1 Book : muat b3 , charged “‘out '.oasfi ‘ .LLL_L_ LEI . lsffi E W 593 ;. FONSOLIDATED LUNAR ATLA as R ”fwd“ Supplement Numbers 3 and 4 to the ‘ USAF PHOTOGRAPHIC LUNAR ATLAS Gerard P. Kuiper Ewen A. Whitaker Robert G. Strom John W. Fountain Stephen M. Larson Photographic Reproductions Part I: 61-in NASA Telescope, Catalina Observatory Part II: 61-in Astrom. Telescope, US. Naval Observatory . and Tables and Reference Charts on Lunar Orbiter Missions PubHshedforthe AIR FORCE CAMBRIDGE RESEARCH LABORATORIES Office of Aerospace Research bythe LUNAR AND PLANETARY LABORATORY .S UNIVERSITY OF ARIZONA " 1967 Contributions of the Lunar and Planetary Laboratory No. 4 Published by the Lunar and Planetary Laboratory, University of Arizona for the U.S. Air Force under Contract No. AF19(628)—4332 Photographic Printing by Ray Manley Commercial Photography Published 1967 Library of Congress Card Catalog Number 68-63335 CONSOLIDATED LUNAR ATLAS 1. General Concept of Atlas In 1960 a selection of the best available lunar photogra- phy was published in the Photographic Lunar Atlas (Kuiper, Arthur, Moore, Tapscott, Whitaker, Univ. of Chicago Press, 1960). The reproductions were halftones. In spite of the care and supervision given this publication, some detail, especially of a photometric nature, was lost although the resolution was not appreciably impaired. Since 1960 several lunar programs have endeavored to obtain improved photographic coverage. Among these were the photography with the 61-in. telescope of the Lunar and Planetary Laboratory, which was started in October 1965; the full-moon photography on slow, fine-grained and very contrasty plates with the 61-in. Astrometric Telescope of the US. Naval Observatory at Flagstaff; a short series with the Lick 120-in. telescope at the Coudé focus; and photography with the tele- scopes at the Pic du Midi Observatory, especially with the new 43—in. By late 1966 the average gain in resolution attained over the material available in 1960 was by a factor of 2. Further improvement over the Photographic Lunar Atlas was achieved by using photographic reproductions rather than printed half— tones, thus preserving photometric detail and a range of con- trast unobtainable in halftone printing. On page 5 of the text accompanying the Photographic Lunar Atlas reference is made to “Future Supplements” Nos. 1—4, of which (1) the Orthographic Atlas (Kuiper, Arthur, Whitaker, Univ. of Arizona Press, 1961) and (2) the Recti- fied Lunar Atlas (Whitaker, Kuiper, Hartmann, Spradley, Univ. of Arizona Press, 1963) have appeared. The present Consolidated Lunar Atlas combines Supplements Nos. 3 and 4, thus completing the series announced in the 1960 Atlas. In View of the greatly enlarged interest in high-quality lunar photography resulting from the current space program and the now successfully completed Orbiter missions, special emphasis is placed here on types of information where current earth-based photography still excels: (a) low-oblique photog- raphy, which brings out low domes, lava beds, and other struc- tures of considerable horizontal dimension, but of low vertical relief; and (b) full-moon photography, which presents photo- metric information totally unavailable from even high-resolu- tion records taken with 20° or 300 sun angles. To illustrate: The excellent photograph, Orbiter V, M—165, shows a meander- ing channel near the center of the record with a horizontal reso- lution of approximately 20 m. In the Consolidated Atlas this area is covered at low illumination on Sheet D20. The Atlas photograph shows three large low domes (5 mm diameter on the photograph, or 12 km on the moon), two of which are barely recognizable on the Orbiter records, and the third of which is quite invisible. Yet, it is this invisible dome that apparently has caused the channel to make a major, otherwise incomprehensible, swing toward Copernicus. Another major dome occurs near the west edge of the Orbiter photograph of which only the central crater or caldera is apparent. The recog— nition of the dome and its structure requires very low illumina- tion, such as possessed by D20 near the terminator. Also, a very large shield-like uplift is seen on D20, southeast of the ridge placed at the center of Orbiter V, M-165. This shield is totally invisible on the Orbiter photograph. Many other exam- ples could be cited. They stress the need of a large range of sun angles, including very low obliques, for the interpretation of lunar surface structures. 2 G. P. KUIPER, E. A. WHITAKER, R. G. STROM, J. W. FOUNTAIN, AND S. M. LARSON Accordingly, special emphasis was placed on obtaining for this Atlas telescopic photographs extending as close as possible to the terminator, which for mare terrain required comparatively long exposures; and on retaining all recorded detail in the reproductions. To this end a fluorododging tech- nique was used in the copying of the originals on film positives, from which the printing negatives were made to the scale of the present Atlas sheets. The dodging across the original nega— tives was optimized by adjusting the separation between the fluorescent screen and the emulsion. Sometimes unsharp masks were used to extend the range allowed by the fluorododge printer. The photometric relationships were thus preserved within limited areas (up to a few centimeters on the prints), whereas the general gradient toward the terminator was largely removed, and the contrast between highlands and maria was also reduced. Because of the dodging process, the local contrast could be enhanced over the original negatives by a factor of about 6, in spite of the limited density range of the photo- graphic paper. The selection for the Atlas was made in steps: Some 8000 lunar photographs were obtained by the authors with the 61-in. NASA telescope at the Catalina Observatory by early 1967. This program included much experimentation with emulsions and their wavelength response, with exposure times, and with methods of processing. We are greatly indebted to the staff of the Product Planning Division of the Eastman Kodak Com- pany for major assistance throughout this program, such as supplying us with samples of new or improved emulsions not yet commercially available, as well as technical advice on their optimum use. This assistance has materially improved the average resolution of the Atlas photographs. Two F-ratios were used, F/ 13.5 giving a scale of 10”/ mm and F/ 45 giving 3”/mm. With good seeing, the larger scale was found to give superior records. The adopted plate size was 5 x 7 in., which at F/ 45 just fitted the fields of the Photographic Lunar Atlas. The photographs were graded in several stages, the first being when the upper 20—60 percent of the records of each night were put in the permanent plate file. Contact paper prints were made of all photographs retained. The next grading, done in several stages, was based on these contact paper copies, thereby avoiding unnecessary handling of the original films. Thereafter, 16 x 20 in. enlargements on paper were made of the best 15—20 percent. This included many pairs of records of comparable quality. The final selection was based on the negatives that were clearly very good plus supplementary fields selected on the basis of the large prints. The 120-in. Lick photography contains several excellent records, but because of their circular fields and limited cover- age, their inclusion here would have complicated the Atlas format. In no case are the records used here distinctly inferior. The same holds for the Pic du Midi collection, of which a substantial number were inspected at Manchester through the courtesy of Dr. Kopal; some of the records obtained with the 43—in. telescope are quite comparable to the best records obtained with the 61-in. telescope. The 61-in. collection was deficient in full-moon photogra- phy for lack of emphasis in the observing program. For this reason, we are including copies of the excellent 61-in. US. Naval Observatory full—moon plates obtained in a joint ACIC- U.S. Naval Observatory program. They are found in Part II of this Atlas. The few gaps remaining in the full-moon photog- raphy have been covered by photographs taken with the Yerkes 40-in. and the Lick 36-in. telescopes. One 36—in. Lick photo— graph showing a good sunrise crescent with an unusually good libration is used in Part I. 2. Arrangement of the Photographs In the Photographic Lunar Atlas the visible hemisphere was divided into 44 rectangular fields, numbered A—F in longi- tude and 1—8 in latitude (6 x 8 fields, excluding the four cor- ners). Because of the emphasis on terminator detail in this Atlas, it was not feasible to adopt the identical subdivisions. Instead, the Consolidated Atlas has, like the Photographic Lunar Atlas, eight east-west strips; but the longitude division has been made essentially continuous to allow for a gradual step-wise progression of the terminator in each of the eight latitude strips. The adopted arrangement is shown in Figure 1. The basic map is the well-known AF-ACIC photographic composite of the visible