111111111 i =00 E .5220 .0202 h0000 000 002000200 E 11111111111111 1 22.200 2.2 w 111111111111111111111111111 1 2200 E 150m 20002 00000 00c 2202000200 E .......... 1 20250.25 ...... i Q .......... 1 0000 3c 00225000020 E ........... 1 0.200002 ...... 1E Q .......... 1 0000 30 0.22.50.30.20 .............. 1 22.200 11111E QQ 1111111 000m 000 00225000000 E .............. 1 0.200 ...... i_ QQ .......... 1 0000 3c 0005000000 E .............. 1 0.200 0.222 .2. .......... 1 0000 000 0205000020 E 111111111 300 2.2 E m ............. 11111 >020 0326M , .......... 1 02250.03 ...... 1E Q ........ 1 0.2002 00000 00c 020G012 ............... 1 0000 m2 E w 11111111 20002 .2003 00c 0022222 .............. 1 .2002 11111E w 1-1111111111102002 00000 0000.0 .......... 1 202530w 11111E w 11-111111111102002 20000 00000 . ........... 11 0.2000002 0 02 m 11111111111111 1222002 002200 0852 .............. 1 200M 1111 Q 111100.500 .2002 20000 00220.2 .......... 11 6253.0 1111 w 111122005220 .2002 002200 0000.2 ........... 1 0.2000222 02 Q. 1111000502.. .2002 00000 020E222 .......... 1 303.0 1111 QQ 111111111 02002 00000 0202.202 .............. 11 0.200 11111 Q 11111111 02.002 00000 222022222 ........... 1 0.2000222 11111 Q. 11111111 02.002 00000 0202222 11111111111111 1 000M 11111 B 11111111 00002 >003 020G222 1111111111 1 222022w00m 1111 Q 11111111 20002 002200 00.225 ........... 11 0.200002 02 m 111111-11 20002 00000 00232 .......... 1 02250.23 11111 Q 111111 20002 20000 000 02200.2 ........... 1 0.2000222 -1111 Q 11111 02002 00000 00c 0000A .............. 1 0.200 002 Q 11111 20.002 >003 000 202222 .......... 11 20022003 11111 Q 111111111 0000 000 0:02.202 ........... 1 00000022 11111 m 11111111 0000 30 02202002 .............. .. 0.20 . 0 . .0000 00 02002 .2002 -00Q 2.20m 20 3202 220000.22 E 3302.0 E 0.000 002 002 200 000 02.2 0.2 002 0022 .02 220w 10.20502 .02.=:=0010w02.02 223.9020 ZOQQAQE 022m 0.2.02.0 002100210 MDOMQU .2...2.=:000100.z022200.200 2.0m QZ< 0200.202 220w Q>QEO<1¢ HAMAFH ‘THE ACTIVE POTASH OF THE SOIL 0.2. W 00.2 T0202 ................ 102 00220224102 022222. 2.0 W00 .......... i 2222222u20w ...... i QQ _iii 2252 02.250 02222 025220220026 2.02. 00.2 W 0202 .................... i0 022222.12 222224 2.5 0.00 .............. ii 22.200 ...... i Q iii 2502 22.250 02222 0220220220025 0.00 2.2.2 _ 0002 ................. i0 52.02.4100 022222. 0.02 0.2.2 ........ iii 2222222m20w ...... i Q iii 2252 22.250 02222 0220220220025 iiiiii- ............. iW 0002 .......... 102 2022222003100 20220200 0.0 0.0 ........... ii 2.2000222 ...... i . w iii 22502 22.22.00 0220 02202202220025 0.022 00.0 W 0002 .................. 100 022222.100 22.2224 0.00 0.00 .............. i 0.20.0 202 w iii 22502 02.250 0222.2 0220220220025 0022 iiiiiiiii ............ i. 0002 .................. 100 022222.100 222224 0.00 0.00 W .............. ii 22.200 2.2.2 Q ....... ii 2252 22.22.00 02222 2202.202 0022 0.00 02.0 W 0002 .......... 102 .20222.000Q100 20220200 0.2. 0.2. . ........... ii 2.500222 ...... i w 220022220 .2252 .2250... 02222 2.2002223 0.022 W 00.0 W 0002 .................. 100 022222.100 22204 0.2m 0.0.0 W .............. i 22.200W 02.2 .2. 220022220 .2252 02.250 02222 2.2002223 2.022 i 0002 .................. 100 022222.100 22.204 0.2.0 2:0 ............... i 22.200 002 QQ ..... i 220222220 .2252 020220225022 0022 0.22.2 2.0.0 0002 .................. 102 0252.102 .52 0.02 0.2.2 .... i. ....... i 22.200 202 w ...... ii 22502 .2255 02202202220025 00w .......... iWiiiiiiiiiiii 0002 i-iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 0.2. 0.0 iiiiiiiiiiiiiii 050 02.2 .2. iii 22502 02.50 02220 022.220.50.20 2.2.» .......... iiwiiiiiiiiii 0002 iiiiiiiiiiiiiiiiiw 5210 22022222022 0.2 0.0 iiiiiiiiiiii 0.5.20 iiiiii Q iiii 22502 .2255 002.2 0220220220025 .......... iiWiiiiiiiiii 2.002 iiiiiiiiiiiiiiiiiiiii-iiiiii 0.2. 0.0 ,iiii-iiiiiiiiiii 050 iiiiii. .2. iii 22502 02.50 0220 022022022005 0.2. W 00.0 . 0002 .............. i0 2022502000102 .2202. 0.02 W2.» W .............. i 22.200 2.02 W Q iii 22502 02.250 02222 022022002525 02.0 0.00 W 00.2 W 0002 ............. i0 20222202225102 02222. 2.00 0.02 W .............. i 22.200 002 W Q iii 22502 02.250 02222 0220220220025 000 0.2% W 2.0.0 W 0002 .................................... i 0.2.0 W000 W .............. ii 22.200 ...... i.W Q ii 22502 22.22.00 02222 0222220022520 iiiiiiii iii iiiiiiiiii. 0002 iiii-iiiiiiiiiiiiiiiiiiiiiiiii- 0.0 0.0 Wiiiiiiiiiiiiii 050 iiiiiiiiW Q iii 22.2002 02.250 02222 022222002520 iiiiiiiiii iiWiiiiiiiiiW 0002 iiiiiiiiiiiiiiiiiiiiiiiiiiiiii 0.2. W20 Wiiiiiiiiii 00022800 iiiiiiii. .2. iii 222.002 02.250 0220 020220022020 .......... iWiiiiiiiiiW 0002 iii---iiiiiiiiiiiiiiiiiiiiiiii 2.0 ,0... iiiiiiiiiii 22.200 2.02 . w iii 22502 22.250 02222 02250022020 020 ...................... i-.. 0002 iii-ii.i-i--iiii2. 20220224120 .52 2.20 W200 Wiiiiiiiiiiii 02.0.2800 002 W w iii 22502 02.250 02222 0222220022020 002 .......... iWiiiiiiiiiW 0002 iiiiiiiiiiiiii02 20222220222510 .2222. 0.02 W002 Wi-iii-iiiii 220300 002 W w iii-ii-¢iiiiiiiiiiiii 2.22.00 02202202 002 0.00 . 00.0 W 0002 ........... 120 20.222.822.010 0025224 0.00 W000 W .......... i 82.22080 iiiiii i..W Q ..... i 22502 .2255 02222 2202000200 0.02. W 00.0 W 0002 .................. 