LIBRARY, A 5: P»? COLLEGE» CANIPUS. R59—1036-7m lexas Agricultural Experiment Station A. B. CONNER, DIRECTOR COLLEGE STATION, munzos COUNTY, TEXAS BULLETIN NO. 533 OCTOBER, 1936 DIVISION OF CHEMISTRY L ‘I B R A R Y Agricultural 8r rll-eslrazzfcal Cullege of Tera: Soils 0f Collinfleiirfi liiffihallff; Midland, Potter and Van Zandt Counties and the Trans-Pecos Area AGRICULTURAL AND IVHECHANICAL COLLEGE OF TEXAS T. 0. WALTON, President Chemical analyses and some pot experiments are reported for representative samples of typical soils of Collin, Frio, Gal- veston, Midland, Potter, and Van Zandt Counties and the Trans- Pecos Area. The bottomland, or alluvial, soils are better sup- plied with plant food than the upland soils. A new method of classification of constituents of soils, consisting of 5 classes based upon composition, is given and its relation to previous methods of interpretation is discussed. Many of the soils are deficient in phosphoric acid and nitrogen. They are better supplied with potash, although some are low in potash. A few are low in lime with a tendency to become acid, but most are well supplied with lime and some are calcareous soils high in lime. Classifications of the analyses of the individual soil types are given. ’ CONTENTS Introduction Maintenance of fertility Humus and nitrogen Phosphoric acid Potash Acidity How to use the analyses Explanation of terms Classification of constituents Saline soils Pot experiments Relation of chemical analysis to production Average composition of the soils studied Fertilizers for the soils studied Use of lime Soils of Collin County Soils of Frio County Soils of Galveston County Soils of Midland County Soils of Potter County Soils of Van Zandt County Soils of the Trans-Pecos Area Differences in composition at different depths Summary I-l ©OO%QQQ>G§UDUXQ1 i-l b? i-l O0 l-l Hi l-l IF F‘ -'l i-l O0 h-l O0 N b9 N GB Q9 P‘ O6 C’) IP- b9 0F G} U! F‘ U‘! Hi BULLETIN NO. 533 OCTOBER, 1936 SOILS OF COLLIN, FRIO, GALVESTON, MIDLAND, POTTER, AND VAN ZANDT COUNTIES AND THE TRANS-PECOS AREA G. S. Fraps, Chief, and J. F. Fudge, Assistant Chemist, Division of Chemistry. This Bulletin deals with the composition and fertility of samples of soils collected from seven counties and the reconnaissance survey of the Trans-Pecos area including 9 counties. It is the fourteenth in a series dealing with the chemical composition of typical Texas soils. Most of the samples were collected by field agents of the Bureau of Chemistry and Soils of the U. S. Department of Agriculture in coopera- tion with the Texas Agricultural Experiment Station. Detailed reports of these surveys with maps showing the location of the different soil types have been published by the Bureau of Chemistry and Soils of the U. S. Department of Agriculture. Descriptions of soils given in this Bulletin have been condensed from these reports. The soil surveys referred to are as follows: Soil Survey of Collin County, Texas, by M. W, Beck and E. G. Fitz- patrick. Soil Survey of Frio County, Texas, by M. W. Beck, H. W. Hawker, and L. G. Ragsdale. Soil Survey of Galveston County, Texas, by Z. C‘. Foster and W. J. Moran. Soil Survey of Midland County, Texas, by E. H. Templin and J. A. Kerr. Soil Survey of Potter County, Texas, by E. H. Templin and A. E. Shearin. Soil Survey of Van Zandt County, Texas, by A. W. Goke, W. I. Wat- kins, E. N. Poulson, Z. C. Foster, E. G. Fitzpatrick, and W. J. Moran. Soil Survey (Reconnaissance) of the Trans-Pecos Area, Texas, by W. T. Carter, M. W. Beck, H. M. Smith, H. W. Hawker, E. H. Templin, and T. C. Reitch. Requests for copies of these surveys should be addressed to the Bureau of Chemistry and Soils, United States Department of Agriculture, Wash- ington, D. C. MAINTENANCE 0F FERTILITY The following are some of the essentials to the maintenance or improve- ment of soil fertility: 1. The store of nitrogen and humus in the soil should be maintained. For this purpose, growing legumes in a proper rotation, and. turning these under or grazing them off, is usually advisable. The nitrogen in the soil may be supplemented by the use of nitrogenous fertilizers. Losses of nitrogen due to cropping eventually result in a deficiency of nitrogen. 6 BULLETIN NO. 5,33, TEXAS AGRICULTURAL EXPERIMENT STATION 2. Deficiency of phosphoric acid in the soil should be corrected by the use of phosphates as a fertilizer. Losses of phosphoric acid due to cropping eventually result in a deficiency of phosphoric acid. 3. Any acidity suflicient to be injurious to the crops being grown, if present, should be corrected by applications of ground limestone or lime. Lime and limestone are also used for improving the physical character of heavy soils poor in lime or for supplying lime to crops which need a quantity of lime. Lime should be used chiefly in connection with a systematic legume rotation. 4. Any deficiency of potash in the soil should be corrected by the use of fertilizers containing potash. Losses of potash due to cropping even- tually result in a deficiency of potash. 5. Erosion or washing away of the more fertile surface soil should be prevented. 6. Land under irrigation should have good underdrainage, either natural or artificial, so that salts dissolved in the irrigation water will be Washed out and will not accumulate in the soil. Humus and nitrogen. The maintenance of the humus content of the soil aids materially in maintenance of fertility. Humus is produced by the partial decay of vegetable matter in the soil. Humus, in suflicient quantity, helps soils to hold a favorable amount of water, so as better to resist drouth. It aids to give a fine crumbly structure to clay soils and enables them to break up into a good condition of tilth under the action of cultivating implements. It checks the rapidity of the percolation of water through sandy soils, thus decreasing loss of plant food. Humus also is the storehouse of most of the nitrogen of the soil. Nitrogen in humus is in an insoluble form and cannot be taken up by crops or washed out of the soil. This nitrogen is slowly changed by soil organisms to nitrates or ammonia, in which forms the nitrogen may be taken up by plants or washed from the soil. The storing of nitrogen in the insoluble humus compounds protects the soil from rapid depletion of nitrogen, either by cropping or by percolating water. Some soils produce good crops for a long time without additions of vegetable matter, but for permanent productiveness on most soils, vege- table matter must be added sooner or later. Vegetable matter may be supplied in barnyard manure, which is excellent when sufficient quantities can be secured, but barnyard manure cannot always be secured in large enough quantities. Artificial manure may be prepared from leaves, straw, or similar waste material. Legume crops, which have power to take nitrogen from the air, may be grown in rotation with other crops, and if turned under or grazed off will introduce vegetable matter into the soil. If the crop is heavy, it is best to allow it to become nearly mature before turning it under. To graze off the crop is better than to turn it under, as some of the feeding value of the crop is secured when it is grazed at the same time that the droppings from the animals, to- - gether with the liquid excrement, return to the soil the bulk of the plant food taken up by the crop. Making the crop into hay, and saving the SOILS OF VARIOUS TEXAS COUlQITIES AND TRANS-PECOS AREA 7 manure from the hay, is not as good for the soil as grazing off the crop, since a large part of the plant food in the hay is lost in the liquid excre- ment or that part of the solid excrement which cannot be saved. When the legume is made into hay to be sold, the land is more likely to lose nitrogen than to gain it and also loses phosphoric acid and potash. Crops other than legumes add vegetable matter to the soil when plowed under or grazed off, or serve as cover crops to reduce losses from leaching or from washing when the land would otherwise be bare, but legumes are the only plants which can take up the nitrogen of the air and place it into the soil in forms suitable for the use of other crops. For this reason it is best to grow legumes for hay, forage, or renovating crops whenever possible. The maintenance of the nitrogen content of the soil is more important than the maintenance of its humus content. Nitrogen may be purchased as a fertilizer, but it is expensive when bought in this way, and ordinarily a farmer growing staple crops cannot afford to buy enough of it to keep the nitrogen content of his land from decreasing. The only practical way to maintain the nitrogen content of the soil when ordinary farm crops are grown is to secure part of the nitrogen from the air by growing legumes. The nitrogen fixed by legumes can then be utilized for cotton, corn, kafir, or similar crops. What legume is best to grow depends upon the climate and other conditions, which vary with different sections of the state and with different conditions of farming. Phosphoric acid. Texas soils are frequently deficient in phosphoric acid. This Bulletin contains information regarding the probable de- ficiencies in phosphoric acid of the various soils of the counties described. Deficiency of phosphoric acid may be easily and profitably corrected by the use of superphosphate as a fertilizer. Potash. ‘While the soils of Texas are frequently rich in potash, there is variation among the different soils, so that some soils need potash as a fertilizer. In general, potash is the least often needed of the three plant foods for field crops. Plants can take up more potash than they need. The needs for potash of the various types of soils here studied are indicated by the tables of analyses and classification given later. -Some of the soils described, when compared with other soils of the State, are low in active potash although they are much better supplied with potash than with phosphoric acid or nitrogen. Acidity. Some soils contain organic or inorganic acids and some crops, such as clover, alfalfa, barley, and rye, do not grow well on acid soils. There are other crops, such as cowpeas and watermelons, which do well on acid soils. Legumes require more lime than other crops. Acidity may be corrected by the use of ground limestone, ground oyster shells, air-slaked lime, or hydrated lime. Few acid soils are found in the counties described in this Bulletin. 8 BULLETIN NO. 5,33, TEXAS AGRICULTURAL EXPERIMENT STATION HOW TO USE THE ANALYSES Analyses of the soils are given in connection with the descriptions of the various types of soil in connection with each county. The classifica- tions of the analyses are also given, in order to show the comparative strength or weakness of each type. If a soil well supplied with plant food does not give good yields, it is obvious that some condition other than plant food controls the yields. The condition which limits the yield may be a poor physical condition, with respect to cultivation, drainage, or other factors. It may also be the presence of injurious substances, such as soluble salts. The soil may supply insufficient amounts of water for good growth of the plants, or, on the other hand, it may be too wet. Plant diseases may also be present. If the soil is well supplied with total plant food, but low in active food, attempts may be made to increase the activity of soil agencies which make the plant food available. These may be additions of manure, of green crops plowed under, or, if the soil needs lime, additions of lime or ground limestone in connection with a legume rotation. This kind of cropping, of course, leads eventually to depletion of the total plant food in the soil. If the crop yields are low and the plant food is deficient, fertilizer should be used. It is not possible to tell from the appearance or the analysis of the soil the formula of the fertilizer which will give the best results. The depth of the soil, the character of the subsoil, and the kind of weather during the growing season influence the yield of crops as much as does the plant food. That great variations are caused by the kind of season can be seen by observing the variation of the yields on the same land from one year to another. EXPLANATION OF TERMS Total nitrogen is the entire quantity of nitrogen present in the soil. Most of the nitrogen is present in organic matter or humus. As shown in Bulletin 151, there is a relation between the total nitrogen of the soil and the nitrogen which can be taken from it by crops in pot experiments. The total nitrogen is therefore an index to the needs of the soil for nitrogen, although the nitrogen in worn soils is not as available as that in new soils, and a number of conditions affect the quantity of nitrogen available for the use of crops. Total phosphoric acid is the entire quantity of phosphoric acid con- tained in the soil. It cannot all be taken up by plants at once, as only a small portion is immediately available. It is made slowly available by natural agencies. Active phosphoric acid is that soluble in 0.2 N nitric acid and is the part of the total phosphoric acid which is more easily taken up by plants. The relation of the active phosphoric acid to "the fertility of the soil is shown in the table giving the classes of the constituents. As shown in Bulletins 126 and 276, there is ‘a relation between the active phosphoric acid of the soil and the amount of phosphoric acid which crops are able SOILS OF VARIOUS TEXAS COUNTIES AND TRANS-PECOS AREA 9 o take from the soil in pot experiments. There is a closer relation ietween the active phosphoric acid of the soil and the needs of the soil r phosphoric acid as a fertilizer than there is between total phosphoric acid and the needs of the soil. Pot experiments have shown (Bulletin S67) that plants grown on soils low in active phosphoric acid and high 3n lime can remove more phosphoric acid from the soil than they can _ om soils containing the same quantities of active phosphoric acid and w amounts of lime. Total potash represents the entire amount of potash in the soil. A urge part of this is locked up in highly insoluble silicates and for cen- juries may not become available for the use of plants. The amount of (j- potash does not indicate how much is available for use by the _mediate crop. _ Acid-soluble potash is the amount of potash which is dissolved by ptrong hydrochloric acid. As pointed out by Hilgard, there is a relation etween the amount of acid-soluble potash in the soil and the wearing ualities of the soil (Fraps, Principles of Agricultural Chemistry, Page '71). The higher the percentage of acid-soluble potash, the longer the "i1 can be cropped before it needs potash. Active potash is that soluble in 0.2 N nitric acid and is the part of the potash which can be readily taken up by plants. This has been hown by pot experiments discussed in Bulletins 145 and 325. There is close relation between the amount of active potash in the soil and the mount which is available for the growth of crops. i Acid-soluble lime is the lime which is dissolved by strong hydrochloric _ fcid. According to Hilgard, the amount of lime found by this method w a valuable indication of the fertility of the soil, Basicity represents the carbonate of lime and other basic materials in ‘e soil. This term is here applied to the bases (chiefly lime) which utralize 0.2 N nitric acid in the method for determining active phos- >horic acid and active potash. When the basicity is over 8 per cent, .ronger acid is used. The term basicity is used merely as a convenient le for the determination referred to. The basicity represents all of the _=rbonate of lime and, in addition, about 86 per cent of the exchangeable ases of the soil (Bulletin 442). Acidity is here represented by what is termed the pH (or hydrogen ion ncentration), which shows the intensity of acidity. A neutral soil is ‘presented by a pH value of 7.0. The lower the number below 7, the tore acid the soil. A soil of pH 6.0 would be ten times more acid than ;_soil of 7.0, and one with 5.0 pH would be ten times more acid than one » pH 6.0. Numbers higher than 7.0 indicate alkalinity, and the higher number, the more alkaline the soil. In general, a certain reaction is Y; suited to a given kind of plant. If acid, applications of lime should ~. made to produce the favorable pH. However, soils do not all act pike in this respect, and sometimes acid soils do not respond to the idition of lime. 10 BULLETIN NO. 533, TEXAS AGRICULTURAL EXPERIMENT STATION Corn possibility represents the average amount of plant food which is withdrawn by plants in pot experiments from soils containing similar amounts of total nitrogen, active phosphoric acid, or active potash. It is expressed in bushels of corn per acre. It is based on 2,000,000 pounds of the soil. N0 claim is made that the corn possibility indicates the possible yield from the soil, as this depends upon other conditions in addition to the fertility of the soil. The corn possibility is a convenient way of com- paring amounts of various foods in the soil. For example, with the Houston black clay of Collin County (No. 33710, Table 4) the corn possi- bility for total nitrogen is 23, for active phosphoric acid is 17, and for the active potash, 236. The soil is probably deficient in both phosphoric acid and nitrogen. This may be compared with the Bell clay of Collin County (No. 33705, Table 4), which has a corn possibility of 32 bushels for nitrogen, 44 for phosphoric acid, and 432 for potash. Other com- parisons can be made from the tables: The experiments on which this interpretation is based are published in Bulletins 126, 145, 151, 267, and 355, and the method is discussed in Bulletins 213 and 355. CLASSIFICATION OF CONSTITUENTS OF SOILS In previous bulletins dealing with the composition of Texas soils, we have given tables showing the interpretation of the analyses. In this publication, the constituents of the soils are grouped into five classes. Class No. 1 contains the highest quantities and Class No. 5 contains the lowest, while the others are intermediate. This is intended to give an easy Way of comparing the composition of different soils and of observing their relative strengths a11d weaknesses. In deciding on the limits 0t composition to be used for each class, We have endeavored to use regular . gradations and to arrange the gradations in such a way as to have the greatest possible meaning with respect to the information at present available. We have taken into consideration the pot experiments and their relation to the composition of the soil (Bulletins 126, 145, 151, 213, 267, and 355) and have also considered the field experiments which were available. The soils whose active phosphoric acid is placed in Class 5 are very likely to be deficient in phosphoric acid for the growth of crops. The same applies to active potash and to nitrogen. The rela- tions are not so evident with the acid-soluble potash, the total phosphoric acid, and the total potash, but Class 5 contains the lowest percentages of these constituents, and the soils are the weakest in this respect. Soils whose acid-soluble lime is placed in Class 5 are quite low in lime and there is a possibility of a deficiency of lime. Soils whose pH is placed. in Class 5 are decidedly acid. ' The constituents placed in Class 4 are present in larger quantities than those in Class 5. In the cases of total nitrogen, active phosphoric acid, and active potash, the soils containing quantities of the constituents falling in these classes are likely to respond to applications of fertilizer,“ SOILS OF VARIOUS TEXAS COUNTIES AND TRANS-PECOS AREA 11 provided that rainfall and other conditions are favorable to the growth of crops. Soils with the pH in Class 4 are acid but not as acid as those in Class 5. Soils in Class 3 with respect to active phosphoric acid and active potash may respond to applications of these fertilizers when truck crops are grown but may not respond when field crops are grown. Re- sponse to nitrogen may occur with soils whose nitrogen is placed in Class 3. There is less probability of response to fertilizers with Classes 1 and 2, since these include the highest percentages. These are also the strongest soils. g - The limits of classes of constituents and the relation between the different classes and the interpretations used in previous bulletins are given in Table 1. TABLE 1. Limits and interpretations of classes of constituents. Class Number 5 4 3 2 1 Nitrogen Limits——Per cent . . . . . . . . . . .. 