B-1505 August 1985 Impacts of Farm Policies and Technology on the Economic Viability of Texas Southern High Plains Cotton Farms THE TEXAS AGRICULTURAL EXPERIMENT STATION! Neville P. Clarke, Directorl The Texas A&M University System! College Station, Texas [Blank Page in Orignal Bulletin] ‘M: f‘ IMPACTS OF FARM POLICIES AND TECHNOLOGY ON THE ECONOMIC VIABILITY OF TEXAS SOUTHERN HIGH PLAINS COTTON FARMS James W. Richardson ‘ Associate Professor and Edward G. Smith Grain Marketing and Policy Specialist Agricultural and Food Policy Center Department of Agricultural Economics Texas Agricultural Experiment Station Texas A&M University [Blank Page in 01mm Bulletin] '5» Table of Contents Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Representative Farms . . . . . . . . . . . . . . . . . . . . . . . . . .' . . . . . . ." . . . . . . . . . . . . . . . . . . . 1 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Policy and Technology Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 . . . . . . . . . . . . 7 Farm Policy Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Income Tax Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Financial Stress Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 No New Technology Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Evaluation Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Acreage Reduction Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 No Payment Limitation . . . . . .' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 No Price and Income Supports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 No Income Supports . . . . . . . . . . . . . . . . . . .- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 No Farm Program . . . . . . . . . . . . . . . . . . . . . . .~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 More Restrictive Income Taxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Financial Bailout Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 No New Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Literature Cited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Impacts of Farm Policies and Technology on the Economic Viability 0f Texas Southern High Plains Cotton Farms Executive Summary The purpose of this study was to estimate the impacts of alternative government policies and technology on the growth and economic viability of representative cotton farms in the Texas South- ern High Plains. The farms initially operated 1,088, 3,383, and 5,570 acres, had debt to asset ratios typical of farms in the area, owned the necessary machinery complement, and farmed both owned and leased acreage. The results indicate that under the most likely technology scenario and continuation of the provisions of the 1981 Farm Bill, all three farms will have a high probability of remaining solvent through 1992. All three farms will have an 88% or greater chance of receiving a 3% or greater return to equity and will be able to grow over the 10-year planning horizon. The greatest percent- age increase in ending farm size was for the 1,088-acre farm, followed by the 3,383-acre farm, and the 5,570-acre farm. Imposing an acreage reduction program (acreage diversion and set aside) increased net farm incomes and average net present value for all three farms. Acreage reduction programs increased the annual rate of growth more for the 1,088-acre farm than for the two larger farms. Removing the deficiency payment program (income supports) reduced the probability of sur- vival, net farm incomes, and annual growth rates for all three farms. Removing both price supports (Commodity Credit Corporation loan) and deficiency payments reduced the probability of survival the most for the 1,088-acre farm (36 percentage points) while the probability of survival for the 5,570-acre farm was reduced by only 2 percentage points. Removing all farm program provisions reduced the probability of survival for all three farms. The probability of survival declined from 92% to 42% for the 1,088-acre farm, and from 90% to 62% for the 3,383-acre farm. The prob- ability of survival for the 5,570-acre farm remained above 75%. Imposing a more restrictive set of federal income tax provisions on the three