hemisphere, provided here with an overlay showing the eight latitude strips and the number of photographs used within each. Thus, starting at the North Pole, the A-zone contains 16 photographs, the B—zone, extend- ing roughly from 300—600 N, 20 photographs, etc. The total number of photographs in Part I is 192. Since the use of the photographs will be varied, it was not considered practical to give their boundaries in Figure 1. The appropriate sheet num- ber can, of course, be estimated by interpolation; but normally several consecutive sheets will be used together, with both sunrise and sunset illuminations. The full-moon photographs of Part II are-treated differ- ently since they provide uniform information over the photo- graph. F or this reason, Figure 2 gives the central positions (not counting overlap) of the 34 fields covering the full moon. In order to avoid confusion with Part I, Roman numerals are used for the arrangement in longitude in Part II. The letters for the latitude zones are the same in Parts I and II. The total number of photographs in Parts I and II is 226. In addition, a special photograph was added to the beginning of each part; (Part I) An enlarged photograph of Clavius, which may be compared with the standard Atlas print H7, illustrates that the full image content of Atlas photographs may require use of a hand lens. The Clavius photograph shows detail that had not been seen before. (Part II) The entire full moon, undodged, allows examination of features that extend over several fields of Part II, such as some ray systems and maria, and records accurately the albedo dilferences over the entire lunar disk. The astronomical data for each photograph and the zone designation are recorded in the margin. The C numbers refer to the 6l-in. NASA telescope of the Catalina Observatory; N to US. Naval Observatory; L to Lick Observatory 36-in.; Y to Yerkes 40-in. The colongitude gives the position of the termina- tor; l and b give the geocentric libration. The libration was taken from the Nautical Almanac for the day of observation, but not necessarily for the precise hour, whereas the colongi- g) z am an {1 «w Law 4m fiX ‘ .a 3 Riga; z is? Part 1. 1n Figure I Arrangement of photographs Figure 2 Arrangement of photographs in Part II. CONSOLIDATED LUNAR ATLAS 5 tude was in most cases interpolated for the hour. The average scale of the photographs is about 1:2,400,000, i.e., 1 mm is 2.4 km. Because the use of the average scale would cause errors in excess of 9 percent for plates with scales outside the limits 1:22—26 million, these are listed in Table l. The scales were TABLE 1 SCALES FOR PHOTOGRAPHS IN KM/MM OUTSIDE THE LIMITS 2.2—2.6 ATLAS SCALE ATLAS SCALE NUMBER (KM/MM) NUMBER (KM/MM) A1 3.0 F3 3.0 A10 2 7 G1 3.0 B1 3 O BlV 2 7 B2 2 2 CV 2 7 C2 3 0 DV 2 7 C12 2 7 EV 2 7 D3 3 0 FV 2 7 E3 3 0 GIV 2 7 determined separately for each Sheet by one of us (E. W.) and by Dr. Gilbert Fielder independently. We are indebted to Dr. Fielder for his assistance. 3. Minor Defects Except for some scratches, white specks, and marks caused by static electricity in the plateholder, the photographs have not been retouched. These few corrections were made with an etching knife on the final (large-scale) contact print— ing negative. Among the defects and imperfections remaining, the following are noted. (a) Static marks. Because of the frequency of low humidi- ties at mountain observatories and the absence of an antistatic layer on most films best suited for lunar photography, static discharge through or above the film is a common problem. The effect may appear as an area of lower density on the print taking the shape of lightning, “crow’s feet,” or a diffuse spot. A comparison of several atlas sheets showing the area of inter— est is recommended to differentiate these defects from genuine features. For example, on Atlas sheet A8 there is a light area west of the crater Egede A that, when compared with sheet A10, is seen to be spurious (a static mark). (b) Scratches and dust marks. Dust marks, resulting from failure to brush the plate or from dust particles being charged so that brushing does not remove them entirely, appear as sharp black dots and lines. Abrasion marks due to excessive brushing, errors in manufacturing, or improper handling pro- duce thin parallel lines that may be either light or dark. (c) Shutter faults. Most of the Atlas frames were taken with a focal-plane Shutter. Occasionally such a shutter will pro— duce a double exposure at low-tension settings for part of the field, producing a density anomaly. Although an attempt was made to remove this through dodging, evidence of the defect still exists, as on plate C1. (d) Frame numbers. Many of the films and plates used for the Atlas were numbered before exposure by writing the frame number on the emulsion. Occasionally this extended into the picture area. An example is found on frame D10. (e) Newton rings. In the copying of the original plates and films, care was taken to prevent Newton rings; however, on a few plates it was found difficult to eliminate them entirely. In no case does their presence lead to confusion. (f) Contrast variation. Because of the large range in intensities to be recorded when both terminator and high-illumi- nation regions are present, little variation from optimum expo- sure could be tolerated, particularly with modern aerial films, such as Eastman 4X, that have excellent speed and contrast but a short gradient and low saturation density. Since the termi— nator record was considered the most important, the higher intensities were sometimes recorded on the Shoulder of the characteristic curve. Thus, the contrast shown in the bright areas may be too low. (g) Vignetting. The Catalina Observatory 61-in. tele- scope does not quite fill the area of the 5 x 7 in. film unvi- gnetted. Where convenient, vignetted corners were cropped out of the Atlas prints; when not practical, however, the cor- ners were left black and the adjacent areas shaded to restore their proper tones. An example may be seen in frame C1. (h) Orientation. In most cases the long dimensions of the Atlas sheets parallel the lunar equator. However, frames B5, F6, and G6 have the long dimension roughly parallel to the terminator. 4. Relation to Orbiter Photography The original concept of the Consolidated Lunar Atlas was to provide systematic high-resolution earth-based photog- raphy of the visible hemisphere to which would be added Special fields photographed with exceptional resolution. With the conclusion of the tremendously important Orbiter I—V photography, this plan was modified to include references to the Orbiter photographs in sufficient detail for the user of this Atlas to decide which additional Orbiter records to consult. To this end, charts are herewith provided showing the outlines of the individual Orbiter fields projected onto ACIC lunar maps; and the Orbiter coverage is listed against the Sheet num- bers of the Consolidated Lunar Atlas in Tables 2A and 2B. The Orbiter IV photography covers the visible hemis- phere of the moon systematically and is considered first. Figure 3 shows the distribution of the high-resolution photography in longitude and latitude. There is roughly 20-percent overlap in the equatorial zones and even larger overlap toward the poles. In the right—hand section of Figure 3, supplementary sunset photography is shown which was taken to fill some gaps left in the first or sunrise coverage. Since these additions were made near apolune, their scales are reduced and their coverage cor- respondingly wider. The approximate average resolution for each latitude zone is indicated in the margin. The numbers in Figure 3 refer to the high-resolution frames; each of the medium-resolution frames taken during the same mission cov- ers most or all of the lunar surface as seen from the spacecraft. The photographic equivalent of Figure 3 is found in Fig- ure 4 (folded in four), which gives halftone reproductions of the same fields. From Figure 4 the reader may estimate the cov— erage of each field, as well as its quality and illumination, and relate it to the coverage in this Atlas. The Orbiter photography is, of course, basically unforeshortened. As stated before, the principal value of the Consolidated Lunar Atlas is the informa- tion on surface structures shown only under low-Oblique illumi- MES “6353 :93 yo ©me of “a Sim mm BEE EEwio so E32: 3 E5388 BuEioEm/w .hsmfiwoaoam souflomofinwfi >H HBEHO SSE mo £383: 088% can :23“:wa 02$:on m 3me w moom oo_ om. ¢m_ Eoo meow mm. soom mp. vm. m: m__ vm_ _m_ mm. N¢_ m¢_ mm. om. Eom mokw m: cm. mw. mm_ pm. m¢_ m¢_ wm_ _o_ sow $8 2:8 2:0 m < 3 o u 00 ¢: _§ om_ mm* mm_ vv_ om_ ~m_ mm. Eom zomm Eoow mm. mo_ ~F_ _m_ m: mm. um. vm. mm_ m¢_ _m_ mm_ mm. sow Zoom m: o¢_ mm_ H «w. E00. .20 m z o LUNAR ORBITER PHOTOGRAPHS IN ABC AND FGH FIELDS TABLE 2A OF CONSOLIDATED LUNAR ATLAS FRAME NUMBERS ATLAS ATLAS FRAME NUMBERS ATLAS FRAME NUMBERS N0. ORBITER IV ORBI‘TER V N0. ORBITER IV V ORBITER V N0. ORBITER IV ORBITER V A1 55,62, 67, — — — B4 67,74, 79, — —- —— C7 78,79, 85, 