0—.030 .031—.060 .061-. 120 .121—. 180 .181+ Maximum corn possibility. . . . 10 18 33 48 49+ Maximum number of 40 bu. corn crops . . . . . . . . . . . . . . . . 10 2O 40 60 61+ Total phosphoric acid Limits— Per cent . . . . . . . . . . .. 0—.025 .026—-._050 .051—. 100 .101—. 150 .l5l+ Interpretation . . . . . . . . . . . . . . . Low Low to fair Fair to good Good High Maximum number of 40 bu. ' ‘ ‘ corn crops . . . . . . . . . . . . . . . . . 20 40 8O 120 121+ 1 Active phosphoric acid "W" Limits——-P.p.m . . . . . . . . . . . . . . . 0-30 31~100 101-200 201~400 401+ Maximum corn possibility. . . . 18 40 45 S0 51+ Total potash ""“ Limits -—Per cent . . . . . . . . . . .. 0—.30 .31—.60 .61—l.21 1.21-1.80 1.817%‘ Acid-soluble potash k "i a 1 i Limits—Per cent . . . . . . . . . . .. 0—.10 .11—.20 .21—.40 .4l—.80 .8l—!— Interpretation . . . . . . . . . . . . . . . Low Low to fair Fair to good Good High Maximum number of 40 bu. corn crops . . . . . . . . . . . . . . . . 5O 100 200 400 401+ Active potash Limits——P.p.m . . . . . . . . . . . . . . . 0-50 51-100 101-200 201-400 401 Maximum corn possibility . . . . . . 26 5O 94 171 172 Lime _ Limits—-—Per cent . . . . . . . . . . . . 0—. 10 .11—.20 .21-.407 .41-2.00 2.01-1- Interpretation . . . . . . . . . . . . . . . Low Low to _fair Fair to good Good High Basicity . Y A ’ Limits—Per cent . . . . . . . . . . 0—.30 .31—.60 .61—2.00 2.01-5.00 5.01-1- PH . . Limits . . . . . . . . . . . . . . . . . . . . .. 0—5.0 5.1-5.5 5.6-6.0 6.1-7.5 7.6-]- Acidity . . . . . . . . . . . . . . . . . . . . . Very acid acid Slightly practically Alkaline acid neutral Lime in the three lower classes is probably all contained in the ex- change complex of soils with 10W exchange capacities. The maximum lime in Class 3 is equivalent to 14.3 milliequivalents per 100 grams. Lime in Class 2 may be present as exchangeable lime in soils with higher total exchange capacity or there may be small amounts of limestone or soluble neutral calcium salts in the soil. Soils in Class 1 all contain some lime- stone. l2 BULLETIN NO. 533, TEXAS AGRICULTURAL EXPERIMENT STATION The basicity of Classes 5, 4, and 3 is sufliciently 10w to preclude the 31 possibility of the presence of much limestone in the soil. Class 5 con-l tains soils with basicity so low that there is danger of making the soils‘ too acid for satisfactory plant growth when acid-forming nitrogenous? fertilizers are used for a number of years, while Class 4 contains many? soils which may be injured in this way. Basicity in Class 3 may still be." entirely due to the exchange complex in the soil; the maximum, 2.00%.! of calcium carbonate, is equivalent to 40 milliequivalents. Soils in both f; Classes 1 and 2 contain limestone. 7' Reaction (pH) classes are based on ranges of pH for satisfactory plant growth. Class 1 (7.51 +) is definitely alkaline, Class 2 is so nearly neutral that good growth of most crops is not inhibited, Class 5 contains soils which are so acid that many crops, particularly legumes, will not f grow well, and Classes 3 and 4 contain soils which may be sufficiently acid to damage growth of certain crops. F The classification is not intended to give a grouping which can be interpreted in terms of crop yields or possible fertilizer responses, since these are determined by many factors in addition to chemical composition, upon which the classification is based. However, certain general rela-y. tionships may be noted. Soils in Class 1 are probably not deficient with"? respect to the element concerned, except possibly where unusually heavy "L, demands are made on the soil, as in the growth of very large truck crops; Most soils in Class 5 and many in Class 4 are low in fertility with respect to the element concerned. Some soils in Class 3 and a few in Class 2 may be deficient when heavy crops are grown. It must be remembered V. in this connection that a soil may be high in total quantity of an element and still be deficient in the quantity which is readily available to plantsf’ and that the available supply, rather than the total supply, is the deteré mining factor in crop growth and fertilizer response, insofar as chemical composition is concerned. SALINE SOILS Saline soils are soils modified by the presence of soluble salts, chiefly? sodium chloride or sodium sulphate. Soluble salts occur in sufficient quantity to be injurious to crops in some of the soils of the counties here ‘ discussed. Salty spots are of frequent occurrence along the Gulf Coast, and also in other parts of Texas. In some instances, the soluble salts i. are of natural occurrence, as in soils along the sides of salty lakes. In other places, the soluble salts accumulate as a result of irrigation or of Y seepage water coming too near the surface. If the ground water can be ' brought sufficiently near the surface to evaporate, the soluble salts con- ‘ tained in it are left behind and accumulate. Where the accumulation of t‘ soluble salts is greater than the amount washed out by rain or irrigation water, the soil increases in saltiness until there is so much salt that crops cannot be grown. Salty spots due to subirrigation occur in various sec- tions of Texas. They may also\be produced in yards or gardens by fre- L quent sprinkling with water which contains soluble salts. The formation- SOILS OF’ VARIOUS TEXAS COUNTIES AND TRANS-PECOS AREA 13 of saline spots may be prevented by drainage which allows rain water to pass through the soil and prevents the ground water from rising and evaporating. Sufiicient rain or irrigation water will then wash out any salt which may be present. Saline spots may be recovered by suitable drainage accompanied by sufficient applications of water to wash the salts through the soil into the country drainage; however, difficulties are met here, as the soil may be so heavy that the water does not readily go through the soil. The saline salts may also cause the soil particles to deflocculate and close up the pores of the soil so as to cause Water to penetrate very slowly or even prevent it from passing through. Saline soils are frequently called alkali soils. The injurious salts are not alkaline as a rule, usually consisting of sodium chloride (common salt) and sodium sulphate. The soils are alkaline when sodium carbonate or bicarbonate are present, in which case they are called black alkali soils. Texas soils sometimes, but not frequently, contain black alkali. The composition of the salts in some of the saline soils is given in con-. nection with the discussion of soils of some of the counties. POT EXPERIMENTS The needs for plant food of some of the soils discussed in this bulletin were studied by growing the plants in pots containing portions of the soils to which various forms of plant food were added. In making these experiments, 5,000 grams of soil were placed in galvanized iron pots, and to one or more pots a complete fertilizer (NPK or NDK) was added. To one or more pots nitrogen and potash (NK) were added, phosphoric acid being omitted. The difference between this pot and the pot with the complete fertilizer shows the need of the soil for phosphoric acid. To one or more pots, phosphoric acid and potash (PK) were added, nitrogen being omitted. The difference between this pot and that with the complete fertilizer shows the need of the soil for nitrogen. To a third set of one or more pots, nitrogen and phosphoric acid (NP) were added, potash being omitted. The difference between this pot and the pot receiving the complete fertilizer shows the need for potash. The tables show the weights of the crops secured with the different additions; they also show the amounts of phosphoric acid, potash, or nitrogen removed from the pot by the plants grown in the experiments expressed in their equivalent of bushels of corn per acre. The soil in pot experiments is under favorable conditions and it is possible for the plants to make a greater growth or to take up more plant food from the same quantity of soil than would be the case under field conditions. There might be a considerable difference in the amount of crop produced between the crop receiving the complete fertilizer (KPN) and the crop which had no potash (PN), and yet the crop pro- duced without potash in the field might be equal to the possibility of production under the climatic conditions prevailing. In this case the soil would appear deficient in the pot experiment, while for all practical purposes it would not be deficient in the field. This is the reason why 14 BULLETIN NO. 533, TEXAS AGRICULTURAL EXPERIMENT STATION the plant food withdrawn is expressed in bushels of corn to the acre. It shows the relative capacity of the soil to furnish plant food to crops in pot experiments. RELATION OF CHEMICAL ANALYSIS TO PRODUCTION Chemical analysis is made on samples of soil taken from the fields. The analysis for plant food represents the capacity of the soil to furnish it. The capacity of the soil to furnish plant food is only one of a group of factors which control production. The chemical analysis is related to the capacity of the soil to supply plant food, but when application is made of the results to field work, ‘ other important factors enter into plary. The most important of these are perhaps (a) the kind of crop and its ability to assimilate plant food, (b) the depth of the soil and the extent to which it is occupied by roots, (c) the water provided by soil and season, (d) the temperature, and (e) the highest quantity of crop which can be produced under these and other prevailing soil and climatic conditions. It is obvious that a plant having twice the capacity of another to assimilate phosphoric acid will need only half the quantity in the soil in order to produce an equivalent yield; that a soil furnishing enough phosphoric acid for 30 bushels of corn may not contain enough for 50 bushels; that soil which can be occupied by roots to a depth of 6 inches furnishes only half as much plant food as one that is occupied to a depth of 12 inches; and that soil may contain enough plant food for 3O bushels of corn and yet not enough for a large crop of tomatoes. These are all illustrations of the factors mentioned above which affect the ability of the plant to use the food offered it by the soil. The classifications given in this bulletin refer entirely to the quantity of the various elements in the soil. No attempt is made to allow for any of the other factors which may affect production. AVERAGE COMPOSITION OF THE SOILS OF THE COUNTIES STUDIED The average composition of a number of soil types in the counties was calculated from the figures for two or more samples of the same soil type. Iln calculating the averages, figures out of agreement with figures for the same constituent in other samples of the same soil type were omitted from the averages. For example, one sample of Bell clay surface soil from Collin County (No. 33751, Table 4) contained 696 p.p.m. active phosphoric acid. This is not in agreement with two other Bell clays from the same county, which contained 26 p.p.m. and 53 p.p.m. The figure for No. 33751 was therefore omitted from the average. Several other similar cases occur in the tables. Whenever a figure has thus been omitted from the average, it is enclosed in parentheses. For the purpose of discussion, the soils were usually divided into three groups: (1) upland soils, (2) second bottom, or high-terrace soils above overflow, and (3) first bottom, or alluvial, soils subject to overflow. In certain counties, the classification was more detailed. The average composition of these groups is given in Table 2; the classification accord- ing to analyses is given in Table 3. SOILS OF VARIOUS TEXAS COUNTIES AND TRANS-PECOS AREA 15 (\I(\IQ‘K\\D$IV§K\v-1BIQW*""F “O Haven-mo mmmowoNmwH..=M5oUQ@~H.Q$HMQ> N3. Ho. mwH HmN HNo. ooo. . .........>fi500.6o6m QR. M -. .. --...- ... - . ......>HC:OU m0. ..... - . ....... .. ........-.~muCS.O0OT~¢W 3H om. ooH wH HHH. mmH . . . . . . . . . . . . ....$560c::00 . . . . , 26055 _.2>=:< mm mo mm oH wHo oHo ......................................>ocso0oocwNam> NwN Ho. HmH NwH NmH. woH. .....................J.....................3c:00c:_o0 2:06am 00050:. 2.» mo. m: N wNH B0 ooo . . . . . . . . . . . . .563 was mnfimn douwm-mzwfifi mmH wH . H5. mm HNo. $0. . . . . . . . . . . . . . . 6:06am 560: .3560 fiEmN 00> mHH Hl . o“. mH oNo. mNo .... . . . .. . . . . . . . . 6:03am 200i... .3560 600M 00> 2H 0N. HH H HN S0 £0 . . . . . . . . . . 032m 0.82005: 5.500 000$ 50> How mo. .8 N NoH Noo o8 . . . . . . . . . .w=0060_w0=0: .3560 606m m2 3 oo H w» £0. moH . . . . . . . . . . 0:658:00 .3560 606m EN mm. Ho H HmH woo Hoo . . . . . .H006_00-o:m: .3560 0:232 S» N0 0N H mN £0 N6 . ......H.So_o0¢:fi. $2500 H5222 @@. . . . . . . . . . . . . . . . . . . . . . . . . . ..@U.~OTUUIHZMZ Joacsonv floumwxido W . . . . . . . . . . . . . . . . . . . . . . . . . .U0MO~O0|JuflU KAuCUOO Cfivuwwxifio RH wH. “o. w NNo. ovo. . . . . . ....................H00.6:00-0.:w:5550020,: NmN 5i HH.H “w mwo. ooo. .. . . . . . . . . . . ................o06_o0biwo.3560 0C1: 3H wN Nw w mNo Noo . . . . . . . . . . . . . . . . . . . . . . . . ..m:00._m0:m0c0c .3560 5:00 M . .......... . . . . . . ..............W§OOHQU—.NO Knn-GUOU 2:06am ocwED w? Nm oo N HQ w: $0 . . ... . .w000nH-w5w_H w: wH 3.. H 2 18 m8 . . . . .3560 0H05~N 00> 2a. No mm H 3N Nwo 80. . .. . . . . . 2.3560 606m 2w 3w o0 H w? ooH $0 . . . . . . . . . . .3560 05:32 . . . . . . - . - . . . . . - . . . . .>u§5oU OTwm .-..........-....... . . . . . . . . . - ............>..~QH~OUC@ZOU . . 26w 00056 :2>::< ..-...........-.-.... . . . . . . . . . . . - - -..->QHHQOUM@G.NSCN> ...............~....-.........-...........>QCH~OUQHZOU 26w 00855 00050:. NNH» mo. NNZN ooN ooo. Nwo. . . . . . . ......... . . . . . . . . . 25:06 0cm .0560 dogmécwkp. . . . . . . . . . . . . . . . . . . .w$OwDDw Nmx/SUS QmMCH-OU ufivfld@ Cfl> .5 No No oN m8 oNo . . . . . . . . . . . . . . . . . 5:06am 030E :33 c3560 6.6M 00> HHH NN. oH .H wH 08. to. . . . . . . . . . . . . . . . . . . . . .2500 000E005 .3560 65~N 50> oov om. mo. H 00H 05o. NNH. ... . . . . . . . ....... . . . . . . . . . ..w:000w0_m0c0: .3560 506m omN Nm. NNMH omH oho. 3H. . . . . . . . . . . . . . . . . . . ..............w:000w0:w0.3560 086m . a . . . . . . . . . . . . . . . . . . . . . . . . . . . .UUMOHOU|QQMZ imuifi-OU . . . . . . . . . ..........UU.~O@OO|MHNU .%ufi5O0 . . M .. . . . . . . . . . . . . . . . . - . . . . . . . . . évwhoivnv|uzwz .>MCUQU flouw0>fiflo SN. . . . - . . . . . . . . - . . . . . . . . . . - . . . .@UMQ@OUIM~MN@ .>HQ.DOU QQQMUNVTQO @@. . . . - . . . . . . . . . . . . . . . . . . . . . . . . . - . . .@Uho~QU|u£@: >>HC§QU O@hrv% 3m NHi oo.H ow 3o. :0. . . . . . . . . . . . . . . . . . . . ......006:00bimw c3560 0th HNN oN. mm. Hm woo. NoH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 000050060500 .5560 5:00 HAN mm. mmH mm mHH. Si. . . . . . . . . . . . . . ..m:000m0:w0 $05.60 5:00 26w 000.55 0:203 50:5: 600 8m 0:00 0252 600 3m 500 Sm £66m 6m 3m 30¢. 6m 5600 mow 0mm... 5mm $.00... dwmmw...» “m5 MW 16 BULLETIN NO. 533, TEXAS AGRICULTURAL EXPERIMENT STATION F4NNQ-INNSv4I-4NF5NNv4 1-4"), v-lwlblv-ifilfi fiblblvifilblblv-(w-‘NKWNNFI PH‘? v-H-VNv-‘Ilflfl HMNNMMQ-flv-lwfilnfiv-I v-Hn v-m-Iwuqw-w wnNNmmm-a-Immlnfifl ~10 v-iv-u-ibliflfl v-Iuuflmwmw-uwwmfimv-u Nd‘ ww-I-MNQH-I ~Nu-c~1NDWIDWN NV) IDNDv-INWv-l lhlhfilhlflfilfi°fi¢¢fimw¢fi WI!) IhPOw-lNVh-l N¢¢WJW¢¢IDKW NI!) NNNWWN ummvum¢w>uuwun . . . 430500 0030A . $2.500 000132 . . . . . . $0550 50h . . . . . . . . . . . . . . . . . . . . . 32:00 5:00 m:own:w :0:>::< . . . . . . . . . . . . . . . . 43550 0000M 00> . . . . . . . ...$0:00:::o0 0:05am 000.20% . . . . . . .0505 000 w5w00 .m000m-w:0._:. . . . . 6:055 .950: S5500 0500N 00> . . . 555:0 030i: S5000 00Q0N 00> . . . . . . . . . .0:500m 0003005 55:00 500M 00> . . .m:00000:00:0: £5500 003cm . . . . . . .m:00000:00 55:00 003cm . . . .005:00-5w: 55:00 0:00:52 . . . . . ..005:00|0i0@ .3550 0:00:52 . . . . . . . 000200-55: (30:00 00000300 . . . . .0000_00-0i00 .3550 00000200 . . . . . . . . . . 50550-50: (30:00 20m . . . . .. . .0000_o0-0i00 .5550 0t’: . . . . .w:00000:00:o: $0.500 5:00 . . . . . . . . . . 0:00.025 S5500 5:00 255:0 0:033 . . . . ..m000m-wc0C. ... . . . . . . 1.30:8 500M 00> - ~ - . - . - . . . . . . - - n ... - - - < - . . --n-¢a->§cgomwug.m§v@z .......................>0c:000€m . . . . (30:00 5:00 0:00 000.050 505:0‘ . . . . . . . . . . . . 55:00 550N 00> ...................>5:005:00 0:00 000050 00050:. . . . .2505 0:0 w5w00. .m000m-w=00H .m:0mn:m >300: $0.500 5000M 00> . . . . . . . . . 10:00.50 055C 55:00 550M 00> .0505 0:01:05»: .3550 5n0N 00> . . . . . . . . . . . . . . . . . . . . . . . . . . . . wH-OQMNHZNUGOG Swain-CU nwuuOnm . . . . . . . . . . .m:00000:00 55:00 0005: . . . . . . .00.5_00-5w: 55:00 . . . . . . HVOKSOHYMHQU $3.550 . . . . . . . . . . . . . . . . . . . . . UPHBOQLSMM: .>..~C:O0 GOQmP/iwmv . . . . . . . . . . . . . 500200-400: £5000 00000200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HvwuOfiOnYuflwfi JwufliOu Oihm . . . . .UQ.~O~OU|MHQU (35500 01mm . . . . . . . . . .m:00000:00:0: $5500 5:00 ...-... . . . . . . . . . . .w:00._00:00 .3550 5:00 0:00 000050 000:3: m: .2200 0E3 052cm E0< 50.05% U>$O< 505m 032cm 30¢ 00000: 55F k uOh-WZ 0:000 :0w 5955M h: 050m we 025535-50 m0 00000-0 M Ham?! . .4311? 