102 022222.102 52 0.00 W002 W .............. i 22.200 02.2 W Q ..... i 5002 02.250 02222 2202000200 2002 . _ W W 2542.022 222222.04 2022.222 2222M P5242 00000212. .2080 W _ 0.20 3.0 0202 ................ 120 20220224102 02222. 0.2.0 W020 ii-.. ..... i 22200 022222. iiiiii. Q iiii 22502 0252.0 02222 05220022020 0.2.0 00.2 0202 .................... i2. 022222.12 222224 0.2.0 W020 .............. i 22.200 iiiiii Q iii 2252 22.250 02222 02250022020 .......... iiWiiiiiiiiii 0002 111100 .2022222000Q10 20222222502 0.0 0.0 iiiiiiiiiii 2.2020222 002 .2. iii 2252 02.250 02222 0222220022020 0000 ...................... ii 0002 i-iiiii--iiiii00 022222.100 222224 0.02. 0.0 iiiiiiiiiiiiii 22200 002 W QQ Wiiiiii-ii 22502 2.25m 02222 222220222 02.22 0.2.2 W 00.0 0002 ................ i0 2025224102.. 0252. 2x00 W222 i ........ i- 2222222m20w iiiiW Q _ .... i 220022220 .0000 02222 22200202 0.02 00.2 0002 .......... 102 202250025120 20220000 0.0 0.0 ........... i 0.500222 . Q .... i 220022220 2.250 02222 2202.202 0.202 W 00.0 W 0002 i. iiiiiiiiiiiiiiiii 100 022222.100 222042.00 0.00 iiiiiiiiiiiiii ii 22.200 02.2 W Q iiii i 220022220 2.250 02222 2202.202 2.022 0.02.2 00.2 W 0202 iiiiiiiiiiiiiiii 12.0 202522415 022222. 0.00 W002. iiiiiiiiii ii 22.2.2080 0.002 W w iiiiiiiiiiiiiiiiiii 120.520 02.5.2.2. 0000 iiiiiiiiii iWiiiiiiiiii 0002 i1iii---i-i--ii2 00220224120 .222 0.00 W002 -iii-----iii 0000.220 02.2 W 22 Wiiiiiiiiiiiii 2.2200 02222 22022022 .222 iiiiiiiiii iiWii-iii-i-ii 0002 -i-ii-----------iii2. 20220224120 .202 0.02 2.2.2 11-1---- 000220.200 002 w W11--- 222002 22.2.2 0220 2202202 02.2 iiiiiiiiii iiWiiiiiiiiiiii 2.002 W iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 0.02 W002 .iii-iiiiiiiiiii 050 002 , .2. .iiiiiiiii 2.2200 0220 m.222220u25.20 020 .2220 W 22.2 . 0202 .................... i0 022222.12 222.24 0.00 2.100 W iiiiiiiiiiiiii i 22.200 iiiiii iiW w Wiifinsoo 000202.202. .2200222a 200222 0.0 W 02.2 W 0202 W iiiiiiiiiiiiiiii 102 0022004102 .2222. 0.2. 0.0 W iiiiiiiii ii 22200 022222. iiiii iiW Q .ii.20222200 220020002. .22000.22m 202m 0.2. . 00.2 W 0002 iiiiiiii 100 20222220025102 202220.202 0.2. 0.2 W iiiiiiiiiii ii 2.2000222 ~22 , QQ Wii.2..222200 2200202002. .2200n220 0200222 025 0.2.2 _ 5.0 0202 iiiiiiiiiiiiii i2 2022502223102 .2222. 0.00 0.02 W iiiiiiiii ii 22.200 022222. iiiiiii Q W iiiiiiiiiiiiii i 2.25m 02222 2200.202 0.2.0 W 02.2 W 0202 . iiiiiiiiiiiiiiiiiiii i0 0252.12 222.24 0.00 0.00 W iiiiiiiiiiiiii ii 22.200 iiiiii i w W iiiiiiiiiiiiii ii 2.25m 02222 02202202 iiiiiiiiii iWiiiiiiiiii 0002 11-11220 2022222002510 202250.002 0.0 0.0 iiiiiiiiii 2.2000222 ~22 . Q Wiiiiiiiiiiiiii 2.250 02222 2202.202 0000 0.00 W 02.0 0202 iiiiiiiiiiiiiii 12.0 00220224100 022222. 0.2.0 0.00 iiiiiiiiii ii 2222222m20w ii iiii i. w W iiiiiiiiiiiiiiiiiiiiiiiiiii ii 2200 W W W -2200 .2252 0220.55 0220220250220 2x00 W 00.2 0202 iiiiiiiiiiiiiiiiiiii i0 022222.12 22.2224 0.00 2.2.0 W iiiiiiiiiiiiii ii 22.200 iiiiiii i_W w W iiiiiiiiiiiiiiiiiiiiiiiiiii i 2200 W W W W 12220 .2252 0220.55 022022025025 iiiiiiiiii iWiiiiiiiii 0002 ii..-iiii-00 202222200510 202250.202 0.0 0.0 iiiiiiiii 2.2000222 02.2 W w Wiiiiiiiiiiiiiiiiiiiiiiiiiiii 2200 . W ._ W250 .2252 0220.55 0220220220920 2.200 24 TEXAS AGRICULTURAL EXPERIMENT STATIONS Mi... .4 L. ominiiiiin 000D 00M Q ||||||||||| no M20 M0000 UMOMBQMO 02 . .. .. ... 1.0 |||||||||||| i 000000 2M m |||||||||||| i M20 2003 0825M 0MM .. .. inn-w ......... iM0 0EM04I0M 20 0.0M 0.0 ......... i 050 000M. ...... i M ii 00250 M20 M003 000000 1.2.. 002M 0M2 ................... i» 000M.|M =54 04.0 0M0 .............. i 0.50 00M Q ii- M5250 M20 200E 0o0m00M. M000 0.0m 00.0 08M ................ i5 0m0u04|0 000M. 53. WYMM. .......... i E00w00w ...... i m ..... i E02 M20 2003 0325M 0.00M 02M 0M0M ....... -1 .......... i0 000M.|M =54 0.2. 0.2. _- ............. i 050 EM 0 ...... i E02 M20 M003 0325M $00 0.0M 00.0 0M2 ................ iMm 000004142 30M. 0.0M 0.0M _ .......... i E00w5w ...... i M ............. i E02 M20 002000 0.3 3M 0MOM .................... i0 000M.|M 0.54 0.00 0.2 .............. i 05.0 ...... i m ii ......... i E02 £20 00208 0.0 bM.M 000M _ ......... i0M 5000001100. MQMMEFMQZ 0.0 6.0 ........... i 0000202 02 w ............. i E02 M20 0o200Q Mg ...................... i 000M fiiiiiii----m 0000.2 M50000 w.» M.» Tiiiiiii- 000.00 iiii_ m iiiiiiiiii E02 0325M ...................... i 50M _.iii-i0M 000E0>0ZiMM 000000000 0.0 6.0 miiiiiiii 0.50 iiii. MM iii-iii--- E02 000m00M 0.20 00.0 REM ................... iaM 0000i? $.54 YMm .000 .............. i 0.50 EM _ m iiiiiiiiiiiiiiiiii i 200M 000mM5M 000 0.5 M0.M 000M 0 ............... iM 000E0000wiM 20M. 0.00 0.0M . ......... i E00 000M. ...... i0 Q .................. i E000 0000.600 0.02 2.0 0M2 _ .................... i0 000M..|M 0004 MMM. E00 _ .............. i. E00 ...... i M .................. i E02 00000000 iiiiiiiiiiiiiiiiiiiii i 000M fiiiiiim 0002000010 000E952 0.0 0.0 jiiiiii 0000202 00M m iiiiiiiii- E02 0080.00 0000 06M 00.0 0M2 W iiiiiiiiiiiiiiii iMm 00000412 MMMMM. 5mm 006M M iiiiiiiii i 0.50 000M. iiiiii i AM iiiiiiiiiiiiii i E02 M20 000.500.. 0.02 000 0M2 0 iiiiiiiiiiiii iidiio oMMPwiM E04 0.0M. T00 iiiiiiiiiiiiii i 0.50 MmM Q iiiiiiiiiiiii i E02 M20 002005 800 iiiii iiiiiiiiiiii it 000M w ................ i0 0002.400 000M. 0.5 $.00 .......... i 050M020 iiiiii i M i =02M0m .0000 00c 000000025 0.00 00.0 _. 000M m. .......... iwM 02ME000MM|wm 000050 M0 0.0.0. ........... i 0000222 iiiiii i m i- M5025 .0000 00c 000000025 ...................... i; 000M fii-iiii----iiMN 000M.|00 M2004 0.0M 0.0M iiiiiiii 0.50 EM m i- M5250 .0000 000 000000025 002M 0.00M M0.M 0M0M ............... i0M 0m0u04iwM 000M. 0.2. 0.2. .......... i E00m5w iiiiii i M. ii M5250 M20 M003 0325M 0.00M 02M 0M0M . .................... i0 000M.|.M =54 0.0.0 0.0m .............. i 0.50 iiiiii i m ii 00250 M20 200E 0325M 0M0 00.0 000M .......... iwm 00MME000M|+M 0000000 0.0M 0.0M ........... i 0000202 iiiiii i m ii =02M0m M20 2003 0325M 0.00M 00.0 000M ......... iMN 00n00050m|0M 000004 0.00 0.00 .......... i E00m5w iiiiii i M. ii 0500.00 M20 200E 000000M 0.02 M0.» 002 0 ................... i2 00012002 M00 0.00 .............. i E00 2M M. i--- 000000 S20 M0000 0830M 002 0.00 M00 000M _ .................. iwM 000Mr|mM M02 0.4M 0.0M .............. i 0.50 iiiiii i MM ................... i M20 M02500 000M iiiiiiiiiiiiiiiiiiiiii i 000M iiiiiiMm 00MME0000m|0 020004 M100 0.0m iiiii E00m5m iiii m iiiiii M5250 M20 0000M ...................... i 000M iiiiiiiiiwm 0000.12 M02 Md m.MM iiiiiiii 0.50 00M M. iiiiiii M5250 M20 0000M 000M 0M» M00 0M0M ................ i0M 000004l2 MMBM. 0.0. 05M iiiiiiiiii i E00u5w iiiiii i M. iiiiiiiiiiiii i E02 M0000 0000M 0.0M. 00.0 000M .......... iwm 00MME0000M|00 0000000 M.0 M.» ........... i 0.000003 iiiiii i M. ............. i E02 M0000 0000M .......... iiiiiii 000M iiiiiiiioM $0004.00 000M. 0.0M TMM iiiiii E00w5w iiii m iiiiiii E02 M0000 0000M .......... ifiiiii 000M iiiiin 000E0>0ZI0M 00008000 0.0M 0.0M iiiiii 0000202 0.0M 0 iiiiiii E02 M0000 0000M 80M iiiiiiiiiiiiiiiiiiiiii i 000M iiiiiwm 00nE300w|0M 22504 0M0 $0M iiiiii E00u5w iiii m iiiii.-i-i|i|ii M20 0324 0.0m 20 000M _ ................. imM MOMMM|0M 0000M 0.0M 704M .............. i 0.50 iiiiii i M ..................... i M20 05004 ...................... i 000M fiiiiim 000596072 000800000 0.0 _M.0M iiiiii 0000202 00M m iiiiiiiiiii M20 032.4 000M 0 0N 00 0 0.00M . .......... I00 000000000100 0000000 M5 0.0 ........... i 0000203 iiiiii i M. iiiiiiii i E02 M20 200004 00m ...................... i 000M iiiiiii“. 00n0000|0M 020.004 M4. 0.4 iiiiiiii 000M iiii w iiiii E02 M20 200004 00m ...................... i 000M TiiiiiiiidM 0m0m04|§ 000M. 0.0M 0.4M iiiiii 00.0200 iiii m iiiii E02 M.0M0 200004 00w iiiiiiiiiiiiiiiiiiiiii i 000M iii-ii» 00MME0>0Z|0M 000E305 0.MM TAM iiiiii 0550M 00M m iiiii E02 >20 200004 00m 2.0M . _ .000 . MZM_ Z M .000 5 5 00:02 .2500 025M M0020 . .02 M50 00M 200M Z M 000M .5830 M0 0200M 000000 .0000 5 0E0Z 00M 00M 25w M0 00002 0500A E 0000 0M 0005M 5M 00M 0005M Mn 00>0E 0M00000MOM 0000 M0 000M000 02004 -02 0005M .0¢000000|0w€A Q8 M ...... i. ....... i 2 AAAEAJAIA. b3. 2A _ ................ iwA amnmnaAimfi 2E. a.» m -ii----------:i.i» QAEFA F54 W? M ................................... : A W ................ imA AAFAAQIA.“ 2A5. AdA _ ......... i w AAAAMAQINN 25A. 2mm .. ......... hwwwmnfiwvonlmw AAAABMQ a... QUE i n . .................A......AAAA...»WA.T. mawhw...“ H» ............................... i m.» ............. -m...Awm§§w|2 2E. A2 .................................... i A.» i .................................. i A2 _ .................................. i QAA W ................ imnwwfié “WM... i. AHHHHHHHAA-..@...§|. war...“ 2. A AAAAEQEQIAWA 2E. WAN _ ............... i mfiAO iiii 7 .......... i 32:50 _ .............. i nnoO own Y .......... i Ennunow fin .......... i Annnunom S.» .......... i Annnunow own .......... -- a..........w ......... i 9A3 onnh. _ .............. i nnoO 8w .............. i QHOO 93w _ .............. -- s6 :2--- ........... i Annnmnow .............. i n30 o5 .............. i nnoO oi _ ........... -- 222.2 km--- .......... i Annnmnow iiii ........... i unuwmnfi _ .............. -- Eokm--- _ ........... i Andafiz .............. i nnoO A3. .............. i nnoO EN ........... i wnapmnfi iiii W .............. i 5.6 km--- _ ........... i @5252 .............. i nnoO 8N iiiiiiiiii i nnnnmnow Em iiiiiiiii i nnoo 2A3. iiii iiiiiiiiiiiiii i nnoO A2 iiiiiiiiiii i wnaumnfi iiii .......... i Ennunow 3n iiiiiiiiii i Ennunom iiii ........... i wnaunnfi iiii k .............. i F80 SN fi .............. i Eco imwmi- ............... i 3A5 _ .............. -- =80 A2 ,. ............ i c0300 ANN W ............... i BAAO iiiiii i w .............. i FAoO 8w 7 .......... i Annnunom iiiiii i . .............. i FAoO iiiiii i _ ........... i onnnmnfi wfi é ...... ii nnou 25A. mvw mBHwQQQQEOwwQEEwQQGQQEEFQEQGwEwEQwmwwmmmmwQ ............ i ha? #222 nonmnom ............ i ha? #35 noumnom iiiiiiiiiiii i ha? N35 nounnomw ii n52 nwnam onc nnanonvnnm iiiiiii i Amomnnm .55: wnoukunO iiiiiiiiiiiiiiii i n82 wnowkunb .................. i 352w mFFAB iiiiiiiiiiiiiiiiiii i M30 nomBwQ iiiiiiiiiiiiiiiiiii i ha? nowBufi ............ i ha? Mafia nopmnom ii. iiiii i zomnnm §Ev hwmnanw .......... i zomnnw $2M noavm iiiiiiiiii i ABBA...“ amEm 85mm ii- Awcmnnm AnsoA munfi ooNSw izcmnnw .52“. mzozfim nonmnom ........ i n82 >25.