66—70, 86-93 68, 74, 79, 86 86, 90, 91, 80,165,177, 98 191,192 B5 61, 66, 67, 66-69 73,74,78, C8 90, 91,97, 90—93, 104-107 A2 68, 80, 92, — — —— 79, 86 98, 102, 103, 104,165,177, 109,110 191,192 B6 74,79, 86,91 — — — C9 90,91,97, 90-93, 104—107, A3 68,74, 79, _ ... _ B7 80,86,91, 86-89 98, 102,103, 120—123 80,86,91, 98,104 109,110,115 92,98 BS 79, 86, 91, 86—89 C10 97, 98,102, 90—93, 104—107, A4 79,80, 86, 102 98,103 103,109,110, 120-123 91,92,98, 114,115 103,104,110, B9 98,103,110 86-89,102 115,116 C11 97,102,103, 90—93,104-107, B10 98,103,110, 86—89,102, 109,110,114, 120-123, 133-136 A5 80,91, 92, 102,129-132 115,122 129-132 115,122 98,103,104, 110,115,116 B11 103,110,115, 102,105—107, C12 109,114,115, 120—123,133-136, 122,127 129-132 121,122,126, 150-157,159-162 A6 86,91,92, 88, 89, 102, 127 98,103,104, 129—132 B12 98,103,110, 86—89,102, 110,115,116, 115,122,127 105-107,129-132 C13 102,103,109, 104—107,120-123, 122 110,114,115, 133-136,150—157 B13 110,115,122, 102,129-132, 121,122 A7 92, 98,103, 88, 89,102, 127,134 159—162 104,110,115, 129—132 C14 109,110,114, 120—123, 133—136, 116,122,127, B14 110,115,122, 102,105-107, 115,121,122, 150-157,159-162 128 127, 134 129-132 126, 127 A8 92,98,103, 88,89,102, B15 127,134,139, 182—185 C15 114,121,122, 133—136, 150—157, 104,110,115, 129-132 145 126, 127,133, 159-162,164-167 116,122,127, 134,139 128 B16 134,139,140, 182—185 145,151,152, C16 121,122,126, 150-157,159-162, A9 110,115,116, 102,129—132 159,164 127,133,134, 164—167 122,127,128, 138,139, 145 134, 139, 140 817 134,139,140, 182-185,159—162 145,151,152, C17 126,127,133, 159-162,182-185 A10 110,115,116, 102,129-132 164,176 134,138,139, 122,127,128, 144, 145 134,139,140 B18 139,145,151, 182-185, 159-162 158,163 C18 133,138,139, 164—167,186—209 A11 110,115,116, 102,129—132 144,145,151, 122,127,128, B19 151,158,163, 182-185 157,158,163 134,139,140, 170 145,152,164 C19 126, 127,133, 159—162, 182-201 B20 145,151,158, 182—185 134,138,139, A12 110,115,116, 102,129—132 163,170,175, 144,145,151 122,127,128, 183,189 134,139,140, C20 133, 138, 139, 164—167,182-209 145,152,164 C1 54,55, 61, —— —— — 144,145,151, 62, 66, 67, 157,158,163 A13 127,128,134, — — —- 73, 74, 77, 139,140,145, 91,92 C21 133,138,139, 164-167,186-209 152 144,145,151, C2 54,55,61, ~_ _ __ 157,158,162, A14 145,151,152, — —— — 62, 66,67, 163 164 73,74, 80, 165,177,191, C22 138,144,145, 186-209 A15 139,140,145, — — — 192 151,157,158, 151,152,163, 162,163,169, 164 C3 54,61, 62, 66—70 170, 175 66, 67,73, A16 140,151,152, — —— — 74, 77, 78, C23 144,145,151, 186-209 163,164,175, 91,92 157,158,162, 176,183,190 163,169,170, C4 61, 62,66, 66—70 174, 175 B1 55, 62,67, — —— — 67,73, 74, 68, 74, 79, 78, 79,85, F1 27, 34, 39, 33—37, 40 80, 165, 177, 86,92 46, 53, 60, 191,192 65,178,184, C5 66, 67,73, 66—70 185 B2 62, 67, 74, — — — 74, 78, 79, 79,165,177, 85,86 F2 34, 38, 39, 33-37, 40 191,192 45,46,52, C6 73, 78,79, 66—70, 90-93 53,59, 60, B3 62, 67,74, —— — — 85, 86,90, 64,65, 184, 79, 86,91 91,97,98 185 TABLE 2A — Continued ATLAS FRAME NUMBERS ATLAS FRAME NUMBERS ATLAS FRAME NUMBERS N0. ORBITER IV ORBITER V N0. ORBITER IV ORBITER V N0. ORBITER IV ORBITER V F3 38, 39,45, 33—37,40 F23 143,149,156 168,177-180 G23 155,160,167, — ~— — 46,52,53, 172 59, 60, 64, F24 143,149,156, 177-180 65,71,72, 168 G24 155,160,167, —— — — 178,184,185 172 F25 143,149,156, 168,177-180 F4 52,53, 59, 33—37, 40, 54 168 ' G25 160, 167, 172, — —— — 60, 64, 65, 180 71,72,76, F26 143,149,156, 177—180 77,83,184, 168,173 G26 155,160,167, —— — —- 185 172 G1 52, 59,64, 40 F5 53, 60,65, 37 71,76,83, H1 44,58,70, 82 —— — —— 72,77 178, 184, 185 H2 44,58,70, 82 — — — F6 60,64, 65, — —- — G2 52,59, 64, 40 71,72,76, 71,76, 83, H3 44,58, 70, —— — —— 77 184, 185 82, 94 F7 65,72, 77, 54 G3 52, 59, 64,71 40 H4 44, 58,70, — —— — 84 82,94 G4 64,71,76, — — — F8 77,84, 89, 54, 84 83,88 H5 82,94,106 — — —- 96 G5 52, 59, 64, 40 H6 58, 70, 82, — — — F9 76,77, 83, 54,84 71,76, 83 94,106,118 84, 88, 89, 95,96 G6 71,76, 83, — —-— — H7 82,94,106, 125—128 88,95,100 118 F10 83, 84, 88, 54,84 89,95,96, G7 71,76, 83, ~— — —— H8 82,94,106, —— —— —— 100,101 88,95,100 118,130 F11 88, 89,95, 54,84 G8 76, 83, 88, 54 H9 82,94,106, — — — 96,100,101, 95 118,130,154 107,108 G9 83,88, 95, 54 H10 106,107,112, 125—128 F12 88, 89,95, 84 100 118,119,124, 96,100,101, 130,131 107,108,112, (310 83,88,95, —— — —— 113 100,107 H11 82,94,106, 125—128 118, 130,154 F13 96,101,108, 116-119 G11 88,95, 100, —— — —- 113,120 107,112 H12 82,94,106, — — —— 118, 130,154 F14 100,101,107, 116-119 G12 95,100,107, 125—128 108,112,113, 112 H13 94,106,118, —- — ~— 119,120,125 130,154 G13 100,107,112, 125-128 F15 107,108,112, 116-119 119,124 H14 106,118,130, —-— — ~ 113,119,120, 154 125 G14 100,107,112, 125—128 119,124 H15 106,118,130, — — —- F16 119,120,124, 168,177-180 154 125,131,132, G15 119,124,131, 125-128 136,137 136 H16 106,118,130, — — —— 154 F17 120,125,132, 168 G16 107,112,119, 125—128 137 124,131,136, H17 106,118,130, —— — — 142 154 F18 124,125,131, 168,177—180 132,136,137, G17 107, 112,119, 125—128 H18 118,130,154, 125—128 142,143 124,131,136, 166 142,148 F19 124,125,131, 168,177—180 H19 130,154,166 —— — — 132,136,137, G18 131,136,142, —— — — 142,143 148,155 H20 154,166,179 — — — F20 124,125,131, 168,177—180 G19 131,136,142, — —— — H21 130,154,166 — — -— 132,136,137, 148,155 143 H22 154, 166, 179, — — — G20 136,142,148, —— — — 193 F21 132,137,143, 168,177—180 155,160 149 H23 154, 166, 179, —— — — G21 142,148,155, — —— — 193 F22 131,132,136, 168,177-180 160,167 137,142,143, H24 154,166,179 — ——— — 148,149,155, G22 142,148,155, — — —~ 156 160,167,172 H25 154,166,179 — —— — TABLE 2B LUNAR ORBITER PHOTOGRAPHS 1N D AND E FIELDS OF CONSOLIDATED LUNAR ATLAS ATLAS FRAME NUMBERS ATLAS FRAME NUMBERS NO. ORBITER I ORBITER II ORBITER III ORBITER IV ORBITER V NO. ORBITER I ORBITER II ORBITER III ORBITER IV ORBITER V D1 25-27,29, — — —— — 54,61, 66, ——~ — D17 113,114, 93,95-136, 84—107, 109,114, 108-115, 31—34 177,191, 118—135, 138—145, 112-115, 121,126 120-123, 192 137—140 162 120,122, 133—137, 124-131 142—157 D2 26, 27,29, 5-24 25—35 54,61, 66, 41, 42, 31—34, 41, 73,177, 44—51 D18 113,114, 96-112, 102—120, 109,114, 108,115, 44, 50-83 191,192 118-135, 137-145, 122, 121,126 120—123, 137—149, 162—178 124—160 133-137, D3 5—19, 5-32, 5-21, 54, 61, 66, 38,41, 42, 157—172 142-157 25—27, 29, 35-42 25—35 73, 165, 44—51, 31-34,41, 177,191, 55—62 D19 134,135, 112, 102—107, 109,114, 133-137, 42,44, 192 137—140, 137—178 112—115, 121,126 142-157 50—83 149,151 120, 122—131, D4 29, 31—34, 5-32, 5—20, 54, 61,66, 38, 41, 42, 137—141, 41, 42, 44, 35-42 25—35 73,78, 44—51, 145-152 46—83 192 55—63 D20 134,135, 112, 102,120, 114,121, 133-137, D5 31, 32,41, 5—32, 5-20, 61, 66,73, 38,41,42, 137—140, 137-178 122—131 126,133 142-157, 42, 44, ' 35-58, 25-35, 42, 85 44—51, 149-151 164—167 46—83, 67-74, 44—50, 55-64, 85-100 76—91 52-70 71-78 D21 134,135, 137-194 120, 121,126, 137, 137-140, 122—160, 133,138 142-157, D6 31,41,42, 5—58, 5-21, 61, 66,73, 38,41,42, 149-151, 171 164—167 44, 46—83, 67-74, 25-35, 78,85 44-52, 153-173, 85—100 76-91 40—72 55—64, 175-183 70—78 D22 134,135, 137, 120, 121,126, 137, D7 41, 42, 5—32, 5-21, 66,73, 85 38,42, 137-140, 146-153, 122-131, 133,138, 142-157, 46—83, 35-42, 25-35, 44—52, 149-151, 162—212 161—170 144 164-167 85—100 67-74, 44-67, 72 55-64, 153—156 76-91 70-78 D23 137—140, 137, 120, 121,126, 150-157, D8 41,42, 5-20, 5—20, 73, 85,90 52, 55-64, 149—151, 146—195, 122—131, 133,138, 164-167 46-49, 25—32, 40-70, 72, 70—78, 153—156 197-212 161-170 144 68-100, 35-74, 80-83 80—83 105—112 76-91,94 D24 153-156 179-195, 161-170 138,144, 210-217 197-215 150,157 D9 46,47, 43—74, 40—70, 72 78, 85,90 64, 70-78, 84-100, 76—91, 94 80-83 D25 150, 179—195, 161-170 133,138, 164-167, 105-112 153—156 197-215 144,150, 210—217 157 D10 84-100, 43—74, 40—44, 85, 90,97, 64, 70-78, 103, 76—92, 94 52—70, 72, 102 80—83, D26 150, 179—195, 161-212 138, 144, 164-167, 105-112 73, 75, 79-83 94—97 153-156, 197-215 150,157, 210—217 174—215 162 D11 84—100, 4—74, 40-44, 85, 90, 97, 64, 70-78, 103, 76-92, 94 52-70, 72, 102 80-83, D27 184—215 195, 161—170, 138, 144, 210—217 105-112 73,75, 79—83 94—97 197-215 172, 150,157, 181-212, 162,169 D12 84, 103, 43-66, 40-42, 90,97, 80—83, 214, 215 105—112, 92-111, 68—70,73, 102,109 94-97, 118—133 113-136 75,79, 108-115 D28 184—215 195, 161-170, 138,144, 210-217 80—85,86-101 197—215 172, 150,157, 181—212, 162,169, D13 103,113, 92, 93, 73,75, 97,102, 94-97, 214,215 174 114, 95—136 83—107, 109,114 108—115, 118—133, 112-119 120-123, E1 26,27, 29, — — 21, 25—35 27, 39, 46, 38, 41,42, 141-148 133-136 33, 34, 53, 54,60, 44—51 50—67 65,66, D14 103, 92—111, 73,75, 97,102, 94—97, 184,185 105—114, 113—136 84—101, 109,114 108—115, 118—133 103—107 120—123, E2 34,50—67 —— — 21,25-35 39, 46, 53, 37, 38, 41, 133—136 60,65, 42, 44—51 184,185 D15 113,114, 92,93, 73,75, 102,109, 94—97, 118-135, 95—136, 84—107, 114,121 108-115, E3 5-19, 5—32, 5—21, 39,46, 53, 37, 38,41, 138, 138-145 112-119 120—123, 25—27, 35—42 25—35 60,65, 72, 42.. 