6000-L180 TEXAS AfiRICULTURAL EXPERIMENT STATION A. B. CONNER, DIRECTOR - COLLEGE STATION, BRAZOS COUNTY, TEXAS BULLETIN NO. 484 NOVEMBER, 1933 par s! ‘ F. F L.» DIVISION OF AGRONOMY Rate of Water Evaporation in Texas I AGRICULTURAL AND MECHANICAL COLLEGE OF TEXAS T. O. WALTON, President STATION STAFFT Administration : A. B. Conner, M. S., Director R. E. Karper, M. S., Vice-Director Clarice Mixson, B. A., Secretary M. P. Holleman, Chief Clerk J. K. Francklow, Asst. Chief Clerk Chester Higgs, Executive Assistant Howard Berry, B. S., Technical Asst. Chemistry: . S. Fraps, Ph. D., Chief; State Chemist E. Asbury, M. S., Chemist F. Fudge, Ph. D., Chemist C. Carlyle, M. S., Asst. Chemist . L. Ogier, B. S., Asst. Chemist A_. J. Sterges, M. S., Asst. Chemist Ray Treichler, M. S., Asst. Chemist W. H. Walker, Asst. Chemist Velma Graham, Asst. Chemist Jeanne F. DeMottier, Asst. Chemist R. L. Schwartz, B. S., Asst. Chemist C. M. Pounders, B. S., Asst. Chemist Horticulture : S. H. Yarnell, Sc. D., Chief Range Animal Husbandry: J. M. Jones, A. M., Chief B. L. Warwick, Ph. D., Breeding Investiga. S. P. Davis, Wool Grader J. H. Jones, B. S., Animal Hush. Entomology: F. L. Thomas, Ph. D., Chief; State Entomologist H. J. Reinhard, B. S., Entomologist K. Fletcher, Ph. D., Entomologist . L. Owen, Jr., M. S., Entomologist N. Roney, M. S., Entomologist C. Gaines, Jr., M. S., Entomologist E. Jones, M. S., Entomologist . F. Bibby, B. S., Entomologist . W. Dunnam, Ph. D., Entomologist "R. W. Moreland, B. S., Asst. Entomologist C. E. Heard, B. S., Chief Inspector C. J. Burgin, B. S., Foulbrood Inspector Agronomy: E. B. Reynolds, Ph. D., Chief R. E. Karper, M. S., Agronomist P. C. Mangelsdorf, Sc. D., Agronomist D. T. Killough, M. S., Agronomist Publications : A. D. Jackson, Chief l-itdFf/ICJ I finesse: Veterinary Science: ‘M. Francis, D. V. M., Chief H. Schmidt, D. V. M., Veterinarian "F. P. Mathews, D.V.M., M.S., Veterinarian J. B. Mims, D. V. M., Asst. Veterinarian Plant Pathology and Physiology: J. J. Taubenhaus, Ph. D., Chief W. N. Ezekiel, Ph. D., Plant Pathologist Farm and Ranch Economics: L. P. Gabbard, M. S., Chief W. E. Paulson, Ph. D., Marketing C. A. Bonnen, M. S., Farm Management :t"W. R. Nisbet, B. S., Ranch Management **A. C. Magee, M. S., Ranch Management Rural Home Research: Jessie Whitacre, Ph. D., Chief Mary Anna Grimes, M. S., Textiles Sylvia Cover, Ph.D., Foods Soil Survey: "W. T. Carter, B. S., Chief E. H. Templin, B. S., Soil Surveyor A. H. Bean, B. S., Soil Surveyor R. M. Marshall, B. S., Soil Surveyor Botany: V. L. Cory, M. S., Acting Chief Swine Husbandry: Fred Hale, M. S., Chief Dairy Husbandry: O. C. Copeland, M. S., Dairy Husbandman Poultry Husbandry: R. M. Sherwood, M. S., Chief J. R. Couch, B.S., Asst. Poultry Husbandman Agricultural Engineering: H. P. Smith, M. S., Chief Main Station Farm: G. T. McNess, Superintendent Apiculture (San Antonio): H. B. Parks, B. S., Chief A. H. Alex, B. S., Queen Breeder Feed Control Service: F. D. Fuller, M. S., Chief James Sullivan, Asst. Chief . D. Pearce, Secretary H. Rogers, Feed Inspector . L. Kirkland, B. S., Feed Inspector . D. Reynolds, Jr., Feed Inspector . A. Moore, Feed Inspector . J. Wilson, B. S., Feed Inspector H. G. Wickes, D. V. M., Feed Inspector PPUWNFVJ SUBSTATIONS No. 1, Beeville, Bee County: R. A. Hall, B. S., Superintendent No. 2, Lindale, Smith County: P. R. Johnson, M. S., Superintendent No. 9, Balmorhea, Reeves County: J. J. Bayles, B. S., Superintendent No. 10, College Station, Brazos County: R. M. Sherwood, M. S., In Charge "B. H. Hendrickson, B. S., Sci. in Soil Erosion L. J. McCall, Farm Superintendent "R. W. Baird, M. S., Assoc. Agr. Engineer No. 3, Angleton, Brazoria County: R. H. Stansel, M. S., Superintendent H. M. Reed, M. S., Horticulturist No. 4, Beaumont, Jefferson County: R. H. Wyche, B. S., Superintendent "H. M. Beachell, B. S., Junior Agronomist No. 5, Temple, Bell County: Henry Dunlavy, M. S., Superintendent C. H. Rogers, Ph. D., Plant Pathologist H. E. Rea, B. S., Agronomist S. E. Wolff, M. S., Botanist **H. V. Geib, Ph. D., Sci. in Soil Erosion “H. O. Hill, B. S., Junior Civil Engineer No. 6, Denton, Denton County: P. B. Dunkle, B. S., Superintendent "I. M. Atkins, B. S., Junior Agronomist No. 7, Spur, Dickens County: R. E. Dickson, B. S., Superintendent B. C. Langley, M. S., Agronomist No. 8, Lubbock, Lubbock County: D. L. Jones, Superintendent Frank Gaines, Irrig. and Forest Nurs. No. 11, Nacogdoches, Nacogdoches County: H. F. Morris, M. S., Superintendent "No. 12, Chillicothe, Hardeman County: "J. R. Quinby, B. S., Superintendent "J. C. Stephens, M. A., Asst. Agronomist No. 14, Sonora, Sutton-Edwards Counties: . H. Dameron, B. S., Superintendent I. B. Boughton, D. V. M., Veterinarian W. T. Hardy, D. V. M., Veterinarian O. L. Carpenter, Shepherd "O. G. Babcock, B. S., Asst. Entomologist No. 15, Weslaco, Hidalgo County: W. H. Friend, B. S., Superintendent S. W. Clark, B. S., Entomologist W. J. Bach, M. S., Plant Pathologist J. F. Wood, B. S., Horticulturist No. 16, Iowa Park, Wichita County: C. H. McDowell, B. S., Superintendent L. E. Brooks, B. S., Horticulturist No. 19, Winterhaven, Dimmit County: E. Mortensen, B. S., Superintendent "L. R. Hawthorn, M. S., Horticulturist Members of Teaching Staff Carrying Cooperative Projects on the Station: G. W. Adriance, Ph. D., Horticulture S. W. Bilsing, Ph. D., Entomology D. Scoates, A. E., Agricultural Engineering A. K. Mackey, M. S., Animal Husbandry R. G. Reeves, Ph. D., Biology *Dean, School of Veterinary Medicine. J. S. Mogford, M. S., Agronomy F. R. Brison, M. S., Horticulture W. R. Horlacher, Ph. D., Genetics J. H. Knox, M. S., Animal Husbandry A. L. Darnell, M. A., Dairy Husbandry ‘i-As of November 1, 1933 “In cooperation with U. S. Department of Agriculture. IIn cooperation with Texas Extension Service. Losses of water through evaporation from reservoirs is an important consideration in the planning for an adequate supply for domestic, municipal, or irrigation purposes and the rate of such losses from the soil has a marked influence upon crop adapta- tion and farming practices in a particular region. Measurements of the evaporation from a free water surface have, for a number of years, been collected by the Texas Agricultural Experiment Station at Substations in the various regions of the State and these, to- gether with similar records from U. S. Field Stations located in Texas, and from U. S. Weather Bureau records at Austin and Dilley, are reported in this Bulletin. In all, the monthly'and annual evaporation, in inches, is given for 21 points within the State, fairly well distributed from the Upper Panhandle to the Rio Grande Valley and from the more humid regions of the Gulf Coast to the drier Trans-Pecos Region in the west. Evaporation generally increases gradually from the eastern to the western part of the State. Totalannual evaporation from a free water surface ranges from 45 to 55 inches in the eastern part of the State, from 55 to 65 inches in the central part, and from 65 to 75 inches in the western part, or a range of four to six feet per annum. Rainfall, on the other hand, varies in exactly the opposite direction, ranging from 52.81 inches at Beaumont, in the Gulf Coast Region, to 13.75 inches at Balmorhea, in the Trans- Pécos Region. The temperature, atmospheric humidity, wind move- ment, and rainfall all have a close relationship to evaporation, and, together with the altitude and geographical location, largely determine the extent of losses through evaporation which may be expected in any given region of the State. When conditions are highly favorable to rapid evaporation, a loss of from one-half to three-fourths of an inch of water may occur in a 24-hour period. In the eastern and southeastern parts of the State the annual rainfall is equal to or slightly more than the annual evaporation but in the drier regions the total annual evapo- ration from a free water surface may amount to as much as four or five times the total rainfall for the year. Total annual loss of water through evaporation, when all avail- able measurements are considered, averages 61.65 inches in Texas, approximately two-thirds of which occurs during the six warm months, April to September, inclusive. CONTENTS Page Introduction s. s s s . s s s s s s s _ s s s s . . s s s s s ................................ ss 5 Location of Observations ......................... ______________________________ .s 5 Type of Equipment Used _____________________________________________________________________________________ s- 6 Recording of_ Observations . s . . s s s s s _ . . . . s s s . s s s s s s s s s . s s s . . . s ss 7 Evaporation Records ____________________________________________________________________________________________ ss '7 Tabulation of Evaporation, by Months and Years, at: Nacogdoches _____________________________________________________________________ s ss _____________________ _s 12 Angleton ____ ss Beaumont _____ __ s ________________________________________________________ ss13 Troup (Lindale) . ______ s. A sssssssssssss ____________ ssl3 College Station _______________________________________________________________________________________________ ss14 Denton _s s .... ss oooo 774 ssssssssssssssssss ss14 Winter Haven ssss ...... . s sssssssssssssssssssssss _s21 Beeville sssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss ss15 Temple - s ss sssssssssssssssssssssss s15 Weslaco s ssssssssssssssssssssssssssssssssssssssssssssss s.21 Lubbock _____ ss -. __________________________________ ss16 Iowa Park sssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss ss16 Hill’s Ranch . ___________________________________________ ___________________________________________________ ss 17 San Antonio .................................................................................. ___________ ._ 17 Spur ______ __ s_-18 Chillicothe sssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss s_18 Balmorhea ............. s. A s- s ........... _.19 Dalhart ss s- ' s s- .................................. _.2O Amarillo ________________________________________________________ s- s _______ ss20 Dilley . sssss ss sssfs2l Big Spring s. .__.s20 Acknowledgments s __________________________________ ss26 s Summary sssssssss ssssssssss .26 BULLETIN NO. 484 NOVEMBER, 1933 RATE OF WATER EVAPORATION IN TEXAS R. E. KARPER Evaporation records at points representative of the various regions of the State are of value not only in connection with agricultural development of these regions but are also useful to municipalities, engineers, and in- dustrial development. The loss of water through evaporation from storage reservoirs is an important factor in reducing the quantity available for domestic supply or irrigation. A knowledge of evaporation losses is important in the adequate planning of reservoirs for domestic, municipal, or irrigation purposes, flood control, and other reclamation projects. The tremendous influence of evaporation upon crop production in climatic regions such as prevail in Texas, is quite evident and is practically as important as precipitation. Evaporation is an integration of many com- ponents of the weather, such as temperature, Wind movement, precipitation, and relative humidity, all of which, to a greater or lesser degree, determine thet total evaporation losses from the soil. Such losses are intimately associated with agricultural production and with farming practices, such as choosing the right crop to grow, time and method of seed-bed prepara- tion, planting, and cultivation, as well as rotation, fertilizer, and irriga- tion practices. Soil moisture available for germination of seed and crop production is affected by evaporation to a large degree and this influence must be considered in determining the depth to cover the seed, spacing l between plants, and rate of seeding. Loss of water from the soil through evaporation varies for different soils and soil types, but accurate and rapid determinations of such losses are not possible; however, records of evaporation from a free water surface or an evaporation tank in general should resemble evaporation losses from the soil in the different regions of the State. The Texas Agricultural Experiment Station has, for a number of years, kept daily records of the evaporation, as well as other meteorological observations, at the Substations located in the different agricultural regions of the State. Numerous requests for information on this subject have prompted us to make the record of these observations available in this Bulletin. LOCATION OF OBSERVATIONS Evaporation records from the Texas Substations, for the most part, con- stitute the data reported in this Bulletin, and, in addition, similar records lfrom the several other points at which they are available have been " included; Through the courtesy of the Division of Genetics and Biophysics, Dry-Land Agriculture, and Western Irrigation Agriculture, of the United States Department of Agriculture, it has been possible to include evapora- tion records froln the Dry-Land Field Stations at Big Spring and Dalhart, from the Western Irrigation Agriculture Field Station at San Antonio, l and from the Amarillo Field Station from 1907 to 1919. While the records for Dalhart, Amarillo, and Big Spring cover only the six months’ growing season, April to September, inclusive, this is the usual period of 6 BULLETIN NO. 484, TEXAS AGRICULTURAL EXPERIMENT STATION maximum evaporation losses and the mean annual can be closely ap- proximated by calculation from other records for the entire year in the same general region of the State. The records for Austin and Dilley are taken from the United States Weather Bureau records. The location of the points of observation cover, for the most part, the important agricultural and geographical regions of Texas, extending from the Upper Panhandle to the Rio Grande Valley and from the more Table 1. Location of stations recording observations on evaporation North i West lElevation, Locatlon i County i Reglon Latitude [Longitude feet Nawgdoches Nacogdoches East Texas Timber 31 ° 35’ 91 ° 40’ 271 Angleton Brazoria Central Coast Prairie 29 ° 9’ 94 ° 24’ 23 Beaumont Jefferson Eastern Coast Prairie 30° 94° 28 Troup Smith East Texas Timber 32 ° 20’ 95 ° 17’ 484 College Station Brazos East Texas Timber 3 1 ° 39’ 96 ° 16’ 308 Denton Denton Grand Prairie 33° 10' 97 ° 10’ 600 Winter Haven Dimmit Western Rio Grande Plain 2 9 ° 40’ 99 ° 50’ 650 Beeville Bee Rio Grande Plain 28°32’ 97°38’ 240 Temple Bell Blackland Prairie 31°15’ 97°37’ 740 Weslaco Hidalgo Lower Rio Grande Valley 26°9’ 97°57’ 80 Lubbock Lubbock Central High Plains 33°37’ 101°45’ 3106 Iowa Park Wichita Rolling Plains 33°55’ 98°39’ 978 Austin Travis Edwards Plateau 30 ° 17 " 97 ° 44’ 502 San Antonio Bexar Rio Grande Plain 29°9’ 98°21’ 539 Spur Dickens Rolling Plains 33°30’ 100°47' 2274 Chillicothe Hardeman Rolling Plains 34° 99° 1406 Balmorhea Reeves Mountains and Basins 31 ° 103 ° 32 00 Dalhart Dallam Northern High Plains 36°4’ 102°31’ 3978 Amarillo Potter High Plains i 35°13’ 101°50" 3676 Dilley Frio Western Rio Grande Plain 28 ° 42’ 99 ° 1 0’ 569 Big Spring Howard Southern High Plains 32 ° 1 5’ 1 01 ° 23’ 2500 humid regions of the Gulf Coast to the drier Trans-Pecos Region in the west. Table 1 shows the location, region, latitude, longitude, and elevation of the points of observation covered in these records. TYPE OF EQUIPMENT USED Equipment"‘for evaporation observations, which is standard for all the Substations, consists of an evaporation tank six feet in diameter and two feet deep, with still-well attached, a micrometer evaporation gage, and a water supply piped to the tank (Fig. 1.) Within the same fenced weather enclosure is housed other standard U. S. Weather Bureau equip- ment consisting of rain gage, maximum and minumum thermometers, whirling psychrometer, and anemometer. The weather yards are located as uniformly as possible, at the various Stations, away from trees, buildings, and other obstructions, and instruments installed in regulation shelters. The anemometer is mounted on a stand about five feet from the ground. Evaporation tanks are given full exposure to the sun. The earlier records at Substations and Field Stations were practically all obtained from eight-foot tanks. In a few cases tanks of-this size are still in use but at most of the Stations they have been replaced, and as they are renewed, tanks six feet in diameter are installed. Evaporation tanks are round and constructed of ZO-gage galvanized iron. The upper edge of the tank is reinforced by a piece of angle iron, RATE OF WATER EVAPORATION IN TEXAS g 7 the top of Which comes about one-fourth of an inch below the top edge of the tank, thus providing reinforcement on the outside of the tank. The top edge of the tank is kept in line and not dented. About one inch above the bottom of the tank is installed a flange coupling on both the inside and outside, riveted and soldered, giving a water-tight thread connection for a one-half inch galvanized iron pipe extending from the outside of the tank to approximately its middle and open at each end to admit the placing of a still-Well on the outside of the tank and giving connection with the water in the tank through this small pipe. A brass still-well, a with cover, is connected parallel with the side wall of the tank. Tanks are sunk in the ground so that four inches of the rim projects above the surface, and are set level. Installation in the ground provides a more even temperature of the water and the 4-inch rim above the ground level protects the tank somewhat from splashing rain, drifting snow, and blow- ing dust and trash. Fig. 1. Sunken exaporation tank, still-well, and micrometer gauge, the equipment ed in recording evaporation from a free water surface. ' Evaporation records at Hill’s Ranch, near Austin, and at Dilley have been itained by the U. S. Weather Bureau from their standard type of pan talled above ground. Water in this type of installation is more readily ected by the temperature of the air and the rate of evaporation is mewhat higher than Where sunken tanks are employed. BULLETIN NO. 484, TEXAS AGRICULTURAL EXPERIMENT STATION _ m _ _ _ 5.2 mmE mmma mam” mmE mmmm mmmm mmmm mmmm 58m m2 8:8 .88 =8? m5. _ mm» _ w? _ m mm _ 8mm _ mi _ mm» m5 2mm mmm mm», mm» m.mm _ mm E8882 8m .