representative farms caused a greater reduction of the average annual rate of growth for the two larger farms than for the 1,088-acre farm. Net farm incomes were also reduced to a greater extent for the larger farms than for the 1,088-acre farm. Growth occurred from leasing cropland as higher taxes reduced available cash for down payments. Yield enhancing technology anticipated over the next 10 years for cotton did not significantly change the average annual growth rates of the representative farms. Changing the farm program or federal income tax provisions had a greater impact on farm growth than yield enhancing technology. The results of analyzing the three farms reveal that the debt restructuring strategies evaluated here would not greatly benefit these farms. A two-year interest subsidy provided greater benefits to net present value, net farm income, and ending net worth than a debt restructuring program. The results of this study indicate that moderate-size (1,088 acre) cotton farms in the Texas Southern High Plains are more dependent upon farm program provisions than larger farms for their continued growth and economic viability. Larger farms 6T6 Ufillfif 60/6’ l0 SHIV/Vt’ 14/11/7011! [H117 M0- gram benefits because of lower production costs ($/lb.), higher average cotton lint prices, and a greater asset base from which to meet cash flow deficits, lfgrrgs Qt QQ meg Qq qQqbzgflogQg '\t (1.o3>T ° Cash withdrawals equal family living expenses plus state and federal income taxes and self- employment taxes. Initial net worth (NW ) and ending net worth (NW ) explicitly con- sider the value of off-farm investments and accrued taxes. A 3% after-tax, real discount rate was used to calculate net present value for all representative farms. O Present value of ending net worth is used to indicate the change in the farm’s real net worth over the planning horizon. Net worth is affected by increases (or decreases) in asset (land, machinery, and livestock) value and retained earnings. This value can be compared directly to initial net worth to indicate the relative magnitude of real financial growth. O Acres owned, leased, and controlled at the end of the planning horizon for each iteration indicate the impacts of alternative scenarios on the rate of growth for representative farms. These three statistics provide an indication of how the farm grew either by purchasing or leasing land. O Total long- and intermediate-term debts at the end of the planning horizon provide an insight into the financial stress of the farm over the planning horizon. Increases in aver- age ending debt from one scenario to another can be due to either rapid growth through purchasing land and machinery or the farm operator being forced to refinance large cash flow deficits. When surplus cash is available, the operator is permitted to first prepay intermediate-term debts and then prepay new long-term debts. Therefore large ending intermediate-term debts indicate insufficient cash was available to reduce intermediate-term debt through prepayment of principal. O Ending equity ratio is the farm’s ending ratio of total net worth to total assets. This ratio provides a "bottom-line" measure for comparing the representative farm’s ending financial position across scenarios. O Average Annual Net Farm Income is the average net farm income received by the operator over all years simulated. Net farm income equals total farm receipts plus total government payments minus all cash production expenses, interest payments, labor costs, fixed cash costs, and depreciation. This value excludes all non-farm income and interest earned on a cash reserves. O Average Annual Government Payment is the average annual government payment (defi- ciency and diversion payments) received over all years simulated. 12 0000.00 80000000 8 000.0000 000000 0000 000000000 00000 08.000 00 0000000000 80.000000 8000. 00000.0. I .m000|0000 8 000080000 00000000003088 000.0 02 I 020-0000 a 0500.020 0000000000. 