44-51, 141—148 133—137, 29, 31-34, 178,184, 55-62 142—149 41, 42, 44, 185 50-83 D16 113,114, 92,93, 84-107 102,109, 108—115, 118-135, 95-136, 114,121 120—123, E4 33,42, 44, — — 21,25—35 46,53,60, 38,41,42, 137—139 138-145 133-137, 50-83 65, 66,72, 44-51, 63 142—149 73 10 G. P. KUIPER, E. A. WHITAKER, R. G. STROM, J. W. FOUNTAIN, AND S. M. LARSON TABLE 2B —— Continued ATLAS FRAME NUMBERS ATLAS FRAME NUMBERS No. ORBITER I ORBITER II ORBITER III ORBITER IV ORBITER V No. VORBITER I ORBITER II ORBITER III ORBITER IV ORBITER V E5 44, 50—83, 76—91 21, 25—35, 53, 60, 65, 37, 38,41, E17 149, 151, 163—178 107, 113,120, 138—141 85—100 44-70, 72, 73, 77, 42, 44-51, 157—173 112-120, 125, 132 72,78 78,84, 85 63, 64, 124—160 71—78 E18 149,151, 171-178 120, 113,120, 138-141, E6 44, 50-83, 76-91 21, 25-35, 65, 72, 73, 38, 41,42, 157-173 124-160 125,132 169-176 85—100 44—70, 72, 77,78, 44—51,63, 78,79 84, 85 64, 61—78 E19 134,135, 163—178 120, 120,125, 138-141, 137—139, 124-160, 132, 137 169-180 E7 44, 46—83, 35—42, 25-35, 65, 66,72, 38,42, 149—151, 171, 85-100 67—74, 44—67, 73,77, 44—52, 153-173, 173—180 76—91 72,78 78, 84 55-64,71-78 175—183 E8 46—100, 35-42, 40—70, 72, 72, 73,77, 55-64, E20 139, 163—178, 120, 125, 132, 169—180 103, 67-74, 78, 79—83 78, 84,85, 71-78, 149—151, 205-212 124-131, 137, 143 105—112 76—91, 94 89, 90, 80-84 153—173, 136—160, 96,97 175-215 171-212 E9 46—100, 35-58, 5—20, 72, 73, 77, 55—64, E21 140, 146-161, 120, 122, 125, 132, 169—176, 103, 67—74, 40—70, 72, 78, 84,85, 71—78, 149—151, 163-195, 124-131, 137,143 178—180 105—1 12 76—91, 94 78—83 89,90, 96, 80—84 153—173, 197—212 136—161, 97 175-215 163—184 E10 85-100, 76—91, 94 44-70, 72, 77,84, 85, 64, 71-78, E22 149—151, 163-178 136—160, 125, 132, 169-180 105-112 78-83, 89, 90, 96, 84, 98—101 153—173, 171—212 137,143 108—111 97,101 175-215 E11 85-100, 76-91, 94 52-70, 72, 84, 85, 89, 64, 71-78, E23 149,151, — — 136-160, 125, 132, 169-176, 105—112 79, 80-83, 90,96,97, 84,98-101 153—173, 171-212 137,143, 178-180 108-111 101 175—215 149 E12 84, 103, 93, 94, 79—84, 84, 89,96, 80-84, E24 153—156, 187-194, 161, 132, 137, 169-176, 105-112, 113—136 88-101, 97,101, 98-101, 175-215 197—212 163-212 143,149 178-180 118-133, 108-111, 102,108. 108-119 141-148 116-119 109 E25 153—156, — — 171-213 132,137, 169-180 175—215 143, 149, E13 118-133, 93,129—136 107—119, 96,101, 98-101, 156,161 141—148 138-145 108,113 116—119 E26 176—215 —— — 171—213 143,149, 177-180 E14 118—135, 93,113-136 84,86—101, 96,101, 98-101, 156,161, 137—139, 103—119, 108,113, 108-119, 168 141—148 132—135 120 138—141 E27 176—215 — — 171-213, 137,143, 177-180 E15 118-135, 93,113—136, 84,86—101, 101,108, 108—119, 215 149,156, 137-148 138-145, 103-120, 113,120 138—141 161,168 163-178 124-131 E28 176-215 195, 161—170, 137,143, — —— E16 118-133, 129—136, 107, 108,113, 116-119, 197-212, 172-215 149,156, 141-148, 163-178 112-120, 120,125 138—141 214,215 161,168, 157-173 124—160 173 nations or near full moon; and on the photometric relationships over larger areas in both morning and afternoon illuminations. The coverage by the other four Orbiter missions is given in Table 3 and shown for the visible hemisphere in Figure 5, also folded in four. Here the area designations are approxi- mately arranged in lunar longitude. To separate and clarify the Orbiter photography that falls within a strip along the equator approximately 160 wide, where often more than one Orbiter has photographed a given area, each mission was plotted separately on six AClC LAC Charts. The resulting maps, Figures 6—26, have been arranged by section from east to west. For each area and each mission, the frame numbers are given with only the first and last of a block of consecutive and overlapping frames listed. If only a single frame number is given, it was the only one taken on that mission. In nearly all cases, the outlines of the areas refer to the medium-resolution coverage. The high-resolution frames with the same numbers, taken concurrently with another camera, fall within the same outlines but cover only a fraction of the area. The number of such high-resolution frames within a given medium-resolution block may be 1, 4, 8, or 16. Occasionally, and only for Orbiter III, some high-resolution frames were obtained without a cor- responding medium-resolution frame. These exceptions are frames 40, 42, 72, and 75 of Orbiter III, which are included in our figures. On the other hand, the Orbiter I medium-resolution frames do not normally have accompanying high-resolution frames. As is seen on Figure 5, three types of Orbiter coverage TABLE 3 LUNAR ORBITER PHOTOGRAPHS REPRESENTED BY THE AREAS SHOWN 1N FIGURE 5 NASA SITE ( ) AND FRAME NUMBERS AREA ORBITER I ORBITER II ORBITER III ORBITER V 1 (A0)5—24 __~__ ___.— ___. 2 25—27 _ _ _ _ _ _ __ _ _ 3 29,33,34 ___ ___. ___ 4 ___ “___“ ___. (V1)33—36 5 ——— ——— ___ (V2)37 6 ___ ___ ___ (V4)40 7 31,32 __ __ _._ _ _ _ _ _ _ 8 ___— ___ ___ (V3)38 9 ___ ___— _—— (V5)41 '10 ___._ ___ _——— (V6)42 11 44;(A1) 50-67 __ __ _ (P2) 25—36 (V8) 44—51 12 ___—— (S1)21—24 ___— __— 13 41 _ _. _ __ _ _ __ _ _— 14 ____ ——— ——— (V9)52 15 (B2) 48-49; (P1) 5—20; (S2) 25-32; (P1) 5—20 (V11) 55—62 (A2) 68-83 (P2) 3542 (V12) 63 16 42 _ _ _ __ __ _ _— —— _ 17 46,47 __—— __—_ ___— 18 — — __ — — —— — — —— (V14) 66-69 19 ___— __—.— ___ (V15)70 20 ————— ___. (SS)78 __— 21 ___ ___ ___ (V10)54 22 ___ ___ __# (V13)64 23 (A3) 85-100 (P5) 67-74; (P5) 52-67; (55) 72; (V16) 71-78 (P6) 76—91 (P6) 68-71; (P4) 44—50 24 — _ __ (P3) 43—58 — —— — — — — 25 (B4) 84 —_ _ _ __ _ __ (V18) 80-83 26 _— — — (P4) 59-66 — — — — —— _— 27 _____ ——- (S9)79 ___—- 28 (A4) 105—112 (S8) 94 (510) 80—83 —— — — 29 ___ ___ ___. (V19)84 30 ___— _.—_ ___—_- (V21)86-89 31 _— _ __ _ — —— _ — _ (V22) 9093 32 ———— ___ (S6)73 __— 33 _— _ — —— — _— _ — — (V23) 9497 34 ___ (S6)92 ___ __— 35 (Bs)103 ———— ___— ———— 36 — — — _ _ _ (S17) 108-111 (V24) 98—101 37 H__ ___ ____ (V25)102 38 — _— —— — — — — _— — (V31) 129—132 39 _ _ __ _ _ _ _ _— _ (V26) 104-107 TABLE 3 — Continued NASA SITE ( ) AND FRAME NUMBERS ORBITER l ORBITER I I ORBITER III ORBITER V 45 46 47 48 49 50 51 52 53 54 55A 558 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 (A5) 118—133 (A6) 141—148 (BS) 113,114 (B8) 134,135 138 139,140 137 (B9) 149,151 (A7) 157-173 (B10) 150 (B11) 153—156 (A8) 175—183 (S7) 93 (S9) 95; (P7) 96-111; (P8) 113-136 (812) 162 ($10) 112 (P9) 138—145 (P11)163—178' (811)137; (P10) 146-161 (P12) 179—194 (813) 85 (s11) 84 (P7) 86-101 (819)116-119 (815)103-106; ($16) 107 (S18) 112-115 (814) 102 (S23) 132—135 (S21) 120 (P8) 124—131 (S22) 122 (P9)137—160 (S24) 136 (S20) 123 (P11)173-180 (V29) 120—123 (V28) 116-119 (V30) 125—128 (V32) 133-136 (V33) 137 (V35) 142—145 (V36) 146—149 (V37) 150—157 (V34) 138-141 (V38) 159—162 (V42) 169—176 CONSOLIDATED LUNAR ATLAS 13 TABLE 3 — Continued NASA SITE ( ) AND FRAME NUMBERS AREA ORBITER I ORBITER II ORBITER III ORBITER V 77 —————— ———-—-— (S27)171 ————— 78 _ _ _ _ _ _ — — —— (V43) 177-180 79 ————— ————— ———— (V41)168 80 ——— ——— (S26)162 ——— 81 —-——— ————— (S25)161 ———— 82 —— — — (S13) 195; (P10) 163-170 — —— — (P13) 197—212 83 ——-4— ————- (S28)172 ——— 84 (A9) 184-215 —— — — (P12) 181-212 — — —— 85 _ _ _ _ _ _ — — — (V45) 182-185 86A —— -—- — — — — — — — (V46) 186—193 86B — —— —- — — — — — — (V48) 194-201 86C —— — — — — — ~— —— —— (V49) 202—205 86D — — — — — — - —— — (V50) 206-209 87 ———— (S16)214 —-———- ————— 88 ———— (S15)213 ——— ——-——— 89 _ _ _ _.._ __ ._ — — —— (V51) 210-217 90 ——-—-— (S17)215 ——— ——— 91 ——— ——-——-— (829)213 ——— 92 174 — —— —-— — — — —- —— — 93 ——— ———— (S30)214 ———— 94 ———— ——— (S3l)215 ——— exist: (1) systematic photography, taken almost normal to the lunar surface; (2) oblique photography showing the lunar landscape near the horizon and designated by V-shaped pano— ramic sectors, outlined in red; and (3) high-altitude coverage from Orbiter I of larger areas of the moon, outlined by dashes. 