>< mmm g mmm 1 . m.mm mmm i; mmm mam m.mm mi mam m.mm mam 3mm mm 888 =88 =82 mmm m8 mmm _ mgm mmm 2:. _ m8. m.mm mmm. wmm mm... mmm m3 mm 888 .88 =82 m? _ 2mm m8 _ mgm m.mm m.mm _ mmm mqm mmm I; mi. 8mm mmm mm 888 =88 =8.2 mmmm _ mmm mmm _ Sm mm.m ‘ mmm _ 8am mmm m5. mm...“ mm.m 8mm mmm 8 888 .==s8m=m8=m mmmmm 88m mmmm amml. mmmm mmm.» 5.; mmmm mmmm S5. 8S. mmfim 2mm S. 88.8 .==sm.s==..>2 _ _ _ m _ m _ _ _ 8888mm 8860 :81 mmmi mmmm_ mvmmm 2mm; mmmm_ S5 Ema mmmm 5mm Hmmm mmi. mmmm mm 8m8 .=== m8? mi _ mmm _ 8mm 3:. mi I m8 _ mm» m3 ¢ m? 8.8. m8. S; m5. m2 888882 =8 .>< mmm _ mmm _ mmm. mam m5 mmm _ m.mm mmm m8 mmm mmm mqm m8 mm 888 =88 =82 8mm _ 8mm mmm 2mm 2mm i w; _ w? mmm mqm mam m5 2.8 8mm mm 888 .88 =82 8mm _ mmm mmm mmm mmm mmm _ mmm mmm mmm .m..mm 1mm mam mmm mm 888 =88 =82 mmmm _ mme mwm 3m 3am * 8Q _ 3m mmm mme Hme mmm 5m mmm mm 888 .==€8m=8m=m mmmmm Tam; _mmm.m _mmm.m mmmm mmmm .58.» Hmwm mmmm mmme mmmm 28m mmm; mm 888 éoswhawsm m scam. mmmm mmE mmmm mmmm mmmm mmi mmmm mmmm mmmm Emm mmmm mmmm mmmm mm 8:8 8E =8? mmm m.mm 8mm 8mm 1m mmm I mmm 2mm 3m 8mm mam mam mam mm >883 .8 .5. mmm 8mm m.mm wmm mm» m.mm mmm 8mm mm». 5m mmm mam mmm mm 888 E88 =82 mmm S8 mmm mmm 8mm 8mm v m8. S; 3m mfim m.mm mi mmm mm 888 .88 882 mmm mam mmm m.mm 1mm mam mqm m.mm mmm m5. S; msm 2mm mm 888 .88 =82 5mm mm.m ‘ 8.8 _ mmm _ mmm _ mma mme mma mmm 8+ m; mwm mme mm .888 .=8m8m=8m=m mmwmm 5Q mmmm Fmwm W81. _mmm.m 5mm mmmm 5mm mfimmm mmmm mmma mmma mm 888 .8896=m>m _ _ _ _ i 520E285 85 58 mmmm; 8mm mmmm_ mmmm mmmm mmmm S3 mmmm 5mm ma; SS mm @288 .8: ~85» mmm _ mmm mm» mmm mqm j mmm _ mm» mmm mmm mmm 1mm 8mm mam mm mxmm8== =8 .>< 2mm _ 2mm 3m S; m.m> mqm _ 2m mmm mi msm mam mmm mam m2 s88 =88 882 mmm 1 9mm ; mmm m.mm 8mm _ mi _ mi I; mam 5m mam mi mmm mm 888 .88 =82 mm» mmm mm» 8mm mmm _ mmm _ 5m 8mm mmm mm» m.:_ mmm mmm mm 888 =88 =82 mmmm _ mma _ mmm _ m3 2mm 8.8 . _ m3 :8 mmm 2m mmm mwm mmm mm 888 .==s8m=88m mmmmmw Tmma immwm __mmm.m __mmm.m mfim __mmm.m mmmm mmdm mmmm mmmm mmm.m mmZ mm @888 .=omm8===>m "coafimdfi 5mm“ mmmm; mmmi N88 mi: mmE $2 mmmm mmmm mmmm mmmm mmmm mmmm m2 888 .8: 8E2 5m _ mmm 3m 3m mqm mmm mmm 8mm 5m mm» mam» mmm mam mm .s=88== .28 .3. mmm ’ mam mmm 2mm m5 8mm m.mm 2mm mfi. m.mm Em mmm mmm mm 888 588 =82 mmm m3 mmm m.mm mmm ,3; m2. wmm mam mam 8mm m8 m.mm mm 888 .88 882 8E _ 8mm mmm m.mm m.mm wmm _ mmm mmm m.mm m5. mmm 3m m.mm mm 888 =88 =82 mmmw f 8m mwm Sm mmm _ mwm mmm mwm mmm mme mme mwm m5. mm 888 828888885 mmmi mmma mmwm mmmm mmme mmwm mmmm mmmmm mmma mmmm mmwm mmmm Ema mm 888 .==m8==8m>2 _ _ _ wUJQOUMOUNZ _ _ _ _ _ _ _ _ was?» Hwfin-Jw dwfi 5oz .30 88w $24 35.. 95h >32 $.54 SONGS dorm fiwh énoooa _ MO SPMGUQ flmfiflmmfi>fi 0H8 mwuouvu Gofinuoadmro EQHM. wuxom. Gm mica-nun HOW dud“. imumm-Joucoaoi wdn-Gfifl w: 2152c:- QGOS ‘N Omfid-F _ EL mwHL 39L N3. . _ . .3... NS Q8 N... m. NMWWNN N.....MNN_ NMMNN QMWMNN .83 .3... .3.» .23. NNR. N 8...: 6E 6E3 W3 N? NNN Q5 QNN .3... NNN New Mm x.“ M...“ x“ fix N SQEE. .2 .3... .5 mAm N23. N... mam Q3. NAN N. . . . . N. N. .953 56E 53E .23. fimm 9mm wdN. m. . : .ww flan f3 N...» wfim 7mm N. .953 .55 .535 a... s... a. s... 8M. .3. ...m. .3. .M....... N... N... N“... .3. . .2... .5... s... N$..NN NNN.. CNN NS... NNN... NNN... N22. NNNN . . N $42.. ..8s8...s.zm . . S... N SN... .33. mmmd .2... N mane: .=...s.....o......>m mm... $9. N2... 33. _ . . $2.... .26 s 3s NS N... =3 NNMWNN Wm“... QWMNN NNwWNN NE... .56 NNNN 2N. NNNN N. . 8...... .5: NE? N vAAu N45 2N Ndv mdw 1S. YE. NnwN ma... N... P3. r3 Rpm v.3. NH >£wNE5n Ava $4 . E 9m“. mam mém 93. wsm Qmw fimw Q3 N... Pa... C5 W3. fimm 2 diva CQQE saw? T n45. Wmm fimw md... wéw 02S 1mm wdw ohm P3. C... Nam 3N 2 55o» .55 Gavan N 3...? NN. 8. NQ.N _ N@.N NQN N..N 3N NMTN... NWT C... NE NHNN N. 5S3 .53. .53.. I N3 N. Nu... NNNN N13. www.» NNNN EN... 3N... $3 3&6 mm... ow... mm? w“. . . N. N NNNN .33. .63 oN 3.8.2.. m NNN N.NN NNN QNNQN NNNNMNN qwwoN Nwww; ma; .5... N3... .3... £3. NNN... N. m2? .5: .53.. T N3 N9. wfim Qww c.w.. wdm Qmm NAM... ck... i... v.5. w...» wH zfiwmiss 40a .>< W“ wdm wuNm Q3. fimm mam mAN 9E. mdw 3.. cm 5E3 ENwE N832 QwN #3 ma... mAw d . . . . . . . EN cm d59- ASE 53E m NNHNN ...N.N NNN 3N NTN NMNNWN N.N.....N NWWN NWWN fiwwN NNN N... NU$ NN as... .53. aw»... E $3. “N... NNZ. s... . . . . N5 m .035“. R QNN NNN N.NN 3N ofiwmw Nwwwm WWW... Nmwm. .53 Q3 .53 o5. 2S N. N22. .5; .52»... E NAN ma... ma... fimN mdw 9mm wéw Qww PE. fiNN PNN Nmf. wdw 3 zfiwmisa 43 .54 M N3 Q3. 3m N... N? NNN N.NN NAN N.@N N..N N... NE f; NN d5». =88 =82 W Yaw ado mzmv odw fima vdm Tmm Ndm N? vbw Nfimm i... 95. Nu Q53 .35 zwwg wmdm wwd wfiu Hwd 3mm mfim 2d $4." NMMN Nmww ¢%.%N NfiN o%.%w Nu $53 J22: :82 F N2... NNNN N3... NS... NNN... . . . . . . . . NN mwfi... .=..€.N..N.8.m. O N ._ fin N .5. N. Nwfi v mmo w wmfi m H3. w mam m vwmd w.“ mwsofi .fl0s.wkOfl.m>mm £9 NEE BN1 Nxi 2N1 _ v2.53. E 5... 3N NaN o. . N2. $2. SE NNN... omoN NNNN NE. N35 N. w . . 3 . . . . . . . 2.8 Ea N5...» M N»... E... 3.. New “mm WM... y.“ N.NN fig N... v.3. NNN N. 3:252. .2 .2... R wdm wém mzww Namm fimw QC. WE. mdw N»... 2 .935 cams. cmwg #6.. NE N9. adv o. . . . . . . . 9mm 2 dig .58. cwwg wmdm 3N 3d 3N wfiNNw wNWW Wwflwm owzfiwm wWww NW5 W5 o“... in 2 A35» JSNE cask 39$ NNQN mwwd a2... mac... NNQN 3...... $N.N N3. HEM NM“... mm“ w.“ _ _ _ "flowcofi .355. 3m 5oz fio fiwm N5... b3. m5... ENE ww-ES-EOILJN-ufiuvu 9M6 u1ueommQN£m0u3m>0f 10 BULLETIN NO. 484, TEXAS AGRICULTURAL EXPERIMENT STATION E E E E E E E E 88 528E 2.28 825E 2.8a 88E 882 88E 85E 8:. Q82. 8.85. 585 2 8225 .5: 2.5.2 2.5 Q8 E 2.8 2.8 Q8 Q8 Q8 Q8 Q25 Q82. Q5. 2.8 Q8 2 5525552 .22 .3. Q8 2.52. E . Q8 2.8 Q3 Q2 Q22. Q8 QN2. Q8 Q5... Q5 Q52. 2 .558 =285 =82 Q8 E Q8 Q8 Q8 2.8 Q8 2.8 Q8 Q8 Q5. 85m Q8 Q8 2 558 .55 =82 Q2. E Q8 Q8 Q2 Q8 Q8 2.8 Q8 Q8 Q8 Q8 Q8 Q8 2 .558 .555 5822 8.2 E 8. 8. 8Q2 8N E cQN E 8.2 5N2 N2.2 2.Q 8. 8. QQ 2 8.85 .==25.s258=~2 25.2; E8QN 5.2.5 23.2. 82.8 .825 E8Qw 228 55.5 25s 8.85 2.85 8QN 2.2 .8585 .=58=o=....>22 E E E E E E “wmziocbwm 281 252. 521 88 881 .88 82. 85. 88... 28E 28E N85 85. 8N 8225 .55 2.53 Q28 E Q8 Q8 E Q8 Q8 E Q8 E Q25 Q8 E 8.8 25... E Q5 Q8 Q8 2 2525525 .292 .5. Q8 Q22. Q5 E Q8 E 252. E Q8 E 58 2.8 E Q3 2.8 Q8 Q52. Q8 2 .558 =85 =82 Q2 Q8 Q8 _ Q8 Q8 Q8 E 2.; Q8 Q8 Q2. 8.8 Q5 8pm 2 55B .55 =82 Q2 2.8 Q8 E Q8 2.8 E Q8 E Q8 Q8 2.8 N52. Q8 2.8 Q8 2 .258. .85 =82 mN5N 1 NN.2 E 8Q2 E 2.2.5 . QQN E 22..N 5.N 88 525 QQN 2.2 3.. 8. 5N 885 .=522..._2=28.22 88.8 E2282 EowQN E582. E858 EEQw E858 2.8.8 @281. N88 2.8.2. wNQN Q82 2N 885 .=@28.25282 . "0 QOUM m w81 582E 8N E 82.1 88E 885E .88 582. 2.55 2.85 855 5:. 82.2. 2 8225 .5522 2.52.255 2.8 E 2.8 E 2.5 E Q8 E N8 E Q8 E Q5 Q8 Q8 2.8 Q5 18 Q8 2 5555525 .22 .3. 2.8 E Q22. E Q5 E Q8 Q8 E Q8 E 2.5 Q8 Q8 2.28 Q5 Q82. Q22. NN .558 =85 =82 Q82. Q5 E Q8 E Q5. Q8 E Q8 E Q8 Q8 Q25 0.3. Q8 Q5 Q8 NN 553 .55 =82 2.2. 1 Q55 18 E Q2. Q8 E Q8 Q8 2.8 2.8 2.3 2.8 Q5 QQ... NN .553 85 =82 8.2N E 8. 2Q wQN NQN E wQN E 8.2 QQN 2.QN 2.2.N NQ 2. 8. NN @8285 .=¢28558.22 555.8 EEQN E2815 E..NQ2. 2.88.5 E828 E588 288 82.2. E828 22.... E852...“ 82..N 2.2 885 .=..2ew.2o5...>2 .2225 855 255E 88 88 88E 22E 58 82.... 8N8 88 N81 2.28. 85 52. 8225 .5; 2.5.2 w Q8 Q8 Q8 Q8 Q2; E Q8 E Q8 Q8 2.2:. Q8 Q8 E Q8 Q8 m2. 325552 .22 .3. 2.8 8.8. E Q5 Q2; Q8 Q8 Q8 N5 Q2. Q8 Q8 Q55 Q8 82. .2258. =85 =82 Q8 E Q2. E 2.5 Q8 N8 Q8 E 2.8 2.25 Q8 8.8 Q5 N52. QN2. Q2. .2258. .55 =82 5.2. 2.8 Q22. Q5 M8 Q8 E Q8 Q5 25w E Q2 Q8 Q8 Q8 2.2. E 55$ .85 =82 2.5 E 2Q2 E ¢Q2 mQN 85 E N2..N E S.N 82..N 8N5 25 2.Q2 8.2 E 82.2 E 25 885 .=o2§.222892.2 2.8 E 52..N E 82.5 25 E 2Q8 E 28 2.8 53 5.8 _ 85 8.2. wQm 82..N 2.N 885 .=o28=¢5.>m E E E E . E "OMCOMQAW Sdw 85E 88E 825E s81 28.. 5.82.1 N81 28E 881 88 288 88 28... 5 E 2.8225 .5: 2.53 Q5 E Q8 E Q2. E Q8 E Q8 Q8 E Q2 E Q8 Q2. E Q8 Q8 Q8 QE 2. E 555525 .23 .>< 2.8 _ Q5 E 2.8 2.8 2.8 Q8 E Q8 E 2.5 _ 5.2;. Q8 Q8 2.8 5.2. 52. E 55B =85 =82 Q8 E Q3. Q2 E 2.8 . E Q8 E Q8 E N8 E Q5 E N8 E Q8 Q2 5N2. Q8 8 558. .55 =82 2.8 E Q8 E Q8 E Q8 E Q8 E 5.8 E 18 Q5 2.28 E Q2. Q5 Q8 Q8 8 .2258 .85 25.82 52......“ E 8N 2QN E 8N..." 8.8 E ¢N.N E wQN E ..5.N N12. 85 3..N QQN 8.2 52. 885 .=55.s2=28=2 3.2.8 aNQN Q25 E8Q... E5518 E885 EEBM E885 E228 E885 825 8N5. éQN 2 885 .=5..2N..=.=...>M2 E . E E E E E E E 222E224 £28m FEE E E E E 1 E E _ _ E E E was?» wdfliflaw 60mm $02 J00 522mm .M5.< 535m. QGEH WW2 EMQ< 5.0.262 63am 2.5mm. .©.~O0wH MO .. E E fiuiofl ¢o==ma=oU|o5ama>a can 22.2.3.2 5035:2991» £023 E93 maxoa. 2m mnafiauw now 232i _82u..2..=¢3~5 1:55 win 213:3: 2x02 .