“ onc wwoonZ iiiiiiii i E2: hwnaw 2E mwoonZ ........ i n22: hwnwm 2E mwuwnz iiiiiiii i aomnnm 5E3 nopmnom ........ i momnnw 5E2 nouwnom ................... i 52¢ noumnom iiiiii i n52 hcnam onc onocnrF iiii E2: mung enc uAwcnmg ......... i mownnw Q50 nomnonnaO iiiiiiiii i zomnnm Se? nononnaO ............ i 52o Mafia nonmnofi ..... i E2; Armifim anwnwnvmnw ..... i n82 $3.5m nnanonvmnw ............ i m2“. M35 noumnom ............ i ma? Mafia nopmnomm iiiiiiiiii i 2:3 26 mnAwnanumnm iiiiiiii ii wnaw onc ananwnvmnw iiiiiiiiii i wnam onc ansnonvmnm ii n52 mwnaw onu ananonvmnm iiiiiiiiiiii i ma? Mani nouwnomw ............ i ha? M33 nopwnom ..................... i ha? AAUGAAH ................... i n52 mnounam ................... i 5.2: mnwwnam ................... i >2» nzmnanh iiiiiiiiiiiiiiiiiii i 2% nnmnabm iiiiiiiiiiiiiiiiiii i mic nznnunh ............... i ma? mnnnuwnus bu" 3m» or...“ $2 2mm $2 2.2 $2.. w $2 $2 Ab: mmi Aw...“ $2 $2 2AA 2o g» 2A 2A $2 N8» 2399A HA>~FO< ZCHQQQQ mam wBmAE cowioomim NDQMU ll IQIII Illllll lllllllllllilllllll Q. Q llllllllll ........... i Azfimsz iiii ||||||||| || CHOU Q-HUH 8H ||||||||||||||||| HQmO MHUDW A iiiiiiiiiiiiiii i >30 mnnnownunO iii-w. in! M826 38 . flaw; 20:3 . m TEXAS AGRICULTURAL EXPERIMENT STATIONS . ||||| GOUQBQ. .hfl~O 3081a. noumflouw ém smnnom 26 W 2 E rciriuu _. nuoiboZlfiu “cannon-mom m iii nomnnm Q30 2on3 nannncn 83 ||||||||||||||||| i3 mail? no.3! Q iiiiiii hi". 2on5 nonmnofl ....... in nwnnngozunn nonnnfinww w _iiiiiii n20 22:2 nonmnofi 83 ............... i3 nmnnnnlvn Qnnn. m. _iiii n82 52¢ 283 nonmnom Q3 2.4 ....... in» Snnniozlmn nwnnnfinwm .......... i w W ...... i n52 >20 233 nonwnofl $3 M32 an.“ W .................. imw ennnlom :54 .............. i n80 Q E ........ i 5.22 nwnnm one $332 wofi gm in _ ........ i2 nwnnnwnoQimw nwnonoo .......... i @2532 m -1 ................ i n82 QOPmQOHmh 92; Ed W .................. imm Qnnnlom =34 .............. i n50 B .................. i n82 nonmnofl. 3E ................................... i2 EQSQQQQINN $2.80 ----------i nnfimnfi Q H-----:------i-i-i >50 nwdnnB -2? 2.» i-.. .............. 1mm Qnnnlem inn .............. -- F80 n. A ................... i >5» nwnnnB 5Q ...................... i _iii-i----iiim nmnunninn >32 E Wliiiiiii F60 Q .i----i--ii n32 nwnuw nofinm 8a _ _. nwneon w>rm0< ZOEQQE MQQ wannm nonémlw mnonw m3 8.0 iiiiiiiiiiiiiiiii i2 nmnmndnnifi one. énQ _ .......... i Bnnunom E ........ i nnnoQ munam onw n3mn< ....................................... i2 nmnmnnlnn wnnn. v.2 Q2 -..-----i--- nnnnwnow n. iii--- 8.22 nuns» one nswnn 2E EB ............ i3 nwnonoolwn nmnwnn. 9+ .............. i ncnM m. ........ i n82 hone» onu nflmnn .................................. i3 EQnSQnQIwQ .3235 9m fiiiiii unanmné Q iiiii 8.22 manna one nSmnQ iSH .................................. in umnmnnwii ~32 v.3. 2w“. .............. i E00 B ........ i E52 mwnnw one nBmn< N ................................... iw nil. mnnnnnwm 1Q ............. i “E223 Q ........ i n52 manna wnn 53:4 ............................. inn nfifinfiwozi» nwnnnfinwm m6 iiiiiiii n30 Q iiiii nEoQ mung onn nBmnn w? ............................... ifi nwnnngozib nwnnnfinam a6 iiiiiiii nno0 Q ii n32 mnnnm one annnonamnw 8a .95 Sta iii i- i flu .............. i nnoO B ii n32 mwnnm onu unnnoununO ......................................... i3 wnnwlfi in)» “.8 ma: iiiiiiii n50 Q ii E22 mung one mnnnwunnno n3 9mm“ n; ...... i2 nwnnnwowQloQ nonnnwnnnw . Q4: ............. I- n80 Q ................... i n32 mnwwnnm ......................................... i5 annwiw man d? W? iiiiiiii n30 w iiiiiiiiii n52 mnénnm m8 mun. cam ................. in nwnunnlww onnw Qmw Qww .......... i Ennmnow Q ............... i cnwm Qnn ononnQ ii iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i wdH n.» ||||||||||| i 053305 O iiiiiiiiiiiiiii i n56. onc 0093A ............ iiiiii iitiiiliim nnnwiww nnwnnnn. a...“ iiiiiiii $3.5 m iiiiiiiii nnnn Qnc onPEQ ............................................................ i *6 iiiiiiii n30 a iiiiiii-i n53 one 265A H ......................................... i5 onnwin n34 Q Nam ..... -i ...... i n80 Q. ............... i unnm enc 268A 2m .......................................................... i o»; iiiiiiii 8.5 Q. iiiiiiiiii S92 nonmnow wfim £4 iiiiiiiiiiii in Snnannwmifi 35h H Qmfi iiiiiiiiiiiiii i nnoO w |||||||||||||||||| i 5:2 nonnnom fin ........................................................... i m5 iii-ii- m$nBo0 Q ii n82 hwnnm onn annnwnnmnm ............................................................ i 2 nnfi iiiiiiii PS0 a ii 822 nnnnm wnn nnnnwnvmnm 8» 26m M z m _ z m n. nonnnn .mnon0 . £268 .02‘ F6» 5m mvnfi Z m nnaonw Ho nonwm 58x50 no.5 no 0562 éoQ 23m Ho onnnz énonnA E no.5 E nénom nom pom hQ UQPOQQ omwnnwonwm QOHO m0 aflwfimg éwnnsnouinwneom m~>HE,O<. ZOQAQQE MEN wennm Siawln nHDOMU nnwnnnnnovlmeznznmnmnn 80m QZ< nwneom flow H>HEO6 Q63 _ii |||||||||||||| ii F300 mam 4 9 W |||||||||||||||||||| ii 5x2 mom-FF“ 3o #83 $5 83 ii. ....... i3 pwniamamlwfi Enofio W3 m3 fl .......... i uhfimsfi ...... -4 m i" ...................... ii >2» 038g womim iii |||||||||||||||| iim iwcflwiivm sauna 3.3 EA |||||||||||||| ii mmfiw |||||| i; m _ |||||||||||||||||||||| ii >30 033w 22 mHHHHnHWHHMMWHHniiw- l i? im ......... -- maépoo ...... w i ..................... -- 5. 