5. Additional Photography Since the 61-in. photography in this Atlas covered a period just over one year, it is anticipated that future low- oblique photography will yield photographs superior to those included. The authors and the sponsors intend to distribute a package of substitute sheets after one or two years, to replace Atlas sheets definitely surpassed. Acknowledgments. The publication of this Atlas, the con- cluding supplement of the 1960 Photographic. Lunar Atlas, was supported, like it and the Orthographic and Rectified Lunar Atlases, by the US. Air Force Cambridge Research Laboratories, under Contract AF19(628)—4332. The authors are deeply indebted to the sponsors for their agreement on using the photographic method of reproduction, in a format developed in the production of the five Ranger atlases. We are indebted to the National Aeronautics and Space Administra- tion for providing this Laboratory with the excellent 61-in. telescope used in most of the records presented here, and for continuing staff support in lunar and planetary photography. We are pleased to be able to include copies of the best full- moon photographs obtained by the Flagstaff office of the Air Force Aeronautical Chart and Information Center in collabora- tion with the staff of the US. Naval Observatory. As stated in the text, the program of the 6l—in. lunar photography at the Catalina Observatory has greatly benefited from the advice and generous assistance of the staff of the Product Planning Division, Eastman Kodak Company, Rochester, New York. The production runs were made at Ray Manley Commercial Photography, to whom we are indebted for their skill and excel— lent liaison with the Laboratory staff. , “WWW” ii a MVWWWV 14 1:: i. 493%“ .d..bf. _ . f. mmmeS MMSvWOS 0 enoughU parne. he .1 gi 66.1 echo 1a 66 1a er mammvm rammwm .flvuflwn .MWuflon 60005th 70.n1ve mm 6 .1 OS h d rhmet er. 608 ,meawmw Mnmamew .1 Ir. 3 .lug ate ‘ FLngcm FLthmm .d...._..f. _ ._f. mnmdos omswmos pa ne. harne. Immoei Woke 01605.1ch Hmbme VwbbmmF mwmmvm flammwm .uoulmwn fiwuflwn bcn W bcnu W rc oflao rc 0440 h d h er 608 e 1“ OS «I pm t «101 6 “33 h S raamhts gnrasea unrasea .lugramnu .WougraMC FmeDca FmeDCM p kg ‘ 7% ' w “’2”; {Law W ‘ , s , §g§§ M...x1.ym-§.,,.vm es" -2 my MAMA.” +5?an Km? 9 :3; 2: m i 22w)» ,fihgh‘ «24x ‘ 16 w f 3?: W: ' :wa . vélix. r ,. xxx , __S _—S amw amw mom mom Cd Cd ef ef .mmo .mmo hae hae p g . p aDa aDwo aim ya omv omv teo teo ObC Mbc .m.m1 Pml um um IHO. “no. «let—\J. «Let—\J. Mmmg mmmm omfimw Imfimw “ommol IOdIM-l wmamm mammm .gmeeo gneeo I gnh .lugnh FLarflS FLaHS :95, 9 n3: . 5 :In a. ,Euflliifififl in)!“ a} «‘51:; a . . r 1 w z" 1,? , 1 4 3 : ‘1 _ , w i I Figure 12 1c cover- Dashed out- te total coverage of areas ter lll photograph i age and frame numbers Lunar Orb 1g. 5. o Indica in F mes shown 1. Figure 13 ic cover— Dashed out— te total coverage of areas ter V photograph i age and frame numbers Lunar Orb 1g. 5. 1nd1ca in F mes shown 1 .6521 Sf omeo mumeo t n t. n omne. oahe. hftgs hfitgs p ua. ua. dor pd r In 97w: n06.Wo name Vame behCfl IWDhCH eas .1 eas .1 a] t al .HflDmn .lflDmn mm mm mm mw MOCmeh ”Ocmeum 6r.w€MS effmetS rahbcs rahbws unpm.la unpm.la @umudm mumudm FLgn.ma FLgn.ma i a l 4 s Figure 18 Lunar Orbiter I photo— graphic coverage and frame numbers. Dashed outlines indicate total coverage of areas shown in Fig. 5. Figure 19 Lunar Orbiter 11 photo- graphic coverage and frame numbers. Dashed outlines indicate total coverage of areas shown in Fig. 5. 1 . ,t . flgwciq , .3’ «*1; ‘1 .awgffw ”.rg’ if ”f” x s wswwwgfia +~ a Mu s N human; «1a: 314,1 is z ”E 20 F Z‘gure _ Db ab mmm oa.1 hfirlm p d Hum TIL AU av rgh eaS .uma mmp 00& r [.m6 ahb an umu Lgn icate total coverage of (1 areas shown in Fig. 5. 1n igure 2] F .65 e mmn 0r.h hft 0.10% n Vad ee ugh nnu n\u .fira bwD r0 Ocm. ffnlve ahb an umu Lgn f 0 $5 m. who oF CH flTn .mw t0 ww a .ww 106 .mm 21 ,.,.,<...,.2, ,,2: .22.. 2.22:. , . . . .W22222,..,.,,22222 222 2222.22.22.22 , _ . . . _ . . , 22222.: 22,222., 222. 2.... 2 2,2,;,. 22222..,,.,.,,.2..: . . _ . , _ 222h,.n22222222 222.22.222.1212.,.222>M2W2 222MMM22J22222222. . , . . 22222222222222, 2.2.22. MMMW222H,_ , _ , . . . : , . . _ . 2mmwmwwm222 ,2....2222222222222, .2 . . . . 22.2.2. 222.2,... . . . . , . . . , ,,.. 222,2, ..222wu222222222. 22222222222. . . 2,2,2, 22,. . .. . . .. . . . . , 222,2 $2,222... 2,.22222 22222 4 22222222,. 2. 222,222, ,, _ . _, 22., H.22wm2m . ,. . . . . . ,.,2 222222 222.222.2222 2 ,2222222f22 , , . . .2“... ”.2222... . 22.222.22.22, 22222222222222 22222222, . 2.2.. 2 2,2,2. . . , 2222222222222. 22,22, 2 222,2, .2,222222,,2., 33$: 22 221221222 [232%. wwaamabg fi§§§2§22§® 322.222.222.22. .22., 22 ,2... 22222222222222 2&22a22,. 222222.22. 24 22.2. 2 22, 222. 22. 22222 2.2.2.2222 2 2. 2,322.22»... 2.. 2 2222.2 @2222 .2 22 ,22 2. ‘ 21 E 2323' 4 .. 2222.22,. .2222 AM .22 52,2 , . 2222 $225.2. 322 222,222.22 . 2.222.222.2222 2,22,12,22 ,2 22.222222222222222: 22222 . .vagafiw, $222,222.32, . 22.222. 222 22.222.22.222” .2222w2 222.222.3222.: ,2 ,.%w 2 22222222 6 2M§2>2f 222222.232 MW? 22222.22..2M22,.. 2222222 .222222. ,2 2222222 2222222222,, ,2 2< 222 4,4 , _ . , .. 2222”,...22 £222,222: 22 2.22... .222 ,22u@,2@»2§&. a 2% Mfifié , .3Q. .82.» £2.22 22mmmw. .22.. w 2,222 2,2,.2g222, 222,2. Emmy”. 2 “Ms 22.222.222.22; ,2, 2.2 2.222222%. . 2222.22. 2.2.2. 22.22222. Wm 2 222,222.... 22222222222222.22. wwaflfian. . fiwfifimwfihfi, Q®I VWW2§2QWN2 nix, 2,222/2,299un $522 2 22s 22222222222222.2222 22222222222222.2222 ,22 , 2222222222222, .,2...” 2222.222: 2 2222. 22,2, 2222 2 $2 ’67} :22 “3‘. 22 2.222 .2, 2.2.,22 .. 2 {2222,2222 2.22.22 22 .2 .2222222, ,2. 2 22 2,22 . ..,22222222122. . . . .,2 2.2.2222 22,2 . . . 5mg . . . 22.2.2.2. .2222 . 222,222222222M ., . ,.MMMMMMWM , . . 22222222®MAW 22.222222 2 M22. .. . . . 222 WMMM2 . . 22.22% .,2 2 E. 222 222.2 . 22 ,2.w2g.<¥ 2 2%»? 22., .2222222222 .....,22... ., ,2, , 2.2122. .22 2.2 2.2222222. M22222. M22212 222222 2. :22 222 .2 . 2 2.. 22 2 22.. 2 22 2%... 22/2? 2,222.2. 2222222222 22222 E22222 1:2 . ., .a§§ a: Q MM, 22 22.2.2 2.2.2.2222. ,b:§§, 2222 g, 2.2 2 2 2‘ 2 M 2322 22. 2. 2222222 4?}. 22222.2 ‘22; 22 22,222. 2. 222.22. ,2 2222 ,2 2 24252 2 , 22 .222 2’ 2 , 53. 2.2 ‘MM' 2; 222. . 2,222,222.22 22, @2222 . . 222.22.222.12: 22,2 4864'. 22 2 . 2’22 22 . .WM2. ,2M2 . _ , , , 22 2.2.7,: , , . . , 2,222,222.»... . , 22222222 . . _ . 2 2.92222 22,. . . .222 Wdevb, @Ww Rfi§aa§r QM , . . . .. . 2,22... 22.22.22 222> 2.2222 . 2 2 . , , . 22%2222222222 22222222222 _ . 2222.2 ,2 2, 222222.222 22.22. 22222222222 . 2 22,2 .2 . , , 22222222222222.2222 .,2... 2,222.22 . Wmafifi W2 ..W2 22.22.222.222. , , , __ _ , . . . . 222.222.222.222 222222£ . , _ , , ,22 22222222222222 , M ..,2, 22,2 2,222,222 2222222 .2222, 22222,, .2 , . . . . . . . , 2. 222,22. _ _ 2m .2222222MMMMW22, , _ , , . .22M2M222. ..2 . , , ., 2 ,. , . 222,222.22, 222222... 2:. (2,22, 2,2,. . 2 .. , . . . 2222/, , Winfinni . _ , 2...,w222,...2., 2,., ., . ..,. .. . 22 . . 222 . 22w,2222 222.22, .2, ..,.m.2.,.\2;..§..2§. 2w 22.22.22 222222 2) 22.2 2‘2; '2: 39.291. 2.22%, , 22.222.22.222... 22222222.,22mmw22 2... 2222 2222 2.2.2222 f2 2 ..2... 22222 22222 22. 22.2. ,,. 2. .2... 222 ,‘2 222. 5‘” 2 ,22. ,.2 ,22. ,.2222w2222 2.222.222.2222. 222.22. .222 2,222.22. 22 22 222222 2'. §€2 : 2‘23: 22222 2 2 22 2.2 2 » 222 §z$§2 27222 2. ..,. 2. 22,222.52 222222222222 2 2 M. 'M. «2 22 2152 “2422 g 2 22 2M 2422 22222.22 22 22222.2 222. fig fi‘fiQg 2 2 198$?» «8 ;®®®:§g 2222 § 222 2‘ 2 ,2222222222M, 22 22.2 ,22 2.222.222.2222 :22. @ Q S Cfi’fi 22. .2 2.222 ., ,, , , . ,.222222222 ,, ,.,2,22. 2222222222, 2222 _ ., . , . H _ 2.. : 2 ,.222 2 22 . . , ,. . _ _ . , 232,222.24 _ _ , 22.2 *2222 22222223222222. $22a§222§eva Ma ,22. 2. .2 .. 1.222222. , 22,222,, 2.2.22.3 _ . 2,225,222.... . 2.222.222.2222. .2 .222... .. , . _ . ,.2...,2,.22.2 . 2.2222222? baa/2.... , ,2.“... . 222,” T 22222222,. 22M2222 n.2,. .2..,2,2.2. wwwN.mmeMM22m,22u 22.22222 . , . , _ . , , . , . 22.222222222222222 ,,. . 2.,2 . _ , . .,2 .,2 . 22222222,, MM222222222M22... 2.22.2222..% 2222222222222: . . w. 2. 2,2 M2,, , , . , , ..2.,~\2.o , . 2®rfi§§ «mama. flw .222 2 2.2222 , , _ . 22”.“, . 2,222.22? 2.222222: 2. . , 2 22.22.2222 2 2 2x. 2. wmmwww22222, 2, _ ,_ . . . . , ., . , , _ , , . _, 2&22U22v2%2@2, , ., .22 . . . . .. .. . . .. .. _ , _ . . .. 222222222, 22 S .22. ,.,22222 2.222.222: ,. , . , . _ , _ . . . . . , , , . 2.22.2 . . 22.2 . , . . , . . 222,W2mm.m22wm M2222”... _ 2222. 2222,2222, . 22,.2.%.2.222.2.2222222 , ®®Wm®twhfi 2&3. . ®Efiw§ . .222222222222222222 . . . . . , . . 2222. 2222222222 . _ , . . . .. . , , . 222.222.22.22. . . , , . _ $222,222 ,' ' L22 2. <2 2'2? 2 22.2.“222 2. 22,222. 22.22.2222,, 2.222222 2.22,. , 22,222222222 ,2., . , . 2., , , _ 22.222222, .,2, .22.,,,2,22., _ , . , . _ , $22.2“ ,. , ,. 2 , ., .2 . . .. . _ 2.222.... 2 22222222222222 2. ,.,.2.,2.., ,.. , . , _ . , . ,, ,22. 222 M22222222222222M$M 222.2,.2222, 2..,2 2,22,, . , . . 2 _ . . 2222222222. 2, ,22222 2222,22. 222.2222 22.222222222222232 .2322? 2 222222222222, , . . , 2,2, _ . 22.222222222222222, ,. , x. .,2 2., 2. . . . .§222 ., 22.22222 .22. 22.2222 . 22,2. 22.2., , 2.. 22222222222. , ,..,22 2.2.2222W2m222. 2 2222.222 .2 222222122 22.22 ,. 2 2;... 2.222.222», .22. 22.222.222.223» T. _ . , . . , , 2,.. . . . . .. . . , . . , , . . ..,MMMMWMMM2 ..2, _ 2 WMMNWMMW: 222.2... 2.22.2.2, 222222222222, ., 2 22.222 2 . 2.222222222222222, _ . 2222, ,,.2 , . . 2,...22. ,.222 . 2.22 22 ,, 2222222222, $22.2 2.222222222222222 222222.222 .., .22: 2222222222222: , . . , . .. . . . .22. .222 ,2.,2..22.222 22.22.222.222 22.22.22.222. 22.23222222222222222222 . . . . . , . . . . 2222222222,, ,.,,2222222 2.2222422222222222. . 22222222222222.222222 2.2.22.2 . _ , . . . , . 2222222222222 . _ . . _ . . 22222222222222. . . , . , 222222222222w22. 222 ,2. _ , , 2.222.222.2222, 2W222222, 22222... , ,.. . . , 22.222222222, 22.222.22.22222222, , . . _ .. .. 22222222222222 . , .22. 2,2. &®.®@6{¥w2&®3 , . . , , . .w §$®§fi 2% 5/:/»,2.En. . . . ~.§~&$®2®®: 222222.222. _ . .2222 2,22 . . , .2.,,22222,,2,2222,2222.22 wa®$§ .,22 a w. ,.®®u®§@®§§¢ 222,222.2222222, 22 222.22.222.22m2... @vaxgwwwwfi $éfi§bes®fiw$§®i $22 22 §§§§2§ “$2222.22, 2,, ,2 2.2222222 . 222.222.222.222 222.222.2222 ,2., 2222222222.. 222.222.2222.,fl 222w . kwwwwuuawvgmwv 2.2222222,2.2,22.2 , .2222 2222M2222 22222222222222.2222 ,.2 2,2222 22,2222 ,. 