8 80000000 8000 000m 0000 0000 0000000000 0000 08008 00000000 I 020-002 s 0.520s: 08 .0000000>0000 0000 08008 0000000 0000 0000 000m 8.00m 0000 0000 00 00000080000000 .00 00000 0 .m000|0000 8 80.000000 8.000 02 I 0 W 000 0000000000 0000 0Z I 0 000 80.000000 8.000 070 I 0 .m000|0000 8 00000000000 0000000 0m < I m 000m I 0 0000 0000000000 000.0; 0.0m 0.0 0.0m 0.0 0.0 0.0m m.mm 0.0m I 000.0 000080000 0.0000 0008000 0000000050 0.0| 0.00| m.0 0.0m» 0.0m| 0.00 0.00 0.0 I 0000.000 08008 8.000 0000 0000080 00000>< 00.0 0m.0.. 00.0 00.0- m0.0I 00.0 00.0 00.0 I 008000.000 00000000 00 000.0 00000008 00000>< 00.0 0m.0 00.0 00.0 00.0 00.0 00.0 00.0 m0.0 00000000000 00000 00000000 080000 00000>< m.00 0.0m0 0.0m 0.00 0.000 m.0m 0.00 0.0m 0.00 0000.000 000000 8.000100000080008 080000 0m000>< 0.000 0.00 0.000 0.00 0.00 0.000 0.000 0.000 0.00 0000.000 00000 8000,0000 080000 00000>< 0.0000 0.m0m0 0.0000 0.00m0 0.00m0 0.0000 m.0000 0.0000 0.0000 0000000 00000000000 0000000000 080000 00000300 0.000 m.0m0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 000.0000 . 000000 0000000000 080000 00000>< 0.000 0.00m 0.000 0.000 0.m00 0.000 0.000 0.000 0.000 0000000 000030 0000000000 080000 00000000. 0.000 0.000 0.000 0.000 0.00m 0.000 0.000 0.000 0.00m 0000.00 000003 0000 080000 00 00000> 0000000 00000>< 0.000 m.00| 0.000 0.00 0.001 0.0m0 0.000 0.000 I 000080000008 00000> 000000000 0000 000010000000 00 m0 m0 00 00 00 00 m0 I 000 00000.0 000000.000 0000 02000000 0.. 0000000020 00 m0 m0 00 00 00 00 m0 I G00 0>0>80 00.. 000000000000 00000000000 0 0 0 0 0 0 0 0 000080 00.000000 00000000000 000000000002 28000000000 0.30000 0500.00 0000 m>00<0zm0m~00m~0 < Z0 003000700000 >U010O00 000.000.0000 n00 700050400200 a 020400 20.00.00 020.0000 00000.0 .0 m.0m0; . 0 13 8.81.2288 53 @802: Ehowow mw: E8 Em 8.8m b .308 8.285 E ooodomm .88~wo.& 8:6 08m o5 E8 “Eoaon 8H @802: womiuom I .~ma~|mwm~ E 828a 88w oZ I .85 .32 con-noun 85 @852 8 “Euaun afiwoa 8:3 fiowbfi. I dmmTmwa S .88.?» munomoflogouim .0»: oZ I 892-22 a 8658 “Aufiscow 8 82-82 a =..:s.a= .8 .~mm~|ww3 E aofiuawuh @8088 w: v5 we noflmsafiaoo 8 >020 .8 Comma» 3i oZ I 8 e288» 88w oZ I om < I omnm I U8 @2885“ 2E; P-1Nf'>< NSI gm- Qfi 9m 3;- m8 8.2 v.8 I 300.20 083E 8:3 8a 8:88 08202.. wed wod- 8d 2d cod ~ H .o Id 8d I 303223 ahsoh we 3E 8.23.: @833‘ $6 ~90 $6 3.0 8d w»... 3H0 8... 2d Aqcaue: 0:3 5:50 waziv 0920i... W22 $3 mdfi .32 WEN 3% 9Q. .58 8.2K Aoociv Snow 88fi|ofifiuofihowafl @588 ow88>< 1am QR 2mm odwm 23 n63. odmw 32. mdfi AoooJwv Esau EBQIwaB @526 ow88>< v.38 98.3 83% 9R8 Q52 93.2 06w: 98$ Q22 Awobfi wu=obaou @5295 8.520 8803.. Q82 Q33. 983 W88 @612‘. Q38 wdowm 9:3. Q23 seas B82 namEoS 88.8 @8805 .133 @654 Q32 <83 W82 923 W33 Q22 Q82: e25 wQbso 32.83 868 owfio>< 532 g8 W8: 22: ma? #22 Q32 YNSL 32 250.; £83 3a 858 we 38> E83 owm8>< mfia 3.8 3.8 8.2m 92% W32 W82 98¢ I A833 c808 02$» $8.88 8a x8LoC< ww 8 ow ow ww 8 .3 ww I s3 o2? E305 6a @253 3 bzwzporm ww S ww S m» 8 8 2 I 8v 82in“ a. E3288 nfifiim w > w n w m ~ _ 83w: QEBCU “moimaoum 038.503.,‘ ZMmEHDOm 93m? MMU< mwmm m>fi< 92- v3- mdT 04m ~17 3.5 900E Q3 I AQQQGV oEouE 8.5m “o: 3:58 0?»? mod 8.? Eod B... 2d m _ .o 2d >06 I eoauév zbsoh “o 33 1220i: owwho>< 3.5 3d 32o :6 Zho 3d 3W6 2.0 $6 305323 e33 mzsvo mafia uw3o>< Ed: WIN :8 m6: >63 Q8 1.2! 9m: v65‘ 25.29 “Bow .E._o?ofiEwoE~o~nE owfio>< 3.? ma? 2% 93m Nfia :5 9w? 32m 5w: 82.49 mica E~o~|wno_ wEunu uwm~o>< 063% W3? Q82 32.? W22 9:3 Q33 Q38 Q23 G223 uozobaou ESEQS wéa» om€o>< 2&3 3&2 QSN 39a Q23 v.83 2K3 §$~ QSIN 2323 @032 @8295 wEuno @305 2:3 v23 3.8m 22% Q88 98$ v22 Q22 32a e25 wocko wafimohu wamio omfio>< mi? 18S fi£- v.33 982 >635. odwwm 28m W93 68.2“ £53 “o: wanfio ho v38, E83 owmho>< 13.2 .28.. Ymfi. E23 iiw wfiomm Twiw N22 I Ac¢¢irsoa 03g “E305 “on xSLoC< 3 8 o» 5 3 2 2w 8 I A§v o3?» “E935 “on 02:8; a. bzzaflohm 3m wh M; 8 S 2 8 3 I A$v @253 “o EEBQE Hssssww w h o n w m N E 2E5 @2820 nworzwaoom o>flmshofi< ZMQEPDOm 93$? QMO< i? mieflwzmmmmmmm < ZO mo§u5om Qmeomqmm mo zofimfigoo fi. 2m {I . *4 u» ‘d Mention of a trademark or a proprietary product does not constitute a guarantee or a warranty of the product by the Texas Agricultural Experiment Station and does not imply its approval to the exclusion of other products that also may be suitable. All programs and information of The Texas Agricultural Experiment Station are available to everyone without regard to race, color, religion, sex, age, handicap, or national origin. 2M-—8/85