05a . 80H i i i i i i i ii w m w N _ ||||||||||||| ii G300 5w O ||||||||||||||||||||| ii ha? ooudil mwfi , . W _ L m .Hmwczib Hvpqmsnww 9m Hi |||||||||||||| ii 5.30.0 5m W Q ||||||||||||||||||| ii ha? imam-mg vmw T MRwNN ®H.§ _ gfi ||||||||||||||||||| llwtw Ofiihvllb “YQN ||||||||||||||| || CHOQ OHM W m? i.|i.i| fiwfiOa >mfiifiw Qflfi MHDQQMQQHQ flmw F .......... i7 .......... i7 83 ................................... i. Md 9w ............... i 2S ....... ii m iiiiiiii i n82 E5 c2635 gm 0 .......... i, ........... ii 83 .................................... i m5 ad .............. i Eco Em Q ........ i E2: QB omcofia 5m $3 |||||||||||||||||||||| i; 33 iiiiiiiiiiiibfi pmsucéilfi hiflh. a4 NJ éiiiiiiiiiiiin GOuaOQ 8m Q iiiiiiiiiiiiiiii Q~MO~ 0.53m uEOHHOZ wmfi H Nlmb _ 8.3 i” ||||||||||||| Ila hmzflavufiwwifiH %~5fi N.©H O-QH . ||||||||| .i| CHOU Qflfiph. |||||||| a |||||||||||||||||||| || %.N1O QOWZHQQ W QEN W 34. i 33 .................... im ocswifi :34 9mm 9mm ............ iii E00 8w a. 3 .................... i >20 nomwnwfl wmww R .......... ii. iiiiiiiiii i, g3 iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i 9mm flow .......... i sapmhom iiiiii i m ................... i 52o QoQQmQQ 0 0.5m i” $6 _ momfi .......... i3 kwnaouofiim: .5680 m4: $63 ........... i wkaaéz |||||| i w _ iiiiiiiiiiiiiiiiiii ii ha? Qofimam P iiiiiiiiii i” iiiiiiiiii i” mo»? iiiiiiiiiiiiiii iim Qnflhliwm humbquh. m6 Wm.» |||||||||||||| ii mmaumv i iiiii i Q i iiiiiiiiiiiiiiiiiii ii ha? nofiwam .......... $3 apiawozlh .§_S8.%w T» Fm E60 S» a .32 QOmwmnm m3 E NE; i Hfim W OHQH ||||||||||||||| iwm Hmfiwfidwibw Oflflh- 9mm his i i i i i i i i i i ii EUQMAOW wan Q Tiii G352 hfiflflm DEG dGGQQDUwUW mmflm W m6w3 09m ,i OHGH ||||||||||||||||| Ila PMDMUJQiiG %~5.fi ~ZQN CfiQN | i i i i | | i || CHOU 0gb. $0M i m ||||||||| || aflOw hfiflflm QQQ u®=~2 hmmm T |||||||||||||||||||||| iJ $3 ||||||||||||||||| iiw PmHFMDQiHM 5x2 MQN 3.3 |||||||||| ii wwwflgOo whm Q _ ||||||||||||||| i..i hflfio MMDDQMGfiwO wbfi C Q3 8d i 33 iiiiiiiiiiiiiii i§ emsws2» 5.2? Sm i i a | i i i i i i i i i i i i | | i | i i | | | | i i i | ii m Oflflhiwm hndflddh. iii: ii w iiiiiiiii gdOfi hmvflfim 0G5 OUQHflwH iiwimmimwmmwwozlafi ponflvfiww a ....... i n32 Guam vfirofliwq i i3 wqinimfl. F54 i Q iiiiiii ii 5:03 35in our“ ofiopafl . . i i... .. H 7 . .1 i . ||||| |l:l|||.l|l I Qiihui .i. .. .0 |_ 28 n5» .157... 1...? .. 8 ........ i2 5088812» $002.0 ............... i2 0.026048 3E. s1 sasiwsméwss 0.0 0.0m BwEmEQwwQBQD ||||||||| 3 5:02 >053 n .5002 ii i- E002 >20 M029 noamfiom ...... l 5.002 >20 M003 flouwmom ...... l Edd; >20 M005 floawwoi ...... I EN»: >20 M029 Qouwdom TEXAS AGRICULTURAL EXPERIMENT STATIONS w W 8.2 . W ........ i» 035028.72 0008308 8.2 w E02 >20 #202 082002 0w W ......... i2 Hwniouonlmm $00000 W0 a ...... -- W .......... i woman» >20 aofidomW ~52 W W ................... i8 25ml» >02 >8 2 W .......... i 26mg.“ >20 000262 82 .......... iiiiiii -------i---w_ “Bfiwvomlmw .8880 0.0 w iiii iiiiiiiiii--- >50 03.0008 0.3.. W 84 W W ................. i2 002.8» 5.54 0.8 W0. . ................... -- >2» 08.2.02: ~82 0.8m W 8s _ S2 W ................... i2 000w!» Q2 Q8 W» ............... i E02 Em wEEEwW 2w ~22 W 8.» W B2 W ................... i0 052.12 F54 0.0 Wm .......... i E62 $95.5 00955. 00w 23.2.0.2 25.80.... 2024.22 mam wamfi 808$ @0000 “.8 8.“ 22 -i-i ......... i5 0.322.142 DE. R8 Q2 ......... -- n08 25>. ...... i Q iiwwnwm. .8882 Bob mownaw @182 2w 22 .................... iw 0E€|2 =3 0.8 0.0m .............. -- E00 ...... i m ._;--¢.58.H. .w2r0302 E02 mownsw w...» W 2.2 82 ........... i, ................... ii- w.» 0d ........... i 0.33:2 8w m. iiwwxwe .8805! 802 wownsw S2 .......... iWiiiiiiW 82 iiiiifi 0806082218 .8880 “.0 w.» iiiiii- 00.352 iiii m. iiiiiiii- 800.2 2E 0030A 0.2m 0w.» W 82 ............ i-‘ $n30¢l§ 3:25 wA wé .......... i Ssnfiow ...... i m. W ............... i 0E2 Em 0093A W ...................... i 82 iiiiiiiw uwcwsoZIS hwniuaaow 8a w.» iiiiiiii E00 iiiiW a Wiiiiiiii- =52 00w 0098A iii .... iW .......... iW S2 iiiiiiiiiiiiiiiiii {-2 2.3.8 F54 2B“ 0.8 .............. i 0.30 20.. m. W ............... i E002 3E 00025 8w :2 t2 22 .................... i0 25n|2 0.54 www m2 .............. i 0.80 ...... n. W ................. iii- >20 003w 0.8 2.8 W 82 ......... iQN 200503272 $0030 w.» 0.2 ........... i 055202 ...... i B ...................... i >2“. 0S2» 04.2 ES W 82 .......... i8 20080008182 umnwfi» m2 Q2 .......... i Esawwow ...... 1W w ...................... i>£u 03S» 0.02 3w W 82 .................. -12 23.1.2 >22 0.8 0.0m .............. i E00 22 m. ................ i >20 03g 82 $2 0w.» 82 ................. i2 0E€|2 >22 wwv 0.2. .............. i E00 22 w ............. i E02 >052 00082 2.2 .......... iWiiiiiiW 82 iiiiiiwm 23803882 $02.4 Q8 0.8 iiiiiiii 000M iiii w iiiiiii >20 065a 082,62 8.2 W 8.0.. W 82 ............... i-2 >2al2 00.52 Y2 N8 .............. i 50o iiii m. ............ i >20 x020 000E002 .......... IIWIIIIIIIIIIII 82 iiiiiw 03826212 0.008000% 0.2 m2 iiiiii- 0.83:2 $0 w iiiiiii >20 2005 ufiwsom 82 ....................... w. 82 iiiiiiii. ~wnopuol§ 0wnws< 2.2 N2 iiiiiiii 2.8M iiii Q iiiii- >2... 