1.41 .3! ~.. SOILS OF VARIOUS TEXAS COUNTIES AND TRANS-PECOS AREA 17 The upland soils are averaged in several groups, as shown in Tables 2 and 3. The upla-nd soils of the Blackland Prairie and the counties in the western part of the state are better supplied with plant food than are the upland soils of the East Texas Timber Country. For example, the nitrogen in the East Texas Timber Country soils with friable subsoils in Van Zandt County averaged .029 per cent (Class 5), while that in the soils of the Blackland Prairie section of the same county averaged .077 per cent (Class 3) and the calcareous soils in Potter County averaged .143 per cent (Class 2). The light-colored upland soils of Galveston and Midland counties are higher in plant food than the dark-colored upland soils in the same counties, while in Frio County the dark-colored soils are higher. The calcareous upland soils are better supplied with plant food than are the noncalcareous upland soils. Soils with heavy subsoils in Van Zandt County contain more plant food than the soils with light subsoils in the same county. Nitrogen in the different upland soil groups varied widely; the better soils mentioned above contain much more nitrogen than the poorer soils. For example, the light-colored soils of Midland County contained .094 per cent nitrogen while the dark-colored soils of the same county contained only .042 per cent. Active phosphoric acid in most of the soils was low, particularly in the soils of Van Zandt County, the light-colored soils of Frio County, and the dark-colored soils of Galveston County. The quantity of potash, particularly the active or readily available part, varied from medium to high. Lime and basicity varied from high to medium content in most soils, but some of the groups, particularly those in Van Zandt County, were low. None of the soils, with the exception of those in Van Zandt County, were acid, and those in Van Zandt County were only slightly acid. The terrace soils, which are those occupying flat to undulating old stream benches above overflow, vary considerably in composition. Those in Collin County in the Blackland Prairie area are well supplied with plant food, while those in Van Zandt County in the East Texas Timber Country are low in practically all of the plant food elements. Those in Collin County were higher in plant food than the upland soils in the same county. In Van Zandt County there was no significant difference between the composition of the terrace soils and that of the upland soils. The alluvial soils, or those on fiat stream bottoms subject to overflow, are better supplied with plant food than upland or terrace soils in the same county. Here, again, those of Van Zandt County are relatively low in plant food, particularly with respect to active phosphoric acid. FERTILIZERS FOR THE SOILS STUDIED The soils studied may be divided into several groups with respect to their relation to fertilizers. A In the upland soils group, the soils of Frio, Midland, and Van Zandt Counties, the noncalcareous soils of Collin County, the light-colored soils of Galveston County, and the soils of the Trans-Pecos Area vary from slightly deficient to decidedly low in nitrogen. The upland soils of all the counties studied, excepting the calcareous soils of Collin County, the 18 BULLETIN NO. 533, TEXAS AGRICULTURAL EXPERIMENT STATION light-colored soils of Midland County, and the soils of Potter County, o1. the average are somewhat 10W in phosphoric acid, and some are decidedly deficient. The upland light-colored soils of Frio County, the dark-colored soils of Galveston County, and the Blackland Prairie and friable subsoil groups in Van Zandt County may be deficient in active potash. The use of fertilizers is generally advisable for field crops on the soils in the eastern part of the state, and especially so for truck and fruit crops. Fertilizers suggested for use are given in other publications of the Experiment Station. In general, the sandy soils are likely to need more potash than the soils of heavier texture. The black calcareous prairie soils, especially the Houston soils, do not respond well to fertili- zers, and at present we cannot recommend fertilizers to be used on them, but recommend legume rotation and manure. Climatic conditions may interfere with the profitable use of fertilizers in the western part of the state not under irrigation and they are not recommended in the absence of favorable field experiments. The terrace soils of Van Zandt County probably need fertilizers sup- plying nitrogen, phosphoric acid, and potash. Those of Collin County probably do not need fertilizers. The alluvial or first-bottom soils prob- ably do not need fertilizers at present although field trials on some areas, particularly in Van Zandt Country, may show good response to their use. When the soils produce heavy growth of stem and leaves but do not fruit Well, applications of phosphoric acid fertilizers may correct this condition. Where the soil fertility has begun to decrease on account of cultivation over a period of years, fertilizers will probably be of advan- tage. Fertilizers may be of advantage for vegetable crops. USE OF LIME Few of the soils described in this bulletin are acid and lime is not needed on most of them. If lime may be needed, it will be mentioned in the discussion of the soils of the county concerned. The use of lime on well-drained sandy soils is not advisable except in connection with a legume rotation, for the reason that application of lime is likely to stimulate the production of nitrates and cause loss of nitrogen of the soil during the winter months. Theacidity of these surface soils at the present time is generally not high enough to be injurious to crops ordinarily grown. They may become more acid after longer cultivation. SOILS OF COLLIN COUNTY Collin County is in northeastern Texas and lies entirely within the geographical division known as the Blackland Prairies. Eighteen types and phases of soil were mapped in 8 series. The most extensive soil is the Houston black clay, which in all phases occupies 46.5 per cent of the area, followed by the Houston clay, which occupies 16.1 per cent of the area. The percentages of the\area covered by soils of the series are given below, following the description of the series. Upland soils include wfi-rhL _. “no. L .. -1.» _ \ SOILS OF VARIOUS TEXAS COUNTIES AND TRANS-PECOS AREA 19 the calcareous Houston and Sumter series and the noncalcareous Wilson and Crockett series. Terrace soils include‘ the calcareous Bell and Lewis- ville series. Flat stream bottom soils include the calcareous Trinity and Catalpa series. Description of Soils of Collin County Upland Soils: Crockett soils—Black to brown or spotted, moderately friable, cloddy to moderately granular, noncalcareous topsoil with reddish or yellowish mottled with gray subsoil. Cover 0.1 per cent of area. V Houston soils-Black, dark-gray or ashy-black to brown, friable, gran- ular, calcareous topsoil with dark-gray, brown or yellowish, highly cal- careous, moderately friable or crumbly subsoil. Cover 64.7 per cent of area. Sumter soils—Brown or yellowish-brown, friable, granular, calcareous topsoil on rolling, steep slopes, with brownish-yellow to greenish-yellow crumbly, calcareous subsoil. Cover 8.1 per cent of area. Wilson soils—-Black to dark gray, noncalcareous, nongranular topsoil, very tight when dry, with brown or dark gray dense, tough subsoil. Cover 5.1 per cent of area. Flat t0 Undulating Old Stream Bottoms, above Overflow: Bell soils—-Black, heavy, friable, granular, calcareous topsoil, with dark-gray calcareous, crumbly subsoil. Cover 7.7 per cent of area. Lewisville soils—Brown, friable, granular, calcareous topsoil with dark brown calcareous, crumbly subsoil. Cover 2.0 per cent of area. Flat Stream Bottoms: Catalpa soils—Brown, friable, permeable, calcareous topsoil with brown or grayish, friable, permeable, calcareous subsoil. Cover 5.1 per cent of area. Trinity soils—Black to dark brown, friable, permeable, calcareous top- soil with black or dark gray, heavy but permeable and crumbly, cal- careous subsoil. Cover 7.2 per cent of area. Composition of Soils Table 4 gives the analyses of the different soil types and Table 5 the classes of constituents of the surface soils. The soils are moderately to well supplied with nitrogen, all of them falling in Classes 1, 2, or 3. They are low in active phosphoric acid; with the exception of one sample of Lewisville clay (in Class 1), the soils all fall in Class 4 (4 soil types) or Class 5 (5 soil types). Most of the soils are well supplied with active potash, only the Houston clay (Class 4) falling in classes lower than Class 3. They are moderately to well supplied with total phosphoric acid and total and acid-soluble potash. They are high in lime, basicity, and pH, many soil types falling in Class 1 in these constituents. Pot Experiments Results of pot experiments are given in Table 6. Most of the soils respond to nitrogen and phosphoric acid, but do not respond to potash. 20 BULLETIN NO. 533, TEXAS AGRICULTURAL EXPERIMENT STATION wH|6 6N N6. . . . . 66 6N6. 66H. . . . . . . . . . . . . . . . . . . . ..H625 .666 3666 6666 6-6 HwN 6w. . .. NN N6N. HHN. . . . . . . . . . . . . . . . . . . ..666.:5 2% 36:6 6666 66IwH H.w N6H . . .. . 6wH wH. NHH. 6H6. . . . . . . . . . . . . .:H625 6666 .5% 666w H266 wTN H.w 66H . . . 66.H 6w 6NH. HN6. . . . . . . . . . . . . . . . . . . H625 ..H6H6 6.66m 6166 N|6 H.w 66H . . . . . . . . NN .H 6N 66H. w6H. . . . . . . . . . . . . . . . . . . .666H66 .666 666w 6266 66|HN Niw wN . . . . . .. 6w. w H6H. 666. . . . . . . . . . . . . .H625 6666 5% 6HHH>6H>6H 662.6 6N1N H.w 666 .. N6. H 6N6 6H6. 6NH. . . . . . . . . . . . . . . . . . H6665 5% 6HHH5Ha6H 6E2 N6 w.N N66 . . . . . . .. HN . H 66N NN6. 6NH. . . . . . . . . . 66665 .666 6HHH>6H>H6H wHNQ 66166 6.6 N6H .. .. 66. 6 6H6. N66. . . . . . . ...H62HH6 6666 .5% 65>: N626 66N H.6 66H . . . . . . . . H6. 6 6N6. 66H. . . . . . . . . . . . H625 .5...H6 63>: 6366 N6 w.6 66H . ... H6. NH w66. 66H. . . . . . . . . . . . . . . . . . . 1666366 N66 666: 6.266 %.w - 6 n u 6 n v - 6 0 § - - . . 6 6 . > - . . 6 - wHIN Hiw N6 6 N66. 6w6. . . . . . . . . . . . . . . . . . . H625 .366 68363 66:6 N16 Hflw Hw HN NHH. mNH. . . . . . . . . . . . . . 4.66636 .366 36.6663 wmNww . . . . . Him w: N. NNO. owo. . . . . . . . . . HHomnHHw 3666 SE6 x665 30663033 636.52% . . . . . . . Haw 66N H.H ww6. 6HH. . . . . . . . . . . . . . .H625 .566 663 66.263 666663. ....... N.w NwN NN 66H 66H. . . . . . . . . . . . . . .8635 56H... H663 66.263 666665.. 6w|wH N.w 66 6 666 666. . . . . . . .. . H6665 6666 .536 663 =6H6H6HH 662w wHrN. w.w NwN H: 666 66H. . . . . . . . . . . . . . . H625 5% 6663 H6563 662w N|6 Him wH6 6w Nw6 mNH. . . . . . . . . . . . 1.666666 <66 663 66.6663 662w 6w|wH H.w N6 N 6w6. 66H. . . . . . . . . . H625 6666 .566 663 66.6663 H6Nww wH|N N.w H.w H.H 6HH 66H. . . . . . . . . . . . . . . ..H62HH6 5% 6H2 66.263 N656 N|6 6.6 NNH 6N NwH wNH. ......... . . . . . .6565 .536 663 66.263 H6N6w 6TwH w.w 66H H668 wHH. w66. . . . . . . . . . . H6565 6666 5% 663 66.6.63 wwNQ wTN 6.w 66N H666. NwH. Nw6. . . . . . . . . . . . . . . . H6266 .566 3663 666263 N266 N16 w.N H6N 2N6. 66H. 66H. . . . . . . . . . . . . . . .6265 ..H6H6 663 H6563 6266 HNIwH 6.w NNH w wH6. H.w6. . . . . . . . . . ..HHo2HHH6 6666 5% H66H6 66.263 N266 wTN N .w 6HN HH i6 N66. . . . . . . . . . . . . . . . .6625 .56 663 666263 HHN66 §|° w - w - . . . . . . - . . . ¢ - - - 6 wTN 61w 6NH wH 6wH. wHl. . . . . . . . . . . . . . . . . . . . . ..H62HH6 5% 626.60 N6N6w §|° o-w . - . » 6 » . . - ¢ - - - . - . 6 . -¢-.@U.@ukk:m ....... 6.w 6H; N 666. NN6. . . . . . . . .. . . . . . . . .H625 6666 .666 HH63 666662 . ..... 6.w NwN w NH6. 66H. . . . . . . . . . . . . . . . . . . . . . . . . H625 5% H63 666663. . ... 6.w 66H. 6H. N66. 66H. . . . . . . . . . . . . . . . . . . . . . . . ..666.66 ..H6H6 H63 666665. 6w|wH H.w N6 w 6H6. 666. . . . . . . . . . . . . . . . . . ....H66.HHH6 6666 5% HH63 66Nww wHnN. H.w 6HH N w66. 666. . . . . . . . .H625 5% HH63 w6Nw6 N16 w.w 6H6 6m wN6. 66H. . . . . . ...666t=6 .>.6H6 =63 N6Nww 66|wH N.w 6w 6H 6w6. 666. ....H62HH6 6666 5% H63 662w wTN N.w .N 6H6 HNwNv 6wH .. wNH. .......H62HH6 5% HH63 N636 N6 N.N H66 ........ N66 H666. H6wH .. 6wH. . . . . . 1666.65 5% HH63 HmNww HNwH N.N w6.N mHiH 66N N H66. N66. . . . H6266 6666 .366 H63 N6N66 wH|N w.N wHmN wHiH NNN w 6N6. Nw6. . . . . . . . .6625 .666 HH63 66Nw6 N|6 6.w HN.N 66H N66 66. 6H .H 6N 666. NHH. . . . . . . . . . . . . . . ... . . . . . . .3866 .666 H63 w6Nww 6:60 H360 30m 32:32 250 .863 6:60 30:32 6:60 36m 6360 NRHEHHZ 66:65 36 Hum 6E3 366m 365cm 66m 36m 36¢. 36m 6863 69G. 9H3 HtauQ 3H oEHHHom 323cm 633cm 363cm 6.6. 60am mosh 66w nfionmq -6663 6H6< 6>H66< 66¢ H6663. 6>H6< H6663. -652 cnwfln-QO 351.0 u: mica uc mumh~afl€ J6 3.3356 21 SOILS OF VARIOUS TEXAS COUNTIES AND TRANS-PECOS AREA 0T2 N.“ Q2 B; I 3o. w . sins .88 >3 o s; 3.. m: ........ a ._ 2 a... h... .... ........._... ..r...w.aw .50“ av mama” “mm 0K m3 . . . . . . .. 3A mw $0. moo. ..................Qw.PC:w .Ewo_ >£uaow1y> mmwmm . 0.0 m2 om. 3U a 8E mmo. ..................:own=m .6313? ¢om=>> @9203‘ flu 3i mm mo. w :6. $6. . ...............=omn:w SE0 comm? vuw~u>< m.“ m2 3. mo. mm S8 m2 . . . . . . . . . . . . . . 60.3.5.5 S20 now=>> ~w~$>< :42 o o S: om om 2 m8. So. . . . . . . . . . éownsw nvuw S20 cow1>> 33m wmlh WO- N ............. .........1OmD~.-w.\md~U GOm1>> To fi Q $3 3 8. mm 3o. u: . . . . . . ... ... .... . . 9.9.5 S20 comm? Noam 8H2 mm“ m3 . . . . .8“ 5 2... $9 .. . . mmmownnw Q36 52o coma? wimm M3 h o o m8 mo w 8o woo . . . iownsw 52o c0215 mzmm .kfia.w... . .- . fi@. . - . . - ... .- .... . . .U»nv.N-@h5w .>N@U flow??? .... ... N.@ @W. ......................ZOWD:M.~AN@U»AH.:HT~& UMNMU>< a.w .......... . . . . . . . . ....0U.®.~H5w .%.G_U>u@~:.~%\ UMGMU>< QM!“ fi w a . . . . - . .... . - . . ...... . .@~QMQH~W .>@@U»Au:.:k1%\ Elma c-@ . .- ... . . . . .. . ...-.....-U'U.N%h=m ->.N@U S; Nd o2 mm 2 4 3 Q2. m2. . . . . . . . ;. . . . . . 46mm?“ 5% >icik act,» To Na o8 %. E 4 2 a2. 3% .. . . . . . . . awfiém .36 iii 82m E00 2.50 3m c0222 230 .6; Eu com m 2.6, .3 Ev mosBS m.» hum uEfi “um $230k uQM kwfz w%v< m uQMU vEmZ 2:9 uwwnwwwmz fiaufl >3 222cm £88m uEEow zwfiom d4 moan .225 cum étonmq 23m 20¢ ~2fi< 35 12B. ~2U< =88. 6E2 AuS-cg-co. 33-350 G220 a6 02cm a0 monk-rid. d, mndflabu. BULLETIN NO. 533; TEXAS ‘AGRICULTURAL EXPERIMENT STATION '22 TABLE 5. Classes of constituents of surface soils of Collin County. . l . l ACld Acid Labora- Nitro- Total Active Total Solu- Active Solu- Basici- pH tory gen Phos. Phos. Potash ble Potash ble ty Number Acid Acid Potash Lime Average Bell clay . . . . . . . . . . . . . 2 3 4 2 2 1 2 2 1 33756 Catalpa clay . . . . . . . . . . 2 2 5 3 . . . . . . 2 . . . . . . 1 1 Average Houston black clay. . . . 2 2 - 5 2 2 2 1 1 1- 33758 Houston clay. . . . . . . .. 2 2 5 . . . . . . . . . . .. 4 . . . . .. 1 1 33745 Irving clay . . . . . . . . . . . 3 4 5 3 . . . . . . 3 . . . . . . 3 2 33748 Lewisville clay . . . . . . . . 2 1 1 2 . . . . . . 1 . . . . . . 1 1 33739 Sumter clay . . . . . . . . . . 3 2 4 2 . . . . . . 3 . . . . . . 1 1 Average Trinity clay . . . . . . . . . . 1 1 5 ~ 3 2 2 1 1 1 Average Wilson clay . . . . . . . . . . . 3 4 4 3 3 3 2 3 2 33733 Wilson clay loam . . . . . . 3 4 4 3 . . . . . . 2 . . . . . . 2 2 TABLE 6. Pot experiments on soils of Collin County. Corn possibility of Weight crop in grams plant food with- drawn, in bushels Labora- ' 1 tory Type name _ _ number With VVlt h- com- out With-With- Phos- plete phos- out out phoric Nitro- Potash fertil- phoric nitro- potash acid» gen izer acid gen 33705 Bell clay, surface, corn . . . . . . . . . . b. . 26.6 18.1 17.5 31.8 44 32 432 " Bell clay, surface, sorghum . . . . . . . . . . . 37.3 38.1 13.7 39.5 63 19 246 33706 Bell clay, subsoil, corn . . . . . . . . . . . . . . . . . . . . 1.3 9.8 13.9 3 24 293 " Bell clay, subsoil, sorghum . . . . . . . . . . . . . . . . . . 11.5 6.2 21.2 22 15 191 33710 Houston black clay, surface, corn . . . . . . 20.0 7.3 9.7 21.3 17 23 236 " Houston black clay, surface, sorghum. . 32.2 14.0 10.2 31.4 23 19 224 33711 Houston black clay, subsoil, corn . . . . . . 13.1 3.8 8.1 16.1 7 20 168 " Houston black clay, subsoil, sorghum. . 31.3 11.3 11.9 31.0 14 17 155 33712 Houston black clay, deep subsoil, corn . . . . . . . . . . . . 7.9 . . . . . . . . . . . . 21 . . . . . . 5953 Trinity clay, probably, surface, corn... 46.4 41.4 . . . . . . . . . . .. 101 . . . . . . . . . . .. " Trinity clay, probably, surface, sorghum . . . . . . . . . . . . . . . . . . . . . . . . . 34. 2 33.4 . . . . . . . . . . . . 90 . . . . . . . . . . . . 5954 Trinity clay, probably, subsoil, corn... 24.7 13.7 . . . . . . . . . . .. 24 . . . . . . . . . . .. " Trinity clay, probably, subsoil, sorghum . . . . . . . . . . . . . . . . . . . . . . . .. 24.5 19.6 . . . . . . . . . . .. 33 33708 Trinity clay, surface, corn . . . . . . . . . . . . 27.9 16.5 18.6 22.3 50 39 ‘472 " Trinity clay, surface, sorghum . . . . . . . . 31.1 28.0 10.8 26.8 69 20 . . . . .. 33709 Trinity clay, subsoil, corn . . . . . . . . . . . . . . . . . . 8.0 29 .5 . . . . . . 24 66 . . . . .. -33702 Wilson clay, surface, corn . . . . . . . . . . . . 37.2 23.1 21.2 33.4 43 38 31S~ " Wilson clay, surface, sorghum. . . .. 35 .5 31 . 1 12 .5 37 .0 57 26 138 33703 \/Vilson clay, subsoil, corn . . . . . . . . . . . . . . . . . . . 2.8 14. 7 22 .9 4 28 187 " Wilson clay, subsoil, sorghum . . . . . . . . . . . . . . . 8.0 4.2 23.6 13 10 83 33104 Wilson clay, deep subsoil, corn . . . . . . . .i . . . . . . . . . . . . 10.1 . . . . . . . . . . .. 1s .... .. Fertilizers The need for fertilizers carrying nitrogen and phosphoric acid is indi- cated in most of the soils. Potash fertilizers and lime are not needed except possibly on small areas 0r for special crops. SOILS OF FRIO COUNTY Frio County is in southwest Texas and lies entirely within the geo- graphical division known as the Rio Grande Plain. Thirty types and phases of soil were mapped in 13 series. The most extensive soil is Duval fine sandy loam which occupies‘ 30.1 per cent of the area, followed by Webb fine sandy 10am, which occupies 23.8 per cent of the area. Upland 34.4.‘ sln/Jflhlili.» 1.1,... . ‘SOILS OF VARIOUS TEXAS ‘COUNTIES AND TRANS-PECOS AREA 23 soils include the dark colored Victoria,~Orelia,p San Antonio, and Miguel series, the light brown Maverick series, ‘the red Duval and Webb series, and the Brennan and Nueces series. Flat stream bottom soils include the Blanco, Frio, Leona, and Randall series. Description of Soils of Frio County Upland Soils: Brennan soils—Very light grayish-brown or gray, noncalcareous, fri- able topsoil with yellow, noncalcareous, crumbly subsoil. Cover 6.1 per cent of area. Duval soils-—Red or reddish-brown, noncalcareous, friable topsoil with red, crumbly subsoil, noncalcareous except where thin. Cover 32.8 per cent of area. Maverick soils—Light-brown, calcareous, thin, friable topsoil with brown or yellow, thin, crumbly, calcareous subsoil. Cover 9.8 per cent of area. Miguel soils—Brown or grayish-brown, noncalcareous topsoil, tight when wet, with brown or mottled noncalcareous, very tough, dense sub- soil. Cover 1.0 per cent of area. Nueces soils—Gray, noncalcareous, friable topsoil with pale yellow, noncalcareous, friable subsoil. Cover 1.7 per cent of area. Orelia soils—-Dark-brown or black, noncalcareous topsoil, tight and crusty when dry, with dark-brown or dark-gray, dense, heavy noncalcar- eous subsoil. Cover 4.7 per cent of area. San Antonio soils—-Dark brown, noncalcareous topsoil, tight when dry, with brown or‘ reddish-brown, dense, heavy noncalcareous subsoil. C'over 2.5 per cent of area. Victoria soils—Black to very dark-brown or dark grayish-brown, cal- careous, heaviy but friable topsoil, with very dark blackish-gray, calcar- eous, crumbly subsoil. Cover 9.8 per cent of area. Webb soils-—Red or reddish-brown, noncalcareous topsoil with dull red, rather heavy and dense, noncalcareous subsoil. Cover 24.7 percent of area. Flat Stream Bottoms: Blanco soils—-Gray or light gray, calcareous, friable topsoil with light gray or yellowish, calcareous, crumbly subsoil. Cover 2.1 per cent of area. Frio soils—-Light brown to grayish, calcareous, friable topsoil with light-brown or gray, calcareous, crumbly subsoil. Cover 4.4 per cent of area. Leona soils—Black or very dark brown, calcareous, friable topsoil with gray or brown, calcareous, crumbly subsoil. Cover 0.3 per cent of area. Composition of Soils Table‘7 gives the analyses of the different soil types and Table 8 the classes of constituents of the surface soils. The heavy soils are moder- ately to well supplied with nitrogen (Classes 2 and 3) while the light 24 BULLETIN NO. 533, TEXAS AGRICULTURAL EXPERIMENT STATION oTN ...; Sm . . . i; . . .. . . . . . . . . w owo. m2. . . . . .2035 52v 222m oth 22m N..o o.w mm; . . . . NvN . . . . . . . . . . . . . . . 3 mwo. m3; . . vvwtam 22v 25m oth 0N3». ....... . 0N 8.2. 8.8 2.2 ca. 8.2 ma NNT Noo. . . . . . . ..comnam 52v oth v8av>< . . . . .. . wN 3.2. 3.8 m8 8.. m»; Nw m2. #3. .. . . . . Zvvmtam :86 oth vw8av>< - . - . - . .- - ¢ . ' - . - - - - . . . - -. -npul¢-%iowngm N|o o.w 2.3 . . . . . . .. wHN . . . . . . . . . . . . . . .. mm :2. m2. ... . . . . vvwtam :86 oth 32m oTN w.N 21.4 3.8 22 oo. 2w . 2 2 0N2. woo. .. . . . . . . .2822 52v oth 222m N..o 0N mo. S. B. 2N m9. 8.2 mm . 2 wN v2. m2. . . . . . . . . . . . . . ... . . . . . . . . vvmtam 52v 0th 222m . . . . . . . ....... oo.w 2.2 N02 i. 5. 2 is. 3o. .. . . . . . comnam avvc E82 358m vac 822G v8av>< . . . . 0.0 2.. mm. 3N 0w. ww N Nwo. mwo. . . . . . . . . . . . . comcam 682 328m vac 832G vu8av>< . .. . . N. N wN. 8. 3N S. NN. 2 v8. m3. . . . . . . . . . . 335m .882 298m 2E 6.5m vmfiv>< 3N N.N oo. . . . . . . .. N2 . . . . . . . . . . .. o Nfio. Two. .............comnam .282 328m vac 8>aQ mwocw N|o mN oo. .. m? . . . . . . .. .. N who. Nwo. . . . . . . . ...............v..8c._am . . . . . . . 682a 328cm .a82 328m vac 822G vwocm oTN o v m2 8N N m8 m8 . comnam 682a 3% .682 228m vac 822G 8:28 N|o 0.0 oo. . . . 9N o2 2N0. 2.0. . vvmtam .393 Qvvc .2282 328m vac 832D N33 21... N 6 ma. . . . wNN C wNo. Q8. . . comnam dmmca 28v .a82 358m vac 125D NwwS. Nlo wN 2N. . . . . wmN . ow 28. Nwo. . dvmtam 682a avvc .882 358m vac 832G vmmam 3N 2.6 8. . . . . . . . . 8N . m. m8. :5. .2822 228m vac 125D wowaw N|o wN 2N. . . . .. 8w . .. .. . . . w m8. m8. :82 328m vac 195D Nowfi. oTN N . N. 9. . . 8N . . . . Nw . m 3o. $6. .5802 >tawm vGc 822mm hwwhm N|o m6 wN. . . . . . omN . . “N. N 2.8. Nmo. . . . . . . . . . . . . vvwcaaw .a82 358m vac 832D owwcw ... . . . . mow iiN NNH NH I A mm m8. io. . . . . .. . comnam avva .a82 .852 vac 832G 2.88 .. . 