~ 05am. 11 RATE OF WATER EVAPORATION IN TEXAS _ _ _ _ _ _ N3NN_ NN3.N 33.NN N3.NN »N»N 3NNN_ ...N3NN SN3. 3NNN »NNN NN»N 3.NNN NNNN N 8338 .88 3.8? ».NN 3..N» N.NN ».NN ».N» N.»N N.NN ».NN N.N» N.NN N.NN 3.N» N.N» N 8833.888 .38 .3. N.3» N.3.N N.NN 3N» N.3N N.NN N.NN N.3.N N.N» N3» N.NN N.NN N.NN 33 .888 =88 =82 N.NN 3.N3. 3..N3. 3.NN 3.NN N3.» N.N» N.3» N.NN 3..»N N.N3. N.N3. N33. 33 .3388 .88 =82 N.NN N.NN N.3.» ».NN N.NN N.NN N.NN N.NN N.NN N.NN N.N» N.N» N.NN 33 888 =88 =82 3N.3N _ 3.N. _ N3.3 _ N3.N N.»N NN.N N».3 N3.N N».N NN.3 N3.3 NN. _ N3.3 _ 33 888 .=2NN=3=NN8.N NN3..NN TNNA INNNN _NNN.N NNNN »3N.» N3.N.» NNN.» 3NN.N NNN.3. NNN.3. NNN.N 3.NN.3 _ N 888 .==3..===NN>m _ _ _ _ 33$>mm .3353 33.N3. NNNN NN» 3.NN NNNN NNNN »N»N SNN NNNN NNNN NNNN N3.N3. 3.N»3. » 8338 .8; 3.83 N.N» ».NN ».NN N.NN N.3N N.N» N.»» 3.NN ».N» N.N» N.N» 3.NN N.NN » NN3=38== .38. .3. N.N» N.3N N.»N 3..N» 3..3N 3..3.N N.NN 3.NN N.N» N.3.» ».NN N.NN 3.NN N3 888 =88 =82 N.NN N.NN ».NN N.NN ».N» 3.N» N.N» 3..N» 3.NN ».NN N.»N N.NN N.N3. N3 .888 .88 =82 ».3.N 3..N» N.N» N.NN N.NN N.NN N.3N 3.NN 3.NN N.NN 3.NN N.N» N3» N3 _ 888 =88 =82 »N.NN NN.3 NN.3 NN.N 238.3. N».3 NN.3 NN.N NN.N »3.3 33.3 3.N. NN.3 N3 .8883 88.888.82.83 »NN.NN NNNN N»N.N 3.3N.N NNN.3. NNN.» NN3..N NNNN N»N.N NNNN NNNN 3.NN NNNN 3 N888 .==3NN===N>3.3 3002mm? 3.3.3.N_ NN3.N NNNN NN»N NNNN N»NN N3.NN 3.3.»N NN»N 3.N3.3. N32. NNNN NNNN N3 838 .88 383B NN _ N3. 3N 3.N 3.» NN NN NN 3» NN NN »3. N3. N3 888 =88 =82 N3. _ NN _ NN 3N NN NN N» »N NN N3. N3. NN »N N3 888 .88 =82 »» »N _ NN N» NN 3.N NN NN 3.N »» NN NN NN N3 888 =88 =82 N3..N3 3N. _ N». »N.N 2N SN NN.3 NN.N NN.N NN.N N3.3 NN. N3.. N3 888 .=8N=N3=3..8=~3 NNN.» NS.N3 33.33 NNN.N3 N3N.N N33..» »3 888 .==3NN.8==>N3 _ _ _ 88.8w NE 3.N3N_ N33.N_ NN3.N_ NNNN NNNN NNN»_ NNNN N33.N_ NNNN3 .N»NN3 N»NN3 3.3»N NNNN NN 8338 .8: N83 N.3N N.»N N.3.N N.NN N.3.N N.NN N.NN N.NN N.NN N.NN N.NN N.3N N.NN NN NN3N38== .38 .5. N.NN N.NN N.N3. N.»N 3..NN N.N» N.N» N.N» N.NN ».NN N.N3. N.NN N.NN NN 888 =88 =82 N.N3. 3.NN N.3N 3..N3. N.NN 93$ N.3.N ».NN N.3N 3..N3. 3.NN N.NN N.3.N NN 888 .88 =82 N.NN ».N3. 3.NN N.N» 3.NN N.»N 3.NN 3..NN N.N» N.NN N.NN N.3N N.NN NN 888 8N8 =82 »N.3N N». NN.3 N».3 NN.N NN.N NN.N 3.NN NN.N N».3 3.N. N». N3.. NN 888 .==3N8N88=n3 NN3.» NN3.N »NN.N3 3.NN.N »»N.N N3.N.N N3 888 .==3==88N>m _ 30553224 NNNB N3N3._ N83. »NN3. NNN3. NNN3._ N3N3. NNN3._ 3N3N NNNN NNNN NNN3. NNN3. NN 8338 .5: 38:; 3.N NN N3. NN »N N» N» N» NN NN N3. NN NN NN .3388 =88 =82 NN »3 »N NN NN 3N NN »N N3. NN »N NN S NN 888 .88 =82 NN »3. NN 3» NN NN 3N NN »» NN NN NN N3. NN 888 .88 =82 NN.N3 3N. NN. N».3 NN.3 NN.N NN.N 3..3.N 3.NN NN.3 N». NN. NN. NN .888 .==s=8=38=m . »3.3.» NNNN »NN.N N»N.N NNNN N3N.N NN N888 .==3N====N>N3 _ A _ _ "888383 _ _ _ _ _ _ . whdwh ~N5GC< dofl .>OZ .000 533mm JMUAN NQUH. 055M. hfiz ZHQAN JUHNE .QQF.H Jhdh. JNHOQQH MO SQMGQQ wviimuionuii-wflnkvd URN mwncuou QQMHNhOQNNrQ EOhm mnwoh. in lqhOmfifin-h HO% dean. Eomm-Joncvuoi 1235-38 can MTaQ-MQE 5&9; QN Qmfidrfi 12 BULLETIN NO. 484, TEXAS AGRICULTURAL EXPERIMENT STATION 1a use eeeww Se; eewm eevd weed eme.m e2.» eeed wem.» 39w $5 E35 3N3 e34 S: meme eme.m mefie Zed weed eme.m He?» eme.m weeA 3: 22 eewww 3.: eemm Ewe meme eme.m eevd mwed 55w ewmd emwe eeeé wfii 52 emwfi Q2; Neg vwee 2N4“ mwed fig eeed 23 Sew eee.m eweA _ S: £2 vwemw miwm eewm. eemw eeww 33 eeew eeed E3 eeee eme.m we: _ www; $2 3w? emeé emmm eeed 55m weed Fed we? S? eme.m 53 meeA N23 £2 szwi. 5Q evmm meme e23 $3 3Q Hwed eme.m eme.m Hwem 22 S: E3 ememw mee.m .22 eeve eevw eemd weew £3 eeww eeed eeem e._..w.m e51 $3 32w weeé Heem wwwe weee ewwd ebed 0:3 Fed efiwd eme.m eme.m E2 £2 eewdw ewe.m five eme.m 53. weed Heed fiwfid wwew mmfie eeem eemm $2 wmeH Sea? eeeé eeem 5am eewe eemd £3 SE eme.m Hie £3 eeeA fiweé $2 eweéw £5 emw.m ewee weee eeed Fed emmw mmew weed eemd eeem, n52 mmeH meedw eewm veem eeww eHee Ewe eeed eeew meg eem.w meed mwem emfim $3 eeeww 39m wwem meme eeew S; 3N». eeew eeew meew SQ evem 53 £3 05.? eme.m eme.m wmme efimw eeee eeew mmew meew 23 eefie mmmm ~54 22 memee evem 3mm eme.m mend eme.m weed E3 eewd E3 NSw New: $3 $2 W53 eeeé $5 eemw ewNmw ewed Emd meed Heew eme.m emmd ewmm S: Zefi ewméw eme.m eeem eeee meew $3 Sew eme.m .23 eeew eeew ewwm we: S2 eeeew :54 eeem bwee eEmw eeew Zed mwed weed m3.” éswm ._.wmm.m ...emw.n 22 _ _ 1w5cc< doQ 5oz .30 Jmww .m:< 35h. mnfle hag $.54 Soyuz dwh acne new? meeTefle-H E33M=< as fiosoim E J~QmuduQQfl>Q 1:223 dim h-seios .w w??? dimseocm dmeTeHeH dmduoz» name-er eeeww eeeA mwmm weed eeew EB weed mmwd eee.w weed 3Q meem PEA C52 $5; Se; eme.m eme.m S? meed eewd wee.e ebww eemw meme eEHH eme.m £2 eewew eeem Hmmm $3. mwed mevd wzé wewd 23 ewed S: weeA $3 52 eeedw Sea 31m eHmd ewvw ewwd Ems mmed mswm weew ewee $5 eemé 32 emwew 2:4 2cm eeed Ewe eeed fig Emd meme eeed ma?“ 3: £3 32 $5; eeeA wemm eved eeew wemd eeed 5g eme.m eeee $4.,“ eme.m mm? emeH Seaw 2g 3g meed 2:4“. Ewe deed eeww 2:3 wmfiw mfia eemm >23 E2 veeww Si eww.m eme.m eHmd ewed meed 8g eme.m weed 2mm eeem 5N4 £2 53m eve?“ eme.m wewe emmd 2.5 eemd 3E deed $2 m3..." mmwm ewwA £2 eewdw eeeé 5E S3 vwed gee $3 m2.“ $3. eewe eme.m we: eeeé $2 eemee 53 eeeA eewe 3.2 emee emmd eeew emew $3 eme.m 2:2 eeeA $2 eveee Se; weeA eme.m eeww emew need eeew eemw eme.m sad $5 wmmé $3 eefimw 2:2 eHmm S; 23. eeed wk? S3. SN.» mwee 5S .E.e.m £3 $3 v8.2. in; weed wefim eemw 3; eee.w Se.» eeew 53. weed 2g £3 £3 memdw wmeé Ema 58m eeww eme.m ewew weed eeed ee~..w $3 eemm eeeA 22 eweew m5; wmem eme.m eme.m meed meme $3. Hewd weed S3 $5 eemé 22 $2; 25 eee.m eew.w wew.w e59 eme.m eeed 33 eeew eeed fig 23 :2 fiwd. n23 $3 Q2...» $3. weed eeww Saw wmvw $3 5Q eemm $3 22 Maui $3 vemm 5M3 eee.w meew weed SE wmew mmem eme.m *3: aeewé B2 Hanflflww 62H .>oZ $00 aawm $54 hire v55... ~32 $.54 JORGE 5mm“ fish. ado? meefi-mflefi iofioowuouaz ea £0433 E éofinuonak. Hun-GHQ 15a M2050: d Bank. 13 RATE OF WATER EVAPORATION IN TEXAS dZmsHoco .mNQH|w.w®H .535 hdwhnOai dowdo odo.H oood w ooo.w oowd ooH.w oHd.w Howd oHod oow.w How.o HHwd ooo.H .533 ooo.wo oood dood woo.w Hwo.w oow.w odo.w oow.w HHHd wood ooo.w oHwd wdo.H dooH HoHow ooozH oowd ooow owod oowd dooo oood wood oww.w owod www.H dww.H HooH oHowo doo.H wwod Hood owod ood.w oooo oooo woonw ooo.w owo.w wHod oHH.H oooH ooodo ooo.H HoHd How.w oood ooo.o ooH.w woo.o owo.w woo.w owo.o owdH woo.H odoH doooo wwHd Hwdd oHdw ooo.o owo.w wood wHo.o owwd owo.w oood oood ouo.H odoH owodo ooHd oood wwoo oood woHo ooH.w wwHd Howd oHw.w dood woHd wwo.H wdoH oww.ow woo.H wood doHw owod odH.w Hwwd oowd oood How.o wwod Hood wow.H odoH oHooo ooo.H ooHd owoo Hood woo.w owoo wow.o wowd wowd oodw odwd oow.H odoH ooowo Hoo.H wowd wdww dood oww.o odw.o ooo.w wow.w owod oHod odoH ooo.H wdoH owo.oo wodH Hood oooo doow ooo.w oww.w oood owod oood owdd wdwH oooH odoH ooo.Ho woo.H wodd wHw.w Hood oood wod.w www.o How.o owo.o dowd owHd How.H ddoH odHwo ooHd ooHo Hww.o Hood oow.w wowo wood oood ooo.o woo.o oowd doo.H HdoH woo.ww oooH oHHd owoo ooo.w oHow doHd owwo wood ooo.o oowd oood oow.H odoH wHodw woo.H oddd wdod doow owod oood oww.w Hoow Hoo.w owod wdod ooH.H oHoH oHooo wdo.H oood dodd wHdd woH.w oooo ooo.w owwd wHo.w woH.w Howd oHd.H oHoH How.wo doo.H wood woHd owdd wood odo.w wwo.o oood woow dooo wood oooH wHoH oodwo ooHd wHo.o wwo.w oood ooo.o odwo owod oood owo.w ooow Hdwd wHw.H oHoH oHoow oww.H oood wdow, ooHd owH.o owo.w oood owwd oooo oHwd .23 ...ooo.H oHoH _ i554 dmQ .>oZ .30 dnow $54 35o wnso 5W2 t $.54 swung dwh duo haw? dooHoHow fizP-H u: 60:05 E iomoauoaaiv 12-55 win 3:252 d ado-ah. oowdw wHHd owod wdwd oww.w wood wood odwd wddd oHo.w oooo wood oHod 5&2 oow.oo www.H Hood ooow odow oHo.o owo.o ooHd oowd owo.w ooo.w oooH wdod dooH wooow oood wood oood oood wdod oood oddo oowd HwH.w owoo ooHd dooH HooH dHo.ww wwo.H oood dooo owo.w woo.o woH.o HoH.w wwH.w owo.w oood oood ooo.H oooH HHw.ww woHd odod oodw doow ooHd ooow dHod owo.w wHo.w wowd wwo.H oodd odoH Hoodw woo.H Hodd odoo oHo.w owod Howd wood doo. doHw oodo owod dood odoH wwdow oowd oodo owo.w Hdow oood oowd oww.w owwd doow wHH.o odHd wood wdoH oooow dodd oHod wdow owo.w doHd ooow wood wHo.w dooo wHoo oood, oooH odoH owoHo oHod oowd oowd wHo.w oood woHo Hood wwod oood oodw owod oooH odoH oowoo moo. HHoo woH.w oowd Howd oood owod owo.w oowd woHo owod HoHd wdoH woodw dooH ooHd owoo owoo ooow owo.w dwod oodd wood wwdo woo.H ooHd odoH oooow Hood dwod oooo oHow Hoo.w woow oww.w oodd owoo Howo oooH HooH ddoH oooow ooo.H oood dooo oooo wwod woHd woo.w owHd oooo oood oowd oooH HdoH wooow ooHd wwwd ooH.o wodw woww oHow ooow wHow ooww wood HHwd oow.H odoH wooow wood oood wwdd odow Hwow ooHw owod ooow oww.w Howo ooHd , dow.H oHoH odo.ww oooH wood wwoo odow HoHd oood dood Hood wodw ooo.w wood Hood oHoH oHooo owod oood owwo ooow Hwo.o oowd ooow dodd oodw dowd ooHd wwHd wHoH _ _ 12:54 donH .>o7H .30 daww .m¢4 fish. wcno n65 i 2.54 coma-Z . o... . r . 