30.55.... 08252 ...................... iW 82 iiiiiiiii2 "$025.18 25>. 0.8 m2 iiiiii S0025 iiii w. ii-iii >20 2022a 000502 ~00 8w W 82 ....... iw 308820772 HBSQEQw Q8 0w ........... i 033:2 t; _ w ......... i >20 E2022» nfiswsom 82 wow W M z m z m 80w 3 . wo 025E 60020 W 005g >050? .02 .300 5M wfism Z AH W 200w .Q.~>>O.~U m0 6030mm dfiaww .0029 HO 0032 HQAH Aug .=Ow HO 2:02 $00022 E 00.20 E Qwwwom 00m 20m 0230M >0 02,02 02300025 00.20 uo 0:305 @3030 -02 025cm .02Es=8|mw~PWO< ZOHAA=A 32h wemHFU€< OB GZHQQQOOAH QMGZHHMMHH wmcomw zH mmQmO HZEOHwmQ m0 mmmfibzli mama. _ _ W , ...................... In $3 w-----------w~ HBEBHHQmIS pwsmHiH H5 Q3 IIIIII EHEmHom IIII a TIIIIIII =82 Em £9202 mama 3m I 83 fl ............... II? HQWEIE £0.32 wAw mam .............. I HHHoO ...... I w ............... I :52 HE» Hsofioz ...................... I $3 MIIIIIN HQQEwEHZImH Honaopnow wdfi o.S.. IIIIII miwumzi 5w w IIIIIIIII :32 2E HQQVHQZ o»? _ dfieom Q>HIEO< 205152 fifim mEmflm 83%; MDOQG _ ,_ 93H é 8 m 33 ............... I15 HWHHwHEImH 2E. Q3 Txmw W ......... I Eou cs3. ...... I a. ...................... I mom Batch 93.» 22m W 33 IIIIIIIIIIIIIIIIIIII Im QHHHHWIH =55. adv Q3. ............. I E00 ...... I m ...................... I :0» oafiwh .92. _ 3Q _ 83 IIIIIIII I3 Easunohlfi Hwnfigoz o.» Ké ........... I @3303 awe n. ...................... I :3 33.5w 38 403 which are very deficient, and these are found mostly in thi 30 TEXAs AGRICULTURAL EXPERIMENT STATIONS On examination of the table, we find‘ a total of 22 crops- l; three groups, containing 0-150 parts per million of potash. :i_ centage of very deficient crops is irregular, but there is only one§ deficient crop each in groups 1, 4, and 7. There are 12 very de crops in group 2, and 7 in group 3, but we must remember so 1' these crops were second or third or later crops, and, as we sh the active potash is removed rather rapidly from the soil in p, periments. q Taking the deficient and very deficient crops together, we l, regular decrease in percentage, from 86.7 per cent in group l; in group 9, the only exception being group 6, which is a little i. than the groups preceding it. ' f, In this connection, We must observe that a number of these represent second, third or fourth crops, and the preceding -.f have already removed some of the active potash from the soil. the active potash actually present at the time of growing these {)_ crops is less than as represented in the table. This would aE soils containing from 100 to 300 parts per million of potash. than those containing greater quantities of potash, since the a, potash is more rapidly exhausted from the former. g The soils seem to fall naturally into four groups as regards r1 ber of deficient and very deficient crops. t Group 1—O to 5O parts potash, 86.7 per cent deficient. Groups 2-3—50 to 150 parts potash, 55.1-54.3 per cent defici Groups 4-5-6—150 to 400 parts potash, 39.1-42.6 per cent defi Groups 7 -8—4OO to 800 parts potash, 15-18 per cent deficient. i, Group 9 contains only 3 crops on 1 soil, so it is left out. 7 Crops marked T produced a greater yield when no potash was a’ The percentages of the crops actually injured by potash incrl somewhat irregularly with the potash content of the soil, fronij per cent in the first group, to 45.6 in group 7. ,1‘ pThe percentages of deficient crops decrease with the qaanttti active potash tn the soil. The percentage of crops injured by potiaash increases with the q tity 0f active potash in the soil. f“ 31 NA; 0.: fi mam , #5 ~ g adH H |||||||||||||||||||||| i oooH|o8 a m. N.» g W m m 3N _ 2m ¢ QM” ad» N ...................... -- 8w|¢8 m O m5 o6" F a n 9§ mém 5 mdfl Q8 o |||||||||||||||||||||| i 894.3 p S Fm .2 H w T2. v.2 3 9% 3mm § |||||||||||||||||||||| i 8T8» w E @m f. _ 2 d WE , W5 om 9% Ia _ I ...................... i 8g m . m6 _ 5 fimu _ w? aw w? 0.3 3 ...................... i 8~l§ w H Qw 9m i .2 Qmm flow mm 0.3 Q3 Z mm ....... I» ............ i $712: m T w...“ m6 3 4 wéw W3 mm mém mdfi . MA |||||||||||||||||||||| i swig a F 2w ma j w. _ #3 >4“; m v.3 95 _ ¢ ...................... i omlo H O .MZm\ in.“ 6Quwh5< __ .MHZAH 7 .Z.m éoua$>< QZM 9TH 6oms~o>¢ H . i 328:2 iiilt .5285.» iiilll honEsz do==i Q3854 - NAM mEEU czsmww? www~w>< fmEakw E2383 wumbzi . @536 czsmmw? wms$>¢ 1.2m 3.5m E wzom E swnwom nsopwv M dhmumsi éuww 9E Ezzwhvw .500 25h. can F60 k , P .| _ JGOm HEB Z0 623mm: mo Q24 Z800 £75m 0Z4 Z8 OO mo §Gm .... ........................................................... -- i M ACOO 9%. 8H , Q3 7w» mm fl |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| i 8¢I8¢ h T JZOU 98 ? mm , >43 m6" Q. |||||||||||||||||||||||||||||||||||||||||||||||||||||||| i. ||||||| i 8T8” w SEESm 9% i: _ 92 i: m. .................................................................. l 8M1? m . 58o 9%. m 8 m5 Q2 é ................................................................. -- Snlefi p‘ .560 9% 4 i W m5 _ Q2 _., a .................................................................. l 8T9: m .E:su._om Q3 E. W m4; v12 w» .... i» ........................................................... i 9:13 a éiihom Na» n. A I: W i: 2 .................................................................. i Sla H W _ _ . W . . E w . ,., zm w .520 ZN MZ ZN 4 MZm , ii évm~r8>< . . #00822 _ nwwsuwowvl 653530»! wwiuhmm ponfisz 525E Em $3M E mzow E zmfich QDOEU Hi j E an EB w .334 i 32 TEXAS AGRICULTURAL EXPERIMENT STATIONS Relation to Weight.