8.» 2. .2 N2 i. 8 m. 8o. +2.. . . . . . . . 2:22am Q82. .582 32am vac E25 ~88 . . . . .. m: mm. oNH oN. wN. m. Nmo. N3. I... . . . . . . . comnam 582 358m vac 832G ~82 . . . . ow. .3... E2 NN. Nw ma v8. $9 . . . . . . . . . . . . vvwtam 582 358m vac 832D 28$ . . . . wv. N2. cwN N2“. mo. a. m8. $5. . comnam 582 228m vac 832G .22. .... . mm. .2. 3N oN. oN. m woo. a8. . . . . . . . . . . . 138.com .882 3.5m vac 822G 2S. .. . . . 3 . 3. mwN at 3i 2 NHo. wwo. . . Ivvmtam 23822.5 582 >95 vac 832G NwS. N.N ow. oN. wow ow. oo. o Nwo. ooo. . . . . Icomnam 68c a2mmva 2v .a82 Ncawm vac 822 mowcw. $-E #@. 5%. mwfi. AwQ. . . . . . . . . . . . . . . ...--.-.~.....UU.N%-:Aw Q 682a aommmvaavc £82 328m vac 832D wowhm wN 2w. wN. owN NN wN. N mNo. $2.. . . . . . . . . . . comnam 6.82 228m vac awaavam vw8av>< o N mN. NN. woN 2N NN. o2 NNo. mwo. . . . . . . . . . ..vvm.tam 582 zcawm vac amaavbm vw8av>< oN Nm. m». N: N“ wN. N 28. omo. . . . . . . . . . Izomnam £82 zcamm vac amaavam Nwofiw ms mm. S. 26h N2 NN. N wNo. m8. . . . . . . . . . Zvvmtam .282 >922 vac amaavam £28 wN 2. 2 . i.» wm. wN. w oNo. mm... . . . . . . . . . . comnam A282 358m vac auaavam Nowcw N.N 2. S. mam mN. Nw. E NNo. N8. . . . . . . . . . . 833m .882 32am v.2... afiEvam 32m ow 92$ $8 a2 NN mm. N2 $6. a8. . . . . . . . . . . . . domnam .2822 8E 3cm 88E N88 am 8. 2o 1.18 EN .8. wN N2 8o. m3. ....... . . . . Ivvmtam .a82 >8? 3am 028E v88 vavU vavU avh aoccz aavU avh vavv aocccz oavO avh oavu avnEaZ mvcvah Ea avh v53 avh cmmooh 8h avh 2v< avh va8Z 82a. >8» 228G >2 222cm 286a 222cm 236a d< moch mQE avw 8828A 23m E3». v>tv< Ev< 88h. v>tv< 88h. -322 #35500 omurfl ua mica ma mvmhtmfl< .... HQH050 0:E 000.5 00002.4 nu . . . . . . . . w. w w. . . . . . . . 1:02 >0:00 0:0 000.5 000.030. Tl 0TN N..0 0m. 0N 2N. N0. ..... . 0 3.0. $0. . . . . . . . . .502 30:00 0:0 nn0>> 200.0 f. N..0 N 0 0N. 0N. .. . . . . . . .. w .00. N00. ........000€:0.E02 >0:00 0:0 000.5 000.0 o 0TN N 0 8. .0. 2w 2.. 0 Nw... ww... H.030... .58. was. 80 08B Qww... N|0 . . . . . . . 0N. 0. Nmm 0v m. 00.0. 000. . . . . . . . . 0000.50 50.... 0:00 0:0 000.5 000.0 n0... .. h 0TN N0 00 m NwN 00N mm. m0 00,0. 00.. . . . . . . . . . . 000000 .502 >20 02.8003 N003. Hr .1. N|0 0.N 0N . 0w. N2. ...... ww ...... 00.. . . . . . . . . ...........0.0..ma 50.2.0.0... 0.8.2., 82w Lam. . n 0TN 0.N mm m . . . . . . .. 2N . S; n00. 0N0. .EZ.....000n=0.»0_0 2:303 0.00.0 VI. . T... w. ... 8 .. .w . N NON 0w. w... 8... w... ..... . . . . . . 000...... 0.0 0008... N..0... nu. T. 0TN 0.. N 0N . . . . . . . m0N . . . . 0 0N0. 0N0. . . . . . . 2.00000 .802 >0:00 0:0 2:00:10 :0w 0N3». R . N10 0N .0 m0 w0N N0. N mN0. 0N0. . . . . . . .0000»? E02 .>0:00 2E 02:00:... :0w NNQN. II. 0TN 0.N mm 0 wNN 0N. 1... 0N N00. 0N0. .............000n:0 E02 >20 2:054 :0w $0.0 A nu N..0 0N 00 2 m0. 00N 3.. w. 000. N00 . . . . . . . .000.t:0 ....:0o_ >20 02:025.. :0w 0N0...“ 0TN 2 . N 0N 3.. 00w 0+. o: 2.0. 000. . . . . . . . 2.00.2.0 .802 >0:00 0:0 0:000 202w R. n]. N..0 0.0 00. 00. .2. Nm. . .... o3 3.0. N00. .. . . . . . . . .02w.....:.0 E02 .>0:00 0:0 020:0 $0.0 i. ...... N.N NN N 0N H wNN m... w. .2 m: Nmo .00 . . . . . . . . .. 000000 .502 >20 0:000 000.03. F a .. . . .. 0.N 2m N Nw N: 0m N. .2 wNN Nmo N0. . . . . . . . . . . . . . .....0000..:0 .E02 >20 020:0 000.03» B ......“ . 0TN .. . N .8 N0. 5w 0... w. . . Nw. 8.. 8.. .. .. . . . . H H H H H . . .8008 .202 M20 0.20 wwflw i... .. .-.. ...... 8. 8 8.. N0. w... . NmN 8.. 8.. ................8.§0 .58. >20 0:20 Nwiw . 0.0 ..w .0 w .5 . 00N 0.. N. .. s. ...... 0w... ... . . . . . . . .882. .58. 0.0 $.30 82w L» . ..-. N..0 ...w 0.. N 3 . . wwN .... 2.. w. 0w... .2. .................00.W..£0 E......>20 0080 32w 0Q . 0TN 0.N Nw . 0w www 00. 00.. 0w. N00. 0w... .............HHHH..........0..=0.>20 $.20 8w... . Pu .-.. 0N 0w . 8 Nww 0w. 8.. NwN Nw.. 02. . .. . . . . . . 000...; >00 0.0.0 . 00w... 0TN 0N 00 N0. NN m0. 2w. 0. N20. N20. . .. .. 000000 .0500 0:E 0002.2 $0.0 . N|0 N .0 00 m0 mN 0N N0. m. n20. 0N0. . . . . . . . . . . . . . . . .0.000.50 0:00 2E 030:2 0.0.0 ...; we .... . ww wwN 2.. ...... N. ww... 0w... .. . . . . . . .0808 E8. .8500 2.0 .30.... 82w N:0 N0 on NN m0. 0m. 0w. m0 N000 00.0. . . . . . . . . .000...:~.0 .502 >0:00 0:0 6:22 0003.. 0TN 0.0 0N .... 00 w o. I. N0. 0 2.0. N00. .. . . . . . 4.00.30 .502 >0:00 0:0 20.00502 £02.. Q RIQ @ . b W . wfi. . . . . -UUN.T=¢% . EG.£~.>.UC.NW 05¢ MUTQUNINE . < 07N N.w 00... wwN Ew 2. 00.. NNm ...... ...... ............0..=0......00....0.. 000.0 7.. w. ..w.w ....N wS 2. 2.. 8w 0N: 3.. . 000.50 >00 00...... w.....w 0TN H .w 0m.mN NN.m2 mN 0m. . . . . . . .. m wmo. N00. . . . . . . . . . . . 22000.6 E02 >0:00 2E 0202i 0.02m N|0 N.w 0N.0N 0N. I 00 0m. . . . . . . . . 02 N00. 000. .. . . . . . . . . .000%:.0 .502 .>0:00 0:E 02022 0.02m w.N 0 0. . . . . . . .. N00 . . . . . . .. 00.2 0N Nwo. mwo. .................zo0n:0 E02 >20 0202i 00803» . . . . . . . w.N Nm N 0m N wfim N0. w... 2 0m 000 .2. . . . . . . . . . .000.t:0 1:02 >20 0202i 0080.1... 0TN 0 . N . . . . . . . . . . . . .. 2mm . . . . . . . . . . . . . . .. m. 0N0 0N0 . . . . . . . . . 22003.0 .0002 >020 02023 0N0?” N..0 0N m... N . . . . 0N0. . . . .. Nm 0.00 0N. . . . . . . . . . . .0000..:0 .502 >20 0202i wN0~m 0TN ..w 00 2 ..... . wwN .. ... 0w. Nw ...: N00 ... ......=..0....0 E8. >20 00.00.... www... 7.. ..w 8N. ..w N .00 N0. w... 0w N... ww. ..........80.§0 .58. >20 00.02: www... 0:00 0:0U 00m .0252 0:00 00m 0:00 :2=$>H 0:00 00m 0:00 002502 0000:. E0 3m 0E5 00m 20000.0 00m 00m 20¢. 00m 2:02 0Q>P - >000 500D >2 032cm 20.30% 032cm 203cm .0< 002m 02E :00 0.5.202 -202. 304 0>$o< U204 2.30M. 02004. 2000B 0.5272 3005555000 Jnw-NBQU Qmflrvfi no 010m u: mowkwflfldw .h 05:50 26 BULLETIN NO. 533, TEXAS AGRICULTURAL EXPERIMENT STATION TABLE 8. Classes of constituents 0t surface soils of Frio County. Acid Acid Labora- N itro- Total Active Total Solu- Active Solu- Basici- pH tory gen Phos. Phos. Potash ble Potash ble ty Number Acid Acid Potash Lime 31916 Blanco silty clay loam. 3 3 5 3 3 2 1 1 1 Average Brennan fine sandy loam . . . . . . . . . . . . . . . . 4 5 5 3 3 2 3 5 1 Average Duval fine sandy loam. 4 4 5 3 3 2 3 5 2 Average Frio clay . . . . . . . . . . . . . 2 1 4 2 1 2 1 2 1 31926 Frio silty clay . . . . . . . . . 2 3 5 . . . . . . . . . . . . 2 . . . . . . 2 1 Average Hidalgo clay 10am. . . . . 2 3 4 2 1 1 1 1 1 31918 Hidalgo fine sandy loam . . . . . . . . . . . . . . . . 3 3 5 . . . . . . 3 5 1 1 1 31908 Leona clay . . . . . . . . . . . 2 2 1 2 2 1 1 2 1 31924 Maverick fine sandy loam . . . . . . . . . . . . . . . . 3 4 5 4 4 5 1 1 1 31890 Miguel fine sandy loam 4 4 4 3 3 3 3 4 2 31910 Nueces fine sand . . . . . . 5 5 5 3 3 4 5 5 1 31898 Orelia clay . . . . . . . . . . . . 2 3 2 2 2 1 2 3 1 Average Orelia clay loam . . . . . . . 3 3 3 3 3 2 2 3 1 31914 Orelia fine sandy loam. 3 4 3 . . . . . . 3 1 3 4 2 31920 San Antonio clay loam. 3 4 5 . . . . . . 2 2 2 3 1 31922 San Antonio fine sandy 10am . . . . . . . . . . . . . . . . 3 5 S 3 3 2 2 3 2 31902 Victoria clay . . . . . . . . . . 3 3 3 3 2 2 1 2 1 31905 Victoria clay loam. . . . . 2 4 4 . . . . . . 3 1 2 3 1 Average Webb fine sandy loam. 4 4 5 3 3 2 4 5 2 soils, principally fine sandy loams, are 10W in nitrogen (Classes 4 and 5). Most of the soils are low in total and active phosphoric acid (Classes 4 and 5), moderately to well supplied with total and acid-soluble potash, and well supplied with active potash, lime, and basicity. The Hidalgo fine sandy loam and Nueces fine sand are low in active potash. The Brennan, Duval, Miguel, Orelia, and Webb fine sandy loams and the Nueces fine sand are low in basicity and 10w to moderate in lime. All of the soils are neutral to alkaline in reaction (pH), most of them falling in Class 1. Pot Experiments Results of pot experiments are given in Table 9. Most of the soils respond to nitrogen and phosphoric acid but do not respond to potash. The corn possibility of the upland soils with respect to nitrogen and phosphoric acid is low. Fertilizers The need for fertilizers carrying nitrogen and phosphoric acid is strongly indicated on most of the soils. Some of the soils of lighter texture may respond to potash. Lime is at present not needed on most of the soils, but may be needed for legume crops or after the soils have been in cultivation for a longer period of time. This is particularly the case with the soils of light texture. SOILS OF GAINESTON COUNTY Galveston County is in the southeastern part of Texas and lies entirely Within the geographical division known as the Gulf Coast Prairie. Twelve types and phases of soil were mapped in five series. The most extensive SOILS OF VARIOUS TEXAS COUNTIES AND TRANS-PECOS ARIEA 27 TABLE 9. Pot experinlents on soils of Frio County. Corn possibility of Weight crop in grams plant food with- . draggnfi/n bushels Labora- T tor e n me numggf yp a With With- _ com- out With- With- Phos- l plete phos- out out phoric Nitro- Potash fertil- phoric nitro- potash acid gen izer acid gen 31880 Duval fine sandy loam, surface, corn. . . . . . . . . 7.8 13.2 . . . . . . 11 18 _ , " Duval fine sandy loam, surface, kafir. . . . . . . . 11.2 5.5 . . . . . . 13 11 _ " Duval fine sandy loam, surface, sorghum . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.6 4.9 . . . . .. 6 7 , _ _ . __ 31881 Duval fine sandy loam, subsoil, corn. . . . . . . . . 3.2 13.5 . . . . . . 4 18 , _ _ _ _ _ " Duval fine sandy loam, subsoil, kafir. . . . . . . . . 4.9 3.2 . . . . . . 4 5 _ . _ , , , 31886 Duval fine sandy loam, deep phase, ’ surface, corn . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26. 7 9.5 . . . . . . 42 13 . . , . . . " Duval fine sandy loam,‘ deep phase, surface, kafir . . . . . . . . . . . . . . . . . . . . . . . . . .. 23.2 5.8 . . . . .. 57 12 . . . . .. " Duval fine sandy loam, deep phase, surface, corn . . . . . . . . . . . . . . . . . . . . . . . . . .. 16.8 4.7 \ . . . .. 18 7 . . . . . . 31887 Duval fine sandy 10am, deep phase, subsoil, corn . . . . . . . . . . . . . . . . . . . . . 38.5 6.0 8.1 33.0 11 11 368 " Duval fine sandy loam, deep phase, subsoil, kafir . . . . . . . . . . . . . . . . . . . .. 5.5 13.4 4.1 . 5.9 15 7 44 " Duval fine sandy loam, deep phase, subsoil, corn . . . . . . . . . . . . . . . . . . . .. 29 .5 5.5 4.0 4. 2 7 6 31882 Frio clay, surface, corn . . . . . . . . . . . . . . . . . . . . . 15.5 24.5 27.9 45 57 595 " Frio clay, surface, kafir . . . . . . . . . . . . . . . . . . . . . 32.0 20.5 35.1 78 33 396 " Frio clay, surface, corn . . . . . . . . . . . . . . . . . . . . . 33.3 6.0 30.8 64 12 4S4 . 31885 Hidalgo clay loam, subsoil, corn . . . . . . . . . . . . . 5.0 16.6 . . . . . . 8 38 . . . . . . " Hidalgo clay loam, subsoil, kafir . . . . . .. ..- . . .. 14.4 7.5 . . . . .. 17 11 . . . . .. " Hidalgo clay loam, subsoil, corn . . . . . . . . . . . . . 8.7 4.5 . . . . . . . . . . . . 7 . . . . . . 31888 Webb fine sandy loam, surface, corn. . . . . . . . . 17.5 8.0 . . . . . . 27 13 . . . . . . " Webb fine sandy loam, surface, kafir. . . . . . . . . 14.3 5.2 . . . . . . 16 10 . . . . . . " Webb fine sandy loam, surface, corn. . . . . . . . . 6.8 5.0 . . . . . . 9 7 . . . . . . 31889 Webb fine sandy loam, subsoil, corn. . . . . . . . . 23.4 19.3 31.2 40 30 494 l " Webb fine sandy loam, subsoil, kafir. . . . . . . . . 12.0 7.1 9.5 18 10 58 ‘ " Webb fine sandy loam, subsoil, corn. . . . . . . . . 3.5 4.0 5.2 . . . . . . 6 . . . . . . soil is the Lake Charles clay, which occupies 25.4 per cent of the area, followed by the Lake Charles clay loam, which covers 23.2 per cent of the area, and the Lake Charles fine sandy loam, which occupies 14.0 per cent of the area. Prairie soils include the dark-colored Lake Charles series, and the light-colored Acadia, Nueces, and Galveston series. Flat marshy or semimarshy prairies are occupied by soils of the Harris series. Tidal marsh occupies 4.3 per cent of the area, beach sand 2.1 per cent, and made land 2.6 per cent. ~ Description of Soils of Galveston County Acadia soils—Light-brown, gray or slightly mottled, acid topsoil, hard and tight when dry, with gray or slightly mottled dense clay, acid sub- soil. Cover 2.2 per cent of area. Galveston soils-—Dark-gray or brownish-gray, loose and incoherent, acid topsoil with yellow or gray, acid subsoil. Cover 6.4 per cent of area. Harris soils-—‘Gray, marshy topsoil with high salt content and gray or brown dense clay subsoil with high Water table. Cover 19.2 per cent of area. Morse soils—BroWn surface soil resting on a mottled red, yellow, and gray clay subsoil. Cover 0.6 per cent of area. 28 BULLETIN NO. S33, TEXAS AGRICULTURAL EXPERIMENT STATION 0 m 0: . w: . wN: w: . 00.: m: 0N0. N:: . . .000.:50 .500: >580 0:: 50> 028:0 0:0: :.NONw w.» w:.N ww: 00: 0N. N0. : 0:0. NN0. . . . . . . . . . . . . . . . . . . . . . . . . . . ..::o0::0 000:0 .500: >580 0:: 50> 028:0 0:0: 000Nw :.w :w.N :0: N:: NN. ww. N w:0. 0w0. . . . . . . . . . . . . . . . . . . . . . . . . . . 1:30:50 @000 .500: >580 0:: 50> 028:0 0:0: m00Nw N.» 0». mm. 00: 0N. Nw. w w:0. 0w0. . . . . . . . . . . 1:30:50 0000 .500: >580 0:: 50> 028:0 0:0: .:.00Nw 0.» 00. mN. m0 0: . :w. :. w:0. :00. .. .::o0:::0 .500: >580 0:: 50> 028:0 0:0: w00Nw w.0 Nw. N:. :0 w0. w» . :.: NNO. 0::. . .000:.50 .500: >580 0c: 50> 028:0 0:0: NO0Nw :.w N0: N0.: :w 0N. w0.: m N:0. 000. . . . . . . . . . . . ....::o0:=0 0000 .500: >580 0c: 50> 028:0 0:0: w00Nw 0.» :0. 00. :w :N. 0.0.: 0 0N0. n00. 3:00:50 .500: >080 0n: 50> 028:0 0:0: »:.0Nw 0.0 00. m0. N0: 0:. N0. : :w 0N0. 0:0:. . .000:.:=0 .500: >580 05.: 50> 028:0 0:0: 000Nw 0N 0N.N ...: .: 00: 0N. :N.: :. 0:0. 08. . . . . . . .::8::=0 000:. .800: >20 02:20 0:0: 00903: N.» wN.: Nm. 0w: ww. w: .: 0 :N0. 08. . . . . . . . . . . . .::o0::0 .500: >03 028:0 0:0: 0w0.:0>< 0.» N0. :0. 0N: :N. :.0.: :N 0w0. 00:. . . . . . . . . . . . .000.:.50 .500: >03 028:0 0:0: 0w0:0>< :.w 0N5. 00.: 2.: N0. m: . : m 0:0. $0. . . . . . . . 2:00:50 0000 .500: >03 028:0 0:0: wNONw w.» 0N.: Nm. N:: wm. w: .: 0 wN0. 000. . . . . ... . . . . .::o0:s0 .500: >03 028:0 0:0: NNONw 0.» 00.: N0. 0:N 0N. N: .: 0N :8. ww:. . . . . . . . . . . . 0000.50 .500: >03 028:0 0:0: :»0Nw w.w 0N4. w:..N N»: 0:. wN. : m w:0. wN0. . . . . . . . .::o0::0 000:0 .500: >03 028:0 0:0: 0NONw :..N 0N.: 0.... 00: 0.... NN .: N 0:0. N8. . . . . ....::8N_=0 000:. .58: >20 02.20 0%.: $30 0.0 ww: 2.. :w: 0w. NN.: :. :N0. w:.0. . . . . . . . . . . . .::o0:=0 .500: >03 028:0 0:0: w00Nw 0.0 0N . :N. 0 :N. vw. 0 m8. 0N:. . . . . . . . . . . . 08:50 .500: >03 028:0 0:0: NO0Nw w.» N: .: :0. N0 :N. 00. : w N:0. :00. . . . . .. . . . . . .::o0:::0 .500: >03 028:0 0:0: 0:50 w. N :N.: :0. N0: w: . 0: .: 0N :8. 00:. . . . . . . . . . . . .000:.50 .500: >03 028:0 0:0: $80 w.0 0N.: 00. 00: Nw. 0: . : 0 :N0. :00. .. . . . . . . . . . .::o0::0 000:0 .>0:0 028:0 0:0: 0w0:0>< :20 3.: wm. 00: N». w: .: m wN0. 0w0. . . . . . . . . . . . . . . .. .::o0:=0 >03 028:0 0:0: 08:050. w.0 :0: Nv. NNN 00. 2.: w: 08. 00: . ...... . . . . . . . . . . .000:.50 >03 028:0 0:0: 0w0.:0>< m.» 00.: Nw: 0:: m wN0. 0N0. . .. .. .....::o0::0.>0:0 028:0 0:0: :00Nw @.R ...... .......--...-.»UU.N-?u:W NWGTu WUQHGSU UXNJ :0 8. N N0. : 2N N: . : N 0N0. 0N0. . . . . .. . . . . 50080 08:0 $20 8:20 0:3 000% m.» :0. : 00. :.N: w0. N 0:0. :00. . . . . . . . . . . . .::o0:::0 000:0 >03 028:0 0:0: wm0Nw 0.0 0w: 00. 0m: 00.: 0 0:0. :00. . . . . . . . . . . . . . . . . 2:00:50 .>03 028:0 0:0: Nm0Nw w.0 Nw: 00. wmN ::.: w: :00. 00:. ...... . . . . . . . . . . .000:.:::0 >03 028:0 0:0: 0m0Nw 0.0 0N: 00. :0: 0w: m 0N0. 0w0. . . . . . . . . . . .::o0::0 0000 .>0:0 028:0 0:0: :m0Nw 0.0 0:.: 0m. m0: 00.: 0 N00. N00. ...... . . . . . . . . . . .::o0:::0 .>0:0 028:0 0:0: 0m0Nw w.0 Nw: 0w. 0w: :N.: w: :8. w0: . . . . . . . . . . . . . . . . .000:50 .>0:0 028:0 0:0: 2.30 fl-@ -..-.-. - .........--.-...ZQWQH-WQUU@ >>NTvwT~hNm N.» 00.: mow . wN.: 0N 0N0. :8. . . .. ..........::o0:::0 0000503 018:: ww0Nw N.» :0: wN. :00 00.: N0 0:0. w00. .. .................::o0::0.>03 055 Nw0Nw w.0 wN.: mN. 0ww 0w.: 0w :80. :N:. . .................000.:.:::0>03 050:: :w0Nw 500 500 :0»: ::o:::::>: 500 :00: .500 505:3: 500 :00: 500 50:55:: 00:05: m: 00:: 05:: 00:: :00:on: 00h: 00m 0:0:: 8n: 050 7: 005. 5o: 500m: 5: 033cm :00:on: 033cm :88»: .04 00:0: 00:0: 50m 800:0: -0000»: 023:: 03¢. :0:o.:. 023:: :0:o.:. -93: Z ¢%#§E.Qo Gownfilumv HAO mien HQ 000.3550. .0: 555a. 29 SOILS OF VARIOUS TEXAS COUNTIES AND TRANS-PECOS AREA .-.-.-. £13 flu 8m . m3 m Q} 2. 26m S... . . . . . . . . . . . . downnm Q3“. 65$ 33:2 23S £4. u h 8. 8. o“ 0Q. E __ .3 Q8 2... .. ..................=Q.B=we52 mwuusZ 2.3m “no w.“ 2 S. m2 mo wo _ w: m3. 2... ....... . . . . .. . . . . . . . . .3356 éamm 33:2 waaw a.» I." on i! wu. a. m so. 2.0. . . . . . Imomnsm n3“. 582 35mm 0cm >$> wuimsU 3G4 vmmhu>< . . . . . . . . >6 co. mm. mm w? *5. w o5. Nao. . $0,215 .282 3.2mm vac bu.» mwimnU wand uwwkw>< . . . . . . . . N6 3.. 3. n: i. 2.. om +3. Sa. . . .3825 5E2 mwcmw 2E i?» mwimzU 93A umm$>< cmnov 0.x Zia Nu.“ ow om. we. m Co. Co. .. . . . . . . . . . . . . ...........=omn:m 5% .252 >vcmw vac 93> mvimnU mxmq team 313 w.» o». on. “I mu. o0. o N8. o8. . . . . . . . . . . . . . . . . Imownsw 9.2.. 532 325w use >$> muiwsU vxwq 03am 0T» 9m 2.. K. 2. S. S. o .6. 8o. .=o2=w 582 35mm vac 30> @285. vii 23m 2B0 £30 Hum c252 Eva 3m :50 c252 260 .8; :30 umnESZ 3:05 ma 3m Bu: hum 5220 ~ .6; .3; v34 EL oEmZ QQPH >3“ SQQQQ >3 033cm zmuaom 23.3w zmazfi d4. $0.5 .22: 5% Ahonmq émmmm Eu< o>tu< v34 720k v>tu< 13E. 62rd An-Qfli-tfl-Qv JCS-EL ==~10>1Gv u? ¢==l u: zwmhihiaw A; EQQQH. 30‘ BULLETIN NO. 533, TEXAS AGRICULTURAL EXPERIMENT STATION TABLE 11. Classes of constituents of surface soils of Galveston County. Acid l Acid Labora- Nitro- Total Active Total Solu- Active Solu- Basici- pH tory gen Phos. Phos. Potash ble Potashl ble ty Number Acid Acid p Potash I Lime 32681 Harris clay . . . . . . . . . . . 2 4 4 1 2 1 3 3 2 Average Lake Charles clay. . . . . 2 4 S 3 3 2 2 3 2 Average Lake Charles clay loam 2 4 5 3 3 3 2 3 2 Average Lake Charles very fine sandy loam . . . . . . . . . . 2 5 5 3 4 3 3 4 2 32678 Nueces sand . . . . . . . . . . 4 4 3 3 5 3 5 5 1 TABLE 12. Pot experiments on soils of Galveston County. Corn possibility of Weight crop in grams plant food with- drawn, in bushels Labora- tory Type name number With With- com- out With-With-Phos- plete phos- out out phoric Nitro- Potash fertil- phoric nitro- potash acid gen izer acid gen 32644 Lake Charles clay loam, surface, corn. . 39.2 11.0 32.1 40.9 20 67 174 " Lake Charles clay loam, surface, . sorghum . . . . . . . . . . . . . . . . . . . . . . . .. 35. 0 24.0 23.8 33.5 21 43 103 32645 Lake Charles clay loam, subsoil, corn. . 25.0 1.7 9.8 27.4 2 18 135 ” Lake Charlesclay loam, subsoil, sorghum 19.2 2.8 5.5 21.9 4 12 69 32647 Lake Charles fine sandy 10am subsoil, corn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5 . . . . . . . . . . . . 3 . . . . . . . . . . . . 32649 Lake Charles clay, surface, corn . . . . . . . . . . . . . 13.6 . . . . . . . . . . . . 21 . . . . . . . . . . . . 32650 Lake Charles clay, subsoil, corn . . . . . . . . . . . . . 2.4 . . . . . . . . . . . . 3 . . . . . . . . . . . . 32651 Lake Charles clay, deep subsoil, corn, . . . . . . . 2.8 14 3 . . . . . . 