14 BULLETIN NO. 484, TEXAS AGRICULTURAL EXPERIMENT STATION NNN4-N4N4 6.54am ouvioU an .4643: E Eafiwuondkro 4.34:5» 144a NEEEEE é 0344a. 4 ENNEQNN NNN.N NNN.N _ 42.4 _ 42E NNN.N _ N44; SNE NNN.N 4E3. N34 $2.4 NNN; 5&5 NNNNN NNN.N 4E4.N _ 4NE4 _ E4N4 N4N.E _ NENE NE4.N NNN.N NNN.N 4NN4 NNN4 4NN.N NNN4 NSNN E4N4 NN4.N E54 _ 4NE.E 4N4.N _ 4NN.E ENNE NNN.N N84 ENEN 4E4 4NN4 4NN4 NEE.EN 8N4 21d _ 4NE.N _ NNN.N NNEE _ NNN.N _ 4NN.E NNE4 E4N.N N84 4NN.N NNN. NNN4 NENNN NNN4 NNN.N _ NNN4 _ NN4.N 44N.N _ ENNN _ NN4.N 4NN.4 NEN4 NNN.N NNE. N4N.N NNN4 4NN.NN 4NN4 NNN.N _ NNNU4 _ 44N..N cmwx. _ NNEHN NNN.N ENE.N 4NN.N NNE4 NNNHN 4NN4 NNN4 44N.EN ENN.N NN4.N _ N4NN _ 4NNN NN4.E _ SNN NNN.N ENEN N244 NNNN NE4.N 4NN.N ENN4 4N4.NN NEN.N NNN.N _ NEN4 _ NNN.N 8N E _ NNN N 444E NNN.N 4NN.N NNN.N 4NN N NN44 NNN4 NNNNN 4NN.N _. NNN.N _ E444 _ wmwd NEE. _ NEmoH E N4N.N NNN.N NNNHN Emmi NNEM _ 4NN4 NNN4 NN4.NN NNN4 _ E4E.N _ NNE4 _ NNN.N NEN.N. _ N4N.N _ 4NN..N NNN.N NN4.N EEPN N44.N NEN4 4N2 E4N.NN N4N4 _ N4N4 _ N4EN _ NN4.N NNN.N k 444.N 4NN.E N424. N4NN 4NN.N 4NN.4 N44.N NNN4 NN4.NN NNN.N 4NN.N _ 4NN4 _ NNN.E EN4.N _ NNN.N NNN.N ENN.4 NNNH4 NN4.4 N4N.N NNE4 NNN4 NNNNN NNN. . . . . l . . . . . . . N424 N44 mm N NNN.N u WWW“ 444W _ MNMN mm Nu 4%“ wm mm 4N4 WWW" NNN.E4 N4N4 _ N44.N _ N4N.N _ 4NE4 NNN.N + ENNE NNN.N 4N4.4 4NN4 4NN.N _ NNN.N _ N4N4 N4N4 NNN.N; EN4.N _ 4EN.N NN44 _ E4N.N N444: NNN.N NEE 2E4 NNN.N NNN.N _ NNNN NNN. N4N4 NNNNN N44.N _ NEN.N _ 444.4. fi ENN.N NNNE __ NNN.N NN4.N NEEN NN4.N NNN4 é SNN NNN.N E4N4 _ ndfiifl< 6mg i 5oz 50o JQUW j .M5.< E355 095m. ENE fihfl< 5.054442 dorm Jhflh. H30? Nmwnuhmmm 4.25450“ a“ @0505“ flm EGOmHwQHOQNNwQ $55G win hw-HHGOE .w Qwfiflh. .4.$N4=Q4No* _ _ _ . _ . _ _ 4EN.NN 4NN.N __ ENNN NN4.4 NNN.N » NN4E fi NEE fl 4NN.E NNN.N 4E4 4N4.4 4N4.N _ N4N.N 5E2 ENNNN N4N4 _ NNN.N NN4.4 4NN4 _ NNEN _ N4N.E _ ENNN NNN.N NNE4 NNN.N N4N.N NE4.N NNN4 N4N.NN NEE4 4NE.N 4NN.N NNN.N _ ENNE _ NE4.N _ NNE4 EN4.N N4N.N N244 44E.N _ 4EN4 4NN4 EN44N NNN.N NEN 4EN4 N4N.N _ 4NN.N _ NNNE _ ENNE 34.4 N4N4 N4N.N NNN.N _ 4EN4 NNN4 EN4.NN NNE4 NN4.N NNN.4 NNN.N _ N4N.E _ ENNN _ NNNE EN4.N ENE.4 4N4.4 44N.N _ NN4.N NNN4 ENNEN NNN.N NENN 8N4 NNE4 _ ENEN _ NN4.N _ ENNN NNEN 444.4 ENNN mfimfi _ N4N.N NNN4 SNNN NNN.N NSN 4NN.N ENNN _*ENN.E _ ENNN _ NEN.N NNN.N ENNN NEN.N NNNN _ 4N4.N ENN4 NNNNN 44N4 44E.N NN44 NENN _ NNNE _ NNN.N _ ENNN NNN.N NNE4 NNN..N NE4.N _ NN4.N NNN4 NNN.NN 4E4..N 4NN.N NNE.N NN4.N _ 444.N _ NNN.N _ 4NN.N 444 N N4N N NNN.N NNNHN _ NNE4 NNN4 NE4.NN 4NE.N NNN.N 44N.4 mmwd _ NNNHN _ wmfiw _ 4NN.N wfimm NENH4 NNN.N NNN.N _ 444HN 4NN4 N44.NN 4N4.N NN4.N 42x4 E4.4 _ NNN.E _ ENN.E _ NNN.N 4NN.E 4NN.N NNE.N NEN.N _ NN4.N NNN4 N4N.NN NE4.N NSUN ENN.N 4NN.N _ N4N.E _ NNN.E _ NEN.N NNN.N NNN.N _ N4N.4 NNN.N J 4N4.N NNN4 NNN.N. 4% N444 mm 4N“ N Mm“ _ Nfi N “Mm mm NNN.N _ Mm.“ NNN.N _ Nm mm NN4.NN 4 . . . . . .. . . NEN.N4 N44.N NNN.N NNN.N NNN.4 N NNN.N _ NNN.N _ NNN4 NEN4 N4E4 NNN.N NNN4 _ NNN4 N42 NNZN NNN4 444HN 434mm N4N..N NNNE _ ENNN. _ NNNHN NNEHN NNNU4 N4NHN NNN..4 _ NENUN N4N4 NNNNN N4N.N 84 N NNN N NNN N _ wwb N _ NEN N 4 NN4.N NE4.N 44E.4 4NN.4 NNN.4 _ NNN 4 E4N4 4NN4N NNN4 NNN.N EN4.N NNE4 u NNN.N J NNN.N __ 48E NNNN NNNN NNNN i NNN.N _*NNN.N N4N4 4.25444 dwQ .702 .30 474mm i $4144 35H i 0443.. 5N2 1.4444 £0.35 59m 44am mam? 15 RATE OF WATER EVAPORATION IN TEXAS .mdoH mo ofimfioxw .wdoH|oHoH .5392. ewfizsio... woHoo wmHd Hwod dHwd ooo.o ooo.w owdw oddw odwo owod wmdd omwd ooHd =82 owdoo oooH wdo.m HwH.o dHod odwo omm.w Hooo omH.o wdoo www.o mood oow.H dooH wwodo owoH oHdm oomo mmow ooow ooH.w owmw oow.o wmo.o oood oomd ooo.H HmoH wmo.oo oow.H oowd wow.m Hodo odww HwH.oH ooww oood omoo wood Hood oHo.H omoH doodo wooH oood owoo wwmw ooH.o wdww ooo.w woo.o Hoo.o ooo.m wHdd owwd odoH mom.oo dood Hwwd ddoo owo.o doHw owwd omo.w moo.w How.o oooio oood wodm wdoH ommwo mdod ddHm omdo woH.o wow.w oHow odmo wow.o odwd oHdd mood oood wdoH oHo.oo oHw.H ooom mwH.o Hwo.o Hoow wooo odoo Hmwd owwd wood mwod oooH odoH woo.wo dHod wmod oood ooo.o wow.w wHwoH ooow ooH.w ooo.w Hooo mHw.m owoH odoH ooooo HdHd wddm oowm wow.o oHow Hoow dddw moH.o oHw.o omo.m owHd dowH odoH owodo oHdH _ 33m odwm _ oood wHw.w mdow _ owdw owwo ooom oow.m HoHd wood odoH oowoo dood oood oowd Hooo woHw odoo odmo oood ooo.m wHo.m owod oHod ddoH oHd.oo oHod wwdd wooo HHo.o owo.w mmo.w wdoo dowo oood wHm.m wHo.m wodd HdoH owHdo oHmd wwHd Hood odoo wdmd wwoo dooo mooo wmdo dood oood wHw.H odoH dowoo owo.H oood dHod Hddd ooH. HoH.o wwH.o owod mwo.o woo.m oHwd www.H oHoH Hwo.wo moo.H odwd owo.o omo.w Homo owooH owww odoo oodo oodo oHo.m owod wHoH oom.wo mHod oHdo oHd.o wooo mwow omo.w mwH.o mooo wodo ooo.o ooo.m oood wHoH modoo omod wwHm dooo Hod.w wwdw ooo.w wHo.w oHo.o oodo oooo oHo.m odmd oHoH oowdo womd wwo.m Hood owdo Hoo.o oomo ooo.w odwo wwo.m ooo.o *oowd ...ooHd oHoH 35:94 dwnH 5oz doO Jnow $54 35o wish. >wH>H 4 $.54 A0532 dorm duo paw? dmoHoHoH 6350a. ow 633E E Eomoauon-gv Hwfliia Had him-Gog .oH 03am. .H.opwH=uHwO._. dZmQHQE ~odoH|oHoH fiwwnuia IHN®%I°.7* doooo owmd woHd oHod wdwo ooow ooo.w wwH.w odoo woHo Hood oowd oomd cwoH>H woo.wo Hmdd doH.m owHd oood Hoo.w odow owo.w oodo oddo owod mHwd Hoo.H dmoH ooHoo wHdd oHo.o owoo Hooo odoo wwwo dwwo woH.o ooHd wmod moo.H wow.H HmoH owodo ooHd wood. wmwd oooo Hddw woo.w ooo.o odom ooH.o mowm Hoo.m ooo.H omoH modoo mood doHm mdoo oww.o wHw.o wow.o oowo mwoo oodo doom owdd oowH odoH Hoodo omHd wmom oodd owdd wHo.w ooHw dooo woo.o oHw.o HHod oHod Howd wdoH dwwwo oood owHd wow.o owwd ooo.w wow.w Hdo.w wow.w dwod wwod omwd mood wdoH omomo Hood owdm momo wmoo ooo.o owoo wow.o ooo.o odo.m mood woom Hood odoH Hoowo owod omod doom wdHo ooo.w oHdHH oHw.w oow.o wooo dmwd ddHd wwwd odoH wmodo oddd wwdd oooo dmow oddo wow.w wow.o mooo oooo wowm ooH.m ooHd odoH oomwo ooo.H doHd Hdom owwd owHw ooow moo.w oHw.w wood wood oodd odom mdoH owowo wdod oowd omod Hwm.o ooo.w mwwo oodo Hdoo wwod oood dwod dood ddoH ddmoo ma.“ owo.m ooHo oowd ooww doow owmo owH.o owwo owwd dowd oowd HdoH Ewan wood ooo.m woH.o oow.w dooo oHwo dHoo dwoo owwo oood owod oow.H odoH HoHdo woHd oHwd omom dwoo oooo Hood wHoo owod ooo.o mww.m Hood oHo.H oHoH omddo oowH oood oooo dwoo wmo.w dmoo owdw ooH.o wdod odHo omod wood wHoH owodw ooo.m oow.m dooo oHo.o mooo oooo mood dwoo wooo wHo.o odwm wood wHoH doodo wood wwo.m Howd owwo odwo Hmoo _ ooooH dowo wwo.o wow.o oodo mood oHoH ooo.wo Hood o HHo.m _ wow.o dowd F23. odo.o 3%.» owoo _ ooom oowd Emma __ odood oHoH Hdwfin4 60G 5oz j £00 dfiwm $54 v51»- 35H 1...‘? 4.31 .2 ... 16 BULLETIN NO. 484, TEXAS AGRICULTURAL EXPERIMENT STATION 1...... . 1» 4.. EH51?a,wfiwafiviaflfidvil..q.,.i_.. i. 53H. N»»..H 55a $3 wmmd 2% 53w $3. 5.5. 5S $3. 3g 58.5 E32 wmmdw £2 3g $3 3:. 25w.» $3: Em.» 2g $3 m5...“ HmwH $3 $3 ~22; 3&4 £2 n85. 35w 55w 23w _ 59m 3H3 mm? 35m »Hw.H »Nw.H £2 $3M. 3: 3km ma; »w».» cow.» NwNdH 35w Si. m3.» $3 mfiw Nix 2x: omwwm How.H 28a ~84. m3.» m5; wmmzw N8.» mwma 3&6 ofiiv ma». 55a $3 $95 N85 $2 wowd wwH.» ~23 Hw9w Hwow www.» 3x3 1a.... wwmd H»H.w £3 mHQww 55m oH».w $3. 82 25¢ wow.» _ Hwww oH9w m8.» 2:... om: ~22 52 35.8 w»m.H w»w.w $3. 5:3 »»w.» Howw »H».w Hwmd 53. wwww wfiwm ~35 £2 R5554 dwnH .>oZ 460 55mm $54 35h 95H. >uH>H $.54 A322 59m .52. Haw? uwwHéwwH diam uBoH a: 623E E icfiauonafi. 1555a via 5155.2 .~H oHnuH wmHww »H9H wfid wzi m3... ww».» Hfiww wwmw HwH.» 3A3 3&4. 8g m3; 5awH>H 33$ wwoH w»w.m 25¢ £3 35.» w»m.w m5.» wfié HGN.» mzwm 25w M33 $2 $55.5 wHiwH $3 H34. 3?. wHw.» 35$ mwwdH $3.... wfii. mi...“ 3&5 £2 52 wwm.»w £3 miwu £3 fiww 3nd £5: Sim www.» w».v.» $3 wwww oww. owwH 33a w»H.m N23 n23 3.3. ww».w wwHw 2:... wowd 3m.» 8g HwwH »wH.N $2 55a »ow.H w»w.H 83. 2g ES Hwmw wwwdH $3. HHw.» $3 HwwH 25$ £2 5&9. .53 NE.» 2&4. 2g m»9w woHiw wZiw @225 »wm.» 5M3 $3 wHmH »NwH $5.”... wHHH _ 3:8 owow £5. Em.» $3 Hwu.» Si. $3. mom...“ wH9w $52 £2 ¢ww.ww 5.3 33.. wwww mam... HoHd 23w mid .53 $5..» $5. min“. 33H £2 39$ $5 $2 m2...“ wwwd »Hw.w waww “£5: .295. wH».w wwww 53m 39H £2 25$ wwHH E15 $3 $3 $9» 2g 3w.» $5. 8km $3 HwHd w»9m $2 mwwww fig 5g »H».¢ wow.» m2; £3 .63. 2;... $53 3.3 m2.” wH9H £2 35$ 3.9m mwww E3. 59m miiw H»».w ww».m 3&5. 3....» $3 fig HHHw 52 Q55? $2 w»w.H mwww 3.2m “.8...” 3m.» ~53 5w... $3 2?. 3g ow». 2...: @535. mH9H ww».H mm: $5. g9» ~33. .62 _ 8E HH9w 31w w»w.w i3. 22 2&5. 2a. wwHtw 85 »w9w S?“ 2:3 wmw.» 8N5 wHww 53 wmmd 5w. wHmH w¢H.»» 8N5 HHNw fig Nwoé wHww mmwHH $5.: mid w»w.w $1. m3...“ 5.15 :2: $5554 donH 5oz doO show $54 35h 055w .35 $.54 AoHwH>H 59m 5a». mam? NwwHéHwH J-ocnnnfl H: 633E E Ecfiaucanfi. 135:: 15¢ 35.82 .HH o-AFH. ..:.£.§.&< nasaumaa 538B a. §mEn gsflm 32m .w 5 89¢ .3831 ...£.._..2¢o. 17 38¢ mwd “m...” S.» fimé is 3a mag. and $3 $4 £3 w...“ cuvfi m»? aHd dm. ma..." wag. dma .23 2B 22. 3.» 25 dad 84 .52 £33 3N 3.“ mo}. 23 aw...» S... aog. Hod m3. Add pd ddd 32 ~34. mod omd 23. P? wa.a aa.a 3... S... mod .23. $3 :3 £2 Saw 5a El. “do 5... 3.2 dwg. i... aag. 3.» owd omd :3 52 2.8 aHd 2+ ood 8.» dad ddS aHg. 3m E.» E.» ow.» C; £2 23.. Had and $3. S... waa 5.2 3.3 w»... mod dfiw $2. aad £2 33 and £4. _ fidd amg. g.a.a 3w 5... w...» 23 m...» 8k vod $2 omda 2.4 wdd .23. 