—Table 11 shows the average weight of with and without potash. Table 12 shows the same for c0’ June corn, kaffir and milo, and mustard. As an average of all crops, the weight of the crop with is greater than the one without potash up to and including the group, which contains 150-200 parts per million of active‘ Expressed in percentages of the crop with potash as 100, thl without potash increases from 67 to 91 per cent in three group group 5 it is 100 per cent. That is to say, in these pot expe '1 after the soil contained 200 parts per million of active pot addition of potash to the soil did not, on an average, incre growth of the plant. ‘ The same result is heached when we consider the corn and " corn, and the milo and kaffir, averaged separately. Up to 200.‘ per million of active potash in the soil, the addition of potash ' an increase in growth of the crop on the average. Beyond 200 per million, the addition of potash causes no increase in the cr‘ else an actual decrease. With mustard the results are somewhat different. Only wit soils containing 0-50 parts per million of active potash is thei increase in crop due to the addition of potash. With the other y. (except group 8), addition of potash does not affect the crop, o y; causes an actual decrease. i” < I l, 'e I a i i n Pele . ‘ . | l fled | g 4 ' i 5h X (a? m0 \l'n\h°‘fl pom” m 5/0 vv/m Paid i i l \° = m no Q!‘ i l 1 *5 a0 ‘ ' 1 i 5 k w l i ‘g p i i E F,’ PO/aj/y Q ‘é , L‘ (,1: ° | a 0 ; w . O/De/iz/efl’ fir i m U l . i _ 1 t 0/6,‘ _ l x0 O J 5 . 0 l 5 (d I ’ 1 ' =0 _1_&"'t i = t" to i l. l = . l E ? i . l l i l , l -a mo zoo 507 460 50o 60o a, Aer/vs Pomsn //v PAer: PER M/LL/U/V 0F 50/4 _._.._~.-v-._:.n@ Fig. 1~Relation of active potash of soil to the deficient crops, the crops injured by pota and to- the efiect of potash fertilizer upon the growth of the plant. THE ACTIVE POTASH or THE SOIL 33 iWe can "draw another conclusion from these tables. When the ‘ive potash in the soil exceeds 200 parts per million, the addition 4 potash no longer causes an increase in the Weight of the crop. erefore the average weight of crops (except in cases when addi- n of potash depresses the yield) depends upon other factors than 5 F potash in the soil. The potash acting as a plant food is no ger the controlling factor in these pot experiments, when the ive potash exceeds 200 parts per million, but the size of the f» is due to some other condition, such as the character of the , , seasonal conditions, etc. The active potash does, however, afiect Q percentage of potash contained in the crop, as we shall see. RELATION TO POTASH CONTENT OF CROP. gPotash was determined in 235 crops, and it is unfortunate that it U-~ not estimated in all of them. The average percentage of potash the corn or June corn, the milo and kaffir, and in the mustard p, is presented in Table 13. The average percentage of potash in the corn and June corn crops greases with the quantity of active potash in the soil. The aver- ‘, percentage in group 1 (0 to 50 parts per million of active potash) 01.38. In group 8 (600 to 800 parts) it is 4.31. The average percentage of potash in the sorghum and kaffir crops j creases with the active potash in the soil. In group 1 (0 to 50 f million) it is 0.78 per cent, in group 7 (400 to 600) it is 2.44 'r cent. The average percentage of potash in the mustard crop is some- at irregular, but, nevertheless, shows the same tendency to in~ fease with the active potash content of the soil. LWe thus see that though the addition of potash to the soil does t secure an average increase in weight of crop when the soil con- 's more than 200 parts per million of potash, yet the percentage potash in the crop continues to increase with the active potash in e soil. , The average percentage of potash in the crops grown in the pot ea:- riments increases as the active potash in the soil increases. No allowance has been made in this work for the potash in the This would represent approximately 20 parts per million for ’ rn and 10 parts per million for kafiir and milo. The roots, also, e not taken into consideration. I [ _. 4 i .7 ‘y 1"’? flew? P0ffl5 2 . /, < j r hum and Kym AV@ _/L_QJZ (“Iii/Z fish" x00 2270 30o 400 500 600 750 P0 TAJH //v 50/4 //v PART; PER MILL/ON fr-Relation of the active potash in the soil to the potash content of the crops grown » thereon. TEXAS AGRICULTURAL EXPERIMENT STATIONS 8... W o 8... a 3m fi fi Q5 i m 5 fl ..................... -- §T§ a 3N W n $4 H 5+ _ b gm» 1 a 8N 2 ...................... -- §|¢8 w 34 W h 3a w m} H m mama N w 3H .2 ...................... I 8i? h Q.» , m fié m. 3.». _ 3 WE» a w? m“ ...................... I 815m w $6 a m: 2 8.» 3 wémv fi ofi .5 ...................... I 8ml8m m .8.“ o 9A w 3Q 3 92m a 8 5 ...................... I oomlomfi v 5A b $5 3 mfiw _ w.“ ~65 c S 3 ...................... I 3T9: a 8.