2,.2M22.2.2..222 222ww2WWw. 2 .2222222222222222 .22. 2. . 22.222222222222222. Ma22222222u22. 222222222 , . $222222, 2.222.222.2252, .,.,,22.,, .2,, ,,w..,, ,2 w2Mz -2~222~W2:2 ,. . 2,2 2.22.2.2. 22222222222222. ,2 ,2 2. 22222.. , ., 22.222. .22, . . 2.2 2.22. .2222, 2.2222222», 2222222222, 22,2. .22. ,22 2.222.. 22.22. . 2,2 . 2222 222.. 2 ,2. .2222, . 22222222222222.2222 . ,2 2 2. 22., $22.22, , M£22222§M2222 2., .2222 2 .2 2 22. 2222222222 2, ,2 222.22.22.22, . 2. 22 22222.2, ,2 M 22,23,222. , , .2, . 22222.2, . . , . . ..2 .,2 2.222222 . . . ,. .2. 2 222. . 2222222222222: 2,22 2222222222222 2222.22 2W2MMMWM2 2m22wmww . 22.222222222222222 i 22 122522 22, 92.2 22222222222222222222222.2,. 22222222222222.2222/2 222.22.222.22. 22222 22 2222,2222. 22... k222 WW; . $§§ $322222 222222222 2.22.3. , , .222, 222,, 2.2222 5.222 2 2 2 2 ’ .2222 2 .22 41? 2 221 22 223‘? ‘§ 2. 122.22% 2» M222 2 222.2 2222 fiafiwfiwfi. 22222222222 2.. .2. . . . . 22.22%.32. ,22, 2.222222%; 2.2.2.2222 aufififlfi . on» 2.2. . . . 2222.222. .2222.222 2,222.22 22,2, 2 2'2 §fi§i® 22222222222 ‘52 2‘ 2'3; QR222.22) 9% .2 22.22222 . , 2222 . . , , 22.. . 2, . 22222mmeWm2w ., 2 . . 22222222222222.2222, . 222. 2 .,2 W223??? . ,22 22.22.22.222: 2m ,2 . .2 , 22.222.22.22 2222W22222M .222 2,2. .2 ,22 MM2MMMM2M2222MWWM, 222.2,,2222222 M222 2,22 , . . .222, 2., 22mg 222222.222, . 22,2.2222mwwwm 22222222,... .222 2.. “$222,222,222, , . M222§22 , v2222:222222.. , 2222.22 222.... MMMmMWmemig 22222 222W2M2222222. 2.2.22, 222 22222m2M2Mfi 22.222.22.22. 2,., 2222MM2222222222.222222222, 2222222222. 222,2. 2,2,2, ,. 2222222222222 ..flimZWwwM, W22, 2222M®2W2222222222 22222222 22222222232222.2222, 22 ., 22222222222222.22223MM2222. 2. 22. 2222222222222 2222222222 .2222 22222222222,” ,Wmm222222222 2.22222222 ines 5 5 ig ig 1n in . Dashed outl te total coverage of F 23 Lunar Orbiter 11 photo- 22 Lunar Orbiter I photo- te total coverage of F areas shown ica zgure dica areas shown (1 graphic coverage and frame numbers. Dashed outlines graphic coverage and frame Figure 1n F numbers in mes 5. ines 5. d frame 1g. F 111 1n ter 111 photo- graphic coverage an numbers 1g ter V photo- graphic coverage and frame numbers ind i i Dashed outl te total coverage of F areas shown 25 Dashed outl icate total coverage of ica igure 24 Lunar Orb (1 1n Lunar Orb areas shown Figure Wag, W,..WWW,WWWWWWWV ,W ,5ng . . ,,,,MWWHW , ,MMWWWW: _ . . WW. WWWWwéwWWW ,WWWWWWWW W. , . ,,W WW W WWWW 3,2,. .. ,,e eeWxWWee . _ _ eewea . W . ,eaeeemWWZW, . , ,,,,z,,,,,,, ,WWWWWWWWE, , _ , WW We; . _ u . ,,,W . . _ ,wa WWWWWWWWW , ,W _, . ,,,WWe,,e, _ _ . . . WMHWW, _ . ,W WWW ,,,:Weeetyxxx WE: WWW We: ..WWW WWWWWWWWW,.,T , . . . , _ . . . WWW ,WWWWWW,,WW§WWWW§ WWWWWWWWWWWWWWW, , . .. . . . . . .4 _ , . _ .,ng . _ _ , WW3: WWWWWWWWWWWWWWWWW WWW WWW? . . . . .... . . . , 2. ,,, .WWW; , ,, ,,, , _ , . , WWWWfifiWWZ ,WWWWWSJ _ . . . ,WWWWW, ,,,,,,,,,W WWSW _ , . ,Wwwfiegegwe , . ,,,W, . .. . .. . . ,,,,Z ,, , . , _ 44, WWWWWW .,W,4,W, ,, . . . 2%, WWW”, ,, ,,,,I,Z,W ,, WWW Mow ,,WW W eeee _ , . . _ . . _ . wWWWeeW _ . , , _ , . .. ,,,,WnyW, . Weee: ., , . ,, flimmew W , . Wemmgi W, ,,WeWW , : _ , . W WWW , WWW WWWWWWW, , _ ,,,FWWZ . . , . ,,,,WWWeeWWWWW, , _ . . ,, WWWWWWWWWWW . , . W,,, W . ,,WWWx, , .,.,WWWWWWWWW, . WWW, e. WWWW, C _ . _ WWWWMWWW H WWNWW? WWWW ewe“ WWWWWW , . . . .. ,,,WWWWWWW . . WWW, WWW; . . . . WWWW, , ,W . W, . . 4 ,,,,WWWWW: WWWWWWWWWWWW . . .u. 3.3,. 3:, W, ,, _ . . u .. W W . fee/WW e WWW 2b.; WWWWMMwWwe . . . W WWWWWWWWWW WWWWWWWWWWW, ,. WWWWWWWWWWWWWWWWW , WW We, WWWWWWW,,,,,., WWW”, . . . LWWW WWWWWWW W . WWWWW . . . , . ,,,,WWW ,, W,, ,,,,WWWW W4,, WWWWWWWWW, WW,WW,,,, _ , We: g WW, § WMWW WWWWWWW WWWWWWW 3% WWWWW nggg 673%} , fl» , ,W «88* e2; 3% $5135er? figte :ee, W W WWW W ()wa Weee eW Wee: W, , , W 3,52,. ,WWWWM ”,,,, W,,W,W,.,, ,2. r,,,,,x,,WW,,W,W .H ,,,WW WWW, , WWWWWW WWW, WWWWWWWWngm, WWW ,een ,eeeeWWWWWW WWeeWeWWWWWW W ,,WWWWWWWWWeWive» ..W WWWWWWWWWWWWWW W 2, 3,: «WWW, 4W:W,WWWW,,, eeeWWW Wa”®i<3 ”‘49:? W W4,, ,WW, ,,WUWWWeN ,emWeW , WWW a W, , 4, z, W WWW, , 3® cg ,.,,WW,W,4WW WWWWKWWW? , WWW ,WWWW»W,,,,,,W Weeae ,,,,WWWW, Weee eeetaew . ,,,.WWWWW . . WWWWWW WWWWWWW, ,,WWeWWW, >,WWWW§$W WW . . .ewmeeee ,4 ,,, WW WQWWWMWW, Weee eeeaaeeweee, @ WW W WWW W WWWeWWee . WWW? ,,W . , 3 . ,, WW: ,2 . ,,,,W ,,, ,,W M mien, , ,W e ,,W W 4,, , ,,, W, esmmgiee Sig.” eew/WWWSW Week; ,,mWwWem, , ,,,,zwwW ,,,, WWWWEW . wéfimwvmm, 4,, W, ,,WeWeeW,,,W,{y . , . . :y.,. <, .xcafiWet, WWWemee .. ’ e} W WWW Wee Wee, WWW WT: WWW, WWWWMWWW, W WWWWWW WWW, W W . , _ ,,,.WWSVWE. . WWW . . _ WWwwWWWWmWW 444?; ,WW ,W we, . , , _ _ . . W,,,, ,WWVWWWW, . W. WWWWWWWWWWW/WW . _ .. . W,,.WW,WWWmew, W . . . WWWWW , , , ,,. , , ,4 ,4 . ,eeWW, . W,,,,.WNWWWW ammMmMWWWWeWW ,,Wee We, , . , . 4 4 _ , H , ,,W ,,,,, WW . . . eeWMWWWWwWWW, e, .. 4, _ _ , . . . We Wee . , “WWWWWWWWWW. we , WW MWWWWWWWW W WWWWW . ,,,WeeW . . , , . . ,,,W , W W, . , . , _ ,, $2,. . . . _ ,WWEé ,,, W ,, W We W? We W ®I; ‘3 W5, .,WWWWWWWW 4,» WeeWeWWWWee WWW,» W, WW W W W 1 We» gem Wee? e’e’e e e ‘9 f’ w WWW ,W, WW, W g, ,,W W ,, ,,,,WWW, ,,,?WW ,, 2;. e @S WWW ,4WWWWW4 ,W,, WWWWWWWWWWWWW , ,,,WWWeW. «a», &&a®©w¢@@ 93¢ Wmfifiw gm, WWWWW W size/WM WW, WWWW ’WW WWWW WWWWW WWWW WWWWW “figggfi W ”21% ‘ WW, WW W W W We We Wee W WWW ’3, ,9, W e WW, W 4W W ,W We W W W, 3 ’$ (#9 54;? WW ,, WW WWWwwWeWeme, WW, Weeee WWW, , ,WWWWWW: ,,WWWe, ,WWWWWWWWW ,W W, . , . , . _ _ . .. WWW, .. 4, ,,,,WWW WWW: , _ WWWWW Q, W e We We W, W ,e We WWWWW WWWW eemeee WWWWWWWWWWW, WWWWWWWWNWW, . WWWWWWWWWWWe WWWW4 W ,WeWwWWWWWW ,W,,,,,W,ZWW,WW,W ,, WWWWWWW ,313, W, W ,,WW,,,,W,,W,, WW 3:3 W e S? ,,W, ,W, g . W ,> WWW _ WWWWWWWWWEWHWW . , ®@ ®, ,, , , . MMQWWQMH @ x ,, W, . $3535., , . ,, 4,, WWW. .. ,,WeeeWWWWWWWWWWWWW . . . :4 “kw? . We ,wmeeee ,,,,WWWWWW We?» , , _ . . WWeWeWeWW WWW, WWW . , , , _ _ a: ,, _ WWW WWWWWWWWW ,,W figW , , _ . , ,W,W. Wine, e,,,,,,,W, WWWWW , ,. _ ,wwwmmw . , . . _ .Wmeeeehee ,,,W ,W . . , _ _ ,. , . . ZWWWWWWWW Mm _ savekfiwvfiwee . gee, . , . . . . , . 3®®®$ ,ze m... & WW; ,,WWWWWeWWWeWWWe ,eWWWeWWexWWWeWW ,,WWWWWWWWw WWW We». W WWWW , . ,. ,,, WWWWWWWWWWWWW . WW , ..4 , _ . . . ,,W4 ,W, 2153,, ,. _ ,,,, 4 WWW, . _ _ _ ,WWWWWWWWW, WWW/WW, 35%me eefiemwygeweee eeWWeW WWWW . WW, ,,,,wmmwwwwwmeWWeWSWW, ,,WWWWWWWW grew, WNWWWWWWWeeWeWWWWWWWW ,,,,WWWWWWWWWWWWW WWW . W 3.3%» emmewea ,wMW W We 3:, WWIQWWWWWWWWW ,w/WXQWW/ W WeWW W Wmeefie: eeeeeve,, WWWWW, wwwWwww Wee, ,WWWWW 4,: ,W, WHWWW W W W . ,W W, E 235% :W W We 4 Weeeeg WW W W We; W4, . WWmW/WWWWW, 3»,me emmew, e 1, WWW, we “a“ eleeég'fi' eW/Ww, W W . , , 333M433»? 4W4,v&fi, . ez/wWymW 4, WixmewamWWmMfi, WWWWW, ,,4 . ,,,, WW, Wig? We WW were; we, «W W ”‘2“? 3%,. W‘Weem Wee We gm aw®e§vu vewwdwfixq W W, ,,4§$®W®¥myu,hk ,,,WWWWWWWWWWWW,“ We a ,4 , 4, x 4,4 ,, , WW. waffle W WWW, e, W4,? WW, WWW WWW WWWWWWWWWWWWWW, . ,, . WW, . , . WW . ,WMWWWWWWWW ,eee .m eweeeez , ,,ZWWWW . . . W . WWW ,,,,Wee. . . . WWW, .. . . .. . . , ,,,WWWWWz :94me , WWWWWW, $an . . . W , , . , , WWWWWWWWWW, _ . . . ,WWWW. ,,, W, , we , WNW, , . . . . v. _ ,5,”wa , . . , . . emeewmm/ , , , 43$ ,@@@&%, ,WWeeaWWWWWWWW, . , . ,WWWWWWWWW . . , . . W,,,,WW4WWWWWWWW . ,e . ,éee Qwaeevwxanfie WWWWWWWWWWWW WWW W eeW 5w 1W Wee W, W ”“1373",; ea «5&5?» 'AWWW 4WW,WW,WW,,W4?, WWW , afieeweWIQ4 WW WWWWWWW . WéWWWW, WWW: . . . «,WWWWWWWWWW . . . . , W,,,, WWWWWWW, ,eeWWWW, , . geaxémeuWw/Weeewfi S, g , a; ,WWWWW, “$3me WWWMWWWWW, . WWWWaeeng eeeeieeezfsez WWWeWWWWWWe, WWWMWWWWW . . . . . . . . . . . . . WW3“ . . ,WWWWWWW e&@@ae~ewe ,,,,WW, wvee gW—wm ,,WWWWWW. W . ,WWWWWWWWWW, . ,eemeWWW: W e , . $6“, . WWWWWWW, , . WWWMWWWWWW . eeWeWW . . McwWe,,W,eW WW4 _. , , . ,,,e We , . . ,W 4eW,W@W,W W4,, . WWWWWWWWWWWWWW»; WWW w, «WWW Elem W WW WWW? wfif . WWW WWW . . ., 3% $.@A®W.,e,w .wh, wwwm ,,e ,,W, WWWWWWWWWWWWWWHW: ,WWWWWWWWWWWWW ,,, W , WWWWWWWW WWW WWW, ,WWWWWWWWWWWW, ,H Mme?» WWWWWWWWWWW 4®®Wg79 ,,,W, ,,W, WeWWeen WWW ,,,, ,W i? WWWWWW . . . , ,, eeWWWe, Wee, Wee ,W, zauwufioebzmaveaufike . .,.esafiexibwfl he, W WWW ee 4W3, ,m Wee ,,W W W ,3, WW ,. ,W We: , W We W Weeee W ,,W WWWJWWWWW, , WWWWWW ,Wa WW ,eQWQeWSWWW. . . , ,efifiwwamaewefiaw . . _ ,eWeWeeWWWWWWes , . . WWWWWWW . . ,,, ,,WWWWW , ,.. . . 4W, ,iwfiflfizj/ ,E ,&&@$ . , fi®fl WWWWWWWW Wmmwmw §W®®® Wm, MW, 4%,, WWWeeWWWWWW WWeeWWWeWWmmWWW & 2‘; WWW) , W W We e W W WWI/We WWWW Cw< WWW/WWW Z; jg “at ,W ,W e, WWeWe WWW, Wee, Wee ,QWeWuew, WWWWWWWW ,WW W‘ WWW WWWWWWWWH ’®®I aw WWeWeWW ,,,»,e WW, “3&2, ,WWWW WW, 2‘ 'W W ,e} e eWW’eree, WWWW WWWWWWWWWWWWWW ex, Wm WWW, eWWee< eWWex, 4% flay/BweWerfigSWQWwfixdfie weaeemmewiganmww WWW: . 