3... 2.... wad w...» dmg. flad dad. $4 ma.“ 2...: £3 aad Ed S... wmg. 22w 8.3 2E 3m $3. Q3. $3." dwd $2 3.3 5.x 8.” 5.. 3.». 9.2: ada w: .36 ma... w...» $3 “.2 5: N26 aad owd Hdd 2s mog. i.» ma... mg mdg. >3. and Hma £2 one... wod Ed i..." 3a 2E. i3 :3 mm.» 3m i...“ wwd m: 22 32$ 23 2am >3. ma... 2.3 3.3 S... 23 2.... Q3 3N Hod 22 5.2. dad 2.» Ea mad :2 aw.a wwa 3... wag. 2E aa.m Hod Safi 22$ dmd S...“ 2E 3w awg. S... daa dag. .3... Hdg. 3» and S2 dado Ed :3. 3mm add Sim 2.2 aa.w ooo w?" bad flwd add. £2 .52. aod mwd o3. mod N...» owa mmg. S... $3. mad mad dad 3:: $23 daé add :3. 23. oag. 3d :3 mag. :6 dad Hdd 2a 23 3.? dazn mg .36 mm... 3.3 m3: 8... Hod m3. 8d 3...... mad $2 36g. 23 $2“ 3m m3. 5.3 oma Ea 3a in“. 3% odd 5N :3 Sig. :5 dad 5m dag. 3.2 $2 oo.a wog. m3. i3 3.». had 32 5? bad dad 2E mad fimd 2.2 waa mag. . 2... 2S 3... 2a 22 Sdw :6 m?“ wwm “N... dag. 3w 5w mug. mo}. mdd 3a . oad m2: :1... :5 wHd mm... 5w S... i... w”... :3. 2S dad mm.” owd 8.: F533». .009 5oz 4B0 dww . $54 fish wflfih. $2 $.34 dug dorm .§d.n- now? omawéoafi Tomflooifi Gum on 60:05 Gm Ecm-auonci. 13:25 win 355:2 6n Sash. RATE OF. WATER EVAPORATION IN TEXAS 5mg wfl5o~u|m>ond cw 50mm monsoon SNQMDMH nwnomwg .w HZ éouwqbommn... 3&9. odmd m3... 35w wmwg. Si. N3. 3Q fig wamd _ cwog 2.92. 2m; omwg. 33w $3 Sad mono >3... mwwd wfiwm £2 $3.3 Hmoé ma}. Hodw Se.» .82. >3... wmqm dmvd ma... $2 mifiz $54 mdma $3“ oaadg. ..w$... E3 ii... $3..“ .82 22 . wdwdo $3 mooa 23 Lam.» 3S... #25... *wog..¢ omfid 3E3 £2 omagb 23a E2 ...d:.a 9.5g. Kwm... .32.... m2... *wwvd 3mg £2 $2.... $33 mmww . $3 Q3... . ME.» 5g woad 35d $2 52 $18 £2 3: no.3. £3. .55.... m3... Q3.” Ema 35a £2 $5.3 5.9m magma mfliz 8?: $2 3o... dExw www... dadd £2 .813 momd .8...» E22. L3.» fix... .25.... add .fiw.@ .843 $2 $3.. 1.34 ...owa.w 55. gbag. L23 Ema. ‘wwwm ‘odfid $3.» £3 Hwwfi. fimvd ...d.am.w 23... 3.3. 3%.“. ..~23. ..w$.m 3g Lmwa $2 >58 daod wfllw owod Ema 2:... Foo $3. N2; wand $3 Ewd. L2...“ $3. aowd $3. .25» odafi $25 2x3 2i. hi...“ afiafi M33... _ S: 2% .36.. ‘mid ...,. . ~59. 3...» Y... . I411‘. Iii in » i B . 11G 1 ill l. 4. $3.... 2:5. Quad Bu.» a3.» 5a.... 2.9m $53 “.52: ma...» 33. mmm... 2N.» 123w $3. “ma... 13.... mil. $3.. E34 39w E34. mmm...“ 3&6 Nwmfi mHNd “S... m3; 34mm $3 £3 £35 5.: 5.3.. Maw.” 5.9m ~23 oN9v wN9> mow... mm9o ZEN £3 $3 fi 2.3m 3w; owwN fig M33. $3. Q83 5g 72¢. 2.3. .336 m2... £2 I >325. 3g ~23 $3 $3. 23¢ 3.9m 3?: mwdw $3 $3. 32 £2 fl amwww dofiN mo...” Q23. “boo wfiww 5.9m“ 3.93 2i. 31 m2...” ZEN £2 T $9.3 35a 59w in...“ 39m $92 £3“ $5. $3: m5“. $2 53H £2 S N22; 5g aw...» m2... Si. 5...: $2: 34¢ >8... 5W9... $2 T “Q53 2:3. wt.» 23$ $1.2 1&4. fig momé S: HNoH N ~32 m3.” $3. $3. .53 2m.» Ema SW2 59w 32 E $2.3 $1 $9M“ oooo 3m... mwww mmfi. 3m... ween 32 M om9mo $3. E31. . M32 NNwAH owmé .15.: .53 2i M 29g NN9N. $23 w”; wfii $92 m3.» $2 52 E fiwflmm E3 $.92 i5: $5.2 3E. who...» 32 P $.15 5N6 oNoo 39w Em.» $9M. 5m... n23 X 8w? $5 wS... mo; 3.2. N33. Qwm :2 E NmNdm S? $5.2 5.9: $3. ma; fiws 22 ~ L 32m . 2o.» £2. $.22 Zfimw 33. £3. _ _ _ N23 A R % $5.54 dwQ 5oz duO énow $54» 35H wash. >32 $.34 Qunwg j 59m dam. mam? L U W 22-22 6:32:20 .2 623E E .=..:E...§>~ 1555 E5 hifino-Z .3 ~22. G A 635505 dNmToHoH .5595» wwwzofi... fi mmmoo E9N mo...” 53. $3.... £3 $3. 0mg m3.» m2... 2Q $.25 m9...“ .52 X Wu. 3N3 5g 3.9m $33. 3w... 2a.“ 2Q oil. $3. 53. www... £3 mwoN N2: mmwi 25 i: mww... 5 a Cb. m: ooNd ammo £3. £3. oooN ooo.N 5: 4, Sis £3 5;.” mag a3.» Q23 >33 is... mo»; E3 23. mi...» 3&4 £2 Q ~32. 8g 23w £3. 29m $3. 29w mama 5?. N3.» £3 $3 3g £2 59$ momN NEKN 59m magi. mwo... Hmas 3&6 £2. £3. mNNo oNmN wwwd £2 O. Saks HNHN 3m.” Q83. 3.2 >NN.w £5. $2 ~52 mag oomh o¢9N oooN g2 N v3.9. NNmA £2 x5...“ 1.9% wig owmo Ems 3Q $3 “xxx... 2w.” oH9N 32 .23.. mmmrN oowN $93. m2... :5... 26.2 E; a2... ME... 25.... woNA. 3g £2 m N63 wwoN £2 , S3. SW5. 59w $5. $.92 $3.... m5... Q23 33m $9N £3 T Si. 32 mowN 5.9m oo9m :3... NmNd 2:2. m5}. $3. $3.4. HmmN 5Q £2 T“ 89E. imam NooN 3E 34L. 3.1. 3.92 92:. PM? 3.9% 3g 2N6 5.3 £2 $3.. E3 $3. um»... Hwv...» oN9w 3J6 mwwfi N o6 .5. 3.3. mmmrm m3.” 5: M wig 5N4. mm; 2Q m3... wwfi. N3...» 3% No9m 39m o2}. QNQ $1 32 B 29$ g2 oNNQ 85. 2E wwoé $3 mzwm .23 .53 3g mNmN 23.. 22 $5.5. 55A 5.9m fig mowo x52 No.92 33d M23 2x2. Io.» $3.” 3N4 22 Maw? Q58 wwwm $3. 35m 3w.» .63: 85: mood oomg. 2E £3“ NQWN 52 8 3N5 wwfim mtg 3m.» £3. xx; v5.6a 3.92 m”; $3 25¢ m~.o.N wvwé 32 1 . _ $5.54 60D SQZ doO énow $54 35H wish .32 EaQ< nonaE 5mm“ . flaw awn? Nmon-ofifi imam on 60:05 E .:£€.::€>» i555 use M11255 .2 05am. 19 632505 £2-22 .532... 600mm 50$ 632205 .mmmTw~mH new mwuooww: RATE OF WATER EVAPORATION IN TEXAS 25.3 N2.“ E3 $5. 8E 2Q ? 23w *_ 22 23 2.2. 2A3 Q53 22 .532 S225 23 ~23 v.24“ 2S.” S3 _ mmww _ mew.» _ 2:3 22w 2MB _ 2.2 £3 _ 22 S22 5: MKQN 2.3..“ SSS 22S _ wwmS _ 25 wag NEE _ 22m _ Ema _ wfi: S S2 225$ wwwa 25a 2N.” 25d 2: _ 2i _ 2M3 33S M23 32$ 2S. i: _ 32 23.2 m2.“ 32m 02¢ 22¢ S3 _ 2M5 _ 28w Si 22¢ 22.... S2.“ 23 _ 22 mfifiw 2.3a 21w ma? 2N4“. 5S _ 2g _ 22w wfli. 2w: 2H3. ma; 2; I 22 29S 2Q m2}. 59m S5... 2g Smw _ mwws $2 wiwS 2M3 S3 £3 52 @226 $2 2a.” o2.” Sag $2 _ 2i _ 2M3 wfiww 2.2m _ S: _ wwwm 22m _ £2 222w .2; .52.” *2~_.m _ m2.» _ 22.2 _ N32 _ $2.». fig 2g , miww _ 23. _ 22S ‘ $2 SQ? 2; 2N4. SQ ENS v3.2 _ i; _ 23S 262w Sww SE 22 2.2m S2 23w S...” 2M3 2E Smqw 2g E 32m _ wwws mil 2M3 mfiwm $2 23 _ £2 Smwfi. 2x3 2i m2.” 32m 2S5 _ 2; _ S?” 23w 22S wflwm Q23 2&2 f 22 M215 e22 a2...“ 2.31M 22S so; _ 22.3 _ $3.2 212 wsww $5 2W2. 2g 22 mwwmw . SQN S25 $3 Nwww Swim 222 $2.2 2Z2 23w N28 S2. 2.2m _ S2 “v2.3 5g 2Q fiwm 2E 2Q 22 $3.2 26.3 25w £2 2E 22S _ 22 _ _. ~N5GC< dwQ .>Oz 50D dnww .w:< SSBH QSSH >62 $.54 fioamea bah .52.. .30? +~mmTw~m~ iwauoziwfl an 60:2: i J~O3QHOQQ>Q 122E: win 25.52 .: Beam. 20 BULLETIN NO. 484, TEXAS AGRICULTURAL EXPERIMENT STATION Table 18. Monthly evaporation, in inches, at Dalhart,* April to September, inclusive, 1908-1932 Year April May June July Aug. ‘ Sept. Total I ” I 1908 5.920 10.918 12.072 i 9.182 9.888 7.950 55.930 1909 8.526 9.901 10.890 11.685 10.565 7.835 59.402 1910 8.540 8.183 12.020 11.626 8.822 8.441 57.632 1911 7.562 9.900 12.373 9.707 10.899 8.769 59.210 1912 . 8.214 10.237 8.475 11.103 9.131 6.750 53.910 1913 7.687 10.063 8.714 12.697 10.771 6.338 56.270 1914 6.535 7.813 10.256 8.837 9.059 8.227 50.727 1915 5.777 8.075 8.740 - 9.262 7.919 6.853 46.626 1916 6.597 11.088 10.367 11.022 9.597 7.136 55.807 1917 8.561 9.074 11.697 10.997 9.607 7.460 57.396 1918 6.371 10.640 9.157 11.229 10.854 6.318 V 54.569 1919 5.583 6.994 7.482 ’ 9.865 8.291 6.933 45.148 1920 7.000 8.050 8.737 7.877 7.622 6.954 46.240 1921 6.826 7.425 6.912 7.655 7.351 8.304 44.473 1922 6.397 7.955 9.091 9.582 9.914 6.807 49.746 1923 6.161 7.472“ 7.430 8.140 8.337 5.817 43.357 1924 7.307 7.465 9.407 _ 9.089 9.077 6.387 48.732 1925 7.389 7.041 9.721 9.043 6.602 5.573 45.369 1926 4.618 6.314 6.960 8.503 9.269 6.953 42.617 1927 7.266 10.727 9.529 9.081 6.636 5.174 48.413 1928 6.610 - 7.236 7.546 7.545 7.213 7.430 43.580 1929 7.301 6.427 8.285 9.836 8.180 6.291 46.320 1930 7.524 9.273 9.967 11.162 9.358 8.067 55.351 1931 5.193 7.355 10.620 10.528 _ 7.731 8.153 49.580 1932 7.320 8.340 7.925 10.414 9.855 6.747 50.601 Mean 6.911 8.559 9.375 9.827 8.902 7.107 50.680 Table 19. Monthly evaporation, in inches, at Amarillo*, April to September, inclusive, 1907-1919 Year April May I June July Aug. ' Sept. I Total 1907 6.355, 8.050 9.575 10.669 i 9.390 7.911 51.950 1908 7.318 9.284 10.378 8.075 8.575 6.776 50.406 1909 8.130 10.020 10.337 9.964 9.658 8.421 56.530 1910 8.494 8.032 12.011 12.167 8.806 9.092 58.602 1911 7.360 10.100 11.482 7.472 8.895 7.268 52.577 1912 7.050 9.895 8.986 10.947 9.490 6.493 52.861 1913 7.736 9.812 7.065 12.734 10.453 5.994 53.794 1914 6.695 6.739 10.124 8.747 8.927 8.041 49.273 1915 ' 4.584 6.920 8.833 9.310 7.299 5.984 42.930 1916 5.955 10.286 10.661 11.656 10.206 7.665 56.429 1917 7.681 7.623 12.475 12.430 8.571 5.961 54.741 1918 6.991 11.014 10.128 10.736 10.339 7.376 56.584 1919 4.652 5.026 7.086 9.470 8.419 6.137 40.790 Mean 6.846 8.677 9.934 10.337 9.156 7.163 52.113 Table 20. Monthly evaporation, in inches, at Big Spring*, April to September, inclusive, 1916-1932 Year April May June I July Aug. Sept. Total 1916 6.610 10.838 13.291 10.435 9.243 7.714 58.131 1917 10.008 10.871 13.376 13.159 12.251 8.126 a 67.791 1918 9.667 11.325 10.622 13.239 12.642 8.429 65.924 1919 6.988 8.345 I 8.032 10.272 10.579 6.672 50.888 1920 8.745 8.825 9.348 12.479 6.985 7.059 53.441 1921 9.213 9.110 9.129 11.507 12.839 8.815 60.613 1922 8.481 8.460 8.794 12.930 11.671 9.692 60.028 1923 5.950 8.852 9.790 10.374 10.326 6.927 52.219 1924 7.178 8.183 11.562 10.870 11.089 7.427 56.309 1925 4.438 8.167 11.237 11.872 8.100 6.420 50.234 1926 5.398 8.292 10.148 9.981 e 10.107 7.665 51.591 1927 8.584 11.712 10.369 10.153 12.115 7.058 ‘ 59.991 1928 8.365 7.437 10.962 9.708 7.170 6.944 50.586 1929 7.334 7.220 I 10.693 9.277 | 10.098 6.861 51.483 1930 6.061 8.119 8.712 11.651 10.225 9.181 53.949 1931 5.609 7.554 9.470 _ 9.549 9.551 9.210 50.943 1932 7.496 6.511 7.896 9.734 8.034 3.946 43.617 Mean 7.419 8.813 10.202 11.011 10.178 7.538 55.161 *Records from U. S. Field Station. iomuon . £35 w new noflanonug 59G wofizfiaav... domuanoawfi? aim». mix. _..»ww.»w:». <3.» 