4 24 . . . . . . Lake Charles soils—Black, dark-gray or brown, noncalcareous, tight topsoil with heavy, black or gray, noncalcareous subsoil slowly permeable to water. Cover 62.6 per cent of area. Composition of Soils Table 10 gives the analyses of the different soils and Table 11 the classes of constituents of the surface soils. Only the Nueces fine sand is low in nitrogen (Class 4), the rest of the soils falling in Class 2. The soils are low in total and active phosphoric acid (Classes 4 and 5), moderately supplied with total potash (Class 3), moderate to low in acid soluble potash (Classes 3, 4, 5), moderate to high in active potash (Classes 3, 2, 1), and moderate to low (Classes 3, 4, 5) in lime and basicity. Seven of the 11 surface samples are slightly acid in pH while the other 4 are slightly alkaline. The acidity of Lake Charles clay, No. 32649, and Lake Charles fine sandy loam, No. 32674, probably is sufficiently high to interfere with good growth of legumes. Pot Experiments Results of pot experiments are given in Table 12. All of the soils studied respond readily to applications of phosphoric acid and nitrogen but give no response to potash. SOILS OF VARIOUS TEXAS COUNTIES AND TRANS-PECOS AREA 31 Fertilizers The need for fertilizers carrying nitrogen and phosphoric acid is shown on many of these soils; potash may be needed in some areas where heavy demands are made by truck crops. Lime is not generally needed, but small applications may be necessary on certain areas for legume crops, or after the soils have been in cultivation for a longer period. Saline Soils The composition of the soluble salts in some soils of Galveston County is given in Table 13. Most of the salts are chlorides, with small quan- tities of sodium carbonate in some of the soils. The sodium carbonate in No. 32652 and 32653 is sufficiently high to be of considerable damage to crop growth. The total quantity of soluble salts present is much TABLE 13. Composition 0f soluble salts in some soils 0f Galveston County (parts per million). Calci- Calci- Mag- Mag- Mag- Sodi- Sodi- Sodi- Labora- Depth um um nesium nesium nesium um um um tory Inches Sul- Chlo- Car- Sul- Chlo- Car- Sul- Chlo- Number phate ride bonate phate ride bonate phate ride 2069 Whitish soil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 95 . . . . . . . . . . . . 893 2070 Black soil . . . . . . . . . . . . . . . . . . . . . . . . 717 . . . . . . . . . . . . 558 . . . . . . . . . . . . 1841 9796 Gray sand . . . . . . . . . . . . 0—1}4 5666 . . . . . . . . . . . . 5703 6410 . . . . . . . . . . . . 108682 9797 Grayish black sand. . . . IM-Z 63 . . . . . . . . . . . . 72 227 . . . . . . . . . . . . 1433 9798 Gray sand . . . . . . . . . . .. 2-10 . . . . . . . . . . . . 76 94 13 . . . . . . . . . . . . 300 9799 Drab sand . . . . . . . . . . . . 12-24 . . . . . . . . . . . . 96 . . . . . . . . . . . . 72 129 597 9800 Gray sand . . . . . . . . . . . . 24-36 . . . . . . . . . . . . 116 . . . . . . . . . . . . 190 760 388 9801 Gray sand . . . . . . . . . . . . 36-42 255 372 . . . . . . . . . . . . 307 . . . . . . . . . . . . 118 9802 Gray sandy 10am . . . . . . 0-12 . . . . . . . . . . . . 136 . . . . . . . . . . . . 64 200 288 9803 Yellowish brown sand. . 12-24 . . . . . . . . . . . . 225 . . . . . . . . . . . . 24 197 800 9804 Gray sand . . . . . . . . . . . . 24-36 38 . . . . . . . . . . . . 112 71 . . . . . . . . . . . . 1527 9805 Gray sand . . . . . . . . . . . . 36-42 65 . . . . . . . . . . . . 48 42 . . . . . . . . . . . . 1168 27833 Surface soil . . . . . . . . . . . 0-7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413 27834 Subsoil . . . . . . . . . . . . . . . 7-19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 32652 Whitlsh very fine sandy loam, surface. . . O-M . . . . . . . . . . .. 61 . . . . . . . . . . .. 1375 . . . . .. 1160 32653 Dark gray very fine sandy loam, subsoil. . . %-7 . . . . . . . . . . . . 38 . . . . . . . . . . . . 1094 . . . . . . 726 32654 Gray fine sandy clay, subsoil . . . . . . . . . . . . . . 7-24 . . . . . . . . . . . . 33 . . . . . . . . . . . . 384 . . . . . . 196 32655 Gray clay, subsoil. . . . . 24-42 . . . . . . . . . . . . 29 . . . . . . . . . . . . 320 . . . . . . 206 smaller than that in spots found in Potter County (Table 20) and in the Trans-Pecos Area (Table 27), but still sufficiently high to interfere with satisfactory crop growth. Different crops vary considerably in their tolerance to soluble salts. Citrus trees in Cameron County, for example, were injured by 600 parts per million of soluble salts (Bulletin 430), * which is considerably lower than the content of many of the soils listed I in Table 13. SOILS OF MIDLAND COUNTY Midland county is in western Texas. Most of the county lies within [the geographical division known as the High Plains; the southeast corner of the county lies on the Edwards Plateau. Twenty-three types and phases of soil in 6 series were mapped. The most extensive soil is the gileagan gravelly loam which occupies 26.8 per cent of the area, followed E; a 32 BULLETIN NO. 533, TEXAS AGRICULTURAL EXPERIMENT STATION »|o mo.mH mmm mHm H»o. mao. ...............................808.288 .8822 32828 .882 >20 >228 2888M wmmam aHa» 8. » omom ao. HH Hwm 88. . . . . . . . 88 owo. mwo. . . . . . . . . . . . 208288 .882 >20 >228 2888M mmmam »|o ».» ow.oH »w.m »am 88. . . . . . . . . 888 woH. mmH. . . . . . . . . .80288 .282 >20 >228 2888M mmmam aH|» w.» 8.2 omoH wwH m». »H .m ww moo. 88o. .. . . . . . . . . 288288 .882 >20 >228 2888M .388 »|o » . » om.oH ow.o HHo »m. mw.m mmm mao. amH. .. .. . . . . . . .00288 .882 >8H0>228 888802 mHmam mHu» w.» 88.2 w».mH mm wm. mm. H aw moo. o»o. . . . . 208228 .282 >20 >228 32288 288882 ammam »|o w.» oo. »H 2.8 aoH wm. wH . H am m»o. moH . . . . 602.88 .882 >20 >228 >zv>88 2888M ommam . . . . . .. ».» Ho.a wma moH mm. mm.H o» Hoo. mmo. ....................:c82:8.E8c:8m88M 8888.5. . m.» mm.» mo.m »om ow. »H.H HHH wmo. ooo. . ...................80288.E82_8w8vm 0w880>< aH|» o.» oo.»m mH .wH HwH mw. mm. H am H»o. omo. . . . . . . 208288 6882a 32828 .882 2880M m»mam »:o ».» omwH ma.» wwm mw. Hw. H om ooo. aoo. . . . . 80288 6882a 32828 .282 2888M m»mam aHn» m.» 8.8 »a.w waH mm. Hw.H mmH Hmo. »wo. .. . . . . . . . . . .. . . . . ..=c82:8 .882 2888M Hwmam »|o a.» oH.m 88.8 omm »m. ma. HwH awo. moo. .. . . . . . . . . . . . . . . . . .3288 .282 8880M ommam . . . . . 8.8 HH .o 88.8 »ww mm. om.H a» omo. mwo. . . . . . . . . 2208228 .282 >288 2e 2888M 8m88>< .. . . . ».» oa. m oo. H mom ow. mm.H aw Hwo. »mo. . . . . . . . . . . 180288 .882 >288 2.8 8888M vw880>< aHn» a.» om.o Hm.m wHw mm. o». H wa 8.8. Hwo. . . . . . . . . . . 208228 .882 >288 8:2 2888M mamam »..o w.» oo.m wm.H amo mm. wm.H ooH wwo. moo. . . . . . . . . . . 80288 .282 >288 8:2 28w80~H wamam aHr» w.» mm.m wHm Hww »w. mw.H mm mmo. wwo. ...............................zc82=8 6882a 32828 .8882 >288 82o 2888M oamam »|o ».» m».m mm.H Hww mm. mm.H m amo. wwo. ...........................1.808888 . . . . 6882a 32828 .882 >288 02o 2888M wwmam m 8 om o o» 8 mww wm ow.H woH owo. Hmo. . . . . . . . . . . . 288228 .882 >288 2.8 2880M wmmam o.» wm.m mm.H mmm Hm. am. Hw Hwo. ooo. . . . . . . . . . 60288 .882 >288 8:2 888M mmmam . H.» mm.H m». 888 mo.H .2...» omm mmH. mwo. ......................:c82=8 .>202828M 8888828.. . H.» aw.H mm. Hma mo.H mw.m omm »mH . aoo. . . . . . . . . . . . . . . . . 180288 >20 828M 8m88>< .w.h ........ ..... ....-.. .......ZOmQH-w.>.N~UZG@CNM o.» mm.H 88. mma mo.H mmm mmm aoo. .......00288.>20:828.m awmam H.» mm.H o». $8 aa. ow.m omm »mH. mwo. ......................8022. .>8_0=828M wHmam H.» mw.H ow. »»a mo.H mmm omm »mH. woo. ........80288.>8_0 2828M »Hmam . ».» mo.mH ooo 888 Hm. om.H mHm mao. wmo. ............:c82s8.E8oHo:8 22h 888883» .. o.» 88.8 mmw om» mm. mo.H mmm owo. awo. . . . . . . . . . . . . . . 6082.88 .882 2:8 28h 08880.18. ».» 88.2 »w.w mom mm. mw.H 28 omo. mmo. . . . .. .. . . .... 1.288288 .282 228 22h wwmam ».» om.» mmw mmm mm. mm.H omm aoo. mmo. . . . . . . . . . . . . . . 60288 .882 028 2P2 mwmam ».» 8.2 8H.» 28 om. mm.H Rm woH. mmo. . 208288 .5822 8:8 2.2 mmmam w.» mam .. »wo w».H wmm moH. mao. . .. .. 1.180288 .882 2282812 Hmmam ».» wmm am.H Hma Ha. aH.m waw mHH. ......................zc82:8.:8c_28m »mmam ».» omm »m.w mam o». ao.H mmm ooH. .....................80288 5822812 owmam m.» Hm.H »». Hwm m». mm.H mm moo. moH. . . . . . . . . 608.2828 .282 >20 >=0>88 888m Hmmam 800 880 8m 22:32 800 80m 88U 22:22 880 8m 880 882882 80205 m8 8m 8E3 8m 282cm 88m 8cm 20< 8m 0882 8Q>H >88 288G >2 222cm 282cm 832cm 282cm .0< 802m 802m 28m 8828A -2882 20¢ 0>U0< 20< 88H 0>$0< 88F -9322 .%fl.-nH-.Oo 2532mm HQ miom HQ 808.2524» 9$fi Haida. 33 SOILS OF VARIOUS TEXAS COUNTIES AND" TRANS-PECOS AREA 0T» N.» 00. 0N. 00N N0. »E . E » ENO. 0E0. . . . . . . . . . . .0033 .E82 3E3 0E0 0005.25 0000N »|0 E .» 00. NN. »0N 00. 0» . 0E 0E0. NNO. . . . . . . . . . . .008.tE0 E82 3E3 0E0 0000000 0000N 0T» E .» 00. »N. 0N0 00. 00.E 0 0N0. 0N0. . . . . . . . . . . .0033 .582 >EE3 0E0 000E223 00000 »|0 E .» 00. NN. 00N 00. 00. EE ENO. EEO. .. . . . . . 1.002000 E82 3E3 0E0 $0250 »000N 0E|» E.» 00. . . . . . . .. 000 . . . . 0N.E 0E ENO. 000. ... ... . . . .0033 .E82 3E3 0E0 000E025 0EO0N »10 0 . » N0. 0N »0N 0N. »E .E »N 0E0. N00. . . . . . . . 1.00280 E82 3E3 0E0 000E025 0EO0N 00|0E 0 . » 00. 0N. 00N 00. 00. 0E 0N0. 000. . . . . . . . . . .0033 E82 3E3 0E0 0002.50 0000N 0E|0 ».» 0N. 0N. 0NN 0E. 00 0N 0E0. 0N0. . . . . . . . . . . 002000 .882 3E3 0E0 $0230 0000N . . . . . . E.» N0. EE. 00N 0E . N» 0E »00. 000. . .. . . . . . 12.0033 6E3 0E0 8020mm 00883.0 . . . . Qfi. mN. ©@. ©¢- - - . . . - - . - . . - - - .UU.N@H=M >@qflm 005% hmwMcTwaw UWNHU>< 0E1» 0. » 0E. EE. 00 0E. »0. EE 0N0. 0E0. . . . . . . . . . . . . . .0033 6E3 0E0 0000000 0000N »:0 0. » 00. 0E 00 00. 00. 0N NNO. 000. .. . . . . . . . . . . . 00250 6E3 0E0 .0203 N000N 0E1» 0.» 0E. 0E . 0» 0E. 00. 0 »E0. 0E0. . . . . . . . . . . . . . . . . .0033 6E3 0E0 000E223 NEO0N »\0 E .» 00. 00. »0 00. 00. 0N 0E0. 000. ... . . . . .. . .. 1.00203 328m 0E0 000.280 EEO0N NEn» 0.» EOE . . . . . E00 . . . . . . . . . 0E 0»0. EOE . . . .0033 .3800 82800 E82 >20 000E200 »000N »|0 0.0 »0.E 00 . 000 E0. . . . . . . . E» 000. E00. . . .0082; .3820 32820 E82 >20 $0230 0000N 0E|» 0.» 00. 00. »E0 00. »0.E 0N 000. 000. .... . . . .. . . . . . . . . . .0033 E82 E200E2M 0000N »|0 0.» 00. 00. 000 00. 00 .E 00 000. »00. .. . . . . . . . . . . . . . 100280 .582 0822M N000N . . . . . . . 0.0 00E 00. E 000 00. 0N .E »» 000. 000. . . . . . . . . . 2003.00 E82 >680 0E0 2222M 00800.14. . . . . 0.0 00.E E0. 000 E0. 00E 00 »00. E00. . . . . . . . .0080.E3 E82 3E3 0E0 E200E2M 008E030 0.» 00. . . . . . . . »00 . . . . . . . . 00E N0 000. 000. . . . . . . 00.3mm E82 3E3 0E0 0E00E2M 0000N 0.» 0E .N . . . . . . 000 . . . . . 00.E 00 000. 000. . . . . . 00280 E82 3E3 0E0 E200E2M N000N 0.0 00 . N 00.E 0N0 00. 0N. E EOE E00. 000. . . . . . . . . . . .0033 .E82 3E3 0E0 0E00E2M 0000N 0.0 80. E0. 000 E0. 00. E N0 000. 000. ....... . . 00803 .682 >083 0E0 E200E2M 00000 ».» 0N0 00.N »00 00. 00. E »» 000. 000. . .0033 .3800 32800 E82 >20 0822M N000N 0... 00. E 3. 02. »0. 3. E E0 000. 30. . .0082; .0320 328% .682 >20 02.222 E000N 0.» 0E.NE 00.0 000 00. 0E .N EEO NOE . 000. . . . . . . . . . . . . .0033 E82 >20 >003 00>00M 008E030. 0.» 000E 00.0 000 00. »0.N 0E0 00E. 00E. ..... . . . . . . . 00280 .582 >20 >000 m0>00M 00800.00. 0.» 00.EE 0».0 N00 00. 00.N »00 00E. 000. ..............................03nEw . . . .0820 E230EEE00 E82 >20 >E0w 00>00M »»00N N» »00E 000 »00 E». 00E E00 00E. 00E. . . . . . . . . ..............002.EE0 . . .0800 E0E30EQ06 E82 >8E0 >000 00>00M 0 »00N E 0 00.NE 00 0 00N 00. 0E.N 0N 000. »»0. . .0033 .0800 0000 .582 >20 >000 00>00M 0000N 0.» 00.0 00.0 0E» »0. 0E . N 03 0»0. 00E. . .0082; .0330 0000 .582 >20 >00... 30.602 00000 0.» N00 00.0 000 E0. 00. E 00N 0»0. 000. .. . . . . .. . . . . . . . . . 110033 .282 00>00M 0000N 0.» 00.0 00.0 000 00. 00. 0E0 000. 0»0. .. . . . . . . . . . . . . . . . . . . .0080.EEw E82 w0>00M 0000N ».» 00.N 0».0 EOE »E. N0. 0» 0N0. 000. ... . . . . . . . . . . . . . . . . . .0033 .2800 00>00M E000N 0.» 0».N 0E0 00E NN. 00. 00E 000. 000. .....................0080EE0.2800 m0>00M 0000N 0.» 0» . 0E 000E 00E 0». »E . 0 00 0»0. 0»0. . . . . . . . . . . . . .0033 E82 >20 >000 E8w80M 008003.. ».» 00. EE 0E .0 000 00. N0.N 00N 000. 0NE. . . . . . . . . . . . .008.t3 E82 >20 >000 E8w80M 00883.. 0.» 0N.0E . . . . . . .. 00E . .. E0E »00. 000. . . . . . . . . . . . .0032.” 03820 302E820 680E >20 >000 E8w80M 0000N E00 E00 8m E2E0E>E E00 8m E00 E2E0E>E E00 00m E00 003602 00205 m0 00m 0E5 E0E 238000 00m E0.» E200. E0E 0882 0E3. >08 500D >2 032cm 320m 032cm 0800M .00. 300m 300m E00 8.6.82 208M 20¢ 0>$0< 200. 800E. 0.0000. 800E. -0022 200-53550 Jhwin-QU 0:50:00: HO 0:00 HO 00030.20 .08 mnfliafl. 34 BULLETIN NO. 533, TEXAS AGRICULTURAL EXPERIMENT STATION 2.A 88. 8N8 8N. 8A. 8 888. . . . . . . .. 8.8 88. 88N 8N. 88. 82 8N8. 82A 2.A 88. 888 . . . . . . . . . . . . . . .. 8 N88. A|0 2.A 88. 8AN .. . 82 8N8. 82A 8.A 88. 88N 8N. 8A. 8 88. A-8 8.8 8N. 882 8N. 88. 82 8N8. . . . . . . .. 8.A N8. 888 A8. 88.2 82 888. . . . . . . .. N.A 88. 888 88. A8.2 82 888. 82A 2.A 2A. 888 . 88.2 8 888. A8 8.A N8. . .. 828 88.2 NN 888. 2A 8.8 88. 88. 888 A8. 88.2 N8 888. A8 2.A 88. 28. 828 28. 88.2 8 888. 82-8 2.A 88. 88. A88 88. 8N.2 82 . N88. 8-8 2.A 88. 8N. 88N 8N. N8.2 8N N8. N.A N8. 8N. 88N A8. 82.2 A2 8N8. . N.A 88. 8N. 88N N8. 8.2 8N 8N8. 82A 8.A 88. 8NN 28. 28. A A28. A-8 8.A 88. 88N . . . . N8. 2N 88. 82A 8. A 288.820 2A8. 80 N82 88. A8. 2 88 888. §|° o-w 8n. Iil nan-an 2A N.A 88. . 28N 82.2 8 . A8 2.A 8N. 82. 8NN 2N. 8A. 82 8N8. 2A 8.A 88. 82. N8N 8N. AA. 82 8N8. A8 2.A 8N. A2. 88N 82. 88. 8N 8N8. 2A 8.A N8. 28. 288 88. 8A.2 28 888. A-8 8.A 88. 88. N88 88. 88.2 N8 888. 82A 8.A 88. 88. 888 88. 28.2 2N 28. A8 8.A 88. 88. 228 88. AN.2 88 888. 0000 QGOU 00.8w C0222 “H0O 0mm 0200c E0232 QGQU 00k 80.0000 0.00 .000 UEMQ 00mm 080008: 00mm 000m U54 0200a kfi BDNIOW 0.000080% 0:55am 080808: .0808 0000M 6007M -2880 28288. 82888. 2.28.8 2S8. 2.2888. 2828. “mo. . . . . . . . . . . . . 00080220 .500: 880008 0082.000 08883.. . . . . . . . . . . . . . .000.020w .500: 30008 0082526 0000058. . . . . . . . . . . . . . 008008 .500: >0008 0005.286 03.0w . . . . . . . . . . . . . .0000.208 .500: 30008 .20w0:.20w $8.0m . . . . . 0080228 .500: >000w 00822080 $8.0m .. . . . . 60058 .500: 00008 $88080 0000a . . . . . . . . . . . . . . . . . . . .::08008 .500: 00m0:.20w 00000.28. . . . . . . . . . . . . . . - . . . . .UU.N..T:.-w AENQQ hQufizunmw UWNMU>< . . . . . . 008008 68000 320808 .500: 00w0i0w 28.0w . . . . . . .000E228 68000 30:02:w .500: 00880.20 8Rm0u . . . . . . .::080228 68000 30:28.08 .500: 0005085 288.00 . . . . . . 0000.250 .5000 302000 .500: 00m0020w Ommom . . . . . . .::0w008 68000 30:28am .500: $822080 wwmou . . . . . . 000058 .3000 30:02? .500: .20w0€0w Awmom . . . . . . . . . . .::08008 .500: 30008 000 80880820 000.2038. . . . . . . . . .0000.208 M500: 00008 000 00882880 0m000>< . . . . . . . . 008008 500: 30008 000 8082580 0880a . . . . . . . . . . .0000.2228 .500: >0000 000 8888080 8.30m . . . . .............-....:080228 68000 30:00.8 .500: >0000 000 8088080 $8.0m .. . . . . . . . . . . . . . . . .............000058 68000 30:02? .500: 00008 000 00m0€0m 0wm0u . . . . . . . . . . . . . . . . . . . . . . . . 008008 .0000 0o 08000 30:02? .500: >0008 00c $88250 38.0w . . . . . . . . . . . . . . . . 200002228 .0000 \ 00 08000 30:008 .500: 30008 000 08882800 09.0w . . . . . . . . . ...........::08008 68000 0000 .500: 880008 000 $882880 0800a . . . . . . . . . . . ...........0000.2228 68000 0000 .500: 8:02.208 00c 808055 $8.0m . . . . . . . . . . ...............::080228.0802:0 30:02? 3.8002: .500: >000w 00m $88000 $100M . . . . . . . . . . . . . . . . . . . . . . . . .QU.N%.=.~W .UM.WSQ 30:28.08 >>000 .500: >0008 000 8082525 wvm0u . . . . . . . . . . . . . . . . . . . 10080228 68000 000:0: .500: 80008 00c 0082580 M88800 . . . . . . . . . . . . . . . . .........0000028 68000 000:0: .500: >0008 002.82 0080026 88.8.00 000502 QEGZ UQAAP AmhOu 0500A 2802522300 .5550 2.582852 08 82288 88 888.828.}. .88 8500.8 SOILS OF VARIOUS TEXAS COUNTIES AND TRANS-PECOS AREA 35 TABLE 15. Classes of constituents of surface soils of Midland County. Acid Acid . Labora- Nitro- Total Active Total Solu- Active Solu- Basici- pH tory gen Phos. Phos. Potash ble Potash ble ty Number Acid Acid Potash Lime 29351 Ector gravelly clay loam . . . . . . . . . . . . . . . . 3 3 4 2 2 1 2 3 2 29386 Frio loam . . . . . . . . . . . . 3 . . . . . . 2 2 2 1 1 1 1 Average Frio silt loam . . . . . . . . . 3 3 1 2 2 1 1 1 1 Average Randall clay . . . . . . . . . . 3 2 1 1 1 1 2 3 2 Average Reagan fine sandy loam 4 4 4 2 2 1 2 2 1 Average Reagan 10am. . . . . . . . . . 3 3 3 3 3 2 1 1 1 Average Reagan silty clay loam. 2 3 2 1 1 1 1 1 1 29360 Reeves chalk . . . . . . . . . . 4 4 3 3 3 3 1 2 2 29339 Reeves loam . . . . . . . . . . 3 3 2 3 2 1 1 1 1 Average Reeves silty clay loam. 2 2 2 1 2 1 1 1 1 29341 Richfield clay loam. . . . 3 3 4 1 2 1 2 3 2 Average Richfield fine sandy loam . . . . . . . . . . . . . . . . 4 4 4 2 2 2 2 3 1 29382 Richfield loam . . . . . . . . 3 4 4 2 2 1 2 3 2 Average Springer fine sand. . . . . 4 4 4 4 3 2 3 4 2 Average Springer fine sandy - loam . . . . . . . . . . . . . . . . 4 4 5 3 3 2 3 4 2 Average Springer loam . . . . . . . . . 4 4 5 2 2 2 3 3 2 Average Springer sandy loam. . . 5 5 5 3 4 2 4 5 2 TABLE 16. Pot experiments on soils of Midland County. Corn possibility of Weight crop in grams plant food with- drawn, in bushels Labora- _ tory Type name With With- number com- out With- With- Phos- plete phos- out out phoric Nitro- Potash fertil- phoric nitro- potash acid gen izer acid gen 29331 Frio silt loam, surface, corn . . . . . . . . . . . . . . . . . 22 .2 19.9 29.5 28 34 676 " Frio silt loam, surface, kafir . . . . . . . . . . . . . . . . . 4.4 13.7 4.8 13 36 75 29332 Frio silt loam, subsoil, corn . . . . . . . . . . . . . . . . . 3.3 7 .5 17.5 4 13 323 " Frio silt loam, subsoil, kafir . . . . . . . . . . . . . . . . . 1.5 2 .9 1.6 2 6 21 29317 Randall clay, surface, corn . . . . . . . . . . . . . . . . . . 46.0 19.5 50.0 127 24 1042 " Randall clay, surface, kafir . . . . . . . . . . . . . . . . . 43.8 9 .8 49.8 109 17 522 29318 Randall clay, subsoil, corn . . . . . . . . . . . . 46.5 44. 7 13. 1 44.6 142 14 941 ” Randall clay, subsoil, kafir . . . . . . . . . . . . 48.8 42.6 4.3 48.0 107 10 460 29313 Reagan silty clay loam, surface, corn. . 22.1 10.9 12.6 23.4 a 14 20 525 " Reagan silty clay loam, surface, kafir. . 21.8 15.8 13.7 15.1 18 22 191 29314 Reagan silty clay loam, subsoil, corn. . 13.8 7.4 8.0 15.4 10 12 293 " Reagan silty clay loam, subsoil, kafir. . 24.2 10.8 4.3 28.2 12 9 218 29333 Reagan fine sandy loam, surface, corn. . . . . . . . 11.2 10.0 24.6 12 15 382 ” Reagan fine sandy loam, surface, kafir. . . . . . . 18.1 12.2 16.1 16 16 166 29334 Reagan fine sandy loam, subsoil, corn. . . . . . . . 2.2 7.3 15.0 3 10 24S " Reagan fine sandy loam, subsoil, kafir. . . . . . . . 3.7 5.1 21.3 7 8 152 29335 Richfield fine sandy loam, surface, corn . . . . . . 12.1 10.2 27.9 13 15 170 " Richfield fine sandy loam, surface, kafir . . . . . . 11.3 5. 6 20.5 12 13 213 29336 Richfield fine sandy 10am, subsoil, corn . . . . . . 5.5 9 .9 20.9 7. 13 294 " Richfield fine sandy loam, subsoil, kafir . . . . . . 5.2 2.6 23.9 6 5 167 29311 Springer fine sand, surface, corn . . . . . . . 27 .0 14 8.6 30. 3 21 12 198 " Springer fine sand, surface, kafir . . . . . . . 15.6 7.8 3.0 9.8 10 7 38 " Springer fine sandy loam, surface, cotton . . . . . . . . . . . . . . . . . . 24.8 20.8 . . . . . . . . . . .. 27 . . . . . . . . . . .. 29312 Springer fine sand, subsoil, corn . . . . . . . 32.0 8.5 5.3 27.4 11 7 131 " Springer fine sand, subsoil, kafir . . . . . . . . . . . . . 7.4 2.0 11.8 8 6 46 " Springer fine sand, subsoil, cotton. . . . . 17.2 14.3 . . . . . . . . . . . . 18 . . . . . . . . . . . . 29315 Springer fine sandy loam, surface, corn. 31.5 14. 7 7.9 29.5 16 11 328 " Springer fine sandy loam, surface, kafir 29.0 16.7 4.4 23.2 15 8 112 ” Springer fine sandy loam, surface, cotton . . . . . . . . . . . . . . . . . . 22.0 15.7 . . . . . . . . . . .. 19 . . . . . . . . . . .. 29316 Springer fine sandylloam, subsoil, corn. 37.0 6.4 9.2 30.3 8 11 399- " Springer fine sandy loam, subsoil, kafir. 33.5 9.9 4.6 27.1 8 10 169 " Springer fine sandy loam, subsoil, cotton . . . . . . . . . . . . . . . . . . . . . . . . . . 20.0 9.6 . . . . . . . . . . . . 10 . . . . . . . . . . . . 