4 W4 i}; WW: . . g Wfiee ,W 4%,,, ilexmfi as; Wane e/ng/emeedfieafl \W@e~wam,fl$w®@,xv& , ,,, . . ,Wefime/QQEW 4efie®eéefiuw®namfieeeeez _ , . .. .. . . . . . . . , ,W WW, ,WWWWW WWW, ,,WWWWWWEWW, ,, WWzWWWWfWWW W, ,MWWW W WWW ea M 'hlifi’e W,,,, . . eeeaeee WeWWWWWWWWWWWW SWWWWWWWWWW: wwewe WWWWWWWW, W, Wmeeeemeeeeea, . , WWeeWWWeWW W, , ,ew, ,W veg; . .H ,ezeWwWWW WWW: , . , . ,WWWWWWW , :4 . WWW, ,WMWWWWW _ ,,WWWWWW, §®W Weeg as, W W,, ,W Z®V®§§VBA W ,,W WWWWWW WWW, ,,,W, ,,,WW, WWWWWWWWWWW WWW WWWWW . . . WWWWWWWWWWWWWWWQWW . WWWWWeeWeeeWWeWWWWW . WWWWWWWWWW ,ewWeeW ,,WWeWW Demetri?» \ ~ 5 \ \V, \ * GRRTNER FYJHAUUKA>* , V / A A , 1 'A Ac- , ,/'.A y ‘ ~" * Fontenetle Timoeififi“ J HERSCHEL‘ ‘ a ‘ -- ‘ E r/ ”“11”,; IV ‘ / VV , » ‘ ,Robxnsmw / ‘J/é’fHorrebo‘w a L L' M A R ‘ g x? , ‘ Vi , g ’1 A? ‘ bx if MW“ iiuwu 7y/ ( LdCondgamine _ a a 1 / / Qx o . V : Av l, V . - r v A -: \ \ A N WV (wit ) . : a , A , A \ {4, Remote? L v \ ,’ ' ‘ 4; 3:‘¢‘&" (l Mgupmt‘use V w, WWW“ Mitchell \\ \__ ’ ' ’, ,’ , ‘6 . ' 5m: m RANGE “ ~ 8 'l ' h l . , ~ 7 my / / rum ”1”er 5, ‘ A E, g. , ARISTQTELES \\ s ”I / , , , {/V , “(V lavméiwm / a / 8% \- / . ‘Dechen/ . ,‘y, Simm‘ Q , \l\\ $9 :7 / :V x": , U9 V_ ,- ,/ . ’ - \ 3)“ r W, /.\ , ,A , < A . A r - ‘ \i ,1 I», ,, -A ‘ lla x“, , ,r I I AV 1, Gerard , ' ,, » ,/ I LOWA/ , 9 <9 ‘ / V»; ”“1““ ‘ ““0" , yy’Hmamg , A,» \ey‘t ,/ V j M ’x K . 3 V , / r , ’A A / ‘ X90 ‘ , , , A. , V A V . -A w ' Mum; ~ ‘ ‘ / f 15' A Plane A x X A- ‘ ‘ HERACUDES PROM i x K- \ _ _ A , , i .e Helicon Ce Veme, t ALEXANDER (WV-w, V A Am M- VVVVVVV VAFWAA 4 ,zwm 4AM VV a VVVVVVV - IV V V t “k : _ A V A 2 WW. A- AA--- . , \ A ,AA,AAV -A . V r 1: LACY/jg» i, - , 4K1; (wig/)4], I “aft/04) r. 9,5] (54/ V? V A Cassmi , 0‘“st “ Thea stems i Dome“ A r A i ‘ , t. - x Anmliu - r ‘ ’ i. \ i \ [other ‘ '\ Visworssus ’ i ' I L ,WAV , if ' “ ' Ar’cl‘nmedms V l t I i ‘3 ' ‘« t Iii/13x VV_A.V.Ai Ara"..VA V -.V., A AV ,, arm (ME l A7 A R 1': S It R I; ‘! , AAAAAAAWAAwWA At, , ,v I 7‘ A 7‘ l s \_ V \ r», W x, ‘ , l A ’~ UM e A . ~ C A , V »\ _ ‘ iUI efingw \ {V K m TRIS/{IV m‘ Mi'wmpy . ‘ r I 1 i l i Le Mama :5 f _ imimlum» ‘ r’ ‘\ “MW. [7, hr {3 § :1 Laurie" ‘ l ’, l 3 o o r V o o 0 0A 20 A to g , o 10 20- 3o . L . " Aimus \ \ i: A A, A” ‘5 ‘ Bessel \ 2A Wallace w mm W 2’ ‘\ Deseilligny x « ’ Sulpicius Gollus X at A i m i J :~ ! ARCH «' i Tocuue‘ MA RE VA PO}? 1 /V (SEA OF VAPHRS‘) Silberschlmj L 1 w l: qugpa ‘ E, Picket’mg :- i V l i 7‘» AA , A, Sounder; 3 AV, , *V, L, ’ .6, ’~ * gf ALBATEGNlUS M A; (a Q Klem , .< A . i‘ .lfipmw 03 f, ‘. " ALA ,A' {V - X, ‘_ , 3mm A 1.4 m; A-\“1~.\‘?Lu«:i.< ’ ”r“ V Pam): é ‘ V: 2 o: ‘ V,A”*’-'v: \ w V { {‘VOQBi _', , o n: ” I Argelnudw , ; (A ,mwy/ , ‘x g! o ’ i i s k u 3 f k A$2A€tité : my i {l A -A (1 , , DWI L, , ,,,,, f i i F‘ o A i g’ V‘ Abenezvc: . a ,‘v A A “'nye _ w»: a § y “ '5 ,: ’ y . w . ‘ _ / A70;)ht ‘ f , ‘ R/i’rirrMaii’UM ”’ 5‘“, . 5.V ‘tiifil‘l‘w A» «. g;- “ ,5 A FA , ’ V , g (A V {m V SACROBOSCO ‘ ’ * V , c a ~, , localllew own a 1! XV , ‘ z e A b; ,r 2‘, wave; 5 « _ { ‘ ’ g l ‘, x s ,. ~, ‘ ’7 " 0 o " b a a 0, ~ A 60 40 WAV30 32 0 V :3, 10 A 1‘ '4 V» Blmimm903mm”: . V y g » . g .‘ ‘ g “gums/x04 , 1 g ‘ , ‘ r I t ‘ ' : Aim-u»? , tg: ‘ A ’ § « x 1 V ‘ A .« A l 33 eraiomonltmus (fiWemu :2 Z {:i‘onm‘m (g ’V r v ’ i L 1 g t Wilkins DESLANDRES ‘ fr it“ ‘ f r A _ ‘ I) ‘ , A ( ‘ ; ‘ ‘ ‘ dingo]. ‘ t T" ' ALiAcwsrs V, 5 \ l l a A‘r ! m ~ , t ; l wéuee“ “x”, g , «s . \j i I l 3 ‘ r V, ‘A “ Nomps ‘_ I ‘ ‘ ~ ,4 Lexeii VA ‘3 * _ , g ., A ' A 2% ‘ . Q éKoisQr V.- f 3* Av! ‘ 1 him mus ‘ t a l t ‘P‘F l _ ‘ ("it i ' k A e \ _ ‘ A i . , . a! g , ‘ eineius _ Ly; { ,‘Buscfiing ’ V, , x _ : \ \m A , \ u v , V . . g, s _ _ V; _ gum“ ,’ ‘ f A , , WWW? V.» A ~ “ WWW” ‘ 3' \ dem'v9 ‘ r “ A dwm * v “ ‘ » ’ , E‘ ’ t ,V : rmykmfi A, A L Ac Hr ‘. , § ? , , VA e if”, A ’1 Re a §’ 4’ A t aiming 4‘ . «y , , ‘ , V. “New ’_ MW“ e ”unveiling mamas“ Nam J" p’ SYOFLERY’ , , I,» if; K, ~ ’ - , _ Voeriu‘ V, f, 9' ,, I \\ Av,V A-_ ,‘ _ ‘ A , - , , , . g f ~ . ‘ A A Huggm: . E V \ f it MAUROLYdfi. 6‘; v‘ , g , _ , /' g t _ f t ‘ it. ‘A , i g A) «r . ' t, I , / V Nicolai mmwu % ~ ., ~ ‘ ' - , ,t‘ A » t ‘ p y: , A : , x , ‘ , at M” *A ’ Ictet gfimissuve ‘. A: z I" 1V K ‘ / r )_ / , / {/3 SLHV'YAHL) ‘ ~ >-V : ' _ ,~ A , ! E . y . \R , _ n ’ A Mali»: \u \ _A Ag Spni iV-mgom ,r: W kw _‘ f' y ,A A A A A ' A Work): JANSSEN 9‘ -: .~ .‘ \\ lH‘JltIMJ-lrtx n ~ _ r e , 4 V H , Riggemth ‘ x , :-«,‘ A,u mhé‘si - w - ' AA MAGINUS Man 3 WAkuiiim-i ‘ - _ - \ iii/:‘J/CHH V: .V, a; SCHl’LLER ’ w ’ - r , Ml/fl‘mbm‘ ,' “k - ,5? '3 u.» a‘ * Asdepi ,3: I ; § , L , Fig. 5 Frontside photographic coverage of Lunar Orbiters I, II, III, and V. Black outlines indicate near-vertical coverage, red outlines are oblique coverage, and dashed outlines indicate high altitude coverage of larger areas Refer to Table 3 and Figures 6—26 for detailed coverage within the numbered areas. Fig. 4 Frontside high resolution phoTogrophic coverage of Lunar Orbiter IV. ‘ 1 Fri: ’«IIPr-Libfiliila ‘II \§L.i.llsi PI, . ..(4DV «335.. . ,4... r l |' ‘ a, a. C |769 I966 May 6“ 8h 4393 UT Col. IO3‘?6 I = +5?2 b = +05 C 2527 I966 Sept. 3d 9h 47”.”2 UT I = -4?0 b = +297 9 O 9. m” m. nu T nu Ab m. 2v 4 h nlu d 4 m e cu Ab .b mm C 2580 b= +O?7 I: -5?2 COL|55?6 T HV 4 m . 2V 4 hl d RV m. e QV no Ab mw C 2597 C 3898 I967 Jon. 20d Ih 44?? UT Col. 18‘34 I = -4‘.’8 b = +O‘.’| C 2620 I966 Sept. 6" IOh 40".”5 UT Col. l6793 g, b = +6?6 l = +3?4 9 O . 8 2 7 UT Col. m I966 OCT. 24d 2h 59 C 3027 O O . O 8 m. C T U 4 m I966 om 28d'7 52 C 3265 -3‘?5 b= +|‘.’3 3998 d. C T U 0 m I966 Dec. 23d 4h 38 C 3718 C 4079 I967 Jan. 22" 3h 30”.”8 UT Co|.4-'5‘.’9 l = -6‘.’3 b = -2‘.’5 b = +|‘.’8 l = -5‘.’9 7 O. 4 O 2 m. C T U 0 m. 6 2 .nl d Q m. J 6 6 B C 2349 C 358 I965 Dec. 6“ 5h 2W0 UT Col. 6596 | = -5‘.’8 b = +27 C 3252 I966 001. 28d 6h 34'?‘O UT Col. 7993 = -|‘.’7 b = +32 ‘ b = -6‘.’4 |= +P5 339?9 Col. T U 7 m. 8 4 h 3 d 4 2 U. U J 6 6 B C 22” L I75 I938 Jun. 3d 04h 00m UT Col. 32897 |=+5?2 b +6?6 Bl UH ' r .1 \' k ,.' C l765 I966 May 6“ 8h 39W8 UT Col. |O3‘.’6 | = +592 b C 4396 I967 Mar. I7d 2h 20“.”5 UT Col. 340?4 |= -6‘.’O b = -2‘.’4 C 202 I965 Nov. ||d IOh 6".”l UT Col. |2|‘.’9 b = +20 I = —494 9 O. 7 Q m. C T U 6 m. 3 2 h 8 d B a. O 5 6 B C III C 2500 I966 Sept 3d 9“ 26'3“?) UT Col. l30‘?O C I384 I966 Apr. 27" 2h 37".”? UT Col. 35099 | = 2545 I966 Sept 4" IO“ 3W2 UT Col. l42‘.’6 | -4‘.’O C l5|4 1966 Apr. 28d 2h 37m?) UT Col. 3‘30 4 O b=-6 | = +095 “fl D m. C T U 9 ml. h 4 d 8 2 V) 0 M 6 6 old C I890 C 2626 I966 Sept. 6“ IOh 4397 UT Col. I6???) I = -6‘.’6 b = -O‘.’7 .. m5 “its” -.”'v& I « C 3924 I967 Jon. 20d 3h l6'T‘O UT Col. I995 = -4?8 b = +O?| ; [a 3". ,, "’3;- «fl. _ 4 . : § b. . r ', C 4|84 I967 Feb. I9d 2h 53".“8 UT Col. 24‘.’2 l = -7‘?4 b = -3°8 2444 I966 Aug. 8d llh 8W4 UT Col. 9 o. 3 4 d. C T U 5 m. 7 2 n 3 a 2 2 n. O J 7 6 B C 407| C |585 I966 May 2d 3h 49”.”9 UT Col. 5294 I = +|‘.’2 b = -5‘.’4 C 2862 I966 OCT. 8d l2h 8W7 UT Col. I989?) I965 Dec. 6“ 5h 7W0 UT Col. 63?? |= -5‘.’8 b = +277 C 2396 I966 Jul. l3d ||h 46m? UT Col. 2|7?| I = -6‘.’5 b = +O?4 C 3249 [966 Oct 28d 6h 32'?1 UT Col. 79??) n . ~37 .fi, L I75 I938 Jun. 3d 04h 00m UT Col. 328?? | = +592 b = C 687 I966 Jon. 9d ||h |8”.‘O UT Col. IZO‘H b = -6‘?4 |= +l95 Col. 33939 T U 3 m. 3 4 h 3 d 4 2 n. U J 6 6 B C 2202 C 2499 I966 Sept. 3" 9h 24’3‘4 UT Col. |30?| | = -2‘.’7 U l42?6 Col. T U 3 W“ h mlv d 4 m e S 6 6 mw C 2544 = q 9517- = l Eélgg 'IOO m 6&117‘2 q? p18 'JdV 996| £817! 3 C 2593 I966 Sept 5“ IIh 40'T‘3 UT Col. I55?6 C 3897 I967 Jon. l9d 3h 3W5 UT Col. 7‘32 | = -3?6 b = +|‘.’5 C 2629 I966 Sept 6d IOh 45”.”? UT Col. I6793 I: -7?3 b =-2?O I79?9 Cbl. T U 0 m. 7 2 um-I, d 7 m e S 6 6 mm C 2699 C 3902 I967 Jan. 20" Ih 46ml UT Col. l8‘35 l = -4‘.’8 b = +O?| C I960 I966 May 29" 3h 46m8 UT Col. 22‘?2 = +|‘.’5 b = C l9ll I966 May 28d 4h l6'I‘4 UT Col. IO‘?2 I = +O?5 b = —6‘.’4 C 3727 I966 Dec. 23d 4h 43”.”8 UT Col. 39‘?8 l = -3?5 b = +|‘.’3 C 4062 I967 Jon. 22d 3h 2036 UT Col. 43‘.’8 | = -6‘.’3 b = -2‘.’7 C 2928 I966 Oct 9d llh 35'93 UT Col. 2|O‘.’3 C I275 I966 Apr. 2" 8h 26'1‘5 UT Col. 48‘.’8 C 4259 I967 Feb. 22d 3h 20ml UT Col. 60‘39 369 I965 Dec. 6d 5h l4'F‘O UT Col. 6397 = -5‘.’8 b = +2”? c 239| I966 Jul. I3d uh 44% UT Col. 2:7?0 C 3239 I966 Oct 28d 6h 28W3 UT Col. 79‘?3 l = -|‘.’7 b = +32 w w W C I760 |966 May 6“ 8h 363‘4 UT Col. |0396 l = +5?2 , ;, -. v; < a L I75 I938 Jun. 3d 04h 00m UT Col. 328?? |= +592 b = +6?6 C 692 I966 Jon. 9" IIh ZI'T‘O UT Col. I2090 | = +|‘.’4 b = -6‘.’4 33999 Col. T U 9 W. 4 h 3 d 4 2 n. U J 6 6 B C 220| _ C 25|8 I966 Sept 3d 9h 42”."4 UT Col. l30‘.’2 | = -2?7 b = +399 ' ‘ s, M ‘ "‘1‘, C 230 I965 Nov. l2d th 44% UT Col. l34‘34 | = -2‘.’4 C 257| I966 Sept 4" IOh 37”.”6 UT Col. [42‘39 C |4|| I966 Apr. 27" 2h 54W4 UT Col. 35l‘.’O | = -4‘.’6 3362 I966 Nov. 3d 9h IS’T‘B UT Col. |5396 l = -5‘.’8 b = -5‘.’O us: 3 vi C |527 I966 Apr. 28d 2h SOWZ UT Col. 32 | = -3‘.’8 b = -6‘.’3 C 2668 I966 Sept. 6d IIh IO'F‘I UT Col. |67‘.’5 C I900 I966 May 28d 4h H’T‘Z UT Col. |O‘?2 | = +O‘.’5 b = -6‘.’4 _ -, ..‘ , ; ,, ‘uv w *7; ‘1»! ' g‘. Q U" “a C 3904 I967 Jon. 20d |h 47“.”l UT Col. |8‘?5 I: -4‘.’8 b = +O‘.’| C 2439 I966 Aug. 8d llh 3’94 UT Col. I7393 | = -5‘.’| C 4l95 I967 Feb. I9d 2h 56'.“8 UT Col. 24‘.’2 = -7‘.’4 b = -3‘.’8 Sept 7d llh 25”.”2 UT Col. |79‘.’8 I967 Jan. 2|d 2h 44“.”2 UT Col. 3W4 | = -5‘.’7 b = -|‘?3 C ”96 I966 Apr. Id 3“ 2293 UT Col. 34‘?! I = -4‘?3 b = -6‘.’3 C 2303 I966 Jul. lld llh 36”.”0 UT Col. l9|‘?5 l = -5‘.’O 7 b = —29 =-6?3 Col. 43‘?8 I967 Jan. 22“ 3h l7'T‘8 UT C 4060 s C 2857 I966 OCT. 8d l2h 5m: UT Col. |9893 = -6‘.’7 b = -6‘?O 94 b=-6 96 I=-6 9 O Cd.6O T U 9 m . 