0.3 83 .5 .......... 5.. ufiuaw Em . aw . . n w. 2b. .0 W? 9E fi --:.-.:...-.-.::...... EGG 1 . d3. .22» EAN 3S Q8 ma» 2.2 2 ................... -- QEHQE< 2 £3 w WE .26. 15. 3mm...» 2.2 £3 .13 wk.» mm .................... -- “Siam 32 . “E 2m. d2. ma“? 5M2 3S d5 Q3 8% 3 . .............. -- wméhcfifim 82 .3 “m3. .5. H5». ma}; £3 3% m? Nam. 83 5 .............. .. ~£¢2=Eo 22 .2 2a m3. flu”. £35 2x8 £2. #3 1:. 1% 5 .......................... -- 55m d3. =33 2.5 wSm 9% 26 m2 § ............ .. 3.82:... 5w . Him. ofiamw Enmw wow» . QC. wéw mam 5 .......... .. £25m 5mm $3 .3 b3. ma... fiS. 53$ 2.2 Si. 3a d3 2a p .............. .. xii x88 S2 é .32 N3. d3. wmdfi 3.2 mwmm i» ma... 2:» 3 .................. ,- xuoamwq $2 .3 60C a3. wwm. 5N5... 5mm $3. “.2. w? ow M .................... .. 00.2mm? $3 A 2E. m3. d8. $25 $9.“ 2.2 i? >3 3;. 2 ...................... .. wfinfifi. £2 d .35 fix. d3 $35 2.3 $3. ma... Q2. . 3m wH .................... .. wE>owm $2 .5 .23. fix. d3. mfixwm 34m wS» is QC. o8 u .. 5.5m ~85? £3 a .25. 3w. wS. omqwm 3% S3 $5 3a is S ...................... .. cofisn v13 J widh 2;. aw... 33m 3mm 83 NS». 9% m3 .5 .... : =§Bm wwmioO $2 d nag in. 1%. Nfiwfi 3.? Hwow 9.; m3 Ea. m: .... z Aofiwwflmflv @595. M33 .3 iwh 2%. fimfifi 25:. :3... $3 Qmw Q8 mm 3 Qcofizwwm $3 Q >52 m3. fig; wfii. N53. $3 WE. 5a mm wfl .................. .. couw~wn< 32 J. $.54 13.. d2; womi. m»? Saw 5w .35 .E.m m: ............ .. mwsoowwoowz wfiwfi mmsucH |w.mwwwmw>w woman“ mwsofi fnofi . 25o awn wag uowm o» ~35 50$ 505.3 non 601E Amgwwwacwfi: kwawnfiw» 50E kmnwwh nowuwoofl SOMQNHOQN>Q S55E35 Knfinmownm INHOQNPH ¢E8~m is» wag wwmgwofi>< :35 |a>o~H mo oZ hi3. wfiwnpxfl mo oSQM @538 E 35cm Ha 3 m=¢$a>$3= ~fl0m.MO_Oh0uO-H no.3: wnu icfiauena: we muafiinw éw 05am. RATE OF WATER EVAPORATION IN TEXAS dun wcsoam-mfiona fin 39G mwaooon flwwnflm awsfiwmbw .m .5...» dwuoown $.61 doawifiawmw... _ _ _ _ _ SW3 o”? wg.” 39m £3. 3w.» .336 rvmfi. fig mama 03m “.23 25a _ 22 T "oofimw? 3E5 £3 Q3.” owed Nmwm Zwé 3&9 £5. Ham . 2x3. $23. wmQm $3 _ E32 22.5 _ m8; 25.... £3. mil. _ 3.3. .53 fiww is 25m fig £3 wga £2 Swfi N84 p2...“ 2a.... _ 3N.» _. 26s m2... _ wwfi. $3. ma“: $5.4. 3Q $3 $2 162mm have“? _ M53 UJXN 3m.» 2w... m2; .32: M52: mo...» $3.“. Ea.” 2E _ flwwg 25.3 2g Ema E5. 24$ 0&2. 3N3 m3... 5K £2 . 3g $2 3M2. 5g .33. mm? 5g $3 OX3. 51m $2 5km 33am E2: 25.2. mmmd wwg $2. *2...» ..m$.ofi ~32 2mg. mfixm $.93. 3w; . 32 . . . amwsw *3?“ Hm?” .52.» ..N§..@ 25.2 ..w$.3 . . ... flaw ma...» Ea.» . ._.. .3 a. a l?» in . ~... . _., .!§rr§.§r 22 BULLETIN NO. 484, TEXAS AGRICULTURAL EXPERIMENT STATION RECORDING THE OBSERVATIONS Readings of the evaporation are usually taken at 7 a.m. and 6 p.m. daily, and when only one daily observation is made it is in the evening read- ing. The micrometer-point gage is graduated to read to one-thousandth of an inch and all readings are recorded to three decimals and the actual gage readings entered in the record. The evaporation for the past 24-hour period is the difference between the last previous gage reading and the current one. If rain intervenes, the amount of rainfall is added to the current reading and from the total the previous gage reading is subtracted. In attempting to secure evaporation records for the twelve months’ period it may often happen, at some of the stations, that the tank remains frozen over for a considerable period. In such cases the word “frozen” is entered in the record for those days and when the tank thaws out the total accumulated evaporation for the period since the last reading’ is recorded Daily observations are recorded in the daily meteorological record book and at the end of the month are transferred to monthly blanks provided for this purpose. Tanks are refilled, at a regular observation time, frequently enough to keep the fluctuations within a narrow range and provide a comparatively uniform depth of water in the tank. Water in the tank is kept clean and occasionally the water is all removed and the tank thoroughly cleaned. EVAPORATION RECORDS On account of their close association with and influence upon evapora- tion, other meteorological observations, such as maximum, minimum, and mean temperatures, precipitation, wind run, and relative humidity, are included in Table 2. Observations on these latter phenomena are shown as the mean monthly and annual for the whole period for which records are available, which is, in most cases, longer than that covered by the records on evaporation. With few exceptions, however, all these meteoro- logical data cover a sufficiently long period of time to furnish a reliable mean which records, accumulating over additional years, will, of course, change slightly but not materially. Tables 3 to 21 are a complete record of the evaporation, by months and years, since the beginning of evaporation readings at the various Stations. These tables are numbered and arranged in ascending order of the mean annual evaporation, Nacogdoches, which has the lowest mean annual evaporation, in inches, appearing in Table 3. Evaporation records at many of the Stations were begun in 1915 to 1917, while at San Antonio, Dalhart, and Amarillo, the records were begun in 1907 and 1908 and are presented in these tables, including the year 1932. At Iowa Park records have been kept only since 1926. At Chillicothe records for the six months’ grow- ing period, April to September, inclusive, are complete from 1912 to 1932, but for the other months of the year are only partially complete, except since 1923. Readings shown for Balmorhea (Table 17) were recorded at . . t.......-L.......,.r..___..¢.~.. -1... __.._..__.._.._.1_-........a._.u._.1.-;=ki-m:.m RATE OF WATER EVAPORATION IN TEXAS 23 Pecos from 1916 to 1922. The Substation was moved to Balmorhea and records were not resumed until 1926, causing a break of four years in this record. At Dalhart, Amarillo, and Big Spring, readings are available only for the six months’ growing season, April to September, inclusive. An ap- proximation of the mean annual evaporation, in inches, can be calculated for these points by assuming a similar percentage relationship between the evaporation for the six months and the whole year for these points as that existing at Lubbock,‘ Where 72.16 per cent of the yearly total evapora- tion occurs from April to September, inclusive. Keeping of evaporation records at Amarillo ceased in 1919. Records of evaporation are available for only four years, 1929-32, at Dilley; for only two years, 1931-32, at Winter Haven, and for only one year, 1932, at Weslaco, in the Lower Rio Grande Valley. These short- time records are inadequate to furnish a reliable reading of the average evaporation that may be expected but the data for the three points are combined and presented in Table 21. The detailed data covering the inches of evaporation from a free Water surface, and shown in Tables 3 to 21, by months and years, need little discussion. Total inches of evaporation for each year, together with the average inches monthly and annually, are also given in these tables, so far as the available records will permit. A summarization of certain climatic factors as they prevail at each of the points where evaporation readings have been recorded is given in Table 22. This includes the eleyation, mean temperature, average relative humidity, miles of wind run, and rainfall, all of which undoubtedly have a bearing upon the water lost from the soil or from a free water surface through evaporation. Stations are arranged in this table in order of total inches of evaporation per annum, Nacogdoches, which has the least evaporation, appearing first. With certain exceptions, it will be seen that the order of the Stations listed moves from the eastern to the Western part of the State, the evaporation increasing markedly in the higher and drier regions. Total annual evaporation ranges from 45 to 55 inches in the eastern part of the State, from 55 to 65 inches in the central part, and from 65 to 75 inches in the western part (Fig. 2.) From a glance at this table it appears that the Stations located in the lower elevations generally have the lowest annual evaporation. This is probably not due so much to the elevation as to the fact that at the higher elevations the humidity is lower, the wind run greater, and the precipitation less, all of which are favorable to a more rapid loss of water through evaporation. The average relative humidity per cent figure, in the third column of the summary table, is a measure of the degree of saturation of the atmosphere. When the relative humidity and evaporation for these 21 points in Texas are compared, a close relationship is found between a dry atmosphere and a high evaporation. The actual correlation coefficient, as calculated be- tween humidity and evaporation at these points, is —.82;|:.05, showing that 24 BULLETIIYANO. 