36 BULLETIN NO. 533, TEXAS AGRICULTURAL EXPERIMENT STATION by Springer fine sandy loam which occupies 22.9 per cent of the area. Upland soils include the Springer, Richfield, Reagan, and Reeves series; flat stream bottom soils include the Frio and Randall series. Description of Soils of Midland County Upland Soils: Reagan soils-—Light-brown, calcareous, friable topsoil with light-brown or yellowish, calcareous, friable subsoil. Cover 54.2 per cent of area. Reeves soils—L~ight-brown to gray, calcareous, friable topsoil with light-brown or yellowish, calcareous, friable subsoil containing some gypsum. Cover 3.0 per cent of area. Richfield soils-—Dark-brown to black, noncalcareous, friable topsoil with dark-brown to dark-gray, noncalcareous, crumbly subsoil. C'over 3.5 per cent of area. Springer soils—Light-brown or reddish-brown, noncalcareous topsoil with brownish-red, cloddy but friable noncalcareous subsoil. Cover 34.6 per cent of area. Flat Stream Bottoms: Randall soils—-Nearly black or dark-gray, noncalcareous topsoil with dark-gray, noncalcareous subsoil. Cover 0.7 per cent of area. Composition of Soils Table 14 gives the composition of the various soil types and Table 15 the classes of constituents of the surface soils. The soils are low to moderate in nitrogen (Classes 5, 4, 3) and in total and active phosphoric acid. Most of the soils are moderate to high in total and acid-soluble potash, several of the soils falling in Class 1. With the exception of the Reeves chalk (Class 3) the soils are all high in active potash. Most of the soils are high (Classes 1, 2) in lime, basicity, and pH. Pot Experiments Results of pot experiments are given in Table 16. All of the soils used responded well to nitrogen, all but the Randall clay responded to phos- phoric acid, and none of them responded significantly to potash. Fertilizers The need of fertilizers carrying nitrogen and phosphoric acid is indi- cated for these soils, but the value of potash fertilization is questionable. Lime is not needed. SOILS OF POTTER COUNTY Potter County lies in the northwest part of the Texas Panhandle. The northern part of the county lies within the geographical division known as the Rolling Plains; the southern part lies on the High Plains. Twenty- five types and phases of soil in 12 series were mapped. The most exten- sive soil is Pullman silty clay loam, followed by Potter silty clay loam. These types occupy 14.1 per cent and 10.1 per cent of the area, respec- tively. Upland soils include the brown soils of the Enterprise, Richfield, SOILS OF VARIOUS TEXAS COUNTIESAND TRANS-PECOS AREA 37 Pullman, Potter, Zita, and Fritch series, and the red Amarillo and Wey— mouth series. Flat stream bottom soils include the Randall, Spur, Miller, and Yahola series. Rough broken land without named soil types occupies 35.0 per cent of the area. Dune sand and river wash occupy 0.5 per cent and 2.0 per cent of the area, respectively. ‘ d Description of Soils of Potter County Upland Soils: Amarillo soils—Red, brown, or reddish-brown, noncalcareous, friable topsoil with a red, noncalcareous, crumbly subsoil. Cover 6.9 per cent of area. Enterprise soils—-Reddish-brown, loose, noncalcareous topsoil with yellowish-red noncalcareous subsoil. Covers 5.2 per cent of area. Potter soils—-Brown or light-brown, calcareous, friable topsoil with light-brown or yellowish, calcareous, crumbly subsoil. Cover 15.5 per‘ cent of area. Pullman soils—Br0wn or dark-brown, noncalcareous, friable topsoil with dark-brown or chocolate-brown, noncalcareous, crumbly subsoil. Covers 21.3 per cent of area, Richfield so~ils—Dark-brown to black noncalcareous, friable topsoil with dark-brown to dark-gray, noncalcareous, crumbly subsoil. Cover‘ 0.8 per cent of area. Weymouth soils—-Similar to Potter soils, but more red in color. Cover" 6.4 per cent of area. Alluvial Soils: Miller soils-—Red, calcareous, friable topsoil with red, calcareous,. crumbly subsoil. Covers 0.7 per cent of area. Randall soils-—Nearly black or dark-gray, noncalcareous topsoil with dark-gray, noncalcareous subsoil. Covers 0.5 per cent of area. Spur so-i]s——Brown or chocolate-brown, calcareous, friable topsoil with brown, calcareous, crumbly subsoil. Covers 1.9 per cent of area. Yahola soils-—Red, calcareous, friable topsoils, with red, calcareous» subsoils lighter in texture than the topsoils. Covers 0.8 per cent of area. Composition of Soils Table 17 gives the analyses of the different soil types and Table 18‘ the classes of constituents of the surface soils. The soils are moderate to high in nitrogen (Classes 3, 2) and moderate to low in total phosphoric acid. The Amarillo, Potter, and Pullman fine sandy loams are low in active phosphoric acid; the other soils are moderate to high in this. respect. The soils are high (Classes 1, 2) in total, acid-soluble, and active potash and in lime and pH. Basicity in many of the soils falls one class lower than the lime in the same soils, while in the Miller and. Potter soils it falls in Class 1. Pot Experiments Results of pot experiments are given in Table 19. Most of the soils- respond well to nitrogen in pot experiments, but do not respond to- phosphoric acid and potash. 38 BULLETIN NO. 533, TEXAS AGRICULTURAL EXPERIMENT STATION >18 H .> mm.H 8c. 20m m>. 0m.w 28H 00o. moH . . . . . . . . . . . 2208558 .582 >828 >228 585225m mHmHm 81c > .8 80. 88. wc8 mm. >w.w wwm mHH . omH . ... . . . . . . . . 882858 .582 >828 >528 58522582 8HwHm 0H1> >.> 00.2 8>. >20 88. 0w.w mmH H>o. Hwo. .. . . . . .22c8558 5885 .58c2 >828 >228 5858225m mHmHm >18 m.> 08.2 w>. 0mm w0. wHw 8wH >>0. 88. .. . . . . . . . . .22c8558 .582 >828 >528 585225m wHwHm 81c 0.> oo.H >8. 888 o>. Hw.w 8Hw 00o. >HH. .. . . . . . . . . 882858 .582 >828 >228 585225m HHwHm . . . . . . . H.> , mw. >w. >02 mw. wm.H 8w >w0. 88o. .. . . . 508558 58828 .582 >H8588 85c 58:52am 88888.15 . . . . . 8.> mm. 88. 0mw om. om. H mw Hmo. 88. . . . . . . . . . . 508558 .582 >28588 85c 585225m 8888858. . . . . .. 8 . > om. >w. mmw w>. 08.2 08 mmo. m>0. . . . . . . . . . 888.2858 .582 >c588 85c 585225m 8888858. 0H1wH H.> mw. >~. >02 .88. wm.H 8w >w0. 880. . . . . . .2.2c8558 08828 .582 >28588 85c 585225m wwmHm wH1> m.> mw. ww. Hmw om. om. H Hm 8S. H>0. . . . . . . . . . . .22c8558 .582 >288 85c 585225m HwmHm >10 m. > >8. Hm. 0>w om. om. H 0m 0m0. mwo. . . . . . . . 8882858 .582 .5588 85c 585225m owwHm 0H1> c.> c8. . . . . . . . Hwm ..... . 08.2 mw w80. 888. ..... 588558 .582 >28588 85c 585225m 00>Hm >10 8.2. 88. . . . . . . .. 08w . ... w8.H 08 8m0. 00o. . . . . . . . . . 882858 .582 >H8588 85c 585225m m0>Hm 0H1> 8.> mm. >w. 8ww 0w. 88.2 0w mwo. mmo. . . . . . . . . . . 508558 .582 >288 85c 58E225m wmmHm >10 m.> wm. mw. H>w mw. 08.2 0m wmo. m>0. . . . . . . . . . . 882858 .582 >288 85c 585225m HmmHm 0H1> 8. > m0. 08. 888 88. 0o. w 0m mmo. mmo. . . . . . . . . . . . .22c8558 5885 .582 >828 585225m 082m >1m 8.> m0. mm. m08 c8. c0. H 88 moo. w00. ................22c8558 .582 >828 585225m 88828 muo 8.> 88. w8. ~88 08. 00.2 mHH c0. 0HH. . . . ...... . . . 882858 .582 >828 5858225m 88mHm . . . . . . . H .8 88 Hw 28.: Hw mw. m8.H m cwo. H00. . 2208558 8288c .582 >28588 85c 883cm 888883.. . . . . . . H .8 H8.0H wmoH m0 m8. 88. H 8 moo. mwo. . . . . . . . .22c8558 .582 >H8588 85c 883cm 8888832. . . . . . . . o.w 88.8 HH.m mmH 8m. Hm.H m8 m8o. 00H. ....... . . . 1.8882858 .582 >288 85c 883cm 88888.5. ww1oH . . . . . 0w.0H 08.02 0c 0c. w> .H c 20o. o>0. . . . .22c8558 .>2585c85 .582 >288 85c 883cm H0mHH 0H10 0. > 0m. HH 88.8 m8 mm. 88.2 > 888. m0H . . . . 8882858 .>2585c8m .582 >288 85c 883cm o0mHH 0H1mH 2.8 c8. Hw Ho. HH Hm mw. m8.H m cwo. H00. . . . . . . . .22c8558 58828 .582 >288 85c 883cm m8mHm mH1> H .8 88102 mcoH owH cw. 0H2 0H cmo. 00o. ... . . . . . . . . . .22c8558 .582 >288 85c 883cm w8wHm >10 H .8 owc 8.8 m>w 88. cm.H 0> 080. 00H. . . . . . . . . . . . . 882858 .582 >H8588 85c 883cm H8wHm ...,... aw.® 1...... - . . . ... E $8. .-...-....-..ZOWQU.W QQQQJMHNA: >fi7whwwwom UMNMU>< . . . . . . 2.8 80.8w 88.82 H0 88.2 8 w0H. HmH. .. .... . . . . . . . . . .22c8558 .582 >828 883cm 8w888>< .. . .. 2.8 wH .0H H0.m mww 88.2 8Hw w00. m>H. . ... . . . . . . . . . . . 8882858 .582 >828 883cm 8888838 0H1> H8 omHm . >mH 00H HH mHH. cwH. . ..............22c8558.58c2>828 883cm >wwHm >10 8.8 H0.mH . . . 00w . Hm. H 88 wHH. 802 . . . . . ..... . . . . . 8882858 .582 >828 883cm cwmHm 0H1mH 8.8 m8.mm . . . . 08 c8. H m 800. 888. . . . . . . . . .22c8558 58828 .582 >828 883cm 0HmHm mH1> 2.8 28.8 . . . . . 20H m>.H 0 >00. c8H. .. . . . . ..... . . . . 12208558 .58c2 >828 883cm wHwHm >10 8.8 2H>2 . . Hwm 80.H 0mw 080. 80H. ..................882858 .582 >828 885cm >HwHm 0H1> 2.8 owcw 88.82 mm 88.2 8 w00. wwH. .22c8558 .582>828 885cm ommHm >10 2.8 mmc H0.m 80w . . . . . . .. com w00. 82. . . . . . . .. . . . . . . . 8882858 .582 >828 883cm 0wmHm 0H1> 0.8 82.8 0H .8 80w 88.2 HcH wwo. wmo. . . . . . . . . . . . . . . . . 2208558 .582 >828 88222822 HomHm >10 >8 08102 H08 wow 08.2 HmH coo. mmo. 8882858 .58c2>828 88222822 oowHm. 0H1> m.> 82.. cm. wmm 8> . H 00 0m0. 888. . . . . . . . . . . .22c8558 .582 >28588 85c 58281.2 momHm >10 8.> m>. cm. 888 88.2 0wH 888. 88c. . . . . . . . . . 888.2858 .582 >588 85c 58281.2 802m 0H1> m.> 88. . . . . . . .. owH 8c. H 0H wwo. oco. . . . . 1.2208558 .582 >c588 85c c222885< >0>Hm >10 >.> c8. . . . . . . Hmw 88.2 88 >w0. mco. . . . . . . 8882858 .582 >H8588 85c 2228854. c0>Hm 8580 8580 88m 502222822 2580 88m 8580 52222822 8580 88m 2580 8855572 885852 2.2m 88m 85212 88m 582cm 88m 88m 288. 88m 85872 8528.2. >802 5858mm >82 82552cm 585cm 82552cw 582cm .882 .8c5m .8c5m 588 1889582 82885 28¢ 8>288< 28< 2888. 8>228< 288,2. 1088272 63888-00 notch ac 522cm cc 808.3554 u: mmflfldru. 39 SOILS OF VARIOUS TEXAS COUNTIES AND TRANS-PEVCOS AREA To 0.0 £4 .. . .. 2A w.“ S; o». To m.» 8.; 2. o8 “w; It w.» ow; m“. . o.» woA wo. o?» u.~. 2.0 Zn». o.o ww. wno 5o wm. 0T3 0w 3a owA w?» o.» .34 wo. TN o.» 8.0 ow. mvo w.“ 8.2 2. o7“ o.» 2.0 ow. To w.“ 2.0 oo. 2A 0.0 n52 . To w.» mo; muo o4. o2; . . . . o7“ 0w 2a 2.0 To w; wo. No. o7» w.“ 00.0 w». To w.» 8.0 mo. o?» w.~. wwq . . . . . . .. To w.o ow. . . . . . . .. o?» o.w No.2 2. To w.o ma; 2A w; 9.4 To 0.0 84 mxo mo oo. o7“ 5m. wwA To o.o 8.0 o2!» w.» 0w; 080 080 8m wwnunm mmm 8m 8E3 58D >2 033cm 200m E04 wow . . . . . .. oww 2mm wwo. o2. . ................00mo.5w.>20=8o.8~m woCw wwm mw. 2a 0R woo. ooo. . . . . . . . . . . . . . . . 268% >20 82.8% 22w wwo Ho. 8a wow 02. NC . ... . . . . . . . . . . . . . . . . .0082; >20 282.8% 22w 8w Nw. $8 0: woo. owo. . . . . 502% 0000 “E02 >20 32w SE68 0w88>< own 2. w~ . N m2 :0. woo. . . . . . . . . . . 26200 :82 >20 >0:w 5.53m 0w88>< Sm ww. C . w 02 ooo. 2:. . . . . . . . . . . 280226 58>: >20 >25 52:08 0w88>< 0-0-00- . - - - - - 0. 0n» 00-00000 - - - 0 - - | .100 0 0 .088 3288 . 82 >820 >0:w 2852mm muwmw oww . mo woo. woH. . . . . . . . . . . . . . . . . . Imownsw 608:0 30:88 £82 >20 >0mw amEzsm wmwmw “ow wwfi Io. o3. .. . . . . .............00&0:w .0220 30:88 £82 >20 >28 cwfizsm wuwow X§- 00- 00a 0 0-0-0010 - - . . -l---u.-+%owndmgw@w .0088 3288 £82 >20 32w cwEzsm wozw mow mw. . . mm wwo. 2oo. . . . . . . . . . . . . . . . . . . . . . . . downsw 820 .0008 3288 .282 >20 >28 cmEzsm ~32». wow oo. ... oo Boo. ow“ . .. . . . . . . . . . . . . . . . . . . . . . . . Zzownsw .0008 3288 .282 >20 >0:w cmEzsm 3:». oww ww. . . . . . . .. owm wwo. 2H. . . . . . . . . . . . . . .......00mo0:w .0098 3288 582 >20 >28 amEzsm ooZw oow wm wwo. wwo. .. . . . . . . . . . Imownsw .0088 30282.0 E82 >20 >§w cmE=sm mmwmw mww oo woo. owH. . . . . . . . . . . . . . . . .....008o8w .0098 322.8% 682 >820 >26 cwEzsm 83w wwm N: ooo. oho. . . . . . . downsw 98w .582 >20 >0=w cwEzsm. ofiwmw S0. w»; S0. N: . . . . . . . . . . . . 80.00% £82 >20 >28 8.53m 82w $0 S» wwo. m2. . . . . . . . . ..000t% .602 >20 3% 52.5.8 woman S» wfi woo. to. . . . . . . . . . . . downsw £82 >20 >0ow canism owZw woo 02 wwo. wfi . . . . . . . . . . . . .008+5w E82 >820 >0% 52:22am wwZw ooo $4 $0. :6. . . . . . . . . . . . 5008a .882 >20 >0:w 50.05am 52w 3w 08 08. 03. . . . . . . . . . . .0550 .9000 >20 >0% 006:0.» owtw 2w 02 Co. ooo. . . . . . . . . . . 802% £82 >20 >2? 56:05 0N2... 2w 02 m2. m3. . . . . . . . . . . .0035... .682 >20 >0% 5:55 32w own 2C woo. wwo. . . . . . . . . . . . downzw £82 >820 >0:w cwEzsm wuwmw wmw 8N wwo. 0S. .... . . . . .. .0085 .202 >£0 3% 86:32 22w www 02 Co. 000. . . . . . . 26200 0000 .502 >20 >0% $055 ~28 nwm owm wmo. woo. . . . . . . . . . . . iownsw £82 >20 >§w cwEzsm mwwfiw S... wow m3. >2. . . . . . . . .0880 .6002 >20 3% 005:5 e33 wwo m2 ooo. wwo. . . . . . . 500.0% .8802 >20 >26 005:5 owwow oom omu 2C. wwfi. . . . . . 80808 £82 >20 Bow amEssm wuwfiw wow oi N8. wwo. . . . . . . 50280 @000 .88. >20 3% 005:8 28w c252 28D 8m 0:00 c252 0~8U 8m 28D 825:2 8m 280cm 8m 8m E0< 8m 0E8 Z 0o>m. >80 swmoom 032cm 2.80am .0< wosm wonm 9.9M -9982 0300.0. 20.,» 88m. 838w. 800m. -322 Aflvi-lwflOUv cmwfln-OQ Hwwwcqm no n50: HO nwnhufifldw .8 H.853. 40 BULLETIN NO. 533, TEXAS AGRICULTURAL EXPERIMENT STATION Q l N N m w Q ¢o.N oNN om. o»; 8N $9 m3. . . . . . . . . . . . 502% .262 26% 25 2on3» 2.2» To o.» owe $4 2:. 3. 24 ooN 3o. So. . . . . . . . . . . . .3225 £82 3E3 3E 291$ 8mg o7» No 2Q 3a w? mo. “w; mm: 5o. 8o. . . . . . . . . . . . . . oownsw .Emo_ >20 55055.2» oixm To N.w 31+ 3N .3... o». $4 NoN m8. HNH. ..............H.&Ew £32 ma? fzofizfic/N/ omwoo o7» no 2 .m 8.» 2.» 3. w? m m2 2o. o8. . . . . . . . . . . . . . . E25 .82: >95 2E Sow 3w; To o.» 8; i A 3m on. om. H N2 mmo. o2 . .... . . . . . . . . . dumtow 5S2 358w 2E mBQW mmwmw o?» Wm 34. 2a own mo. oo. m N2. ooo. ooo. .. .. . . . . . . . . . . . . . . . .2035, éfl: 5w? saw 2&3 To o.w _N.N £4 oNm No. £4 No». woo. m3. . . . . . . . . . . . . . . . . . . Azséw £82 ow? 5mm oowmm 3:3 m4. $4 2.. 8w ow. NQN 5 5o. 8o. . . . . . . 5°83 3% £82 .36 5% wwessm 8w; 3|» Tm. m»; oo. om. “w. 3N HNH to. m3. .. . . . . 58%; .32. .69: ENE 3% EEEBM $62.. To o.» M: A 8. 2o 3.. SYN E. 3o. N3. . . . . . . oomnaw 580m ofiu 3% wseté 33m . .1. N.» mo; 3. N3 oo. mNN o8 woo. N3 . . . . . Iouwfow .262 >20 3% Ewfiuwm £2» . . m m m m mu“ No} of mNo mo. mNN 2N ooo. R6. . . . . . . . . . . . . . . . . . . . . £023 éfiu =fie§ vwwrw>< o o No H 2 “NE 8. mmN o2 woo. mNm. .. . . . . . . . . . . . . . . . . .. . .9625 SEQ =SE§ umfiw>< o?» m.» mo; mo» . . . . YVN wwm oNo. mmo. . . . . . ........:own:wnfixuzwwnmm moim ufloU £80 mom c252 E00 3m ~50 c252 H5O 8m “cow ownfisz mvzunm ma hum BEA Sm awfiom Em 8m Boo. Sm vEwZ wmom. i8 58m o: 033% 288m 232cm smfiom o< wosm .85 now Lfionmq 133m 30¢. @334 33w 18cm. Q53 130m. -332 AfiofifluwflcOv cwaiflowv nowwo-m we miom we MQM~M~E~M< Sn EAHQE SOILS OF VARIOUS TEXAS COUNTIES AND TRANS-PECOS AREA 41 TABLE 18. Classes o! constituents of surface soils of Potter County. Acid Acid Labora- Nitro- Total Active Total Solu- Active Solu- Basici- pH tory gen Phos. Phos. Potash ble Potash ble ty Number Acid Acid Potash Lime 31796 Amarillo fine sandy loam . . . . . . . . . . . . . . . . 3 4 4 2 1 2 . . . . . . 4 1 31804 Fritch fine sandy loam. 3 3 3 1 3 1 3 3 2 31800 Miller clay loam . . . . . . . 4 3 3 2 1 2 1 1 1 Average Potter clay loam . . . . . . 2 3 2 1 2 2 1 1 1 Average Potter fine sandy loam. 3 4 4 2 3 3 1 1 1 31844 Pullman clay loam. . . . . 3 2 3 1 2 1 2 4 2 Average Pullman fine sandy " loam . . . . . . . . . . . . . . . . 3 4 4 2 2 2 3 4 1 Average Pullman silty clay loam 2 3 2 5 2 1 2 3 2 Average Randall clay . . . . . . . . . . 2 3 2 1 1 1 2 3 2 31835 Richfield silty clay loam . . . . . . . . . . . . . . . . 2 2 2 1 1 1 2 3 2 31806 Spur clay loam . . . . . . . . 3 3 2 1 2 1 2 2 1 31833 Spur fine sandy 10am. . 3 3 3 2 2 2 2 3 1 31839 Weymouth clay loam. . 2 3 2 1 2 2 1 2 1 31802 Yahola fine sandy loam 3 3 2 2 2 1 2 2 1 TABLE 19. Pot experiments 0n soils of Potter County. Corn possibility of Weight crop in grams plant food with- drawn, in bushels Labora- tory Type name With With- number com- out With- With- Phos- plete phos- out out phoric N itro- Potash fertil- phoric nitro-‘ potash acid gen izer acid gen 31329 Potter clay loam, surface, corn . . . . . . . . . . . . . . 9.2 . . . . . . 23.0 17 . . . . . . 469 " Potter clay loam, surface, kafir . . . . . . . . . . . . . . 24.4 . . . . . . 42.2 33 . . . . . . 304 31330 Potter clay loam, subsoil, corn . . . . . . . . . . . . . . . . . . . . . . . . . . 9 .5 . . . . . . . . . . . . 135 " Potter clay loam, subsoil, kafir . . . . . . . . . . . . . . . . . . . . . . . . . . 37.8 . . . . . . . . . . . . 205 31331 Pullman fine sandy loam, surface, corn. . . . . . . . . . . . . . . . . . . 42.5 . . . . . . . . . . . . 372 " Pullman fine sandy loam, surface, kafir . . . . . . . . . . . . . . . . . . 42.1 . . . . . . . . . . . . 184 " Pullman fine sandy loam, surface, corn. . . . . . . . . . . . . . . . . . . 44.5 . . . . . . . . . . . . 159 31332 Pullman fine sandy loam, subsoil, corn. . . . . . . . . . . . . . 2S .2 . . . . . . . . . . . . 32 . . . . . . ” Pullman fine sandy loam, subsoil, kafir. . . . . . . . . . . . . 7.4 . . . . . . . . . . . . 11 . . . . . . " Pullman fine sandy loam, subsoil, corn. . . . . . . . . . . . . 4. 2 . . . . . . . . . . . . 7 . . . . . . 31321 Pullman silty clay loam, surface, corn.. 40.7 18.2 33. 7 39.2 40 58 571 31322 Pullman silty clay loam, subsoil, corn. . . . . . . . 3.1 . . . . . . . . . . . . 6 . . . . . . . . . . . . 31323 Pullman silty clay loam, surface, corn. . . . . . . . 22.0 . . . . . . . . . . . . 45 . . . . . . . . . . . . " Pullman silty clay loam, surface, kafir. . . . . . . 27.7 . . . . . . . . . . . . 79 . . . . . . . . . . . . " Pullman silty clay loam, surface, sorghum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 .1 . . . . . . . . . . . . 33 . . . . . . . . . . . . 31324 Pullman silty clay loam, subsoil, corn. . . . . . . . . . . . . . 15 .9 . . . . . . . . . . . . 26 . . . . . . " Pullman silty clay loam, surface, kafir. . . . . . . . . . . . . 7.2 . . . . . . . . . . . . 10 . . . . . . " Pullman silty clay loam, surface, corn.. . . . . . . . . . . . . 4.2 . . . . . . . . . . . . 6 . . . . . . 31325 Pullman silty clay loam, surface, corn. . . . . . . . 31.0 23 40.0 67 35 589 " Pullman silty clay loam, surface, kafir. . . . . . . . 39.2 19.2 37.7 115 39 349 31325 Pullman silty clay loam, surface, corn.. . . . . . . 27.5 10.5 37.3 53 19 181 31326 Pullman silty clay loam, subsoil, corn. . . . . . . . 13.5 9.2 34.1 23 14 615 " Pullman silty clay loam, subsoil, kafir.. . . . . . . 29.0 8.0 362 37 16 319 " Pullman silty clay loam, subsoil, corn. . . . . . . . 16.4 4.8 25 .5 24 9 25S 31327 Randall clay, surface, corn . . . . . . . . . . . . . . . . . . 36.7 25.0 48.6 75 36 846 " Randall clay, surface, kafir . . . . . . . . . . . . . . . . . 46.2 18.4 50.3 136 34 458 " Randall clay, surface, corn . . . . . . . . . . . . . . . . . . 33.2 5.7 34.8 70 10 294 31328 Randall clay, subsoil, corn . . . . . . . . . . . . . . . . . . 19 .0 10.5 . . . . . . 32 17 . . . . . . " Randall clay, subsoil, kafir . . . . . . . . . . . . . . . . . . 9.2 7.5 . . . . . . 25 12 . . . . . . " Randall clay, subsoil, corn . . . . . . . . . . . . . . . . . . 19.5 3.5 . . . . . . 22 6 . . . . . . 31833 Spur fine sandy loam, surface, corn. . . . . . . . . . 12.7 . . . . . . 22.8 . . . . . . . . . . . . . . . . . . " Spur fine sandy loam, surface, kafir. . . . . . . . . . 26.0 . . . . . . 34. 7 . . . . . . . . . . . . . . . . . . 42 BULLETIN NO. 533, TEXAS AGRICULTURAL EXPERIMENT STATION Fertilizers Fertilizers carrying nitrogen are probably needed on most of these soils, but phosphoric acid, potash, and lime are not needed. Crop pro- duction in this county is largely controlled by climatic conditions, rather than by incapacity of the soil to provide plant food elements. The use of fertilizers in this county is not recommended in the absence of favor- able field experiments. Saline Soils The composition of soluble salts in samples of different depths in a soil in Potter County is given in Table 20. The total quantity of salts is some- what lower than that in many saline soils (See Tables 13 and 27) but may still be sufficiently high to be injurious to plant growth. Particular attention should be called to two zones of accumulation of sodium sul- phate, the first at a depth of from 19 inches to 67 inches (Nos. 23596 and 23597), and the second at a depth of from 99 inches to 131 inches (No. 23599). The concentration of sodium sulphate is several times higher at these depths than it is in samples from other depths. Prac- tically all of the calcium sulphate occurs at a depth of 41 inches to 99 inches, which is slightly lower than the zone of maximum accumulation of sodium sulphate (19 inches to 67 inches). TABLE 20. Composition 0f soluble salts in some soils of Potter County (parts per million). Labora- Depth Calc. I Mag Mag. Sod. I Sod. tory No. Inches Sulp. u Carb Sulp. Carb. i Sulp. l 23594 Surface soil . . . . . . . . . . . . . . . . . 