2 2 h 3 d 2 2 b. e F 7 6 MN C 4268 C 2923 I966 OCT. 9d ||h 32% UT Col. 2|O92 | = . “a 1:. “E I965 Dec. 6" 5h I8'T‘O UT Col. 6398 | = —5‘?8 b = +297 C 790 I966 Feb. 4" 6“ 52¢?) UT Col. 74‘.’| |= -3‘.’7 b = -5‘.’2 C 3|98 I966 OCT. 28d 6h 7”.“l UT Col. 7990 | = -l‘.’7 b = +392 » _. 5 a»: .i C I355 I966 Apr. 6" 8h O'T‘O UT Col. 97??) | = +4?| C I726 966 May 6“ 8h II'T‘8 UT Col. |O3‘.’4 | = +592 b = . ’0 I938 Jun. 3d 04h 00m UT Col. 32897 | = +592 b = +6?6 C 648 I966 ‘ ; C 44|3 I967 Mar. I7d 2h 3W2 UT Col. 340??) |= -6‘.’O b = -2‘.’4 C 249i I966 Sept 3d 9hl9'T‘O UT Col. |30?O = -2‘.’7 C 2564 I966 Sept 4d IOh 35”.”4 UT Col. |42‘.’8 l = -4‘.’O b = +297 E8 .o . ”a . W . , ' ‘ R . . 4" W“ ~.' ‘ ' “a?” b m - > V I ‘ ' .c- .5)? C l4|9 I966 Apr. 27d 2h 58’."3 UT Col. 35|?O |= -4‘.’6 b = -5‘.’6 C I850 I966 May 27d 3h 58W3 UT Col. 35799 | -O‘.’6 b = —6‘.’7 EIO C 3355 I966 Nov. 3d 9h 4”.”6 UT Col. [5395 I: -5‘.°8 b = -5‘?O Ell ”W" '* C 3846 I967 don. l9d 2h 4|”.“8 UT Col. C 2663 I966 Sept 6" llh 7W5 UT Col. |67?5 EI3 C 3944 I967 3h 27’."2 UT Col. I996 l= -4‘.’8 b = I966 May 29d 3h 50'T‘8 UT Col. 22‘.’2 O o. 0 mm m. C T U 2 m. 9 3 m. d 7 m e S 6 6 mm C 2720 C 3977 I967 Jon. 2|d 2h 42m5 UT Col. 3|?4 | = -5?7 b = -|?3 C ”99 I966 Apr. Id 3“ 2*..‘2 UT Col. 34?| |= -4‘.’3 b = -6‘?3 C 278| I966 Sept 8d IIh 52“.”? UT C 2878 I966 Oct. 8Cl I2h l8’T‘3 UT C 4052 I967 Jon. 22d 3h ”'90 UT Col. 43?? l = -6°3 b = -2‘.’7 C |262 I966 Apr. 2" 8h II'T‘7 UT Col. 48?? = -2‘.’8 b = 6 I662 I966 Mov 2d 5h 45”.”? UT Col. 5394 I = +I‘.’2 b = -5‘.’4 C 292i I966 OCT. 9d IIh 3|".‘2 UT Col. 2|O92 C 378 I965 Dec. 6d 5h 23'."O UT Col. 63‘?8 I = -5‘.’8 b = -2°7 C 2376 I966 Jul. |3d ||h 35”.”2 UT Col. 2|6‘.’9 C 796 I966 Feb. 4d 7h 2W3 UT Col. 7492 I: -3‘.’7 b = C 3233 I966 OCT. 28d 6h 25'."3 UT Col. 7993 I: -|‘.’7 b = +3?2 . w n . C I354 I966 Apr. 6" 7h 58?? UT Col. 97% C I732 I966 May 6d 8h I5'T‘7 UT Col. |0394 L I75 I938 Jun. 3d 04h 00m UT Col. 328?? I: +5?2 b = +6?6 C 4372 I967 Mar. I7d 2h 8'99 UT COL 340??) l= -6?0 b = -2?4 F4 I: +194 b = —6‘.’4 |20‘.’2 Col. T U 0 m . 6 2 m: d 9 n. G J 6 6 old C 70| |= -4?5 b= +290 COL|2797 _.| U 2 m . 4 h 8 d B d. O 5 6 olJ CIOI C 223 I965 Nov. l2d IOh 3W2 UT Col. |3493 C I430 I966 Apr. 27" 3h 3’90 UT Col. 35l‘.’| | = -4‘.’6 b = C 2559 I966 SepT. 4d IOh 32m4 UT Col. |42‘.’8 | = -490 b = +27 F9 C I794 I966 May 27d 3h 33% UT Col. 35696 I = —O‘.’6 b = -6‘.’7 C 26|5 I966 Sept. 5“ l2h 2W2 UT Col. I5599 " W41" “W “M x . , I H a ,1 C 3853 I967 Jon. I9d 2h 44W? UT Col. 7?! | = -3‘.’6 b = +|‘.’5 Fl2 C 266| I966 Sep’r. 6d ||h 5”.”6 UT Col. |67?5 §~ ‘~ C 3950 I967 Jan. 20" 3h 29m9 UT Col. |9‘?6 C I995 I966 MCIV 29d 4h 40”.”6 UT Col. 2296 I: +|‘?5 b = C 3745 I966 Dec. 23d 4“ 5338 UT Col. 39?9 | = -3‘.’5 b = +|93 C 23|7 I966 Jul. ||d ||h 4I'T‘O UT Col. l9|‘.’5 l = -5‘.’O b = -2‘.’7 | = -6‘.’3 7 O. 3 4 .m C T U 6 m. 7 h 3 d 2 2 n. a Iu 7 6 B C 4048 C I256 I966 Apr. 2d 8h 5'92 UT Col. 4897 I: -2‘.’8 b = -6‘.’6 F|9 /=. " ‘ . 4* ~ ' W1. «we», .r W . , | = -6‘.’7 b = —6€’O l98‘.’4 Col. Tl U 3 m . O 2 h P. d 8 a. O 6 6 old I966 May 2" 4h 5W9 UT Col. 5296 C 2365 I966 Jul. I2Cl ||h 37% UT Col. 20497 I: -5‘.’9 If I967 Feb. 22d 3h 34”.“9 UT Col. 6I‘.’O |= —6‘.’6 b = —6‘?4 I966 Feb. 4" 7h 63‘? UT Col‘ C 2380 I966 Jul. |3d l|h 37WO UT Col. 2|699 b= +392 |=—|‘.’7 7990 COL T U 7 m . nlv h 6 d 8 2 d O 6 6 mm C 3205 a,“ M?!" ‘ u» .fe‘ ? 1 "w ”mm. , g r 'W L |75 I938 Jun. 3d 04h 00m UT Col. 328?? I = +5?2 b = +6?6 C I348 I966 Apr. 6“ 7h 3W7 UT Col. 97‘?O | = +49| b = -3‘?6 (32 C [735 [966 May 6d 8h I7'T‘7 UT Col. |03°4 |= +5°2 b = +095 x V a Vb“ G4 -6?4 b: I: +|95 Col. 33998 I966 Jun. 24“ 3“ 3696 UT C 2|89 41,;th C 664 I966 Jan. 9d 8h BOWO UT Col. H897 I = +|92 b = -6‘.’3 66 C |23 I965 OCT. l3d 9h 20”.”2 UT Col. |2894 I: -4‘.°5 b — +|99 ' ‘ \J v, ' Yul « , V U? fiat-w". . g: fa (2:55,: ‘3" ,‘ : ., ’ 1~ - ', 14‘": ‘ n "5 . ‘ » fl. V .‘ 2“,}: 4 .< .f' C I437 I966 Apr. 27" 3" SW? UT Col. 35l‘.’| = -4‘?6 b = -5‘.’6 C I856 I966 May 27" 4h 3W9 UT Col. 357?9 I = -O‘.’6 b = -6‘.’7 G9 b =-+297 I: —4?0 Col. |42‘.’8 T U 2 m . O 3 h m d 4 m e S 6 6 oIJ C 2555 A C 3870 I967 Jan. I9d 2h 52".‘0 UT Col. 7‘32 |= -3‘.’6 b = +|°5 GH I: —5?3 b = +03? COL|5595 T U 2 m . O 3 hl d 5 m. e S 6 6 ob C 2584 C 39” I967 Jan. 20“ |h 5W6 UT Col. |8‘.’5 |= -4‘.’8 b = +O‘.’| C 2655 I966 SepT. 6d llh 2W7 UT Col. |6795 I: -696 C 1208 I966 Apr. Id 3“ 3|“.‘8 UT Col. 345’2 |= -4‘.’3 b = -6‘?3 (55 C 2435 I966 Aug. 8d IOh 55’.“2 UT Col. |73‘.’2 l = -5‘.’| b = +297 G|6 2 O. 0 ob m. C T U 7 m. 2 h w_ d 7 .T. D. e S 6 6 mm C 2743 C 4044 I967 Jon. 22d 3h 4".“3 UT Col. 43?? l = -6‘?3 b = -2‘?7 C 1254 I966 Apr. 2d 8h 3W3 UT Col. 4897 I: -2‘?8 b : -6‘?6 G|9 620 —690 -697 l98?4 | COL I966 Oct8d|2h22m7 UT C 2885 C 93l I966 Mar. 53" 6h I'T‘O UT Col. 6695 I = —2‘.’5 b = -6‘?4 622 C 804 I966 Feb. 4d 7h 8W6 UT Col. 74‘32 |= -3‘?7 b = -5‘.’2 623 b= -5?6 |= -6?8 8 O . nlO 2 m. C T U 7 ml. h 0* d nlu .T. p e S 6 6 mw C 282| C 558 I966 Jon. 6d 6h 4'3‘2 UT Col. 8|?O l= -4‘.’4 b = -3‘.’| 625 C 2477 I966 Aug. l2d llh 40”.”3 UT Col. 22295 |= -7‘.’4 b ‘m 1: :1 C 666 I966 Jon. 9d 8h 32W) UT COH18‘?7 I: +l93 i ‘ 6 » y ‘ \a K C 2153 I966 Jun. 24d 3h |6m9 UT Col. 33937 I: +l‘?5 b = -6‘?4 A C I444 I966 Apr. 27" 3h 9m8 UT Col. 35W l = -4‘.’6 b = -5‘.’6 H4 -6‘.’7 b: | = -O‘.’6 Col. 356% I966 May 27d 3h I9'T‘3 UT C l782 C 2|8 I965 Nov. |2d IOh |9m8 UT Coll |3492 I: —2‘?5 b = -3‘.’O HE C \ H ‘ - ‘ . ""-_ ‘ ' ‘ 5 x )- ‘ i. . ’ ’ 3““: ~- ‘ ‘_ u . ’b‘ , C 675 I966 Jan. 9" 8h 39%) UT Col. Il8‘.’7 |=+l93 b = -6‘.’3 ‘ H6 C 39|2 I967 Jon. 20d |h 52”.”3 UT Col. |8‘.’5 |= -4‘.’8 b = +O‘.’| H7 C 3912 I967 Jon. 20d |h 52”.”3 UT Col. I895 |= —4‘.’8 b = +O?| CLAVIUS (H7) C 749 I966 Jon. IOd 9h 46".“0 UT Col. |3| ‘.’O I: +3?2 b = -636 H8 c 2:4 I965 Nov. 12d 10h 10m? UT Col. 134?: I: —2?5 b = —390 H9 ' ‘V‘ WM; r ‘. C 26|8 I966 Sep1.5d I2h 25m?) UT C 3968 I967 Jon. 2|d 2h 35'95 UT Col. 3P3 |= -5‘.’7 b = -l‘.’3 C |2|4 I966 Apr. Id 3“ 37’."2 UT Col. 3492 |= -4‘.’3 b = C 3372 I966 Nov. 3" 9h 30".“7 UT Col. l5397 I = -5‘.’8 b = -5‘?O H|3 C 3437 I966 Nov. 4d IOh 24'.“8 UT Col. |6694 l= -5‘.’7 b = —5‘.’9 Hl4 C I62 I965 OCT. l9d I2h I2'T‘9 UT Col. 20298 | = -O‘.’5 b = C 2653 I966 Sept 6d I!h I’T‘E UT Col‘ |6794 C 4036 I967 Jon. 22d 2h 53”.”7 UT Col. 43‘?6 I = -6‘.’3 b = —2‘.’7 b = -6‘?6 |= -2‘.°8 5090 Col. T U 2 m . 6 4 In mlv d 2 W. A 6 6 old C |3|8 C 268! I966 Sept 7d ||h I4'T‘O UT Col. |79‘?8 l = ~75’3 b = -2‘.’O Hl8 ' I * 5;”, I% ’4‘ & C 2849 I966 OCT. 8d ||h 56m5 UT Col. I985? t I ‘- f 9 a ,K «3‘ Jae ‘ I I -"¥ 9‘ V. r I s ‘ ‘i‘lr j), 7;: , ‘ ‘ C I42 I965 OCT. I9d ||h 47% UT Col. 20296 C 432| 1967 Feb. 22d 3h 42m9 UT Col. 6|9O |= ~696 b = -6‘.’4 C 2827 I966 Sept IOd l2h 6W0 UT C 543 I966 Jon. 6d 5“ 45'90 UT Col. 805’9 |= -4‘.’4 b = -5‘.’| H24 H25 210?3 I966 OCT. 9d llh 45m2 UT Col. C 2933 Y 842 I960 Mar. |3d 5h I6m6 UT Col. 93??) I = -5‘.’2 b = +O‘.’5 v. \0‘ ‘ N 58l8 I965 OCT. 9d 6h 29ml UT Col. 7890 N-l6 3|7l-A I965 Jon. l7d 7h 25“.“3 UT Cdl. 8597 I: -O?| b= -3?4 COL 8597 T U 3 m . 5 2 h 7 d _H n. G Iu 5 6 mm N%6 BYN-A P9 ”-7 1‘ BI b = -3‘?6 +693 Col. 78‘?O I965 OCT. 9d 6h 29'?! UT N 58|8 N 58|8 |965 OCT. 9" 6h 29ml UT Col; 78‘?O I = +65% b N 58|8 I965 OCT. 9“ 6h 29ml UT Col. 78‘?O l = +63 b = -3‘.’6 N 9547C I966 Dec. |d 8h 7”.”8 UT Col. |3398 | = -4‘.’6 b = -5‘.’9 1" "“ N 58|8 I965 OCT. 9" 6h 29ml UT Col. 7890 l = +693 b = -3‘.’6 CI N 58|8 I965 OCT. 9" 6h 29ml UT Col. 7890 | = +693 b = -3‘.’6 N 58|8 I965 Oct ‘3" 6h 29ml UT Col. 78‘.’O | = +65 b = -3‘.’6 b = -3‘.’6 +693 Col. 7890 T U W 9 2 h 6 d 9 m. 0 5 6 B N 58|8 N 9547C I966 Dec. |d 8h 7W8 UT Col. |3398 a», .u. -3‘.’6 b: = +693 .0 0 Col. 78 T U ml. 9 2 I965 OCT. 9“ 6“ N 58|8 N 58|8 I965 OCT. 9d 6h 29ml UT Col. 78‘.’O I = +6?3 b = -3‘.’6 .. .9374- l = +6.33 b = -3‘.’6 Col. 7890 T U W 9 2 h 6 d 9 a. O 5 6 old N 58|8 N 58|8 I965 OCT. 9d 6h 29ml UT Col. 7890 N 9547C I966 Dec. |d 8h 72“.”8 UT Col. |33‘?8 . :55! .313. N 58|8 I965 OCT. 9" 6h 29ml UT Col. 78‘?O I = +69?) b = -3‘.’6 I 0 G N 58|8 I965 Oct 9d 6h 29ml UT v ' . ‘ . . q I Col. 78‘.’O = +6?3 0 . . ‘t , . o' 3 -' fi. . . ',. -. a; - \ . O. ‘ ‘0 . Q . ', ..o .0 . "fifx's‘. ‘. .. ’3‘- 'y. N 58|8 I965 Oct. 9d 6h 29ml UT Col. 78‘?O I = +693 b = -3‘.’6 . ’9 O o 0“ N 5818 I965 OCT. 9" 6h 29ml UT Col. 78‘?O | = +6?3 b = —3‘.’6 N 9547C I966 Dec. |d 8h 7”.“8 UT Col. B398 N 58|8 1965 OCT. 9d 6h 29”.”! UT Col. 7890 | = +693 b = -3‘.’6 N 58|8 I965 OCT. 9" 6h 29ml UT Col. 7890 | = +693 b = -3‘.’6 b = —3‘.’6 +6?3 Col. 78‘?O T U W. 9 2 h 6 d 9 d. O 5 6 B N 58|8 b = -3‘?6 +6?3 Col. 7890 T U ml. 9 2 h 6 d 9 d. O 5 6 B N 58|8 N 9547C I966 Dec. |d 8h 7”.”8 UT Col. |3398 | = -4‘.’6 b = -5‘.’9 2 O b=-2 |= +397 2 o . 8 7 0 C 6UT m I946 Jon. l7d O7h 50 L 224 GIY b = —599 |= -496 8 O W8IJT Cm.B3 I966 Dec W 8h'? N 9547C | = -3‘.’O b = +O?| Col. 24‘.’O T U m 7 5 h 3 0 d 2 2 r. O. A 9 5 old Y |06 = +63 b = —3‘?6 Col. 78530 T U ml. 9 2 h 6 d 9 m. 0 5 6 old N 5818 S'fl |= +396 b = +|9| Col. 33592 I959 Sept. 18" 08h I2m UT Y 482 I = -3‘.’O b = +09| CoI. 2490 T U m 7 5 h 3 0 d 2 2 r. 0. A 9 5 B Y |06 I: -390 b = Cd.2490 Tl U m 7 5 h 3 O a 2 2 r. 0. A 9 5 B YIOB