484, TEXAS AGRlCUhTURAL EXPERIMENT STATION at a point where the humidity is lOW the rate of evaporation can be expected to be high. Precipitation at the Stations included in these records ranges from 52.81 inches at Beaumont, in the Gulf Coast Region, to 13.75 inches at l0 (I) \h \ \\+ \ \ \ \ I r / / f K Q \ >§ \ / 5/ o’ / /+', ———— Nacoydoches ____- Cofleye Sfaf/o/v _---- Yémp/e —xi C/ri/Ucofhe —o-o—o—- BO/H7OP/7QO Z [vo/ooraf/ on, nvc/zes N ~\\ R / 3/, 0 I I I l l Jan. Feb. Mc/z. A/on May June Ju/y. Auy. Sepf Oc7‘. Nov. Dec. Fig. 2. Mean monthly evaporation curves for six stations in Texas showing the high summer rate. Total annual evaporation ranges from 44.5 inches at Nacogdoches to 70.6 inches at Balmorhea. Balmorhea, in the Trans-Pecos Region. In general, the change in rate of evaporation in moving across the State from east to west is almost directly inverse to the change in precipitation. A high negative correla~ tion, —.87i.04, is found, then, between rainfall and evaporation, but many other factors, aside from precipitation, are operating to cause an increase in evaporation in moving toward the western part of the State." Other regional characteristics, such as dryness of the atmosphere and greater wind movement, are also favorable to high evaporation. Monthly wind run, in miles, increases in this same Westerly direction across the State and a positive correlation of 491.11 is found between total monthly wind run and total annual evaporation when these readings at the 21 Stations are considered. Temperature is an important factor affecting the rate of evaporation from a free water surface or from the soil. From the mean temperature and RATE OF WATER EVAPORATION IN TEXAS 25 evaporation figures for the various Stations given in Table 22 there seems to be no very marked or consistent relationship between them. The highest mean annual temperatures occur at the Stations in the eastern and southern parts of the State, whereas, the greatest evaporation occurs in the western part, where the mean temperature is lower. Other factors less favorable to high evaporation, such as higher humidity and lower wind movement, are operating in opposition to the higher mean temperature in the eastern part of the State. The general climatic features as found at Lubbock compared “Yith those found at Spur and Chillicothe, are not greatly different except that a higher altitude and a somewhat lower mean temperature are found at Lubbock than at the other two points. Slightly lower humidity and greater wind movement at Lubbock should favor a higher annual evaporation but the higher temperature prevailing below the Caprock Escarpment and at the lower elevations of Spur and Chillicothe are probably responsible, in the main, for the higher rate of evaporation found at these two points. An example of the marked influence of high temperature upon the rate of evaporation can be seen in a comparison of the monthly and annual evaporation record from Dilly and Winter Haven for the years 1931 and 1932. These two Stations are in the same general region of the State and located only about 40 miles apart. At Winter Haven the usual sunken tank, like that at all the other Substations re- ported in this Bulletin, is used, while at Dilley records are obtained from the above-ground type of pan in use by the U. S. Weather Bureau. As the water in the latter type of pan is more completely exposed to the air, its temperature fluctuates more rapidly and follows the air temperature more closely than does that of the water in the sunken tanks. The mean annual air temperatures at Dilley and at Winter Haven are not signifi- cantly different, yet the evaporation for these two years was 10 to 15 inches greater at Dilley than at Winter Haven, probably due very largely to the difference in the type of pan used and the influence of temperature of the water upon the rate of evaporation. From this comparison it appears that evaporation records from the sunken tank will more nearly approach the evaporation from reservoirs or natural bodies of water, which fluctuate even less rapidly in relation to air temperatures. The extreme daily maximum evaporation, in inches, occurring at each of the points of observation throughout the period covered by the records is shown in Table 22. The maximum total water loss from evaporation for any one day varied from .440 inch at Beaumont to .845 inch at Iowa Park. Ordinarily, when conditions are highly favorable for a large water loss through evaporation, a loss of from one-half to three-fourths of an inch in a 24-hour period may be expected in Texas. From an examination of other weather data for the days when such extreme maximum evaporation occurs it is found that the temperature and wind movement are usually high and the atmosphere dry, as shown by a low relative humidity. Abnormally high evaporation occurs during the spring or summer months and during dry years or periods. 26 BULLETIN NO. 484, TEXAS AGRICULTURAL EXPERIMENT STATION Extreme total evaporation, in inches, including all the points in the State from which we have a record for the whole twelve months’ period, has varied from 38.97 inches at Nacogdoches in 1922 to 83.78 inches at Pecos in 1917. The average annual evaporation in Texas ranges from 44.5 inches at Nacog- doches to above 70 inches at some of the western Stations, or a water loss of from slightly less than four feet to over six feet per annum. The ratio of precipitation to evaporation, which is a direct comparison of the ‘total annual precipitation with the total annual evaporation for the various Stations and regions of the State, is also shown in Table 22. At some of the Stations in the eastern and southeastern parts of the State the annual rainfall is equal to, or slightly more, than the annual evapora- tion, while in the drier regions of the State the total annual evaporation greatly overbalances the precipitation and may be four or five times as much as the total annual rainfall. When all of the evaporation records available are considered from all parts of the State it is found that the average annual evaporation for Texas is 61.65 inches and that approximately two-thirds (68.7%) of this occurs during the summer months, April to September, and one-third (31.3%) during the remaining months of the year (Fig. 2). . ACKNOWLEDGEMENTS Because of the close association between the results of field experiments and the weather, meteorological records have been maintained for many years at State Substations and Federal Field Stations. To the continued, painstaking recording of these observations by the superintendents of the Stations, who have, in most cases, been the observers, we are indebted for these long-time records. Such records embody, in the aggregate, many thousands of observations and calculations made in addition to more pressing duties and with no hope of reward except for the facts recorded. Mention of all the individuals responsible for these evaporation data is pre- cluded but their records have made this compilation possible. Grateful ack- nowledgment is also made to Mr. Chester Higgs, Executive Assistant, for carefully and painstakingly computing and checking these records for accuracy. SUMMARY Losses of water through evaporation have an important bearing upon crop production and farming practices as well as upon the economic and ade- quate planning of reservoirs and similar engineering projects. The evapo- ration from afree water surface, by months and years, is shown from 21 observation points scattered throughout the State. ' . The total evaporation in Texas amounts to about four to six feet per year and ranges from 45 to 55 inches in the eastern part, from 55 to 65 inches in the central part, and from 65 to 75 inches in the western part.' Extreme maximum evaporation in any 24-hour period ranged from .440 inch (at Beaumont) to .845 inch (at Iowa ark). A water loss of one- half to three-fourths of an inch per day may occur when the temperature and wind movement are unusually high and the relative humidity low. RATE OF WATER EVAPORATION IN TEXAS 27 The extreme total minimum evaporation for any one year was 38.97 inches, recorded at Nacogdoches in 1922, and the maximum extreme was 83.78 inches, recorded at Pecos in 1917. Inches of annual rainfall and evaporation are practically equal in the eastern and southeastern parts of the State but in the western part evaporation greatly overbalances precipitation and may be three to five times as much per year. ‘ The total average annual loss of water through evaporation from a free water surface in Texas is 61.65 inches, of which approximately two-thirds occurs during the six warm months of the year, April to September, inclusive.