0-7 1 . . . . . . . . 83 . . . . . . . . 37 164 23595 Subsoil . . . . . . . . . . . . . . . . . . . . . 7-19 . . . . . . . . 34 . . . . . . . . 117 183 23596 Subsoil . . . . . . . . . . . . . . . . . . . . . 19-41 . . . . . . . . 11 . . . . . . . . 15 420 23597 Subsoil . . . . . . . . . . . . . . . . . . . . . 41-67 730 . . . . . . . . 54 . . . . . . .. 671 23598 Subsoil . . . . . . . . . . . . . . . . . . . . . 67-99 183 . . . . . . . . 48 . . . . . . . . 55 23599 Subsoil . . . . . . . . . . . . . . . . . . . . . 99—131 . . . . . . . . 31 . . . . . . . . 17 472 23600 Subsoil . . . . . . . . . . . . . . . . . . . .. 131-163 5s . . . . . . .. 102 |.. . . . 16s SOILS OF VAN ZANDT COUNTY Van Zandt County is in northeastern Texas, at the extreme western limit of the geographical division known as the- East Texas Timber Country. Thirty soil types and phases in 18 series were mapped. The most extensive soil type is the Susquehanna fine sandy loam, followed by Bowie fine sandy loam and Norfolk fine sand. These soils occupy 25.2, 12.1, and 10.4 per cent of the area, respectively. Upland soils with’ friable subsoils include the Kirvin, Bowie, Ruston, Caddo, and Norfolk series, while those with dense subsoils include the Lufkin and Susque- hanna series. Terrace soils include the Cahaba and Kalmia series. Flat stream bottom soils include Ochlockonee, Bibb, and Hannahatchie series. Blackland Prairie soils include Durant, Crockett, and Wilson series of the uplands and Trinity and Johnston series along the flat stream bottoms. . . SOILS OF VARIOUS TEXAS COUNTIES AND TRANS-PECOS AREA, 43 Description of Soils of Van Zandt County Upland Soils, East Texas Timber Country: Bowie soils—Topsoil gray to light-brown with yellow subsurface, sub- soil yellow mottled with gray and red, permeable. Covers 12.1 per cent of area. Caddo soils—-Topsoil gray with yellow subsurface, subsoil yellow mot- tled with gray in lower part, slowly permeable. Cover 2.4 per cent of area. Kirvin soils—Light-brown to grayish or slightly reddish topsoil, with red, slowly permeable subsoil. Cover 5.0 per cent of area. Lufkin soils—Gray topsoil, becoming hard on drying, with gray, dense, very slowly permeable subsoil. Cover 3.1 per cent of area. Nacogdoches soils—Red topsoil with ironstone fragments in many places with red, slowly permeable subsoil. Cover 0.4 per cent of area. Norfolk soils—-Gray topsoil with yellow subsurface, and yellow, very permeable, sandy subsoil. Cover 14.8 per cent of area. Ruston soils—Light brown to grayish topsoil with brown, yellowish or reddish subsurface and reddish-yellow, reddish-brown, or light red, very permeable subsoil. Cover 4.1 per cent of area. Susquehanna soils—Light brown to gray topsoil with yellow subsurface and red and gray mottled, dense, very slowly permeable subsoil. Cover 25.2 per cent of area. Upland Soils, Blackland Prairie: Crockett soils—Black to brown or spotted, noncalcareous, moderately friable topsoil, with reddish or yellowish subsoil. Cover 11.0 per cent of area. Wilson soils-Black to dark gray topsoil, very tight when dry, with brown or dark gray, dense, tough subsoil. Cover 4.2 per cent of area. Flat to Undulating Old Stream Benches, above Overflow: Cahaba soils—Light brown topsoil with reddish or yellowish sub- surface, with light-red, very permeable subsoil. Cover 0.4 per cent of area. Kahnia soils——Light-brown or gray topsoil with yellow subsurface, with yellow, very permeable subsoil. Cover 0.4 per cent of area. Flat Stream Bottoms: Johnston soils-—Black noncalcareous topsoil with heavy gray to black noncalcareous subsoil. Cover 1.8 per cent of area. Ochlockonee soils-—Grayish-brown to brown topsoil with grayish- brown to brown subsoil. Cover 11.9 per cent of area. Trinity soils-—Black to dark-brown, friable, permeable calcareous top- soil with black or dark-gray, heavy but permeable and crumbly, calcar- eous subsoil. (Blackland Prairie area). Cover 1.6 per cent of area. Bibb soils—Gray or slightly mottledtopsoil with gray to slightly mot- tled gray and brown subsoil. Cover 0.3 per cent of area. Composition of Soils Table 21 gives the analyses of the different soils and Table 22 the classes of constituents of the surface soils. The soils of Van Zandt 44 BULLETIN NO. 533, TEXAS AGRICULTURAL EXPERIMENT STATION 02.. E2. . 2.2 E2. 2.2.2 E2 28. E8. . 18225 .682 >265 2E >8.» EEEEEEEEO EEEEN 22. 8. E22 mN. EN. E mNo. 28. . . . . . . .2625 E82. .682 >265 2E 222262 62.6622. mo. Nb. o0 we. ww. o2 mNo. 2N0. . . . . . . . . . . . 220E225 .2282 32:8 22c fiotoZ 622.232 ON. c2 . 2.02 o0. 2m. mu mNo. mmo. . . . . . . . . . . .8328 .6802 >628 8cm 220E202 6.222;» 8. EE. mN. 8. N2.. E E8. 28. . .2685 5.2566 .682 >265 2E 26262 E28 E2. E2. 2E EE. 2E. E2 ENE. N8. . .8265 52686 .682 >265 2E 26262 88 22 . no. o: mu. o». w mNo. 22.0. . . . . . . fiownsw Qwww .5602 322mm 2E 2.22.2072 Nwwom EE. 8. E22 22. 2E. EN E8. o8. . . . . . . . . . . . .2635 .682 >265 2E 26262 EwEoN EN. E2. E22 EE. 2E. wN E6. E8. ............EEEEEEE .682 >265 2E 26262 EEEEN EE. 2.8. 2E 8. EE. Nm ENE. E8. . . . . . . . . . . . . .6225 E82. .265 2E 26262 EEEEN 2E. 22. EE EE. EE. N2. E8. E8. . . . . . . . . . . . . 1.2202225 .265 2E 22.262 EEEEN 8. 8. EE EE. EE. 2N ES. 22E. . . . . . . . . . . . . . . . . .8265 .265 6E 26262 ww2EN EN. E2.. Em mN. E2 . 2 E E6. E8. . .2685 E82. .682 >265 2E >6> 62262 ENEEN EE. NN. Nw E2. 8.2 E2 E28. E8. .. . . .. . .2685 .682 >265 2E >22, 6E5 ENEN E2. N2. E22 8. N2.. E2 E8. 2.8. ..... . . .8225 .682 >265 2E >22» 25:52 NNEN E2.. E2. 82 2.N. 8. 2 2. E8. 2.8 . . . . . . . .2685 E826 .682 >265 2E 622M NN2EN Nm. EN. ENN 8. 2E2 E N8. N8. .............:omn:w .682 >265 2E 6222M EN2.EN E2.. E2. ENN N2. 8. E2 N8. N8. ... . . . . . . . .8265 .682 >265 2E 622M mNEEN 8 8 EE 8. 8. E2 ES E6 . . . . . . . . . .2685 .682 >265 2E E2662 ENEEN E2. E2. 202 8. 2w. 2.N N8. N8. . . . . . . . . . 1.8225 .682 >265 2E 266M wNEEN mQA E2.. mw2 22.. o2 2 o wmo. woo. . 2202222925828 .2282 >928 022m >29» 22820920 626632 2.2.. NN. NN2 EN. 8 2 E2 28. E8. . . . . . .2685 .682 >265 2E >22, 22.2680 E6222. 22.. o2. 202 om. e2 . 2 E wNo. ENo. . . . . . 68.2225 .2282 322mm 2E >22» 582E020 ww§w>< EE. 2.N. 2.2 E2. 8.2 mN wNo. N8. . . . . . .2625 .682 >265 2E >22, 28.680 EEEEN EE. . . . . EE . . . . 8 2 E E8. EEE. . . . . . .8225 .622 >225 2E >8.» 262260 EEEEN 8.2 EE. 8E2 E2.. EE 2 E N8. E28. ..22E22E5 E82. .682 >265 2E >22, 3.2680 omwEN 8 2 8.. mN2 22. o2 .2 E wNo. EEc. .2685 98w .682 >265 2E >22, 2282.820 SEEN EE. EN. 8.2 NN. E2 2 E 2.8 E8. . . . . . .8225 .682 >265 2E >22, 28680 EN2.EN E2.. E2. 82 EN. 2.N.2 E N8. E8. . . . . . .8265 .682 >265 2E >22, 32680 EEEEN 8. mm. 82 8. . . . . . . . . w 2.8. mNo. . . . .8225 522220222 .682 >265 22c 02.260 N28 E2. 8. 2.22 EE. . ..... EN E8. E8. ....8EE2EE 5.2266 .682 >265 2E E2260 228 E2.. 2N 82 8. EE 2 E 222E. E8. . . . . . . . .2685 E82. .682 >265 2E 628m 8822,22 oN. 2.2. 2E2 N2. 8. 2 E mNo. E8. . . . . . . . . . . . . .2685 .682 >265 2E 666m E8225. E2. E2. NE2 8. EE. EN E8. E8. . . . . . . . . . . . . .8225 .682 >265 2E 2.69m 662E222 8. 8. E2. 8. . . . . . . . . 2.2 E8. ENE. . . . E5225 526E266 .682 >265 2E 2622 NN2E . E2. Eo 8 8. . . . . . . .. EN ENE. N8. .. . .8225 52252022 .682 >265 2E 628m 2N2E 2.N. NN. E3 2.2. 8.2 2. oNo. 2.8. . . . . . . . . ... . .2685 .682 >265 2E 666m ENEEN EN. EN. 2NN 8. 8. N2. N8. 3E. .............EE£225 .682 >265 2E 668m mmmom N2.. E2. 2.2.2 EE. 2E2 2. mNo. 2.8. . . . . . . . .2685 E26 .682 >265 2E 62.25 EEEEN E2.. 2N. 82 8. 8.2 E E8. 8E. . . . . . . . .2685 E22. .682 >265 2E 2.8m mEEEN 2m. E2 . 0N2 o2 . 8.2 o N20. NNo. ...... . . . . . . 220825 .2282 222E228 02.20 828cm 82.0w 2N. 2.2. E22 E2. 8. E2 ES. N8. .............EEEE.222E .682 >265 2E 628m EEEEN uGUU 050w 20mm GOSZZ QGUU 20mm uGOU C0252 “COD 20mm 220D 8220222 Ea 120mm 0E3" 8m 22820.22 20mm 20mm U204 20mm 0.802 892.2. 203C252 58D >3 UTHIIOW 282cm 232.30% 282cm .0< 665m 6027M 2.20M >202 66mm E022. E2822. Eu< 2.30.2. u>22u< 2620B -0522 8.202262 chain-QC HUGQN 66> a0 M525 a0 m0m.m~fli< JN QHQHNH. 45 SOILS OF VARIOUS TEXAS COUNTIES AND TRANS-PECOS AREA 600-532-090 .%¢§5QU wn-icfl ~53? HO mHqQm a0 mfimhHz-ndw AN H.055. . . . . . . Him 2.4 w“. “m. 0TH 0 000. Z0. . . 0000mm @000 .802 30500 0c0 50> c0055 00003.. . . . . . . Hi0 2. 3.. mHH mN. HH . H “N Hw0. $0. . . . . . . . .0035 .502 >22 0cm .30.» c0055 00000.5. . . . . . ... 0.0 S. 0m. HNH S. 0H . H R ~00. E0. . . . . . . . .0803 .802 .8500 2E .30., 080B 00203. . . . w. . .. 0.0 8. 3.. 00 HN. 00. HH 0N0. $0. ........=QB3 .502 30:00 2E 30> cow=>> 0Nm0N 0.0 ii 2. NHH HN. H.0.H 0m $0. $0. . . . . . ...00&Ew .802 .0600 2.0 20> 5.20.5 £80 0T3 w.» 2.. H 2 . 00H S... 07H w 0.8. Z0. . . . .0035 c000 .502 30:00 0E0 50> co0=>> 00HAN 0H1. H .0 m0. mm. NmH mN. NwH NH. 08. 0HH. . . . . . . . 00005 .502 3.0500 0cm 30> c0055 HOH6N >10 N.0 ow. 2.. 3 0N. wNH mH 0N0. 000. . . . . . . . .3250 .802 .3500 0E0 50> c0003 NOH.0N 072 0.0 0w. m». H.0H “m. 0N.H 0 NNO. 0N0. . .0305 0000 .EmoH 30500 05.0 mccmficuwcm 03% wHnH. 0.0 HHX NH . NNN “H. 0.0. 0w 0N0. 000. . . . . . . .0022 .8002 >0cmw 2E 2=8€§w=w 032 . . ~20 0o. on. H...» 3.. H0.H H. HNO. 0M0. . . . . . . 002.50 .502 30500 0cm 05308020 N003 . . . . . . 0.0 mm. NH . 00N 0m. Q0. H. 0N0. wNo. . . . . . . 000000 c000 .802 >H0cmw 0cm cBmcM 000003‘ . ..... 0.0 mN. 0H. wHH 0H. 2. m NNO. H00. . . . . . . . . ... 000000 .502 30:00 0:0 coewcwH 000820 . N .0 mH . NH. HNH m0. 0m. mH 0N0. H00. . . . . . . . . . . . .00mtcw .502 350m 0cm cBwcM 0000030. +00 H .0 fit 0H. 00H 2. i. N 08. £0. . . _ . . . c625 800 .502 2E8 0E0 c6022 000% 00L: N.0 0H2 0N. HON HQ. 8. H. m8. 0H0. .. . . . . 000000 0000 6.82 30500 0E0 cBwcvH $30 HHL. H .0 mH. 0N. m» 0H. H0. m 06. :0. . . . . ........:ownc0 .802 >280 2E E0023 H003 70 N.0 0H. m0. mHH 00. .2. o 0H0. NNO. . . . . . . . . . . . .002.5w .E0oH 30:00 0cm cocwcwH oovoN 8-2 m. m NN. o0. 00 0H. H0. H m wHo. 0H0. . . . . . . .HHomn.cm 0000 .0222 >280 0cm cocwcd mwwoN NNumH 0.0 HN. 0H . 00H 0H. N». H. 0H0. 0H0. . . . . . . 000200 0000 582 >H0cm0 0cm cBwcMH NwwoN 2L. 0.0 8. NH. HOH 0N. m0. m m8. $0. . . . . . . . . . . . .0025 .602 35a 0E0 c802 H003 70 N .0 0H. mH. oNH 00. mm. HN 0S. 08. . . . . . . . . . . . .000tcw .802 >280 0cm coficd owvoN ON. m, . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . .ZOmD5w @000 .502 >280 0cm 50> 0900202200 00H~0N 0T0 0.0 0N. HH . Na mH. mHiH m 0w0. 0N0. . . 003cm .502 >050 .20 50> 09.960500 80.3 0:00 0:00 00m c252 0c00 00m 0c00 c0532 0:00 00m 0:00 000502 mvsucH ma 00mm 0E5 c0.» zwcfiofi 00A 00m H204 00m 05.02 0Q>H F80 500C 3H 052cm 003cm 052cm 000.00% .0< 02TH 00cm =00 hmconmA -230 H20< 0>H00< 20¢. H0000 0>H00< H0090 -952 46 BULLETIN NO. 533, TEXAS AGRICULTURAL EXPERIMENT STATION TABLE 22. Classes of constituents of surface soils of Van Zandt County. Acid Acid Labora- Nitro- Total Active Total Solu- Active Solu- Basici- pH tory gen Phos. Phos. Potash ble Potash ble ty N um ber Acid Acid Potash Lime Average Bowie fine sandy loam. 5 5 5 3 5 3 4 5 2 9311 Caddo fine sandy loam 4 4 5 . . . . . . 5 3 3 5 . . . . . . Average Crockett very fine sandy loam . . . . . . . . . . 3 4 5 3 3 3 4 4 3 29478 Kalmia fine sandy loam S 5 S 3 5 3 4 5 3 29475 Kirvin fine sandy loam. 4 4 5 3 4 2 4 4 2 29472 Lufkin very fine sandy loam . . . . . . . . . . . . . . . . 4 4 5 4 5 3 4 5 2 29488 Norfolk fine sand . . . . . . 5 5 4 4 5 4 5 5 2 Average Norfolk fine sandy loam . . . . . . ‘ . . . . . . . . . . 5 5 4 4 5 3 5 5 2 29494 Ochlockonee very fine sandy loam . . . . . . . . . . 3 4 5 2 4 3 4 4 2 Average Ruston fine sandy loam 4 5 5 4 5 3 4 5 2 29467 Susquehanna fine sandy loam . . . . . . . . . . 4 5 5 3 2 2 3 3 3 Average Wilson very fine sandy loam . . . . . . . . . . 3 4 5 3 3 3 3 3 3 County in general are low in plant food, particularly with respect to nitrogen and phosphoric acid. Only the Crockett, Ochlockonee, and Wil- son fine sandy loams fall in Class 3 with respect to nitrogen. All other soils fall in Classes 4 and 5. No soil falls outside of Classes 4 and 5 with respect to total and active phosphoric acid. The soils are better with respect to total and active potash, most of them falling in Classes 3 and 4. They‘ are low (Classes 4, 5) in acid-soluble potash, lime, and basicity, and in general very slightly acid in pH. Pot Experiments Results of pot experiments are given in Table 23. Most of the soils respond markedly to phosphoric acid and nitrogen, and some of them respond well to potash. Fertilizers The need for fertilizers carrying nitrogen, phosphoric acid, and (usually) potash, is indicated for most of the soils. Lime may be needed for certain legume crops, or after the soils have been in cultiva- tion for a longer period of time, particularly if acid-forming nitrogenous fertilizers such as ammonium sulfate or urea are used. SOILS OF‘ THE TRANS-PECOS AREA The Trans-Pecos area lies in the extreme western part of Texas, and includes all that part of the state lying west of the Pecos River, except a small portion of Val Verde County. Brewster, Culberson, El Paso, Hud- speth, Jeff Davis, Pecos, Presidio, Reeves, and Terrell Counties comprise the area. Twenty-six types and phases of soils in 9 series were mapped. The most extensive soil is the Reeves gravelly loam, followed by the Reeves silty clay loam; these soils occupy 15.0 and 12.0 per cent of the area, respectively. Basins and plains include the Reeves, Reagan, and SOILS OF VARIOUS TEXAS COUNTIES AND TRANS-PECOS AREA 47 TABLE 23. Pot experiments on soils of Van Zandt County. Corn possibility of 1 Weight crop in grams plant food with- _ drawn, in bushels‘ l Labora- tory Type name With With- number com- out With- With- Phos- plete phos- out out phoric Nitro- Potash fertil- phoric nitro- potash acid gen izer acid gen 29523 Bowie fine sandy 10am, surface, corn. . . . . . . . . 10.2 . . . . . . 1O 3 22 20 149 " Bowie fine sandy loam, surface, milo. . . . . . . . . 18.0 10.5 23.1 23 13 I 73 29524 Bowie fine sandy loam, subsoil, corn. . . . . . . . . 6.5 7.0 20.9 8 15 166 " Bowie fine sandy loam, subsoil, milo. . . . . . . . . 7.5 4.5 26.9 8 8 67 9311 Caddo fine sandy loam, probably, surface, corn . . . . . . . . . . . . . . . . . . . . . 35 .4 20. 6 . . . . . . . . . . . . 29 . . . . . . . . . . . . " Caddo fine sandy loam, probably, surface, corn . . . . . . . . . . . . . . . . . . . . . 38.0 9.2 . . . . . . . . . . . . 12 . . . . . . . . . . . . " Caddo fine sandy loam, probably, surface, sorghum . . . . . . . . . . . . . . . . . 21.4 14.4 . . . . . . . . . . . . 15 . . . . . . . . . . . . " Caddo fine sandy loam, probably, surface, sorghum . . . . . . . . . . . . . . . . . 36.3 10.1 . . . . . . . . . . . . 9 . . . . . . . . . . . . 9312 Caddo fine sandy loam, probably, subsoil, corn . . . . . . . . . . . . . . . . 11.6 . . . . .. 8.0 . . . . . . . . . . .. 13 . . . . .. " Caddo fine sandy loam, probably, subsoil, sorghum . . . . . . . . . . . . . . . . . 3.7 . . . . . . 2.4 . . . . . . . . . . . . 14 . . . . . . 29533 Crockett very fine sandy loam, surface, corn . . . . . . . . . . . . . . . . . . . . . . . . . .. 7.3 15.6 27 9 12 36 152 " Crockett very fine sandy loam, surface, milo . . . . . . . . . . . . . . . . . . . . . . . . . .. 8.4 6.5 17.0 11 10 42 29534 Crockett very fine sandy loam, subsoil, corn . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.3 20.0 28.4 32 51 190 " Crockett very fine sandy loam, _ subsoil, milo . . . . . . . . . . . . . . . . . . . . . . . . . .. 16.7 10.5 24.4 19 20 89 9310 Norfolk fine sandy loam, probably, surface, corn . . . . . . . . . . . . . . . . . . . . . 40.3 . . . . . . . . . . . . 28.8 . . . . . . . . . . . . 78 " Norfolk fine sandy loam, probably, surface, corn . . . . . . . . . . . . . . . . . . . .. 27.4 . . . . . . . . . . . . 10.5 . . . . . . . . . . .. 27 " Norfolk fine sandy loam, probably, surface, sorghum . . . . . . . . . . . . . . . . . 23.0 . . . . . . . . . . . . 6.5 . . . . . . . . . . .. 18 " Norfolk fine sandy loam, probably, surface, sorghum . . . . . . . . . . . . . . . .. 18.2 . . . . . . . . . . .. 12.4 . . . . . . . . . . . . 29 9310 Norfolk fine sandy loam, probably, subsoil, corn . . . . . . . . . . . . . . . . . . . . . 38.1 . . . . . . . . . . . . 32.4 . . . . . . . . . . . . 56 " Norfolk fine sandy loam, probably, subsoil, corn . . . . . . . . . . . . . . . . . . . .. 10.0 . . . . . . . . . . .. 3.8 . . . . . . . . . . .. 12 " Norfolk fine sandy loam, probably, subsoil, sorghum . . . . . . . . . . . . . . . . . 17.7 . . . . . . . . . . .. 12.5 . . . . . . . . . . . . 18 " Norfolk fine sandy loam, probably, subsoil, sorghum . . . . . . . . . . . . . . . . . 7.3 . . . . . . . . . . . . 4.2 . . . . . . . . . . . . 10 29525 Wilson very fine sandy loam, surface, corn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.0 11.5 25.8 43 46 237 " Wilson very fine sandy loam, surface, mi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 0 16.0 38 7 29 19 87 29526 Wilson very fine sandy loam, subsoil, corn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1 10.2 15.0 13 28 119 ” Wilson very fine sandy loam, subsoil, milo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.5 41.0 8.5 12 66 | 23 Verhalen series. Terrace soils are of the Anthony series. Flat stream bottom soils include the Gila, Rio Grande, and Toyah series, and some undifferentiated soils. Mountains and roughlands include the Ector series from limestone, and the Brewster series from igneous rocks, and the undifferentiated rough and stony land. Rough stony land mainly from limestone occupies 17.9 per cent of the area; that mainly from igneous rocks occupies 10.0 per cent. A detailed survey of Reeves County has been published, and the chem- ical composition of the soils of that county has been discussed in Bulletin 48 BULLETIN NO. 533, TEXAS AGRICULTURAL EXPERIMENT STATION 430. A chemical study of some soils of El Paso County has been dis- cussed in Bulletin 337. Description of Soils of the Trans-Pecos Area Upland Soils: Brewster soils—-Red or brown, noncalcareous, friable, mostly very stony topsoil, with red or brown, noncalcareous, crumbly, stony subsoil. Cover 3.8 per cent of area. Ector soils-—Light-brown or brown, calcareous, friable, stony topsoil with light-brown or yellowish, calcareous, stony subsoil. Cover 10.4 per cent of area. Reagan soils—-Brown 0r light-brown, calcareous, friable topsoil, with light-brown or yellowish calcareous, crumbly subsoil. Cover 13.1 per cent of area. Reeves soils-—Light-brown to gray, calcareous friable topsoil, with light-brown or yellowish calcareous friable subsoil containing some gypsum. Cover 35.4 per cent of area. Verhalen soils—Brown or reddish-brown, calcareous, friable topsoil with red or reddish-brown, calcareous, crumbly subsoil. C'over 5.9 per cent of area. Flat Old Stream Benches, above Overflow: Anthony soils—-Light-brown, very calcareous, friable, topsoil, with yellow, calcareous, friable subsoil. Cover 0.5 per cent of area. Flat Stream Botto-ms: Gila soils—-Light-brown or grayish, calcareous, friable, topsoil con- taining some salt, with a light-brown, or grayish, calcareous, friable sub- soil containing some salt. Cover 0.6 per cent of area. Rio Gi-ande soils—Light-brown or brown, calcareous, friable topsoil with light-brown, calcareous, friable subsoil. Cover 0.3 per cent of area. Toyah soils-—BroWn or dark-brown, calcareous, friable topsoil, with brown or light-brown, calcareous, friable subsoil. Cover 1.1 per cent of area. Composition of Soils Table 24 gives the analyses of the principal soil types and Table 25 the classes of the constituents of the surface soils. Most of the soils are moderate to low (Classes 3, 4) in nitrogen. The Reagan fine sandy loam and gravelly loam and the Reeves fine sand are low (Class 4) in total phosphoric acid, while the rest of the soils are moderate to high. The Reagan silty clay loam and Rio Grande loamy very fine sand are low in active phosphoric acid, with the other soils moderate to high, six of them falling in Class 1. Most of the soils fall in Class 1 with respect to total potash, lime, basicity, and pHpand in slightly lower classes with respect to acid-soluble and active potash. 