“ 2 m? S 3A 2 ma: 4 N 8 w ...................... -- 8H1.» a mg m Q8 ¢ £4 7 w Tum . m am 5 ...................... I 31¢ w 6w¢~o>< éwmauo>< duape>< éwuaHo>< éuw$>< fiouako>< .E:ED$H é dw¢$>< 6oua~w>< ponfisz _. $2552 uvnfiuZ MQQEDZ dozmfi 3m xEQcEZ A5920 ZaU @396 ZAU .396 F50 E am.“ .395 =4 mm uoiznwm BEN E maow E smfiom @234 @595 . ékuuwmfi dcaM was Esnuhow éom owgcookom Q.@.NHQ>P<. c0522 5M 93am E swan-om wms~o>< E nnfiom p50 yum E nmapom umoO 5m 34 zHHOm rmO mmfibm Hm>HEO< OH. EZ11 experiments, we found that the potash taken up by the plant j approximately twice the active potash 10st by the soil, where ‘A active potash exceeds 1'00 parts per million. Where the active is less than 100 parts per million. the potash taken up by the plan is about five times the loss from the soil. This could be expected sin‘ this potash represents, largeLv a small percentage of potash from i large. quantity in highly insoluble sources. SUMMARY AND CONCLUSIONS. 1. The potash of nephelite, leucite, glauconite, biotite is completely, extracted by strong hydrochloric acid. About one-third of the potas of muscovite is extracted and only a small percentage of the potas of microcline and orthoclase. Practically no potash is removed from orthoclase and microlin by N/5 nitric acid, less than 10 per cent from glauconite and biotité and from 15 to 60 per cent from muscovite, nephelite, leucite, apophyllite and phillipsite. I 3. Potash dissolved by N/5 nitric acid from soils represents a 1 portion of the potash in the easily decomposed minerals. 4. From 36 to 100 per cent of the potash absorbed from aqueous , solution by certain minerals was extracted by N /5 nitric acid. 1* 5. Two per cent ammonia dissolved from 9 to 45 per cent of the i potash absorbed by minerals. ' A 6. The potash extracted represents the difference between the A potash dissolved and that fixed from the solution. The fixation of potash from N/5 nitric acid is much less than the fixation of phos- phoric acid from the same solvent. _ 7. The potash extracted from the soil by successive treatments with N /5 nitric acid at first represents easily soluble potash and is finally reduced to the small amount of potash dissolved from highly insoluble minerals. 8. Increasing the quantity of potash mineral to a fixed amount of solvent increases the quantity of potash extracted but the percentage of the potash extracted decreases. 9. The quantity of potash extracted by N/5 nitric acid below 50 parts per million represents 1 to 2 per cent of the potash of highly insoluble silicates. The quantity extracted in excess of approximately 50 parts per million represents a comparatively large percentage of a much smaller quantity of more easily soluble potash. » 10. The potash extracted by N/5 nitric acidI from the soil is not necessarily in the same form of combination in different soils and does not necessarily have the same value to plants. 11. A study is made of the relation between the active potash and the needs of the soil as shown in 403 pot experimentson 172 soils. ’ ' 12. The percentage of crops which show an increase in growth caused by the addition of potassium fertilizers decreases from 86.7 with soils containing less than 50 parts per million of active potash to zero in soils containing 800 to 1000 parts per million of active- THE ACTIVE POTASH OF THE SOIL 39 potash. The effect of the potashdecreases with the active potash in the soil. 13. The percentage of crops injured by the potash increases with the quantity of active potash in the soil. 14. The effect of the addition of potash to the soil upon the aver- age Weight of the crop in the pot experiments decreases with the quantity of the active potash in the soil. When the soil contains more than 200 parts per million of active potash, addition of potash does not increase the average weight of the crop, but oftendecreases the crop. 15. The average percentage of potash contained in 235 crops» in- creases With the percentage of active potash in the soil. 16. _The average quantity of potash removed from the soil by the crops increases with the quantity of active potash in the soil. 17. .Relatively enormous quantities of potash are removed by the crops in these pot experiments. Expressed in terms of bushels of corn equivalent to the potash removed, the quantity averaged 58.6 bushels in soils containing less than 50 parts per million of active potash and 413.8 bushels in soils containing 600 to 800 parts per million. 18. Deficiency of plant food is a relative term and depends upon the growth which can be "made under the conditions of the experiment. 19. Soils containing less than 50 parts per million of active potash were deficient in 87 per cent of the pot tests and the average crop without potash is 67 per cent of that with potash, and yet these soils gave up enough potash to the crop to produce 58 bushels corn to the acre. on the average. i 20. There is a loss of active potash consequent upon the cropping of the soil. The loss is approximately one-half of the potash taken up by the plant when the active potash exceeds 100 parts per mil- lion. When the active potash is between 50-100 parts per million, the loss is about one-fifth of the potash taken up by the plant. When the active potash is about 50 parts per million or less, there may be no observed loss. ’