49 SOILS OF VARIOUS TEXAS COUNTIES AND TRANSPECOS AREA . . . . ..............0u2~.2.222m .5802 20.020 2.22~>O.H 2:0 0. m 22.. 2 2.0. 2.00 02.. N02. 002. 002. 2.00. 88088 02:2. 0.m 2.N.02 00.0 000 22.. 00. N 2N0 2.00. 000. . . . .22o882:8 .:82 >0288 8:0 >:8> 80:28.20 2M 0200N 2.:0 0.0 00.22 00.2. 888 2.2.. mm. 2 200 mN2. 000. . . 888088 .2282 >288 8:0 >:8> 8028.20 02M 0000N 02:2. 0. 0 00 . 0 2N. 0 mmN 00. 00.N 2N0 2.88. 0N0. . . . 0080228 .0:88 8:0 >.28> >:82 80:28.20 2M N200N 2.:0 0.0 02.02 20.0 02N 00. 2.0N mN mm0. 2.00. . . 8882228 .0288 8:0 >88.» >:82 8028.20 o2M 2200N . . . . .... 8.8 00N0 0002 00m 02.. 88. 2 2.2. 002. 02.0. .. . . . . . . . . . . .22o822:8 .:82 >828 >228 88>88M 8w8.28>< . .. 0.m 2.0.2.N 20.02 02.0 02. N0.2 m22 022. 200. ....... . . . . . .8882::8 .582 >828 >228 88>88M 888.625.. 02:2 8.8 82 .82 88. 0 888 N0. 2.2 .8 N02 NN2. 288. ...22888=8 .8828 8880 .6882 >828 3228 88.582 88882 2-0 0.0 220. 22 20.0 002. 00. 2.2 . N 888 002. 22.0. . .8882.2:8 888.20 .2880 .582 >828 >228 88>88M 0NO0N 02:2. 8.8 02. .00 00.0N 000 80. 82.. 2 m 2.02 . 020. . . . . . . . . . . . . 2880228 .282 >828 >228 88>88M 000mN 2.:0 0 . m 88.82. 2.2..NN 8N8 00. 00.2 20 2202. 000. . . . . . . . . 8882.58 .2282 >828 >228 88>88M m00mN 02:2. 0.2. 2.2 . 28 02.22 N20 N2. 00.2 N2 002. 020. ............ .22880:8 .2282 >828 >228 88>88M m00mN 2.:0 0.0 m0. 0N 00.2.2 000 m0. 2.0. 2 00 002. Nm0. . . . . . . . . . . . . 8880228 .:82 >828 >228 88>88M N00wN 02:2. 0.m 20.00 00 .0N 22N 22.. 28. 2 2N 002. 020. . . 00822228 8882222 e880 £82 >828 >228 88>88M 200mN 2.:0 0.m N0. 20 0222.2 02.N 02.. 00.2 N22 022. 022 . . .8882.2:8 8882222 22880 .882 >828 >228 88>88M 000mN 02:8 0.0 2.0. 2N 00.N2 888 2.0. 02.. 2 2.02 200. 000. .......... . 08822228 .2282 >0:88 8:0 88>88M 20088 2.:0 2 .8 028.02 82.8 002. 00. Nm. 2 2.0N 022. 22.0. . . . . . . . . . . . .8882.2:8 .582 >0:88 8:0 88>88M 000mN . . . . . . .. 0.m wN.22 00.0 2.22 N2. mm.2 00 0N0. NN0. ..................2208822280:88 8:0 8268M 88888.12 . . . . . . .. N.m NN.0 00. 2 02.N m2. 02.N 2.02 mN0. 0N0. ........... . . . . . .8882.58 .0:88 8:0 88>88M 888882122 02k2. N.m 00. 2.N. 2NN 22. mN.N 00 2.20. 220. .. . . . . . .. 1.088808 0:88 8:0 88>88M 2NO0N 2.:0 2.8 m0. mN. 828 02. 20.N 2.0 2N0. 2N0. . . . . . . . . . . . . . 68882228 .0288 8:0 88>88M 0NO0N 02:2 2.8 20.NN 02..N2 2. 00. 82.. 2 m2 000. 2N0. . . .. . . . . . . 220822228 .0288 8:0 88>88M 0NO0N 2.:0 2.8 00.0 20.0 2NN 02. mm.2 0N2 0N0. mN0. . . . . . . . . . . .8882.2:8 .0288 8:0 88>88M 0NO0N . . . . . . .. 8.8 00.NN 02..N2 2.20 2.8. 2.0N 0N2 2.00. 000. . . . . . . . . . 28882228 .:8o2 >828 >228 :8w88M 8w888>< . . N.m 22.02 82.0 N00 20. N0.N 00 2.88. 2.2.2. . . . . . . . . . .8882; .5882 >828 >228 2.888822 88888.5. .. 02:2. N.m 2m.2N 2.m.22 020 N2.. N2...N 00 N00. 002. . . . . . . . . . .....22o80:8 . #8882222 30228228 .2282 >828 >228 28m88M w200N. 2.:0 2. m 2.2.N2 2.0.2. 2.00 m2.. 2.0N 02.2 020. N02. . . . . . . . . . . . . ..88828:8 8882222 3228228 .2282 >828 >228 2288882 2.200N 02:2. 2.8 08.88 00.02 020 00. 00.N 00N N00. 2.00. .... . . . . . . . . 0888.228 .882 >828 >228 :8w88M 2.200N 2.:0 2.8 02.. 2N 20.N2 000 2.0.2 02..N 02. 000. 0N2. .. . . . . . . . . . .8882::8 .:82 >828 >228 :8w88M 0200N 02:2 . . . . . . . . 00.02 00.22 00 N0. NN. N 00 02.0. 2.00. . . . . . . . . . . . . . 0880228 .882 >228>88 :8w88M 0NO0N 2.:0 2.8 0N2 0N. 0 02.N 22.. m0.N 002. 828. 000. ... . . . . . . . . 2888288 .882 >228>8.2w 28w88M 0200N 02:2. 0.0 2.0 .0 2N .2. 00m 02.. 02..N 2N0 2.2.0. 22.0. . . . . . . . . 28822228 :82 >088 8:0 2888M 0200N: 2:0 0.m 2m.N 00. N 200 88. 0m. N 002. 2.00. 200. ... . . . . . . . . 888288 .882 >0288 8:0 :8w88M 0200N - 02:2. 8.2. 00.0N m2. . 22 020 N0. 88. 2 000 N22. N00. . . . . . . . . . . . 0080228 :82 >828 >228 8088.2 2000N 2:0 0.2 00.02 N02 2.02 00. 0m. 2 022. 82.2. 202. . . . . . . . . . . . . . .8882.2:8 .882 >828 >228 808882 0000N 02:2 2.8 00.02 02.0 02.0 22.. N2..N 882. 0N2. 02.0. .....................22o8n:8£82228 8220 mNO0N 2.:0 0.m 0m.m 02.0 0220 00. 20.N 2.00 22.2. 000. .................1.888288 282228 8220 2.NO0N 02:2 8.8 mN.0 00.0 002 0N. 00.N 0N2. 202. 200. . ....... .. . 1.2288026 .582 >0:88 8:0 8220 NNO0N 2.:0 0.m 00.0 00.0 2.00 22.. 02.. N 002. 2.00. 2.00. . . . . . . . . . . . . . .8882.:28 .582 >0:88 8:0 8220 2NO0N 2:80 2:80 88m :o22222>2 8:80 8882 2:80 :o22222>2 8:80 .2882 2:80 0802:2272 882285 2.2: 28M 8:222 .2882 22888882 08M 08m 0284 .2882 822872 8Q>H >82 22022802 >22 822222ow 22880082 833cm 22882082 .84 8022M 802282 :88 :8»o~28A 8288M 028< 8.2284. 0288. 2880.2. 8>228< 2828.2. 8.5272 évafi nOuvnnnn-nfihi. no I220! HG 28015262841 i.“ MMHHHQB 5O BULLETIN NO. 533, TEXAS AGRICULTURAL EXPERIMENT STATION of.“ w; 84 om. 3» mm. 22., Q. moo. v8. . . . . . . . . downnm .282 >20 =2§iw> tzma To 5.» %. Nw. 3% 3i wma m2 $6. owo. . . . . . . . . .8856 E82 .2“? cfimif/ 32a 9w 8.8 3a 2m 84 Ra wow o2. E... ..............=QE5 $20 =2§$> wwwhu>< Tw 32 8.0 o? mo. was 8N o3. moo. .ouwt:w.>m_u ¢2~€~> uww~w>< o?» Ww 2:2 51m Fm do.“ 2 d. 2% 2: . 3o. . . . . . . . ...... zownsw SEQ c2m¥6> wooow ...-.. oww 3.0 om. m Mao S. 3 6 w? 2: . moo. . . . . _ . . . . . . . . vumltsw $.20 c2§tw> 8G3 31> ~66; 8Q m? 8A 52w “I $4. owo. ..............=own=w.>su nwiztfi/ 32K To . . . . . . .. 3.3 $2» Sm 8. 3a 2 m2 . 3o. ... . . . . . . . . . . . ééém SEQ z22b> $33 QT“ ma 8a 2 . a 8w mm. 8+ 2m ma; . 96. . . . . . . . . . . .335 E82 >20 nm>oH owowm $80 “~80 3m coEQ/H ~50 Em £80 c252 ~50 Mom #80 uwQESZ mununH ma hum v55 Sm smmoom Mom 5m Eo< Um oEm Z ~53. 3o» fiavfi >3 032cm 530m Snfiow nwmuom d< éonm dosm 5m éhonwq aim 30¢ u>$u< 33w 33H 9E3. 130a -822 AUQB-Swflonvv éou€ moovqmumifln? no uflom HO momh~fl~n4 ifl mnflmmdfifi SOILS OF VARIOUS TEXAS COUNTIES AND TRANS-PECOS AREA i 51 TABLE 25. Classes 0f constituents of surface soils of Trans-Pecos Area. Acid Acid Labora- Nitro- Total Active Total Solu- Active Solu- Basici- pH itory gen Phos. Phos. Potash ble Potash ble ty Number Acid Acid Potash Lime 29021 Gila fine sand . . . . . . . . . 4 3 1 1 2 2 1 1 1 29027 Gila silt loam . . . . . . . . . 3 2 1 1 2 1 1 1 1 29000 Pecos silty clay loam. . . 3 2 1 1 2 3 1 1 1 29015 Reagan fine sandy loam 3 4 1 1 3 1 1 2 1 29019 Reagan gravelly 10am. . 3 4 1 1 2 2 1 1 1 Average Reagan silty clay loam. 2 3 4 1 1 3 1 1 1 29025 Reeves fine sand . . . . . . 5 4 3 1 4 2 2 2 1 28996 Reeves fine sandy loam 3 2 2 1 2 2 1 1 1 Average Reeves silty clay loam. 3 2 3 1 2 2 1 1 1 29011 Rio Grande loamy very fine sand . . . . . . . . 4 3 5 1 3 2 1 1 1 29009 Rio Grande very fine sandy loam . . . . . . . . . . 3 2 2 2 2 2 1 1 1 28988 Toyah clay loam . . . . . . 4 1 1 1 3 1 2 3 1 Average Verhalen clay . . . . . . . . . 3 2 2 1 1 1 1 1 1 28986 Verhalen clay loam. . . . 3 3 3 1 2 1 2 3 1 Pot Experiments _Results of pot experiments are given in Table 26. The soils do not show significant responses to fertilization with nitrogen, phosphoric acid, or potash. The corn possibility with respect to phosphoric acid is 10W, but this may be because heavy crops were not produced on the soils for reasons other than the capacity of the soils to provide plant food. Fertilizers The analyses and pot experiments indicate that no response from fer- tilization will be secured on most of the soils. Lime is already present in large quantities in most of the soils. Saline Soils The soluble salts found in some saline soils in the Trans-Pecos Region are given in Table 27. Chlorides make up a large part of the salts, especially when the quantity of soluble salts is very high. Sulphates are very high in a few soils, notably No. 1373 and its subsoil, and No. 29003 and its subsoil. These soils probably contain considerable quantities of gypsum not in solution. All of the soils listed except possibly No. 10975 are to be classed as saline, rather than alkali, soils because the quantity of sodium carbonate is not high in any of them. DIFFERENCES IN COMPOSITION AT DIFFERENT DEPTHS The composition of a soil in horizons at different depths sometimes varies markedly. Zones of accumulation of sodium sulfate in a soil from Potter County (Table 20) have already been discussed (page 42). Calcium carbonate content may and often does vary much more markedly at different depths. In Galveston County, (Table 10) a zone of accumu- lation of lime occurs in the deep subsoils of the Lake Charles series. This occurs at different depths and to different degrees with different samples. In Lake Charles clay No. 32659, there is a slight accumulation 52 BULLETIN NO. 533, TEXAS AGRICULTURAL EXPERIMENT STATION TABLE 26. Pot experiments on soils of Pecos County in Trans-Pecos Area. Corn possibilitfof Weight crop in grams plant food with- drawn, in bushels Labora- tory Type name With With- number com~ out With- With- Phos- plete phos- out out phoric N itro- Potash fertil- phoric nitro- potash acid gen izer acid gen 17500 Arno silty clay 10am, probably, surface, corn . . . . . . . . . . . . . . . . . . . .. 18.7 15.0 21.3 19.3 19 42 45 " Arno silty clay loam, probably, surface, sorghum . . . . . . . . . . . . . . . . . 7.5 8.3 6.5 1.5 10 9 20 " Arno silty clay 10am, probably, surface, corn . . . . . . . . . . . . . . . . . . . . . 22.7 . . . . . . . . . . .. 14.7 . . . . . . . . . . .. 245 " Arno silty clay loam, probably, surface, sorghum . . . . . . . . . . . . . . . . . 0. 2 . . . . . . . . . . . . 2.7 . . . . . . . . . . . . 38 " Arnolsilty clay loam, probably, surface, cotton . . . . . . . . . . . . . . . . . . . 22.6 . . . . . . . . . . . . 21.6 . . . . . . . . . . . . 325 " Arno silty clay loam, probably, surface, cowpeas . . . . . . . . . . . . . . . . . . 9.0 . . . . . . . . . . . . 15.6 . . . . . . . . . . . . 403 17501 Arno silty clay loam, probably, subsoil, corn . . . . . . . . . . . . . . . . . . . . . 8.1 7.9 7.4 10.9 9 35 246 " Arno silty clay loam, probably, subsoil, sorghum . . . . . . . . . . . . . . . .. 12.2 13.0 8.5 6.9 18 11 78 " Arno silty clay loam, probably, - subsoil, corn . . . . . . . . . . . . . . . . . . . .. 9.0 5.3 10.7 8.3 . . . . .. 51 208 " Arno silty clay loam, probably, subsoil, sorghum . . . . . . . . . . . . . . . .. 9.9 10.0 11.0 3.4 . . . . .. 49 36 22141 Reeves silty clay loam, probably, surface, corn . . . . . . . . . . . . . . . . . . . .. 19.0 15.4 . . . . . . 22.1 32 . . . . .. 428 " Reeves silty clay loam, probably, surface, sorghum . . . . . . . . . . . . . . . . . 2.0 0.6 . . . . . . 2.6 3 . . . . . . 21 " Reeves silty clay loam, probably, surface, alfalfa . . . . . . . . . . . . . . . . . . . 18.3 15.3 . . . . .. 15.0 30 . . . . . . 169 " Reeves silty clay loam, probably, surface, alfalfa . . . . . . . . . . . . . . . . . . . 1.5 3.0 . . . . . . 5.2 5 . . . . . . 41 22142 Reeves silty clay loam, probably, subsoil, corn . . . . . . . . . . . . . . . . . . . .. 10.0 3.7 . . . . .. 12.2 5 . . . . .. 202 " Reeves silty clay loam, probably, subsoil, sorghum . . . . . . . . . . . . . . . .. 18.6 5.1 . . . . .. 9.2 11 . . . . .. 81 "' Reeves silty clay loam, probably, subsoil, alfalfa . . . . . . . . . . . . . . . . . .. 14.0 7.6 . . . . .. 12.8 12 . . . . .. 129 " Reeves silty clay loam, probably, subsoil, alfalfa . . . . . . . . . . . . . . . . . . . 3.9 1.5 . . . . . . 1.8 2 . . . . . . 19 4291 Reeves silty clay loam, surface, corn. . . 15.1 13.0 . . . . . . . . . . . . 17 . . . . . . . . . . . . " Reeves silty clay loam, surface, sorghum . . . . . . . . . . . . . . . . . . . . . . .. 1.2 6.5 . . . . . . . . . . .. 12 . . . . . . . . . . .. " Reeves silty clay loam, surface, corn. . . 29.0 14.0 . . . . . . . . . . . . 11 . . . . . . . . . . . . 4291 Reeves silty clay loam, surface, sorghum . . . . . . . . . . . . . . . . . . . . . . .. 3.9 3.9 5.0 . . . . .. 8 9 . . . . .. " Reeves silty clay loam, surface, corn. . . 34.9 . . . . . . 4.8 . . . . . . . . . . . . 7 . . . . . . " Reeves silty clay loam, surface, sorghum . . . . . . . . . . . . . . . . . . . . . . . .. 13.2 . . . . .. 4.0 . . . . . . . . . . .. 9 . . . . .. I SOILS OF VARIOUS TEXAS COUNTIES AND TRANS-PECOS AREA TABLE 27. Composition o! soluble salts in some soils o! Trans-Pecos Area (parts per million). Calci- Calci- Mag- Mag~ Mag- Sodi- Sodi- Sodi- Labora- Depth um um nesium nesium nesium um um um tory Inches Sul- Chlo- Car- Sul- Chlo- Car- Sul- Chlo- N umber phate ride bonate phate ride bonate phate ride 1373 Surface soil . . . . . . . . . . . 0-12 25450 . . . . . . . . . . . . 600 1563 . . . . . . . . . . . . 53670 1374 Surface soil . . . . . . . . . . . 0-12 17725 . . . . . . . . . . . . . . . . . . 3975 . . . . . . . . . . . . 9610 1375‘ Dry alkali bed . . . . . . . . 0-12 14225 . . . . . . . . . . . . 4500 2915 . . . . . . . . . . . . 10770 1376f Subsoil to 1373 . . . . . . . . 12-24 11855 . . . . . . . . . . . . 2370 . . . . . . . . . . . . . . . . . . 8020 1379 Subsoil to 1373 . . . . . . . . 24-36 12700 . . . . . . . . . . .. 750 1016 . . . . . . . . . . .. 8125 1382 Subsoil to 1373 . . . . . . . . 36-48 11355 . . . . . . . . . . . . 1500 424 . . . . . . . . . . 5280 8254 Subsoil . . . . . . . . . . . . . . . 6-18 . . . . . . . . . . . . 36 205 . . . . . . . . . . . . 83 267 8255 Yellowish brown loam, -- surface . . . . . . . . . . . . . . 0-12 235, . . . . . . . . . . . . 37 283 . . . . . . . . . . . . 237 8256 Subsoil to 8255 . . . . . . . . 12-24 168 31 . . . . . . . . . . . . 333 . . . . . . . . . . . . 118 8264 Yellowish brown loam, surface . . . . . . . . . . . . .. 0-12 . . . . . . . . . . .. 5 126 121 . . . . . . . . . . . . 176 8265 Subsoil to 8264 . . . . . . . . 12-24 229 228 . . . . . . . . . . . . 404 . . . . . . . . . . . . . . . . . . 10887 Brown sandy loam, ~:>1.- surface . . . . . . . . . . . . . . 0-8 969 26334 . . . . . . . . . . . . 3610 . . . . . . . . . . . . 21740 10888 Subsoil to 10887 . . . . . . . 8-16 2485 89 . . . . . . . . . . . . 556 . . . . . . . . . . . . 5110 10974 Yellowish gray silty clay, surface . . . . . . . . . . . . . . . 4S9 . . . . . . . . . . . . 483 . . . . . . . . . . . . 572 950 f 10975 E Yellowish gray silty 9» s’ clay, surface . . . . . . . . . . . . . . . 73 . . . . . . . . . . . . 283 . . . . . . . . . . . . 1206 1109 10976 Yellowish gray silty - clay, surface . . . . . . . . . . . . . . . 1035 . . . . . . . . . . . . 792 . . . . . . . . . . . . 242 2595 10977 Yellowish brown silty clay, surface . . . . . . . . . . . . . . . 1588 319 . . . . . . . . . . . . 970 . . . . . . . . . . . . 4283 10978 Yellowish gray silty clay, surface . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 149 . . . . . . . . . . . . 111 248 10979 Yellowish gray silty clay, surface . . . . . . . . . . . . . . . 280 . . . . . . . . . . . . 268 . . . . . . . . . . . . 240 41 11238 Light brown clay loam, surface . . . . . . . . 0-12 146 . . . . . . . . . . . . 249 5 . . . . . . . . . . . . 289 11239 Subsoil to 11238 . . . . . . . 12-24 85 . . . . . . . . . . . . 126 76 . . . . . . . . . . . . 148 11240 Brownish gray clay loam, surface . . . . . . . . 0-12 . . . . . . . . . . . . 16 60 . . . . . . . . . . . . 550 165 11241 Subsoil to 11240 . . . . . . . 12-24 . . . . . . . . . . . . 67 54 . . . . . . . . . . . . 344 143 11702 Light gray fine sandy loam, surface . . . . . . . . 0-18 500 . . . . . . . . . . . . 590 . . . . . . . . . . . . 689 2661 11703 Subsoil to 11702. . . . . . . 8-16 . . . . . . . . . . .. 83 . . . . . . . . . . .. 46 259 376 12524 Yellowish brown sandy clay, surface . . . . . . . . . 0-19 5368 . . . . . . . . . . . . 1029 . . . . . . . . . . . . 353 2186 12525 Subsoil to 12524 . . . . . . . 20-40 10232 . . . . . . . . . . . . 590 . . . . . . . . . . . . 397 783 12526 Light yellow sandy clay, surface . . . . . . . . . 0-22 3674 . . . . . . . . 550 272 . . . . . . . . . . . . 2059 12527 Subsoil to 12526 . . . . . . . 22-34 10371 . . . . . . . . . . . . 616 . . . . . . . . . . . . 312 783 12705 Brown loam, surface. . . . . . . . . 4637 18667 . . . . . . . . . . . . 2952 . . . . . . . . . . . . 1618 17332 Brown clay, surface. . . . . . . . . . 919 . . . . . . . . . . . . 1147 . . . . . . . . . . . . 9683 14190 17333 Gray brown clay, surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 . . . . . . . . . . . . 4614 4516 17500 Bottom or valley land. . 0-12 . . . . . . . . . . . . 7 98 . . . . . . . . . . . . 385 412 17501 Bottom or valley land. . 12-24 97 . . . . . . . . . . . . 107 . . . . . . . . . . . . 289 528 22926 Surface soil . . . . . . . . . . . . . . . . . 567 . . . . . . . . . . . . 295 . . . . . . . . . . . . 506 384 22927 Subsoil to 22926 . . . . . . . . . . . . . 5237 . . . . . . . . . . . . 1443 . . . . . . . . . . . . 5808 751 22928 Subsoil to 22926 . . . . . . . . . . . . . . . . . . . . . . . . . 27 149 . . . . . . . . . . . . 1433 134 25693 Surface soil . . . . . . . . . . . 0-7 . . . . . . . . . . . . 56 . . . . . . . . . . . . 225 . . . . . . 1196 25694 Surface soil . . . . . . . . . . . 0-7 2979 . . . . . . . . . . . . 108 531 . . . . . . . . . . . . 5217 25695 Surface soil . . . . . . . . . . . 0-7 3294 . . . . . . . . . . . . 817 . . . . . . . . . . . . 394 5831 25696 Surface soil . . . . . . . . . . . . . . . . . 239 . . . . . . 79 . . . . . . . . . . . . 70 . . . . . . 703 25697 Surface soil . . . . . . . . . . . 0-7 56 2 . . . . . . . . . . . . 31 . . . . . . . . . . . . 36 25698 Surface soil . . . . . . . . . . . 0-7 . . . . . . . . . . . . 29 . . . . . . . . . . . . 109 . . . . . . 807 28971 Surface soil. . . . . 0-10 . . . . . . . . . . . . 73 72 . . . . . . . . . . . . 341 665 28972 Subsoil . . . . . . . . . . . . . . . 18-30 . . . . . . . . . . . . 62 104 . . . . . . . . . . . . 115 1601 29002 Toyah loam . . . . . . . . . . 0-7 . . . . . . . . . . . . 142 . . . . . . . . . . . . 9 85 124 29003 Bed of salt lake in salt basin, surface . . . . . . . . 0-7 14606 . . . . . . . . . . . . 5081 921 . . . . . . . . . . . . 37643 29004 Subsoil to 29003 . . . . . . . 7-19 15458 4148 . . . . . . . . . . . . 1063 . . . . . . . . . . . . 4798 29005 Reeves silty clay loam, deep phase, surface. . . 0-7 53 . . . . . . 140 . . . . . . . . . . . . . . . . . . 286 157 29006 Subsoil to 29005 . . . . . . . 7-19 190 . . . . . . 162 . . . . . . 38 . . . . . . . . . . . . 185 29034 Surface soil . . . . . . . . . . . . . . . . . 1829 . . . . . . . . . . . . 498 . . . . . . . . . . . . 842 2995 29035 Subsoil . . . . . . . . . . . . . . . 6 175 . . . . . . . . . . . . 146 . . . . . . . . . . . . 1740 964 29036 Subsoil . . . . . . . . . . . . . . . 12 381 . . . . . . . . . . . . 256 . . . . . . . . . . . . 1932 1325 54 BULLETIN NO. 533, TEXAS AGRICULTURAL EXPERIMENT STATION below 60 inches; in the very fine sandy loam N0. 32665, there is a con- siderable accumulation below 23 inches; in the very fine sandy loam No. 32677, there is a very marked accumulation below 40 inches. The basicity of a Houston black clay surface soil (No. 33764, Table 4) was 7.58 per cent, of the first subsoil (7”-18”, No. 33765), 5.10 per cent, and of the deep subsoil (18”-30", No. 33766), 24.00 per cent. Nitrogen, active phosphoric acid, and active potash all decrease markedly in the lower depths of most soils, as is shown in all tables in this bulletin giving the composition of the soils. This fact is of great practical importance, because the soil left on an area after the topsoil has been removed by erosion is of much lower fertility than the original soil which was washed away. ACKNOWLEDGMENT Chemical analyses and other work involved in the preparation of this bulletin have been taken part in by S. E. Asbury, E. C. Carlyle, T. Li. Ogier, W. H. Walker, and other members of the staff. SUMDIARY Chemical analyses and results of pot experiments on samples of typical soils from six counties and the Trans-Pecos Region are given with con- densed descriptions of the soil series. A new classification of constitu- ents, 5 classes based upon chemical composition, is given, and its relation to previous methods of interpretation is discussed. Most of the soils are low (Classes 4 and 5) in nitrogen and phosphoric acid. They are better supplied (Classes 2 and 3) with potash. Some of the soils are low in lime and basicity (Classes 4 and 5), while others are basic and even highly calcareous (Class 1). Some of the soils are slightly acid, but. most of them are neutral to alkaline.